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Abstract

We examine optimal capital requirements in a quantitative general equilibrium model with banks

exposed to non-diversifiable borrower default risk. Contrary to standard models of bank default risk, our

framework captures the limited upside, but significant downside risk of loan portfolio returns (Nagel and

Purnanandam, 2020). This helps to reproduce the frequency and severity of twin defaults: simultaneously

high firm and bank defaults. Hence, the optimal bank capital requirement, which trades off a lower

frequency of twin defaults against restricting credit provision, is higher than under default risk models,

which underestimate the impact of borrower default on bank solvency.
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More than a decade after the 2008-2009 financial crisis, the optimal level of bank capital

requirements still remains an open question. Bank capital is considered the best way to

protect individual banks and the aggregate economy against the risk of bank insolvencies.

When bank capital ratios are low, abnormally high default rates among bank borrowers

lead to sharp declines in bank net worth and increases in bank failures. The resulting

fall in bank lending further amplifies the real and financial implications of credit losses.

Thus, many academics and policy-makers have made the case for significantly higher capital

requirements (see e.g. Admati and Hellwig, 2013; The Federal Reserve Bank of Minneapolis,

2017). However, when banks’ capacity to raise equity is limited, lowering the frequency of

severe bank insolvencies may come at the cost of restricting bank credit provision in normal

times (see, e.g. Calomiris, 2013). Quantifying this trade-off is crucial for the assessment of

optimal capital requirements and requires a framework that captures well the behavior of

the economy in normal times– including normal expansions and recessions – as well as the

frequency and severity of financial recessions – i.e., episodes of simultaneously high levels of

borrower and bank defaults (twin defaults).

This paper studies this important trade-off in a quantitative macro-banking model in

which financial recessions are particularly severe contractions that endogenously arise in

response to shocks to bank borrowers that are not fully diversifiable at the bank level. The

main distinguishing feature of the model is to account for the special structure of bank asset

risk (see Nagel and Purnanandam, 2020). Specifically, in our model banks hold portfolios of

risky loans whose risk of default is not fully diversifiable at the bank level. As a result, bank

solvency problems arise endogenously from high default rates among bank borrowers. Such

defaults cause losses for banks, depleting their net worth and ultimately leading to bank

undercapitalization and insolvency. Hence, credit supply contracts, amplifying the drop in

firm investment and production associated with the initial impact of the shock. In addition,

default entails bankruptcy costs, and twin default episodes impose huge deadweight economic
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losses.1 Hence, for the same level of bank insolvencies, our model implies optimal capital

requirements that are six percentage points higher than under specifications of bank asset

returns which overlook the impact of borrowers’ default on banks’ default.

As noted by Gornall and Strebulaev (2018) and Nagel and Purnanandam (2020) in a

partial equilibrium setup, capturing bank default risk dynamics requires a structural model

of bank asset returns. In our framework, bank assets are portfolios of loans subject to non-

fully diversifiable credit risk. As a result, returns on bank assets have limited upside potential

but significant downside risk.2 Importantly, the asymmetry observed in these returns arises

endogenously, with loan performance being the main driver of bank insolvencies in the model.

This is an essential feature to reproduce the non-linear correlation between borrower and

bank defaults observed in the data, which increases endogenously with the bank default rate.

Consequently, the frequency and severity of twin default crises generated by the model are

also in line with those in the data.

Existing macro-banking papers on the optimal level of capital requirements typically ob-

tain cross-sectional variation in bank asset returns via idiosyncratic normally or log-normally

distributed shocks to bank revenues. As a result, asset returns are symmetric and have an

unbounded upper tail, as in the standard default model of Merton (1974). In contrast to the

standard Merton-type specification with independent borrower- and bank-specific shocks,

our model is able to reproduce the non-linear relationship between firm and bank defaults

and the frequency of twin default episodes observed in the data.3 Consequently, bank insol-

vencies in our model are associated with larger deadweight losses and stronger contractions in

economic activity. This increases the net benefits of higher capital requirements and pushes

1As in the financial accelerator literature (e.g. Bernanke and Gertler, 1989), the reliance on debt contracts
and the deadweight bankruptcy costs could be justified as in the costly state verification model of Gale and
Hellwig (1985).

2Our analysis focuses on credit risk. For tractability we abstract from other risks such as interest rate
risk or, more generally, market risk which may affect bank asset returns in a more symmetric way.

3Assuming correlated borrower- and bank-specific shocks would help match the unconditional correla-
tion between firms and bank defaults. However, it would still fail to account for the non-linearity in this
correlation.
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the estimate of their optimal level further up.

