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I INTRODUCTION

During the last decade the performance of the U.S. banking sector has been remarkably poor.

The average number of failures jumped from less than 2 per year in the 1970s to roughly

130 per year between 1982 and 1991. The insolvencies and reorganizations of hundreds of

savings and loan institutions (S&L) and a significant number of banking holding companies

have inflicted enormous costs upon tax-payers. The public opinion is still astonished by the

gravity of the crisis.

While in the political arena these facts provided a powerful impetus for the debate on

regulatory reform, academics wondered about the causes of the debacle. The question is

why the safety net built after the Great Depression began to fail in the early eighties.

Initial explanations focused on the lack of discipline associated to the over-extended

deposit insurance system and the risk-insensitive nature of complementary regulations such

as deposit insurance premiums and capital requirements. The microeconomic evidence

analyzed in Cole et al (1992) and Boyd and Gertler (1993) led these authors to conclude

that a main source of problems was increased by risk-taking by banks, providing support

to an explanation based on moral-hazard.

However, the deposit insurance system existed since 1933 and generalized solvency prob-

lems appeared in the eighties. Indeed, when the deposit insurance system was created, pru-

dential regulation included also a variety of branching and geographical restrictions, interest

rate ceilings and tough constraints on the range of banking activities. Most of them were

progressively eliminated during the long period of stability. It has been argued that some

of those rules, originally designated to protect banks from competition, became barriers

that prevented banks from adapting to new market conditions, stimulating disintermedia-

tion and the loss of the banks’ best customers, and forcing at last a costly market-forced

deregulatory process.

Qualified opinions relate the solvency problems of the 1980s with a continuous deterio-

ration of bank rents. This decrease would explain the decline in the banks’ goodwill and,

consequently, in the value of bank charters. They argue that the erosion of monopoly rents

and charter values stimulates risk-taking.1

1See White (1991) for the main arguments, and Keeley (1990) and Cole et al (1992) for the empirical
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The traditional theoretical approach to the moral hazard problem in banking has been

based on static models of bank behavior (see Furlong and Keeley, 1989). Under risk-

insensitive deposit insurance, higher mean-preserving portfolio risk and leverage are to the

benefit of bank shareholders and to the detriment of the deposit insurance agency. Bankers’

payoffs have a lower bound at zero since they are protected by limited liability.

In a dynamic setting, the banker who goes bankrupt is likely to suffer losses related

to future payoffs. Apart from reputational losses which would appear in other industries,

banking regulation contains special provisions for promoters and managers of banks which

become insolvent: they are typically excluded from business. Actually, bankers need a

charter to run a bank and, when supervisors intervene in bankruptcy procedures, the charter

of the failed institution is either canceled after liquidation or transferred to a new holding

company after a purchase and assumption transaction. Clearly, the threat of loss of the

value of the charter when the bank fails may act as a disciplinary device against risk-taking.

Of course, for this to be the case, the value of the charter has to be strictly positive. It is

not rare, however, that locational, informational and reputational rents surge in the normal

course of the banking business, where switching costs and regulatory barriers to entry are

very plausible sources of market power.

In a dynamic setting, the stream of potentially positive future expected profits deter-

mines the cost of bankruptcy to the banker. The higher the present value of such stream,

the lower the incentive to adopt risky short run decisions. Present and future profits de-

pend on market power as well as on the regulatory constraints and macroeconomic factors

affecting banks.

This paper examines the behavior of a bank in a dynamic setup taking into account

the interactions between closure rules, market power and capital and asset regulations.

The scope of the paper is mainly positive, since much has to be done in understanding

the behavior of financial intermediaries before going into rigorous welfare analysis. Several

regulatory trade-offs which derive from the analysis will be pointed out through the text.

For instance, when market power encourages banks to be prudent, I will qualify to which

extent capital and asset regulations can compensate for the deterioration of soundness in

an increasingly competitive environment.

evidence.
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Some authors have previously analyzed the prudential implications of closure rules in

banking, but from different, more partial or less formal perspectives. Davis and McManus

(1991) examine the behavior of a risk-averse bank manager who faces an exogenous bank-

ruptcy cost in a standard one-period model, focusing on the regulatory choice of the range of

net worth values at which the bank is closed. In a similar setup, Mailath and Mester (1993)

analyze discretionary closure within a game theoretic model, dealing with the determina-

tion of the closure decision by the authority. Banking charters are specifically mentioned in

Marcus (1984) and Keeley (1990), who relate their value to market power: their theoretical

frameworks consist of simple one-period models where the charter is a shareholders’ claim

which is contingent on solvency and whose conditional-on-solvency value is essentially taken

as given.

Endogenizing the value of the charter within an infinite horizon model which allows for

bankruptcy and closure constitutes the main purpose of this paper. The resulting model is

not only more satisfactory than existing ones in formal terms, but also richer in empirical

implications.

The optimization program presented in Section II extends in a natural way the typical

decision problem faced by a bank in a static setting to a dynamic one. While in the static

model the bank chooses an investment decision once and for all, in the dynamic model it

chooses a state-contingent sequence of investment decisions. When the returns on the bank’s

portfolio are serially uncorrelated, the state can be summarized by an indicator variable

which represents whether the bank remains open or has been closed by the authorities in

the corresponding period. As in the standard bankruptcy procedures, the bank is closed if

its net worth (at the end of the previous period) turns out to be negative.

Dynamic programming techniques allow us to define the value function associated to

the bank’s problem and to obtain an implicit definition for the conditional-on-surviving

value of the bank, v. Not surprisingly, v is the sum of current one-period profits and the

(endogenous) value of the banking charter (which, in turn, is the discounted value of v times

the probability of the bank being closed at the end of the current period). Equivalently, v

is the expected present value of the stream of current and future one-period profits.

The optimal policies of the bank depend on such value. Under perfect competition rents
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are zero, v is zero, and the solution to the dynamic problem coincides with the one of the

static problem: closure rules are ineffective in disciplining banks. With positive expected

future rents, the dynamic problem is more interesting. For the sake of simplicity, I explore

the case where the bank is a (local) monopolist in the market for deposits.

Section III derives comparative statistics results that show the effects on the value of

the bank of the capital requirement, the regulatory bound to the risk of bank assets, the

degree of market power and the risk-free rate of interest. All these parameters may have

large (unambiguous) influence on v, which is the crucial determinant of bank risk-taking.

Section IV closes the analysis of the basic model examining the behavior of the bank as a

function of these parameters. Optimal bank policies are characterized and several regulatory

trade-offs are discussed. Interestingly the model predicts a kind of bang-bang behavior by

banks which can explain the sudden appearance of widespread solvency problems in a

banking sector as a result of small accumulated changes in the economic and regulatory

environment. In such cases, the model could explain some striking facts of the recent U.S.

banking experience.

In Section V, I extend the model in order to deal with an alternative closure rule which

allows for voluntary recapitalization by shareholders in the event of failure. Section VI

concludes with some policy implications for the current regulatory debate in the U.S. and

Europe.

II THE DYNAMIC OPTIMIZATION PROGRAM

A Banking Charters, Solvency and the Dynamic Program

In this paper, a bank is conceived as the investment project of a group of shareholders

called bankers. Bankers are risk-neutral, enjoy limited liability and are initially granted a

banking charter. A banking charter is an official permission to keep the bank open and

under the control of their shareholders. The charter is renewed at the beginning of each

period provided that the bank is solvent. If this is not the case, the bank is intervened

and banking authorities assume control. From the viewpoint of the bankers, intervention

is equivalent to closure, since it entails the loss of the charter. Therefore, in analyzing the
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behavior of a bank I will indistinctly refer to intervention or closure.2

The sequence of events in any period t in which the bank remains open is as follows. At

the beginning of period t the bank raises deposits Dt and capital Kt in order to invest in a

portfolio of assets. The gross return of the portfolio of assets is a random variable R (σt),

independently distributed across time, with E [R (σt)] = 1 + r and dispersion measured by

σt. r is the risk-free rate of interest. Shareholders’ decision at each period entails choosing

Dt, Kt and σt.