In our quantitative framework, banks extend loans to firms using insured deposits and

equity and are subject to regulatory capital requirements. Firms produce the final good using

capital and labor and pay for their production inputs partly using external financing in the

form of bank loans. Both firms and banks operate under limited liability and can default on

their debt obligations. As in Baron, Verner and Xiong (2021), bank equity declines are the

key driver of bank solvency crises in our model.4 Banks are exposed to credit risk because

firms’ performance is affected by shocks that are not fully diversifiable at the bank level.5

Specifically, we assume that credit markets are segmented into islands: a bank can only

grant loans to a continuum of firms on a given island.6 Each firm on the island is exposed

to both firm- and island-idiosyncratic productivity shocks. Banks can diversify away firm-

idiosyncratic shocks by lending to all firms on the island. But island-idiosyncratic shocks

affect all firms operating on the island in the same way and, hence, are not diversifiable at

the bank level. Thus, island risk generates heterogeneity in banks’ asset returns and default

outcomes.7

The asset returns of individual banks depend on the island-idiosyncratic productivity

shock in a highly non-linear manner. In islands with high realizations of this shock, a

large fraction of borrowers repay the contractual amount. In islands with low realizations,

more borrowers default, and banks make significant losses. Thus, asset returns of individual

banks are characterized by limited upside risk but significant downside risk. While the firm-

4Using historical data, Baron, Verner and Xiong (2021) find bank equity losses to predict subsequent con-
tractions in bank credit and aggregate economic activity. Their evidence clearly shows that while panics are
an amplification mechanism, they are unnecessary for a banking crisis to have severe economic consequences.
Our analysis, therefore, abstracts from the complications associated with the modeling of panics.

5Our assumption on the exposure of banks to non-diversifiable risk is consistent with the evidence in
Galaasen et al. (2020), which using matched bank-firm data for Norway shows that idiosyncratic borrower
risk is an economically significant source of non-diversifiable risk affecting banks’ loan portfolio returns.

6The segmentation of the loan market into islands is a shortcut to specialization and, hence, ex-post
heterogeneity in bank asset returns. Crucially, the segmentation does not apply to any other market,
including the funding of banks.

7Our specification resembles the single risk factor model of (Vasicek, 2002) but under the assumption
that each bank is exposed to an island’s ”single factor” that affects all its borrowers at the same time.
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specific and island-specific productivity shocks affecting borrowers are assumed to be log-

normally distributed, individual bank asset returns endogenously feature highly left-skewed

and asymmetric returns.

In the quantitative part of the paper, we show that our macro-banking model of default

risk can reproduce relevant features of the data, including the positive correlation between

bank and firm defaults and the frequency and severity of twin default episodes. To generate

aggregate fluctuations in macroeconomic and financial variables, the model includes aggre-

gate shocks: total factor productivity (TFP) shocks, as well as firm- and island-risk shocks.

Firm- and island-risk shocks affect the variance of the idiosyncratic productivity shocks to

firms and islands, respectively, and resemble the risk and uncertainty shocks commonly used

in the literature (see Bloom, 2009; Christiano, Motto and Rostagno, 2014). In our model,

they are crucial to generate fluctuations in firm and bank defaults.8

We estimate the model parameters using the generalized method of moments, targeting

a large set of unconditional moments in macro, banking, and financial euro area (EA) data

over the period 1992-2016. To capture the non-linearity intrinsic in the returns on bank

loans in a tractable way, we use a higher-order perturbation solution method. Our model

matches well the targeted mean and standard deviation of firm and bank defaults, as well

as the positive correlation that these rates exhibit in the data. In contrast, as mentioned

above, the standard Merton-type model of bank default risk commonly used in the literature

underestimates the correlation between the default rates of banks and their borrowers.

We also validate the performance of the model in terms of empirical moments describ-

ing the relationship between firm and bank defaults and GDP growth not targeted in the

estimation. In the data, the overall positive correlation between the two default rates hides

substantial non-linearity in their co-movement. Quantile regressions clearly show that the

sensitivity of bank default to firm default is higher in the upper quantiles of bank default.

8Our results are also consistent with Alfaro, Bloom and Lin (2024), who find that financial frictions
amplify the effects of uncertainty shocks.
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Once bank default risk is very high, its sensitivity to an increase in borrowers’ default is

higher than in good times. In addition, there is a strong negative link between GDP growth

and bank default at lower quantiles of GDP growth, consistent with the importance of fi-

nancing conditions as a determinant of the economy’s downside risk (Adrian, Boyarchenko

and Giannone, 2019). Contrary to the Merton-type approach, our model can mimic these

non-linearities well thanks to the non-linear structure of bank asset returns, which enables

it to reproduce the frequency and severity of the twin default episodes and the associated

macroeconomic outcomes.

In addition to helping match the data, the structural link between the solvency of firms

and banks constitutes a powerful amplification mechanism that allows the model to generate

twin default episodes without the need for large exogenous aggregate shocks to banks. In fact,

these episodes are the result of sequences of small negative island-risk shocks that become

increasingly amplified as the probability of bank failure grows. Intuitively, the non-linearity

in bank asset returns implies that once banks have a high risk of failure, the marginal impact

of additional credit losses on banks’ solvency and the macroeconomy is much larger than in

normal times.

After validating the quantitative implications of the model, we turn to the assessment

of the optimal level of capital requirements as well as their optimal degree of dynamic

adjustment in response to credit growth. The rationale for bank capital requirements in our

setup stems from the presence of safety net guarantees for banks and aggregate externalities

derived from the deadweight losses caused by defaults.9 Banks’ outside funding comes from

insured deposits which pay an interest rate that is independent of banks’ leverage choices.

This gives banks with limited liability an incentive to under-price borrower risk, as they do

not internalize the effects of their individual choices on the social costs of their failures. In

addition, they also neglect their impact on the aggregate dynamics of bank equity, which is

key to determining the lending capacity of the whole banking sector and, hence, the dynamics

9See Kareken and Wallace (1978) for an early reference.
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of the real economy. Thus, the model combines conventional micro- and macro-prudential

rationales for regulatory capital requirements.

Higher bank capital requirements limit bank risk-taking incentives and make the banking

sector more resilient to credit losses. This reduces the probability of twin defaults and,

hence, the negative impact of high firm and bank defaults on welfare. However, higher

capital requirements also imply a higher average cost of funding for banks, which translates

into higher average borrowing costs for firms and lower average equilibrium credit levels.

Assessing the optimal level of the capital requirements that maximizes social welfare requires

quantifying this trade-off.

In our estimated model, a sixteen percent bank capital requirement brings the probability

of twin defaults close to zero and maximizes social welfare. This is about six percentage

points higher than the optimal level of capital requirements implied by the Merton-type

model of bank default risk, which underestimates the probability of twin defaults. While

in the Merton-type model, firm default is not the primary driver of bank default, in our

framework, bank insolvencies are endogenously driven by high levels of defaults among banks’

borrowers. Hence, bank default events are significantly more severe in our model compared

to the Merton-type framework. For the same level of bank insolvencies, our model predicts

higher costs for society as the economy experiences deadweight default losses and equity

declines not only for banks but also for firms. This result underscores the importance of

modeling bank default risk in a structural way. Failing to generate the right frequency and

severity of twin defaults understates the costs associated with bank default and, hence, biases

downwards the net benefits of higher capital requirements.

Finally, we analyze the role of dynamic capital adjustments. We show that allowing

capital requirements to be higher in good times than in bad times stabilizes loan provision

in bad times at the expense of reducing banks’ resilience. Therefore, a strong degree of

adjustment to credit growth is only optimal for a sufficiently high level of capital requirements

so that banks remain highly solvent even when their borrowers’ default risk is high and the
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requirements are lowered.10

Related literature This paper relates to several strands of the macro-finance liter-

ature. First, from a modeling perspective, we contribute to the macro-banking literature

by showing how shocks to bank borrowers can endogenously trigger financial recessions. In

an important departure from the standard financial accelerator literature (e.g., Bernanke

and Gertler, 1989; Kiyotaki and Moore, 1997; Jermann and Quadrini, 2012), we assume

that banks are not a veil and are subject to borrower default risk. We share with earlier

papers the assumption that the returns on the firms’ productive projects are log-normally

distributed, as in the classical Merton model of corporate default (Merton, 1974). But, in

line with Gornall and Strebulaev (2018) and Nagel and Purnanandam (2020), the returns

on the portfolio of defaultable loans feature limited upside but unlimited downside risk.