At the end of period t, once asset returns are observed, the net worth of the bank, Nt+1,

is computed as the difference between the end-of-period-t value of assets and liabilities.

The value of assets results from applying the stochastic gross return R (σt) to the initial

investment Dt+Kt. Liabilities are made up of promised payments to depositors (principal

plus interest), which are fully insured by a deposit insurance agency, so that their cost does

not depend on the default risk of the bank. They are modeled as an increasing function

of Dt, C (Dt). Particular assumptions about the degree of market power possessed by the

bank when taking deposits will determine the shape of this function. In particular, perfect

competition in the market for deposits (i.e. a rate-taking behavior by the bank) would

cause C (D) to be linear. Clearly, the net worth of the bank is a function of the decision

variables and the realization of R (σt) :

Nt+1 = R (σt) (Dt +Kt)− C (Dt) .

After computation of Nt+1, several possibilities arise. On the one hand, the bank may

be liquidated by the bankers or intervened by the authorities; in this case the final payoff

to shareholders is max {Nt+1, 0}. Alternatively, the bank may remain open and under the
control of the shareholders, then they take decisions for the following period. In particular,

by choosing Kt+1, the shareholders implicitly decide whether the bank pays a dividend

(Kt+1 < Nt+1) or raises more capital (Kt+1 > Nt+1).

The dynamic problem of the bank is different from a sequence of static problems because

of the existence of a charter whose renewal takes place according to a closure rule. I will

consider first the simple and realistic case in which banking authorities deny renewal and
2In practice, supervisors face a variety of alternative ways to resolve insolvencies and the one applied in

each case depends upon considerations such as cost minimization and the preservation of confidence in the
banking system (see Benston et al 1986).
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close the bank if its net worth at the end of a period is negative. Section V deals with the

case in which shareholders possess an option to recapitalize whose exercise restores solvency

and avoids closure.

Let the indicator variable It represent whether the bank is open or close at the beginning

of period t :

It =

½
0
1

if the bank is closed
if the bank remains open.

Then the dynamics of closure under this rule can be formalized as follows:

It = It−1 · g (Nt) ,

where

g (x) =

½
0
1

x < 0
otherwise.

With this specification, It takes value 0 both when the bank has been previously closed

(It−1 = 0) and when it becomes insolvent at the end of period t − 1 (Nt < 0) . Otherwise,
It = 1.

In terms of the dynamic program, the state variable is It and the vector of control

variables is yt = (Dt,Kt,σt). In each period, the bank is subject to static capital and asset

regulations. On the one hand, a capital requirement obliges the bank to hold capital in

excess of a certain fraction k of deposits, Kt ≥ kDt. On the other, regulatory limits to

risk-taking in the asset side (together with the level of systematic risk in the economy)

determine an upper bound to the level of risk of bank portfolios, σt ≤ σ. I assume that the

informational and institutional context is such that banking regulation cannot or does not

directly depend on σt, although indirect constraints on portfolio composition, off-balance-

sheet operations, short-selling, sectorial and geographical concentration and the associated

surveillance techniques allow the regulator to influence the upper bound to σt. For the sake

of simplicity, I will consider time-invariant k and σ so that the regulatory framework is

stationary. Accordingly, the set of feasible controls of the dynamic program is specified as

follows:

Γ ≡ ©y = (D,K,σ) ∈ R3+ | K ≥ kD and σ ≤ σ
ª
, (1)
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where k and σ are determined by the regulator.

The dynamic optimization problem solved by the bankers is:

Maximize E
hP∞

t=0 (1 + r)
−1 ψ (It, yt)

i
{yt (It)}∞t=0

subject to yt ∈ Γ t = 0, 1, 2, ...
It = It−1 · g (Nt) , t = 0, 1, 2, ...
I0 = 1,

where the state-dependent one-period profit function is given by:

ψ (It, yt) ≡
½
(1 + r)−1max {Nt+1, 0}−Kt
0

if It = 1
if It = 0.

(2)

The bankers’ problem can be interpreted as finding an optimal rule to determine the se-

quence of financial and investment decisions {Dt,Kt,σt} in an infinite discrete-time horizon.
Risk-neutral bankers maximize the expected discounted value of the stream of cash-flows

from their investment in the bank. If the bank is open, the investment generates an outflow

of Kt at the beginning of period t and an inflow of max {Nt+1, 0} at the end (discounting
applies). If the bank is closed, cash-flows are zero.

When solving this program, the bank takes into account the impact of its present deci-

sions on the probability of being closed, since closure hinders its shareholders from obtaining

potentially positive future profits.3 When such profits are high, a clear incentive to adopt

prudent short-run policies arises.

B The Value Function

Dynamic programming techniques allow us to define the value function associated to the

bank’s dynamic optimization problem, which is time-invariant:

V (It) = sup
yt∈Γ

E
h
ψ (It, yt) + (1 + r)

−1 V (It+1)
i
. (3)

This functional equation has a simple structure, since It takes only two values (“open” and

“closed”) and the value of a closed bank is zero. Then,

V (It) =

½
0
v

if It = 0
if It = 1

(4)

3Without these dynamic concerns, the bank would simply maximize E [ψ (1, y0)], subject to y0 ∈ Γ.
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where v is the conditional-on-survival value of the bank, a constant which henceforth I will

simply call the value of the bank :

v = sup
yt∈Γ

E
h
ψ (It, yt) + (1 + r)

−1 V (It+1) | It = 1
i
. (5)

Now, using expression (4) evaluated in period t + 1 and the definition of It+1, we can

write:

E [V (It+1) | It = 1] = Prob [It+1 = 1 | It = 1] · v = Prob [Nt+1 ≥ 0] · v, (6)

and plugging (6) into (5) and denoting Prob[Nt+1 ≥ 0] by Φ (yt), we get:

v = sup
yt∈Γ

n
E [ψ (1, yt)] + (1 + r)

−1Φ (yt) v
o
,

This equation is fully time and state independent, so we can drop the time indices and

leave:

v = sup
y∈Γ

n
Π (y) + (1 + r)−1Φ (y) v

o
, (7)

where Π (y) denotes the conditional-on-survival expected one-period profit of the bank,

E [ψ (1, y)].

The set of optimal policies for a given v can be defined as follows:

Y (v) = argmax
y∈Γ

n
Π (y) + (1 + r)−1Φ (y) v

o
. (8)

When the bank decides an optimal control at the outset of period t, v is taken as given,

since y does not affect the expected future value of the bank, but only the probability of it

to remain open, Φ (y). The higher the value of v, the lower the incentives to adopt short-run

decisions that could increase the likelihood of being closed.

C One-Period Profits and the Probability of Being Closed

Notice that, if C (D) were linear and shareholders were able to raise as much capital as

they wanted at an opportunity cost r, the bank’s one-period profit function, Π (y), would

be homogeneous of degree 1 in D and K, whilst the capital requirement inequality and the

probability of survival Φ (y) would be homogeneous of degree 0:

Π (y) = (1 + r)−1E [max {R (σ) (D +K)− C (D) , 0}]−K,
Φ (y) = Prob [R (σ) (D +K)− C (D) ≥ 0] .
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In such a situation, the value function would also be homogeneous of degree 1 in D and

K. Degree-one homogeneity implies that either Π (y) is zero and, hence, v is zero for the

optimal values ofD andK (and, accordingly, the optimal scale of the bank is indeterminate)

or the optimization problem lacks strictly positive and bounded solution for D and K.

Assume, for example, that C (D) = (1 + rD)D, where rD stands for the (constant)

interest rate paid on deposits. It is well-known that the equilibrium outcome in a perfectly

competitive industry facing constant returns to scale entails that prices are such that a zero-

profit condition holds. Similarly, perfect competition between banks like the one described

above would necessarily lead to an equilibrium deposit interest rate rD such that Π (y) and

v would be equal to zero. If v equals zero, however, the optimal control simply maximizes

one-period expected profits (see equation [8]), thus ignoring the impact of these decisions

on the probability of remaining open. With this equilibrium argument, we can state that

under perfect competition closure rules do not affect bank decisions. Therefore, dynamic

considerations are not relevant to solving the optimization problem of the bank and static

models are essentially valid to describe its behavior.