This appears endogenously in our model due to the incidence of non-diversifable borrower

default risk on bank asset returns. Sufficiently high borrower defaults in our model can

trigger high bank default rates and lead to financial recessions. This structural modeling

of bank default risk is crucial for replicating the correlation between firm and bank default

rates and the large economic contraction associated with financial recessions.11 This natural

but non-trivial extension of the standard framework distinguishes our model from those in

which banks directly hold productive assets (e.g. Gertler and Kiyotaki, 2010; He and Krish-

namurthy, 2013; Brunnermeier and Sannikov, 2014; Piazzesi, Rogers and Schneider, 2019) as

well as from other double-decker models in which banks providing loans to levered borrowers

can default.12

The tractability of the Merton-type approach to bank default risk is useful when solving

10We thank one referee for suggesting this interesting addition to the paper.
11Our findings are consistent with the emphasis on banks as amplifiers of crises in Giesecke et al. (2014).

We also find that financial recessions have large macroeconomic effects, as in Krishnamurthy and Miur
(2017).

12Gete (2018), Rampini and Viswanathan (2019), Ferrante (2019) and Villacorta (2020), among others,
develop double-decker models of the interaction between banks’ and borrowers’ net-worth dynamics which,
however, abstract from bank default.
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large models which include, for instance, different types of intermediaries (e.g., Begenau and

Landvoigt, 2022) or loans (e.g., Clerc et al., 2015; Mendicino et al., 2018), long-term debt

(e.g., Jermann, 2019; Elenev, Landvoigt and Nieuwerburgh, 2021), liquidity interventions

(e.g., Gete and Melkadze, 2020) and monetary policy (e.g., Mendicino et al., 2020).13 In

these models, banks may default due to aggregate shocks that affect the default rate of their

borrowers or due to idiosyncratic shocks to their asset returns.14 We propose a tractable

way to microfund the latter source of solvency risk via an island-specialization framework,

which allows the introduction of non-diversifiable credit risk at the bank level in a structural

way. This enables our model to endogenously generate changes in the co-movement of firm

and bank defaults between normal and crisis times. Consequently, our framework is also

well-suited to reproduce the frequency and severity of twin default crises.15

Second, from a normative perspective, our paper complements the existing literature

(e.g. Van Den Heuvel, 2008; Clerc et al., 2015; Begenau, 2020; Corbae and D’Erasmo, 2021;

Davydiuk, 2019; Mendicino et al., 2018, 2020; Elenev, Landvoigt and Nieuwerburgh, 2021) by

focusing on the credit risk channel of bank default. Our framework prescribes substantially

higher capital requirements than previous work, underlying the normative importance of

capturing undiversifiable credit risk in a structural manner.16 In addition, our results also

rationalize the optimality of dynamic capital requirements, but only for sufficiently high

levels of minimum capital requirements.

Third, our structural approach to bank asset risk also contributes to the understanding

13We share with this earlier papers the focus on banking crises without panics (Baron, Verner and Xiong,
2021).

14In these models, the ex-post heterogeneity in bank defaults arises from idiosyncratic shocks that affect
directly the aggregate returns on the loan portfolio of the bank and not the performance of the individual
loan/borrower in an heterogenous manner across banks.

15Another important contribution relative to our previous work (Mendicino et al., 2018, 2020) concerns
the modeling of endogenous voluntary buffers and dividend payouts, which, in the current framework, play
a role in the transmission of shocks.

16To limit the complexity of our formulation, we abstract from other forces that have been identified in the
literature as also contributing to increase the welfare gains from higher capital requirements. These include
promoting competition within an imperfectly competitive banking sector Corbae and D’Erasmo (2021) or
from the shadow banking sector Begenau and Landvoigt (2022).
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of how financial vulnerabilities lead to downside risks to GDP. Consistent with recent evi-

dence on the link between financial vulnerabilities and downside risks to GDP (e.g. Adrian,

Boyarchenko and Giannone, 2019), we show that bank default risk is a strong determinant

of the economy’s downside risk. In our model, when the risk of bank insolvencies is high,

small shocks to banks’ non-diversifiable risk have a magnified negative impact on aggregate

macroeconomic outcomes.

Finally, our focus on the non-linearities due to the special structure of credit risk and its

impact on bank default risk adds a complementary perspective to the literature that em-

phasizes other non-linear aspects of financial crises. Aspects analyzed by prior work include

asset price feedback loops (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014),

occasionally binding constraints (Mendoza, 2010; Benigno et al., 2013; Bianchi, 2016), bank

panics (Gertler, Kiyotaki and Prestipino, 2019), liquidity problems (Bigio, 2015; De Fiore,

Hoerova and Uhlig, 2018), systemic risk (Martinez-Miera and Suarez, 2014), time varying

risk-premia (Coimbra and Rey, 2024) and sovereign defaults (Arellano, 2008; Bocola, 2016).