Previous literature has shown that the behavior of insured banks in static perfectly

competitive frameworks is characterized by maximum leverage and asset risk (Furlong and

Keeley, 1989). Such behavior increases the risk of failure and may affect the equilibrium

returns on bank assets (Gennotte, 1990; Gennotte and Pyle, 1991) and the efficiency of

investment decisions by banks. Our result means that closure rules as specified above are

ineffective in lessening these problems.

Nevertheless, perfect competition might not be the most reasonable hypothesis. Loca-

tional, informational and reputational rents may arise in the normal course of the banking

business; switching costs and regulatory barriers to entry are possible sources of market

power.4 For many years, direct controls on interest rates and commissions and regulatory

restrictions on branching and geographical expansion imposed clear limits to competition.

In fact, the structure of the banking sector in many countries is far from the idealized

atomistic market structure where price-taking arises as a natural assumption.

Standard models of oligopolistic competition have long been applied to analyzing the
4Sharpe (1990) offers a model of bank-customer relationships where informational rents for the bank are

generated.
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banking industry (see Gilbert 1984). More recently, several authors have successfully devel-

oped specific models of banking and financial intermediation inspired in modern industrial

organization analysis (Repullo 1991, Matutes and Vives 1992).

The aim of this paper, however, is not to examine complex strategic interactions between

banks in an imperfectly competitive framework, but the effect of closure rules on bank

behavior. Up to now we know that such effect is null if there is nothing to lose in the event

of closure. The easiest way to obtain positive rents in this model is to assume that the bank

exercises monopoly power in the market for deposits. So, I will analyze that case in the

following sections.

D Modelling Market Power

Suppose that the bank has a local monopoly in the supply of deposits and bank deposits

provide transaction and liquidity services to depositors, who are consequently willing to

demand these assets even if their rate of return rD is smaller than the risk free rate r.5

Clearly, when rD equals r, depositors will hold all of their financial wealth as deposits.

When rD is smaller than r, the opportunity cost of holding deposits is positive, but the

utility of liquidity services may compensate for it and the demand for deposits may still be

positive. Define the intermediation margin µ as the difference between r and rD. If the

marginal utility of liquidity services is decreasing in the amount of deposits, the demand

for deposits will be a decreasing function of µ.

For notational convenience, we can normalize the (exogenously given) financial wealth

of potential depositors to unity. Then, according with the intuition sketched above and in

terms of the inverse demand for deposits, the behavior of depositors can be parametrized

as follows:

(1 + rD) = (1 + r)D
η η ≥ 0, 0 ≤ D ≤ 1, (9)

so that, taking logs, µ ' −η log (D). Notice that µ decreases as D increases, and is strictly

positive for D < 1 and zero for D = 1. η is the semi-elasticity of µ to changes in D. The
5 I will refer to the “supply of deposits” instead of the more usual “demand for deposits” because deposits

are conceived as assets issued by banks and demanded by depositors as an alternative to other financial
assets.
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greater η, the greater the degree of market power of the monopolist bank. Equation (9)

yields a simple specification for C (D), C (D) = (1 + r)Dη+1.

In order to obtain a convenient closed-form for Π (y) = E [ψ (1, y)], the following para-

metrization of R (σ) is also assumed:

R (σ) = (1 + r) exp
¡
σz − σ2/2

¢
(10)

where z is a Gaussian white noise process. According to (10), R (σ) is a log-normally

distributed random variable with expected value equal to (1 + r) and standard deviation

increasing in σ.6 F (z) will denote the cumulative distribution function of z and f (z) the

corresponding density function.

Putting all of their components together, we have

ψ (1, y) = max
©
exp

¡
σz − σ2/2

¢
(D +K)−Dη+1, 0

ª−K,
Φ (y) = Prob

£
exp

¡
σz − σ2/2

¢
(D +K)−Dη+1 ≥ 0¤ ,

(notice that the discount factor cancels out with the (1 + r) terms in R (σ) and C (D)).

Now, since exp
¡
σz − σ2/2

¢
(D +K)−Dη+1 ≥ 0 if and only if

z ≥ (1/σ) £(η + 1) log (D)− log (D +K) + σ2/2
¤ ≡ w,

we can write

E [ψ (1, y)] =

Z +∞

−∞
max

©
exp

¡
σz − σ2/2

¢
(D +K)−Dη+1, 0

ª
f (z) dz −K

=

Z +∞

w

£
exp

¡
σz − σ2/2

¢
(D +K)−Dη+1

¤
f (z) dz −K.

From the normality of z, E [ψ (1, y)] can be written in terms of the cumulative distribution

function of a normal random variable. So, integrating by parts and rearranging,

Π (y) = E [ψ (1, y)] = F (x) (D +K)− F (x− σ)Dη+1 −K, (11)

where

x ≡ σ − w = (1/σ) £log (D +K)− (η + 1) log (D) + σ2/2
¤
. (12)

6Although non-crucial to get the main results, this parametrization simplifies notably the algebra and
puts our valuation formulas in connection with those of the option-theoretic approach to deposit insurance,
initiated by Merton (1977).
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On the other hand,

Φ (y) = Prob [z ≥ w] = F (x− σ) . (13)

The first two terms in equation (11) represent, respectively, the value of assets and liabilities

to the bankers. The first one is the product of the probability of the bank being able to

pay off depositors at the end of the period, F (x− σ), times the conditional on solvency

present expected value of assets, [F (x) /F (x− σ)] (D +K).7 The second is the expected

present value of payments to depositors, F (x− σ)Dη+1. Expression (11) is akin to the

Black-Scholes formula for the valuation of call options and has, as the latter, the interesting

property of its partial derivative with respect to x being equal to zero.8

III THE VALUE OF THE BANK

Expression (11) and (13) can be used to show that the value of the bank is well-defined in

the sense that there exists a unique v that solves equation (7). If we denote by H (v) the

auxiliary function defined by the right hand side of equation (7):

H (v) = sup
y∈Γ

n
Π (y) + (1 + r)−1Φ (y) v

o
, (14)

the equilibrium value of the bank, v∗, is a fixed point in H (v), v∗ = H (v∗). Using the

Theorem of the Maximum, H (v) can be shown to be a continuous, increasing and positive

function of v, and the Contraction Mapping Theorem guarantees the existence of a unique

v∗. Diagrammatically, v is defined by the intersection between the graph of H (v) and the

45-degree line (see Figure 1).9

Comparative statics results can be obtained by examining how changes in the regula-

tory and structural parameters move the graph of H (v) in the neighborhood of v∗. Upward

shifts increase the steady state value of the bank, whereas downward shifts reduce it. Com-

parative statics on v∗ are interesting for two reasons. First, they provide insights into the
7The conditional on solvency present value of assets is the mean of a truncated log-normal variable (only

non-bankruptcy values of z are relevant) and, hence, results form integrating exp
¡
σz − σ2/2

¢
over [w,∞)

with respect to [1− F (w)]−1 f (z) dz = [F (x− σ)]−1 f (z) dz.
8 In order to derive this result, notice that ∂F (x− σ) /∂x = f (x− σ) = exp

¡
σ2/2− σx

¢
f (x), write

∂Π (y) /∂x = f (x)
£
(D +K)− exp ¡σ2/2− σx

¢
Dη+1

¤
, and use the definition of x in order to show that the

term in square brackets is zero.
9Notice that the slope of H (v) is positive but never greater than (1 + r)−1 < 1, whilst the ordinate at

origin, supΠ (y), is strictly positive when the bank has market power.

12



v

45o

H(v)

v*

sup Π(y)

Figure 1: Existence and uniqueness of v∗

fundamentals that determine the value of a chartered regulated bank. Some models of bank

behavior have included exogenous charter values, but the value of a charter is intrinsically

endogenous. Second, the optimal policy of the bank depends critically upon v∗ (see equa-

tion [8]) and comparative statics will allow us to analyze in the next section the impact of

structural and regulatory parameters on bank risk-taking.