1 The Model

We consider a discrete-time, infinite horizon economy in which dates are indexed by t. The

structure of financial exchanges in the model is depicted in Figure 1.

Household. The model economy is populated by a representative household that works,

consumes, invests savings in bank deposits, and owns the representative corporate holding

company (CHC) and the representative bank holding company (BHC). The CHC and BHC

operate intertemporally, managing the equity investments (ownership stakes) of the house-

hold in firms and banks, respectively. Households also directly own the capital-producing

firms that operate at each date.
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Figure 1: Model Sketch

Bank holding 
company b 

Banks distributed across 
Islands indexed j 

Deposits 

Loans 

Corporate holding 

company f  

Corp. equity 

Entrepreneurial firms 
indexed (i,j) distributed 

across islands j 

Bank equity 

Output: 
wi wj ((1-d)qt+1kt + yt+1) 

 

Inputs:  
Labor ht & capital kt  

(paid at t) 

CHC equity BHC equity 

Representative 
household 

Firms and banks. Final good-producing firms (denoted just firms, for brevity) and

banks operate between two consecutive dates. Firms produce the final good and pay for the

inputs of production in advance. Both firms and banks obtain external financing by issuing

non-contingent debt in the form of bank loans and (fully insured) deposits, respectively.17

They operate under limited liability and default when, after a period of operation, the owning

CHC or BHC optimally decides not to cover the gap between their debt obligations and their

terminal asset value if strictly positive. In case of default of a firm or bank, creditors take

possession of their assets at a cost. After a period of operation, non-defaulted firms and

17The focus of our paper on bank lending to firms is consistent with the important role of EA banks in
lending to non-financial corporations (NFCs) and the importance of NFC defaults as drivers of credit losses
in Europe (EBA, 2018). Our model could be adapted to consider the case in which bank borrowers are
households to finance house purchases with mortgages. However, such a setup would be less relevant in the
EA since the recourse nature of most European mortgages makes the default rates of these loans very low,
even in bad times.
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banks pay their terminal net worth to the CHC and the BHC, respectively. Finally, at each

date, the BHC pays lump-sum taxes to the deposit guarantee scheme (DGS) so as to cover

the losses on the insured deposits of the banks that defaulted as a result of their previous

period of operation.

Island setup. There exists a continuum of measure one of the islands that we index

by j ∈ (0, 1). In each island, there is a continuum of measure one of ex-ante identical firms

that we index by i ∈ (0, 1) and a representative bank. Firms are subject to both firm-

and island-idiosyncratic shocks, whose realizations affect their terminal asset value. Banks

cannot lend across islands, so they diversify their lending across firms in their island but

not across islands. The island structure is a metaphor for bank specialization, which may

be geographical (e.g. in a country or in a region of a country), sectoral (e.g. real estate)

or even in lending to individual large firms. We do not model the reasons for specialization

but merely capture the fact that it leads to imperfect diversification, exposing banks to risks

that are idiosyncratic to the region and industry they operate in.18 In our model, this is

captured by the way bank asset returns depend on the realization of the island-idiosyncratic

shock. Island-based market segmentation only applies to the bank loan market. All factors

of production, the final output, and the deposit and equity funding of banks are freely mobile

across islands.

Aggregate Shocks. In addition to the firm- and island-idiosyncratic shocks, the econ-

omy faces an aggregate TFP shock and aggregate firm- and island-risk shocks. These last

two shocks are modeled as shocks to the standard deviation of each class of idiosyncratic

shocks. Aggregate shocks are described in Internet Appendix A together with aggregation

18In Europe, banks operate largely within national borders, and many specialize in lending to particular
industries and sectors (Guiso, Sapienza and Zingales, 2004; De Bonis, Pozzolo and Stacchini, 2011; Behr and
Schmidt, 2016; De Jonghe et al., 2020).Geographic and sectoral specialization is also a feature of US small
and medium-sized banks (Deyoung et al., 2015; Regehr and Sengupta, 2016) and banks in Peru (Paravisini,
Rappoport and Schnabl, 2023).
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and market clearing conditions as well as the full set of equilibrium conditions.

1.1 The Household

The household chooses consumption, Ct, hours worked, Ht, and insured bank deposits, Dt,

to maximize the present discounted value of utility

Et
∞∑
s=t

(
βs log (Cs)−

ϕ

1 + η
H1+η
s

)

subject to the budget constraint

Ct +Dt = wtHt +Rd,t−1Dt−1 + Ξf,t + Ξb,t + Ξk,t (1)

where η is the inverse of the Frisch elasticity of labor supply, ϕ is the weight of labor

supply in the utility of households, wt is the real hourly wage and Rd,t−1 is the gross rate

of deposits. The last three terms in Equation (1) represent the net dividends paid by the

CHC, Ξf,t, and the BHC, Ξb,t, and the profits of the capital producing firms, Ξk,t. We

are interested in a symmetric equilibrium, hence, we assume that the household invests its

deposits symmetrically in all the (ex-ante identical) banks in the economy. All the variables

in the problem of the household represents aggregate variables. First order conditions (FOCs)

of this problem are in Internet Appendix A.

1.2 Firms

The representative CHC manages the equity investments in all individual firms. Individual

firms are ex-ante identical, although ex-post they are hit by the different firm- and island-

idiosyncratic shocks denoted ωi and ωj. Across any two consecutive dates t − 1 and t, the

CHC solves a two-stage problem. In the first stage (in date t− 1), it chooses how to invest

its equity Nf,t−1 across its subsidiary firms and how much these firms should lever up using
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a bank loan. At this stage, the CHC also chooses the combination of labor ht−1 and physical

capital kt−1 to be used as inputs in the production of output at t.19 Thus, each firm finances

its input cost, wt−1ht−1 + qt−1kt−1, with the equity from CHC Nf,t−1 and a bank loan with

principal Bf,t−1 and a promised gross interest rate Rf,t−1 agreed between the firm and its

bank. We define firms’ leverage as the ratio

θt−1 =
Nf,t−1

wt−1ht−1 + qt−1kt−1

.

At date t shocks realize and the second stage of the CHC’s decision problem begins: each

portfolio firm obtains revenue ωiωj [yt + (1− δ) qtkt−1] from net production yt = Ath
α
t−1k

1−α
t−1 ,

with α ∈ (0, 1) and At > 0, and the sale of depreciated physical capital (1− δ) qtkt−1. In the

absence of financial assistance from the CHC, the individual firm is insolvent if its revenues

are lower than its loan repayment obligations Rf,t−1Bf,t−1. So firms in island j are solvent

without assistance if

ωi ≥ ω̂jf,t =
Rf,t−1(1− θt−1)

ωjRk
t

,

where

Rk
t =

yt + (1− δ) qtkt−1

wt−1ht−1 + qt−1kt−1

.

Firms with ωi < ω̂jf,t are in financial distress and can only avoid default if CHC arranges

an emergency equity injection. The CHC can raise the extra equity from the household at a

cost 1+γ per unit of net funds. On the contrary, letting the firm default implies a net worth

loss of µFBf,t−1 to the CHC. This loss captures reputational costs, losses of goodwill, or any

other organizational losses suffered by the CHC. In addition, default produces a repossession

cost µf per unit of assets to the lending bank.20

19Our formulation is equivalent to allowing firms to choose their leverage ratio and inputs of production
without any agency friction between them and the CHC.

20The CHC fails to internalize these repossession costs when deciding on firms’ default. These costs,
however, affect the terms at which the bank grants the loans in the first place and, hence, firms’ decisions in
the first stage. Interpreting asset repossession costs as state-verification or enforcement costs, the contractual
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We assume that the cost γ of emergency equity is high enough for the CHC to only

consider the minimum recapitalization necessary to avoid the default of the distressed firm,

and we denote by dijf,t the CHC’s binary decision, for firm i in island j, on whether to provide

an equity injection to avoid default (dijf,t = 0) or to let the firm go under (dijf,t = 1).

In the second stage, the CHC also decides how much dividend to pay to the household, out

of the gross equity returns received from all its non-defaulting portfolio firms. We assume

that the CHC has an exogenous target δf for its gross dividend yield, xf,t, defined as a

proportion of the equity invested in firms in the previous period Nf,t−1. Deviating from the

target implies a penalty
ψf

2
(δf −xf,t)2Nf,t−1 that directly reduces the net dividends received

by the household at date t but allows the CHC to optimally choose the net worth retained

to invest in its portfolio firms for one more period.21 Figure 2 represents the timeline for the

decisions of the CHC regarding firms.