In order to study the movements of H (v), write H (v) as G (y (v) , v), where G (y, v) =

Π (y) + (1 + r)−1Φ (y) v and y (v) ∈ {argmaxG (y, v) , y ∈ Γ}. Comparative statics is no-
tably simplified by the fact that y (v) represents an optimal choice of y given v. Table 1

contains the comparative statics for changes in the capital requirement k, the regulatory

limit on the level of risk σ, the risk free rate r and the degree of market power η.
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TABLE 1

REGULATORY AND STRUCTURAL DETERMINANTS
OF THE VALUE OF A BANK

Parameter (w) Sign of dv∗/dw Implicit assumption
k - k is binding†

σ + σ is binding†

r - none
η + none

† Otherwise, dv∗/dw = 0.

Parameters k and σ affect the definition of Γ but not that of G (y, v). Besides, only when

the constraints defined by k or σ are binding at y (v), a small change in them can change

y (v) and H (v). So, when the capital requirement is binding, higher (lower) k reduces

(widens) Γ and causes H (v) and, then, v∗ to be smaller (greater). When it is not, small

variations in k are innocuous. Similarly, if the upper bound to portfolio risk is binding at

y (v), greater σ can make H (v) and v∗ to rise, whilst smaller σ has the opposite effect.

Parameters r and η enter the definition of G (y, v) but not that of Γ. Thus, on the

one hand, small changes in them cannot change the components of y (v) which represent a

corner solution. On the other, the envelope theorem ensures that, if the interior components

of y (v) vary, their variation will only have (negligible) second order effects on G (y, v). In

sum, only the direct effects of r and η on G (y, v) are relevant, and these effects can be

computed as the corresponding partial derivatives of G (y, v) at y (v). From equations (11)

and (13):

∂G (y, v) /∂r = − (1 + r)−2Φ (y) v < 0,
∂G (y, v) /∂η = −

h
F (x− σ)Dη+1 + (1/σ) (1 + r)−1 f (x− σ) v

i
log (D) > 0.

(Notice that log (D) < 0, since from our normalization D ∈ [0, 1] .) Intuitively, increases
in r cause the present value of future expected profit to fall and, hence, reduce H (v) and

the value of the bank. On the other hand, when the degree of market power increases,

potentially wider intermediation margins and higher expected profits account for a greater

value of H (v) and v∗.
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These results support the intuitive idea that regulatory reforms that reduce the operative

capacity of the bank cannot do bankers good and are consistent with the usual reluctance

of the banking industry to accept harder regulatory constraints, except, perhaps, when

they enhance directly or indirectly the degree of market power or the rents of the existing

institutions. Note that such reluctance would not make sense in a perfectly competitive

environment, because the equilibrium value of a bank would be zero anyway.

IV THE EFFECTS OF REGULATION ON BANK RISK-
TAKING

This section is devoted to analyze the impact of structural and regulatory parameters on

bank risk-taking. First, I will characterize the behavior of the bank for all possible values

of v. Because of non-convexities introduced by limited liability, the bank will follow one of

two distinct types of policy: a safe policy (where σ = 0 and the optimal capital structure is

indeterminate) or a risky policy (where σ = σ and the capital requirement is binding), the

type that dominates depending on v. Later on, I will focus on the equilibrium policies -i.e.

the policies which correspond to the equilibrium value of the bank v∗- in order to determine

the impact of the structural and regulatory parameters of the model on the equilibrium type

of policy and the solvency of the bank. Finally, I will discuss the empirical implications of

the model and some trade-offs which may be relevant for the design of banking regulation.

A Characterizing Bank Behavior: Safe and Risk Policies

The set of optimal policies for a given value of v is defined as follows

Y (v) = argmax
y∈Γ

n
Π (y) + (1 + r)−1Φ (y) v

o
.

The optimization problem underlying this definition has corner solutions for σ. This means

that the solution found in static models under perfect competition also appear in this

dynamic monopolistic framework. The difference, however, is that in this context the

riskiest policy is not necessarily the optimal one. Briefly, according to the value of v, the

bank decides to be safe or to be risky.

Lemma 1 There is no interior solution for σ. Depending on the parameters, σ (v) may
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be either 0 or σ. Moreover, a policy involving σ = σ can only be optimal if the capital

requirement is binding, K = kD.

Proof: See the Appendix.

Lemma 1 implies that policies with 0 < σ < σ whatever k, or with σ = σ with K > kD

will never be optimal. Intuitively, the bank decides either to be safe in order to preserve

its future rents or to exploit the deposit insurance system by means of the highest feasible

volatility and leverage. Accordingly, we can condition the analysis of optimal policies upon

the choice of σ, characterizing first the best policies for σ = 0, YS (v) (the best safe policies),

and then the best policies for and σ = σ and K = kD, YR (v) (the best risky policies).

Clearly, the unconditional optimal policies are the best of YS (v) and YR (v).

The best safe policies. Under the safe choice of σ the bank cannot fail, the capital structure

is irrelevant and being or not closed becomes a deterministic outcome. The profit function

takes a very simple expression:

Π (y) = Π (D,K, 0) = D −Dη+1. (15)

The conditional optimal supply of deposits is defined by the first order condition derived

from (15), which leads to DS = [1/ (1 + η)]1/η. This expression is always smaller than 1

when η is strictly higher than zero. As neither Π (D,K, 0) nor Φ (D,K, 0) = 1 depend on

K, the bank will choose any K ≥ kDS . Notice that the best safe policies are independent
of v. Finally, let

ΠS (y) = max
y∈Γ

n
Π (D,K, 0) + (1 + r)−1Φ (D,K, 0) v

o
=

η

1 + η
DS + (1 + r)

−1 v.

The best risky policies. Under σ = σ and K = kD, the probability of being closed at the

end of a period is positive for all D > 0. The conditional optimal supply of deposits DR (v)

can be defined –after substituting kD for K in the expressions for Π (y) and Φ (y)– as

DR (v) = arg max
0≤D≤1

n
(1+k)F (x)D—F (x—σ)Dη+1—kD+ (1+r)−1 F (x—σ) v

o
, (16)

where

x = (1/σ)
£
log (1 + k)− η logD + σ2/2

¤
. (17)
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An unique interior solution to this problem does not necessarily exist. For one thing, the

usual first order condition may yield a value of D which is greater than one. For another,

even if it yields a single 0 < D < 1, the second order condition does not necessarily hold,

so that it can be a minimum, a maximum or a saddle point. Non-convexities might lead in

principle to corner solutions such as D = 0 and D = 1.

Computing DR (v) will require, in general, numerical calculation, however the following

lemma states that for values of v such that the best risky policies are better than the safe

policies, DR (v) is greater than DS .

Lemma 2 For any v ≥ 0 such that σ (v) = σ, DR (v) > DS .

Proof: See the Appendix.

Intuitively, when appropriating the subsidy to risk-taking which is associated to the

deposit insurance system makes sense, the bank is willing to pay higher deposit rates than

under the best safe policy, since the increase in the subsidy due to greater D pays for the

fall in intermediation margins, the subsequent loss of monopoly rents and the increase in

the probability of being closed.

Finally, notice that YR (v), in contrast to YS (v), may depend on v, and let

HR (v) = max
0≤D≤1

n
Π (D,kD,σ) + (1 + r)−1Φ (D, kD,σ) v

o
.

The unconditional optimal policies. Now, by comparing HS (v) with HR (v) we can obtain

the unconditional optimal policy for each v. From previous results, the function H (v)

defined in expression (14) is equal to max {HS (v) ,HR (v)}. Proposition 3 shows that the
optimal policy depends crucially but in a simple and intuitive way on v.

Proposition 1 There exists a unique v ≥ 0 such that the optimal policy is the safe policy
for all v ≥ v and the risky policy for all v ≤ v.
Proof: See the Appendix.