Figure 2: Timeline of CHC decisions

Stage 1 (date t− 1) Stage 2 (date t)
CHC starts with net worth Nf,t−1 Aggregate shocks and idiosyncratic

shocks ωi, ωj realize
Firm-level input and financing decisions
dated t− 1 made For distressed firms, CHC decides

(ht−1, kt−1, Bf,t−1, Rf,t−1, θt−1) on letting them default (dijf,t = 1) or

not (dijf,t = 0)

Non-defaulting firms pay net worth
back to CHC

CHC decides gross dividend yield xf,t

frictions in this formulation are consistent with those that rationalize the optimality of debt contracts in
Gale and Hellwig (1985) and Krasa and Villamil (1992).

21The cost of missing the target dividend can be interpreted as capturing in reduced form the informational
and agency frictions that motivate the prevalence of target payout ratios and dividend smoothing among
real-world firms.
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1.2.1 Firm second-stage decisions

We start from the second stage before moving on to the first stage of the CHC problem. The

second stage problem (firm default and CHC dividend decisions) at time t can be represented

by the following value function:

Vf,t(Nf,t−1) = max
dijf,t∈{0,1},xf,t

((
xf,t −

ψf
2

(δf − xf,t)2 (2)

−
(1+γ)

∫∞
0

∫ ω̂j
f,t

0 (1–di,jf,t)
[
Rf,t−1 (1–θt–1) –ωiωjR

k
t

]
dFi,t(ωi)dFj,t(ωj)

θt−1

)
Nf,t–1

+ Et(Λt+1Vf,t+1(Nf,t))

)
,

where Fi,t and Fj,t are the cumulative distribution functions of the idiosyncratic firm and

island shocks, respectively. Equation (2) states that the value of the CHC which had invested

net worth of Nf,t−1 in the previous period is given by dividends net of the costs of missing the

payout target and of the costs of recapitalizing any firms with negative residual net worth

plus the continuation value of the CHC. The net worth invested by the CHC in portfolio

firms Nf,t follows the law of motion:

Nf,t =

(∫ ∞
0

{∫ ∞
ω̂j
f,t

[
ωiωjR

k
t −Rf,t−1(1− θt−1)

]
dFi,t(ωi)

−
∫ ω̂j

f,t

0

di,jf,tµFdFi,t(ωi)

}
dFj,t(ωj)− xf,t

)
Nf,t−1

θt−1

(3)

and Λt is the household’s stochastic discount factor. Nf,t is equal to the gross residual value

of its portfolio firms net of the losses to the CHC from portfolio firm defaults and net of any

dividend payments.

We guess and verify that the value function of the CHC is linear in equity invested in its

portfolio firms at t − 1, that is, Vf,t (Nf,t−1) = vf,tNf,t−1. Substituting this in Equation (2)
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produces the following functional equation for the value of a unit of equity vf,t:

vf,t = max
di,jf,t∈{0,1},xf,t

{
xf,t −

ψf
2

(
δf − xf,t

)2

− 1 + γ

θt−1

∫ ∞
0

∫ ω̂j
f,t

0

(1− di,jf,t)
[
Rf,t−1(1− θt−1)− ωiωjRk

t

]
dFi,t(ωi)dFj,t(ωj)

+ Et

[
Λt+1vf,t+1

(
1

θt−1

∫ ∞
0

{∫ ∞
ω̂j
f,t

[
ωiωjR

k
t −Rf,t−1(1− θt−1)

]
dFi,t(ωi)

]

−
∫ ω̂j

f,t

0

di,jf,tµFdFi,t(ωi)

}
dFj,t(ωj)− xf,t

)]}
. (4)

Throughout the analysis, we will assume that the cost of raising emergency equity exceeds

the CHC’s marginal cost of cutting down the dividend yield ratio, that is, γ > ψ
(
δf − xf,t

)
,

for relevant values of xf,t.
22 This means that emergency equity is only optimally used at the

minimal scale needed to avoid the default of some of the firms in distress but not to increase

Nf,t.

Finally it is helpful to define pf,t ≡ Et(Λt+1vf,t+1) as the (expected discounted) contin-

uation value of one unit of equity invested by the CHC in any of its portfolio firms at t.

Together with µF , this shadow value is a key determinant of the franchise value that the

CHC may preserve by recapitalizing firms in distress.

Firm default decisions. Avoiding the default of a distressed firm is optimal if and

only if

pf,tµF ≥ (1 + γ)
[
Rf,t−1(1− θt−1)− ωiωjRk

t

]
,

that is when the shadow value of the losses that default would inflict on the CHC exceeds

the cost of the equity injection required to restore solvency. This condition determines the

threshold value of the idiosyncratic firm shock below (above) which a firm in island j defaults

22We numerically check that this is the case.
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(is recapitalized):

ω̄jf,t =
(1 + γ)Rf,t−1(1− θt−1)− pf,tµF

(1 + γ)ωjRk
t

.