Figure 2 depicts functions HS (v) and HR (v). As shown in the picture, the ordinate

at the origin is higher for HS (v) than for HR (v), but the slope of HS (v) is greater than

that of HR (v) given the positive probability of being closed (and losing the charter value)

under the risk policy. As proved in the proposition, they intersect in a single point v, that

separates the values of v at which each policy dominates.
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Figure 2: Choosing between the best safe and risky policies

B Regulatory and Structural Determinants of Bank Risk-Taking

From Proposition 1 we can deduct that H (v) is a continuous function with a kink in v.

Whether the equilibrium policy of the bank is safe or risky depends upon the relative

position v with respect to the fixed point of H (v), v∗. Accordingly, in order to analyze the

impact of the parameters on the bank’s policy, I will consider three cases: v∗ > v, v∗ < v

and v∗ = v.

(i) v∗ > v. When the equilibrium value of the bank is relatively high, the bank chooses

a safe policy, y (v∗) ∈ YS (v
∗). Capital and asset regulations are not binding and the

probability of failing the solvency test is zero. As the bank is safe, small changes in the

parameters are innocuous from a prudential point of view: the probability of failure is zero.

The parameters k and σ do not affect the equilibrium value of the bank. On the contrary,

r and η have the effects shown in Table 1.

(ii) v∗ < v. When the equilibrium value of the bank is relatively low, the bank chooses a

risky policy, y (v∗) ∈ YR (v∗). Both capital and asset regulations are binding and the prob-
ability of failing the solvency test is strictly positive. The solvency of the bank, measured

by F (x− σ), depends directly on the parameters k, σ and η and on the optimal supply of
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deposits. This, in turn, is affected by the parameters and by the equilibrium value of the

bank, and is higher than with the safe policy. Finally, all the parameters k, σ, r and η have

non-null effects on the equilibrium value of the bank, as shown in Table 1 (see section III).

So the comparative statics on the solvency of the bank involves three terms:

∂F (x− σ)

∂w
+

∂F (x− σ)

∂D
· ∂DR
∂w

+
∂F (x− σ)

∂D
· ∂DR
∂v

· ∂v
∗

∂w
, (18)

for w = k,σ, r, η.10 From equation (17), we can deduce that the direct effect (the first term

in [18]) is positive for k and η (recall that DR ≤ 1), negative for σ, and null for r. If the
supply of deposits does not vary, higher capitalization, a smaller upper bound on portfolio

risk and increased market power enhance the solvency of the bank.

The effects coming from the shift in the supply of deposits depend on the sensitiveness

of DR (v∗) to v∗ and the parameters w. If the equilibrium supply of deposits is unique

and equals one, ∂DR/∂w and ∂DR/∂v equal zero and these effects disappear. When the

equilibrium supply of deposits is smaller than one, the signs of ∂DR/∂w and ∂DR/∂v are

ambiguous. Some numerical examples show that the supply-of-deposits effects are generally

small compared to the direct effects.

(iii) v∗ = v. When the equilibrium value of the bank equals the critical value v, the

bank is indifferent between the risky policies in YR (v∗) and the safe policies in YS (v∗). The

situation under each of these policies is that described in (i) and (ii). In this case, however,

changes in k, σ, r and η may lead the bank to shift from safe to risky or vice versa.

For k and σ, the result is immediate. Tighter regulation makes the bank to prefer a

safe policy, since regulatory burdens reduce the value of the best risky policy, but not that

of the best safe policy (remember Table 1). Diagrammatically, higher k and lower σ move

downward the curve HR (v), but do not alter HS (v). Thus, v moves to the left, while v∗

remains constant. Figure 3 illustrates this result.

Variations in r and η change the position of both HR (v) and HS (v) and diagrammatic

analysis is not enough to clarify whether the risky or the safe policies dominate after the

change. However, the results are unambiguous. Proposition 2 shows that an increase in

the interest rate introduces an advantage for risky policies, since their probability rests
10Equation (18) holds for cases in which DR (v

∗) is unique; otherwise, differentiating DR (v
∗) makes no

sense.
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Figure 3: The effects of more stringent regulation

comparatively more on one-period profits and less on future discounted profits:

Proposition 2 When v∗ = v, small increases (decreases) in r will lead the bank to choose

the risky (safe) policies.

Proof: See the Appendix.

On the other hand, the equilibrium value of a bank is the expected discounted value

of current and future one-period profits. Greater market power (η) enhances the current

and future profits of the bank under both the risky and the safe policies. Nevertheless, the

benefit of greater η is higher the lower the supply of deposits (as an extreme case, when D

equals one the benefit is zero). Accordingly, an increase in market power makes the safe

policy better since, from Lemma 2, DS is smaller than DR (v∗) :

Proposition 3 When v∗ = v, small increases (decreases) in η will lead the bank to choose

the safe (risky) policies.

Proof: See the Appendix.
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C Implications

The results obtained in this section provide a clear understanding of how regulatory and

structural parameters influence the safety of banks. Given the sort of bang-bang behavior

implied by the model, a bank can suddenly switch from the safe to the risky policies not only

as a result of sudden big changes in the economic environment, but also of small accumulated

changes in the economic circumstances. For instance, small changes in the stringency of

capital and asset regulations, in the degree of market power of incumbent banks or in the

macroeconomic conditions as reflected in the interest rate and the level of systematic risk

(which is likely to affect σ for a given asset regulation) can increase the latent advantages

of, say, risky policies versus safe policies. If changes in the same direction continue over

time, a point can be reach where the bank jumps from the latter to the former, whilst in

the meantime the potential deterioration of solvency remains hidden.11

Some authors have argued that the market value of equity could be used for monitoring

the safety of banks and pricing deposit insurance guarantees.12 With the previous result,

however, situations can be identified in which the jump to risky policies may coincide with

increases in the value of the bank, which may contribute to confuse the regulator.13

The results concerning the case v∗ = v can be used to analyze the effects of regulatory

reforms and changes in r when regulation applies uniformly to a set of heterogeneous banks,

say the banks in a national banking industry. Assume that banks only differ in their degree

of (local) monopoly power and, then, η is distributed across banks in a certain fashion. For

a given set of parameters, k, σ and r, the case v∗ = v will correspond to a particular η = η.

According to previous results, banks with η < η will prefer a risky policy, whereas banks

with η > η will prefer a safe policy. Higher k, lower σ and lower r imply a lower η, reduce

the set of banks which choose to be risky and, hence, the risk of the banking industry as

a whole. The effects are the opposite if capital and asset regulations are lessened and the

interest rate goes up.
11These arguments are strictly valid within the stationary version of the model that has been presented

in this paper if subsequent changes in the parameters are fully unanticipated and taken to be permanent.
12Marcus and Shaked (1984), and Ronn and Verma (1986), among others, have used option valuation

formulas and equity values to infer the (underlying) value of bank assets.
13Assume, for example, that σ increases so as to make the risky policy better. The rise in σ does not

change the value of the safe policy, but increases the value of the risky policy. Then, the shift to the risky
policy will entail an increase in equity value, i.e. higher v∗!
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The results under heterogeneity are very interesting from an aggregate point of view.

Individual banks jump from safe to risky policies (or vice versa), but the industry as a whole

may evolve more smoothly. Actually, changes in the aggregate will depend on the number

and importance of the banks concentrated around η in a particular situation.

From a prudential perspective, these results show to what extent capital and asset

regulations can compensate of the deterioration of soundness associated to an increasingly

competitive banking sector (i.e. a downward shift in the distribution of η across banks). On

the other hand, although η has been taken so far as given, banking regulation by means of

the chartering policy and the requirements for the creation of new banks or branches, among

others, can create barriers to entry which protect and enhance the exercise of monopoly

power by depository institutions. In this model, a higher η is an alternative to capital and

asset regulations when the regulator tries to promote solvency. Since regulatory policies

increasing η will obviously lessen depositors’ welfare by decreasing the interest rate paid on

deposits, some authors had previously referred to this trade-off as one between efficiency and

solvency. Nevertheless, the costs of bank failures to the tax-payers and the welfare costs

and the benefits of the alternative regulatory instruments should be taken into account

before delivering normative conclusions. Further research could center on this issue from

an optimal regulation perspective à la Laffont-Tirole.14

V THE OPTION TO RECAPITALIZE AND THE EFFEC-
TIVENESS OF CLOSURE

Throughout this paper, I have considered the simple (but realistic) closure rule under which

banking authorities deny renewal of the charter and close the bank if its net worth at the end

of a period is negative. The threat of being closed in such a context has been proved to be

an effective way to induce the bank to be prudent when the present value of its future rents

is sufficiently high. In this section, I show that this disciplinary effect of closure vanishes

when an apparently minor change in the closure rule is introduced.

Assume that banking authorities, instead of directly closing the bank when its net worth

at the end of a period is negative, allow shareholders to inject new funds into the bank (i.e.
14See Laffont and Tirole (1993) and, for an application to banking, Bensaid et al. (1993).
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to recapitalize) so as to afford promised payments to depositors and obtain the renewal of

the charter. Authorities may find attractive the avoidance of closure and liquidation when

recapitalization takes place.

Under this rule, shareholders have an option to retain the charter. The exercise price

of such option is the additional capital (if any) that has to be raised in order to fully

pay off depositors. In terms of the dynamic optimization program, the state variable, It,

becomes also a control variable, whilst previous period net worth, Nt, becomes a state

variable. It is chosen at the beginning of each period, once Nt is observed. Choosing It = 1

requires It−1 = 1 (otherwise the bank would be closed) and entails keeping the charter and

recapitalizing, i.e. injecting −Nt if Nt < 0, and 0 otherwise. On the contrary, choosing

It = 0 implies refusing the option.

The dynamic optimization problem of the bank is:

Maximize E
hP∞

t=0 (1 + r)
−1 [min {Nt, 0} · It + ψ (It, yt)]

i
{It, yt}∞t=0

subject to
It ∈ {0, 1}
It ≤ It−1
yt ∈ Γ

 t = 0, 1, 2, ...

N0 = 0

where the constraint It ≤ It−1 states that if shareholders refuse the option on the charter
at any period, the charter is lost forever. The definitions of Γ and ψ (It, yt) are those given

by equations (1) and (2) in section II. Recall that ψ (It, yt) depends on It but not on Nt.

Keeping the same notation as above, and with St = (It−1, Nt) as the vector of state

variables, define the following value function:

V (St) = sup
It≤It−1

(
min {Nt, 0} · It + sup

yt∈Γ
E
h
ψ (It, yt) + (1 + r)

−1 V (St+1)
i)

(19)

Let v be the conditional-on-continuation value of the bank:

v = sup
yt∈Γ

E
h
ψ (It, yt) + (1 + r)

−1 V (St+1) | It = 1
i
, (20)

which is time and state independent. If It = 1, shareholders pay −min {Nt, 0} and get v,
whilst, if It = 0, the bank is closed and the expression into big braces in (19) takes value zero.
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Clearly, shareholders choose to maintain the charter whenever the costs of recapitalization

are not higher than v. So, the choice of It can be characterized as follows:

It = I(St) =

½
1,
0,

if It−1 = 1 and Nt ≥ −v
otherwise.

(21)

Taking into account the optimal choice of It, the expression for V (St) is quite simple

V (St) =

½
min {Nt, 0}+ v,
0,

if It−1 = 1 and Nt ≥ −v
otherwise,

and can be used to compute E [V (St+1) | It = 1] :

E [V (St+1) | It = 1] = Prob [Nt+1 ≥ 0] · v
+ Prob [−v ≤ Nt+1 ≤ 0] ·E [Nt+1 + v | −v ≤ Nt+1 ≤ 0] .

On the other hand, from the definition of ψ (It, yt) ,

E [ψ (It, yt) | It = 1] = (1 + r)−1 Prob [Nt+1 ≥ 0] ·E [Nt+1 | Nt+1 ≥ 0]−Kt.

Thus, plugging the last two equations in (20), we have

v = sup
yt∈Γ

n
(1 + r)−1 Prob [Nt+1 + v ≥ 0] ·E [Nt+1 + v | Nt+1 + v ≥ 0]−Kt

o
.

Now, we can drop the time indices and replace N by R (σ) (D +K)− C (D) :

v = sup
y∈Γ

n
(1 + r)−1E [max {R (σ) (D +K)−C (D) + v, 0}]−K

o
. (22)

According to this equation, the continuation value of the bank is that of investing K in

a call option which is written not only on bank assets, R (σ) (D +K), but on the sum of

bank assets and the continuation value of the bank, v. The amount of promised payments

to depositors, C (D), is the strike price of such option.

Specifying R (σ) and C (D) as in section II.D, the value of this option can be computed

following the same steps that led to Π (y), yielding:

v = sup
y∈Γ
Π (y, v) + (1 + r)−1Φ (y, v) v,

where

Π (y, v) = F (x) (D +K)− F (x− σ)Dη+1 −K,
Φ (y, v) = F (x− σ) ,

24



and

x = (1/σ)
n
log (D +K)− log

h
Dη+1 − (1 + r)−1 v

i
+ σ2/2

o
.

Π (y, v) and Φ (y, v) differ from Π (y) and Φ (y) (in previous sections) because of the defin-

ition of x, that now depends on v. Such dependence reflects that the value of the charter

affects shareholders’ decision on continuation.

The next result states that, at least for r > η, the optimal policies for the bank are

risky policies in the sense that capital and asset regulations are binding. Moreover, since

this result does not depend on the values of k and σ, there are situations where traditional

regulations are ineffective as a means of inducing a safe policy.

Proposition 4 When recapitalization is allowed and r > η, the optimal policies for the

bank are risky policies, whatever the values of k and σ.

Proof: See the Appendix.

This result has to do with the form of the payoffs associated to one-period decisions.

Under the simple closure rule of previous sections, shareholders win N + v when N is

positive, and 0 otherwise. On the contrary, when recapitalization is allowed, shareholders

win N + v when N + v is positive and 0 otherwise.

Figure 4 represents, for both cases, the (discounted) payoffs to shareholders at the end of

a period as a function of the (discounted) gross return on bank assets at that date. As can be

seen, the difference between the two panels is in the range [Dη+1−(1 + r)−1 v,Dη+1] of asset

returns. With the first closure rule, the bank is closed when R (σ) (D +K) is the interior

of that interval. With the second, shareholders recapitalize, paying Dη+1 −R (σ) (D +K)
to keep (1 + r)−1 v. The non-convexity of the payoff (as a function of the asset returns) in

the first case explains shareholders’ aversion to risk when v is high enough. Conversely, the

convexity of the payoff in the second case induces risk-loving, except whenDη+1−(1 + r)−1 v
becomes negative.
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R(σ)(D+K)

(1+r)-1 v

Dη+1

D η+1-(1+r)-1v

(without recapitalization)

R(σ)(D+K)

(1+r)-1 v

Dη+1

D η+1-(1+r)-1v

(with recapitalization)

Figure 4: Shareholders’ payoffs and the option to recapitalize

In practical terms, this section enters a caveat against a modification of the closure

rule that might seem attractive for banking authorities. More concretely, once insolvency

takes place, the supervisory agency may prefer the injection of capital by shareholders to

its public involvement in the resolution of the crisis. These ex-post incentives to give to

the shareholders an option to recapitalize may, however, go against the ex-ante need for

26



inducing discipline with a (credible) threat of closure.

VI CONCLUSIONS AND POLICY IMPLICATIONS

In this paper I have analyzed the behavior of a bank in a dynamic model which allows

for bankruptcy and closure. The effectiveness of chartering and closure policies and their

relationship with market power, capital and asset regulations and risk-taking can be formally

settled. Given closure policies and the provisions that exclude from business the promoters

and managers of banks which become insolvent, the value of bank charters is an important

endogenous component of bankruptcy costs to bankers and may constitute an incentive to

adopt prudent decisions.

Dynamic programming techniques have allowed us to obtain the conditional-on-surviving

value of a bank, v∗, together with the bank’s optimal investment and financial policies. Com-

parative statics on v∗ provide insights into the fundamentals that influence the value of a

chartered bank. They show that tighter capital and asset regulations (when binding) are

associated to a lower v∗, while smaller rates of interest and greater market power result in

a higher v∗.

The equilibrium behavior of the bank depends crucially on v∗. Because of non-convexities

derived from the limited liability of bankers, optimal policies may be of two distinct extreme

types: safe or risky. The risky type of policy dominates when v∗ is lower than a critical

value v, whereas the safe type of policy is optimal when v∗ is higher than v. Tough pruden-

tial regulation in general elicits the safe policy, since high capital requirements and strong

limitations on portfolio risk cause the value of a risky policy to be low, whilst they do not

affect the value of a safe policy. Similarly, I have proved that high market power and low

interest rates favor safe policies, that rest comparatively more on long-run profits and less

on short-run opportunistic exploitation of the deposit insurance system.

From the results, we can deduce that capital and asset regulation, on the one hand, and

entry and closure policies, on the other, are alternative ways to preserve the solvency of

banks. This trade-off should be taken into account in the design of banking regulation.

Even though some empirical implications of this model seem to be somewhat extreme,

several facts give support to the kind of bang-bang behavior predicted here. In particular,
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the sudden appearance of recent widespread solvency problems of the savings and loan

institutions in the U.S., after a long period of well-functioning of the deposit insurance

system, can be explained with this model.15 Financial innovation and disintermediation

accumulated along time had created an environment of tougher competition for depository

institutions (smaller η). Such environment together with the financial deregulation (greater

σ) and the higher real interest rates of the late seventies and early eighties (greater r)

shaped a picture increasingly advantageous (according to our model) for the development

of risky policies. Poor realizations of risky investments triggered off the debacle in the mid

eighties.

Some regulatory mistakes contributed to aggravate the crisis. In its initial phases,

the regulators shored up book value net worth with a variety of accounting changes and

reduced the minimum regulatory capital requirements (thereby producing smaller k). Their

inadequate response included also excessive forbearance and delay in closing or intervening

the thrifts in trouble (i.e. relaxing the closure rule and its disciplinary effects).

After a huge number of failures, the U.S. government and banking authorities tried to

introduce reforms oriented to restore the prudent behavior which had been predominant

during the post-war period. The safety net built after the Great Depression had been par-

tially based upon branching and geographical restrictions and interest rate ceilings, which

acted as legal guarantees of market power. But financial innovation during the seventies

and eighties irrevocably damaged such conception of the banking business. Nowadays, dis-

intermediation and largely unregulated non-bank financial intermediaries absorb a notable

fraction of depositors’ wealth, whereas modern information technologies give the banks’

best debtors direct access to capital markets. As a consequence, regulatory reform faces the

difficult task of restoring solvency in a necessarily more competitive context. This probably

means that the future design of prudential regulation will have to rest more on asset and

capital restrictions than in the past (the Basle Accord of 1988 and the recent Federal De-

posit Insurance Corporation Improvement Act confirm this tendency), but it also calls for

prudence in the management of the chartering and closure policies and the way to confront

future deregulatory pressures.

In a different context, after the Second Banking Directive of the European Community
15See U.S. Department of Treasury (1991) for a detailed description of the process.

28



(1989), European banks are able to provide their services throughout the Community with a

single banking license from their home country. This rule raises potential threats to financial

stability. For one thing, stronger competition and the erosion of charter values could be

expected. For another, with banks potentially competing at a European level, domestic

chartering policies become ineffective as a mean of controlling the degree of market power

of banking institutions under the jurisdiction of home country authorities. Restoring their

effectiveness would require coordination between national regulators.

A different but very related topic is the so-called too-big-to-fail problem, whose impor-

tance has been remarked by many practitioners. In fact, the evidence in Boyd and Gertler

(1993) suggests that solvency problems detected in some large bank holding companies in

the U.S. might reflect this problem. In terms of the model, the systematic reluctance of

banking supervisors to close banks that are considered too big to fail means that the closure

rule is not in force for such banks. All the disciplinary effect potentially related to the rents

of bigger banks is lost. Paradoxically, the authorities confer a guarantee of survival upon

big banks for fear of causing severe troubles to the financial system and losing the value of

the banks as going concerns. This guarantee makes the optimal policy of big banks to be

risky and increases the costs of the deposit insurance system.

Although preserving the value of the charter and avoiding the external costs of bank-

ruptcy can make sense, rescue techniques should be designed so as to simultaneously dis-

cipline the bankers. Regulators should be allowed to take over banks which failed the

established solvency tests, and the final payment to shareholders should only be the liqui-

dation value of the net worth (intangible assets excluded), whatever the size, going-concern

value and final destination of the insolvent bank. Accordingly, discipline would be preserved,

while if rescued banks had positive going-concern values (so they might have a future under

the control of new shareholders), the price paid for the institution by the successful bidders

could partially or totally off-set the cost of the funds injected by the authorities to restore

solvency.
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APPENDIX

Proof of Lemma 1 The bank seeks to maximize:

G (y, v) = F (x) (D +K)− F (x− σ)Dη+1 −K + (1 + r)−1 F (x− σ) v. (A1)

where

∂G

∂σ
= f (x− σ)

h
Dη+1 − (1 + r)−1 (x/σ) v

i
(A2)

and

∂2G

∂σ2
= −f 0 (x− σ)

h
Dη+1 − (1 + r)−1 (x/σ) v

i
x/σ2 +

(1 + r)−1 f (x− σ) [log (1 + k)− η log (D)] v/σ3. (A3)

If an interior solution for σ existed, 0 < σ (v) < σ, (A2) would have to be zero, while (A3)

would have to be negative. However, when (A2) equals zero, the first term in (A3) is zero,

whilst the second is always positive. Thus, (A3) is positive, contradicting the necessary

second order condition for a maximum. Consequently, σ (v) may be either 0 or σ, but not

0 < σ (v) < σ. Now, let us examine the choice of K when σ (v) = σ. From equation (A1),

the first order condition associated to an interior solution for K is:

[F (x)− 1] + (1 + r)−1 f (x− σ) (x/σ)
v

σ (D +K)
= 0, (A4)

whereas, the necessary second order condition for a maximum is:

f (x)

σ (D +K)
− (1 + r)−1 f (x− σ) (x/σ)

v

σ (D +K)2
≤ 0

From (A4) we can substitute 1−F (x) for [σ (1 + r) (D +K)]−1 f (x− σ) v in the left hand

side of this inequality. Reordering, we arrive at:

1− F (x)
σ (D +K)

·
f (x)

1− F (x) − x
¸

which is positive, since f (x) / [1− F (x)] is the hazard function of a standard normal random
variable, that is greater than x for all x ≥ 0. Then, the second order condition does not hold
and no interior solution for K can exist. If an optimal policy entails σ = σ, the optimal K

is kD. The choice of σ = σ and an infinite K makes no sense because the value of G (y, v)
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at (D,K,σ) when K tends to infinity, whatever D, can be attained with the same D, any

finite K 0 and σ = 0.¤

Proof of Lemma 2 The definition of DR (v) in equation (16) can be re-written in the

following way:

DR (v) = arg max
0≤D≤1

{J (D) +Q (D)} ,

where

J (D) = D −Dη+1 + (1 + r)−1 v

and

Q (D) = [1− F (x− σ)]
h
Dη+1 − (1 + r)−1 v

i
− (1 + k) [1− F (x)]D.

By definition, J (D) attains a unique global maximum at DS , is increasing at D < DS and

decreasing at D > DS . On the other hand, as σ (v) = σ, Lemma 1 implies that the capital

requirement is binding. Then, G (y, v), defined in (A1), is decreasing in K at K = kDR (v) :

∂G

∂K
= [F (x)− 1] + (1 + r)−1 f (x− σ) [σ (1 + k)DR (v)]

−1 v < 0. (A5)

This inequality allow us to prove that Q (D) is increasing in D at DR (v) :

∂Q

∂D
= (η + 1) [1− F (x− σ)]Dη + (1 + k)F (x)− η (1 + r)−1 f (x− σ) (σD)−1 v.

But, from (A5),

(1 + r)−1 f (x− σ) [σDR (v)]
−1 v < (1 + k) [1− F (x)] .

Then, at DR (v) ,

∂Q

∂D
> (η + 1) [1− F (x− σ)]DR (v)

η + (1 + k)F (x)− η (1 + k) [1− F (x)]
= (η + 1) {[1− F (x− σ)]DR (v)

η − (1 + k) [1− F (x)]}+ (1 + k) [1− F (x)] > 0.

(Notice that the term in braces is the value of deposit guarantees per unit of deposits

(1 + r)−1E [max {−N, 0}] /D, which is, by definition, positive.) Now we can prove the
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final results. Suppose, on the contrary, DR (v) < DS . Then both J (D) and Q (D) are

increasing at DR (v) whereas values of D higher than DR (v) are feasible. This contradicts

the definition of DR (v).¤

Proof of Proposition 1 Using the Theorem of the Maximum, HS (v) and HR (v) can

be shown to be continuous, increasing, positive and with a slope smaller than (1 + r)−1.

Now, in order to prove the result, I will show that HS (v) and HR (v) have an unique

intersection at a point v > 0. Equation (A5) shows the partial derivative of G (y, v) with

respect to σ. On the one hand, ∂G/∂σ > 0 at v = 0, so σ = 0 cannot be optimal

for v = 0, then HS (0) < HR (0). On the other hand, the sign of ∂G/∂σ is the sign of

Dη+1 − (1 + r)−1 (x/σ) v, which attains to a maximum for D = 1 and K = kD. Then,

there exists a value bv = (1 + r)
£
(1/2) + log (1 + k) /σ2

¤−1 such that ∂G/∂σ < 0 for all

(D,K,σ) ∈ Γ and v > bv [recall the definition of x in equation (12)]. Therefore, HS (v) >
HR (v) at any v > bv. Thus, since HS (v) and HR (v) are continuous, they intersect at least
at one point v. Moreover, the intersection is unique because the slope of HS (v) is greater

than that of HR (v) for all v : Φ (y) = 1 > Φ (y0) for any y ∈ YS (v) and y0 ∈ YR (v). [Notice
that either the Envelope Theorem (in interior solutions) or the fact that Γ does not depend

on v (in corner solutions) ensure dHS/dv = ∂HS/∂v = Φ (y) = 1 for any y ∈ YS (v) and
dHR/dv = ∂HR/∂v = Φ (y) < 1 for any y ∈ YR (v).] Therefore, HS (v) ≥ HR (v) for v ≥ v
and HS (v) ≤ HR (v) for v ≤ v, and the result follows.¤

Proofs of Propositions 2 and 3 Lemma 3 (below) provides necessary and sufficient

conditions under which a type of policy dominates the other after the change in a parameter.

Intuitively, for the risky type of policy to dominate, the upward (downward) movement of

HR (v) at v∗ has to be great (small) as compared to the upward (downward) movement of

HS (v); otherwise, the safe type of policy dominates.

Lemma 3 When v∗ = v and a small increase (decrease) in a parameter w = k,σ, r, η

takes place, the risky (safe) policies will dominate the safe (risky) policies if and only if the
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following condition holds:

∂HR/∂w ≥
·
1 +

1− Φ (y)
r

¸
∂HS/∂w. (A6)

Otherwise, the safe (risky) policies will dominate the risky (safe) ones.

Proof : This proof is based on a geometrical argument which hinges upon a linearization

of HR (v) and HS (v) around their intersection at v = v∗. Figure A1 depicts in augmented

scale a case in which the vertical movement of HR (v) and HS (v) (as a result of a change

in a parameter w) is such that indifference between risky policies in YR (v) and safe policies

in YS (v) remains. Graphically, the situation is characterized by a sufficiently great vertical

displacement of HR (v), AC, as compared with the displacement of HS (v), AB.

v

HS
’

HR
’

v =v*=

A
G

B

D

E

F

C

HS

HR

Figure A1

Clearly, AC = DF = DG − FG ' [1− ∂HR/∂v]AG. Similarly, AB = DE = DG −
EG ' [1− ∂HS/∂v]AG. So, solving for AG in the second equation and substituting back

in the first, we get:

AC = [1− ∂HS/∂v]
−1 [1− ∂HR/∂v]AB
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Now, if AC is approximated by (∂HR/∂w) dw and AB by (∂HS/∂w) dw , the result is:

∂HR/∂w = [1− ∂HS/∂v]
−1 [1− ∂HR/∂v] ∂HS/∂w

If ∂HR/∂w were greater than in the case depicted in Figure A1, the new intersection of

HR (v) and HS (v) would take place to the right of bv and the risky policies in YR (v) would
dominate the safe ones in YS (v). Expression (A6) arises when ∂HS/∂w and ∂HR/∂w are

computed:

[1− ∂HS/∂v]
−1 [1− ∂HR/∂v] =

·
r

1 + r

¸−1 ·r + 1− Φ (y)
1 + r

¸
= 1 +

1− Φ (y)
r

.¤

Proof of Proposition 2 From the Envelope Theorem, the impact of r on the opti-

mal risky and safe policies can be ignored and simple differentiation leads to ∂HR/∂r =

− (1 + r )−2Φ (y) v∗ and ∂HS/∂v = − (1 + r )−2 v∗, with y ∈ YR (v∗). As Φ (y) < 1, the

term in square brackets of condition (A6) is greater than one and condition (A6) holds:

− (1 + r )−2Φ (y) v∗ ≥ − (1 + r )−2
·
1 +

1− Φ (y)
r

¸
v∗ ⇔ Φ (y) < 1 < 1 + 1− Φ (y)

r
.¤

Proof of Proposition 3 As in the proof of Proposition 2, the elements in condition (A6)

have to be computed. If DR (v∗) equals one (corner solution), ∂HR/∂η equals zero, whereas

∂HS/∂v is positive, then the results is clearly true. If DR (v∗) is smaller than one (interior

solution), we have:

∂HR/∂η = −
h
F (x− σ)DR (v

∗)η+1 + (1 + r)−1 f (x− σ) v∗/σ
i
logDR (v

∗) > 0

and

∂HS/∂v = −
£
DS

η+1
¤
logDS.

Now, from the first order conditions associated to the optimal choice of DR (v∗) and DS

and the conditions HR (v∗) = v∗ and HS (v∗) = v∗, the terms in brackets can be re-written,

leading to:

∂HR/∂η = − (1/η)
·
r + 1− Φ (y)

1 + r
v∗
¸
logDR (v

∗)
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and

∂HS/∂v = − (1/η)
·
r

1 + r
v∗
¸
logDS > 0.

Then, recalling that DR (v∗) > DS and applying Lemma 3, the result follows.¤

Proof of Proposition 4 Let G (y, v) be Π (y, v) + (1 + r)−1Φ (y, v) v and notice that

the partial derivative of G (y, v) with respect to x is zero. Note also that, under Dη+1 −
(1 + r)−1 v > 0, ∂G (y, v) /∂σ is positive and ∂G (y, v) /∂K is negative so the bank would

adopt risky policies. On the contrary, under Dη+1 − (1 + r)−1 v ≤ 0, we have F (x) =

F (x− σ) = Φ (y, v) = 1, so the bank would be safe and would choose a safe policy as those

described in section IV. In order to prove the result, I will show that when r > η the best safe

policies, y ∈ YS, entail Dη+1
S −(1 + r)−1 vS > 0 so that they cannot be optimal. For any y ∈

YS, G (y, v) = [η/ (1 + η)]DS + (1 + r)
−1 v, where DS = [1/ (1 + η)]1/η. Then, the value vS

that solves v = G (y, v) for all y ∈ YS can be computed: vS = (1 + r) (η/r) (1 + η)−η/(1+η).

We can easily check that condition Dη+1
S − (1 + r)−1 vS ≤ 0 holds if and only if r ≤ η.¤
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