Thus, as long as pf,tµF > 0, firms have charter value and ω̄jf,t < ω̂jf,t. It is, therefore, optimal

to prevent the default of some distressed firms using an emergency equity injection. The

shadow value of equity is an important determinant of the recapitalization decision: when

the equity of the CHC is more scarce (pf,t is high), more firms avoid default using these

injections.23

Firm dividend decision. The FOC with respect to the dividend yield xf,t implies the

following dividend policy function xf,t = δf − pf,t−1

ψf
, which implies xf,t < δf for pf,t > 1.24

In this formulation, deviating from the dividend yield target δf has a cost that reduces the

“net dividend” effectively received by the household. Taking additionally into account the

costs to the household of the optimal firm recapitalizations, we can express the net payout

from the CHC to the household as:

Ξf,t =

{
δf–

1

2ψf
(p2
f,t–1)–

1 + γ

θt−1

∫ ∞
0

∫ ω̂j
f,t

ω̄j
f,t

[
Rf,t–1(1–θt–1)–ωiωjR

k
t

]
dFi,t(ωi)dFj,t(ωj)

}
Nf,t–1.

Intuitively, the negative term in p2
f,t accounts for the (quadratic) cost of optimally reducing

the dividend yield below its target δf when the shadow value of bank equity is higher than

one. In fact, δf − 1
2ψf

(p2
f,t − 1) can turn negative (implying an equity injection from the

household to the CHC) if the the internally accumulated net worth of the CHC is sufficiently

scarce (which, in equilibrium, can happen after sufficiently large corporate net worth losses

at the aggregate level).

23In this formulation, the net worth of the CHC works like inside equity, while the emergency equity
injections that avoid the default of distressed firms work like outside equity. Incentives to raise outside
equity increase when inside equity is more scarce.

24This will be the case at and around the steady state in our calibration. The restriction on the cost of
emergency equity and the FOC for the optimality of xf,t requires having pf,t < 1 + γ a condition that holds
under our calibration.
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1.2.2 Firm first-stage decisions

In the first stage problem (at date t − 1), the CHC decides how to allocate equity across

firms. The linearity of Equation (4) implies indifference with respect to the allocation of

equity across firms. Since we are interested in a symmetric equilibrium, we assume that the

allocation is symmetric. In this stage, the CHC also decides on firms’ leverage and on their

capital and labor inputs. The optimal leverage and input decisions of the portfolio firms

emerge from the solution to the following Bellman equation:

pf,t−1 = max
θt−1,ht−1,kt−1,Rf,t−1

Et−1{Λt[(δf +
1

2ψf
)− (δf +

1

ψf
)pf,t +

1

2ψ
p2
f,t (5)

− 1 + γ

θt−1

∫ ∞
0

∫ ω̂j
f,t

ω̄j
f,t

[
Rf,t−1(1− θt−1)− ωiωjRk

t

]
dFi,t(ωi)dFj,t(ωj)

+
pf,t
θt−1

∫ ∞
0

{
∫ ∞
ω̂j
f,t

[
ωiωjR

k
t −Rf,t−1 (1− θt−1)

]
dFi,t(ωi)− µFFi,t(ω̄jf,t)}dFj,t (ωj)]},

subject to a constraint (called the bank’s participation constraint) that describes how the

representative bank that extends credit to the firm modifies the loan rate Rf,t−1 depending

on the leverage and input decisions made by the firm:

Et−1 (ΛtΠb,t) = pb,t−1φt−1. (6)

As specified in detail in Internet Appendix A, in the participation constraint of the bank,

Πb,t is the value at t of the net equity payoffs that the household and BHC receive at date

t for each unit of lending to firms at date t− 1, pb,t−1 is the shadow value of the BHC’s net

worth at date t − 1, and φt−1 is the capital ratio of the banks (that is, the fraction of each

unit of bank lending financed with equity provided by the BHC). This equation describes the

loan supply schedule of perfectly competitive banks in our model. It describes combinations

of loan amounts, loan rates and other relevant decisions by firms (e.g. labor and capital
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inputs) under which banks break even. In other words, it describes loan contracts under

which the expected discounted value of the net equity returns received by the bank owners

at t per unit of lending at t-1 is just enough to compensate them for the opportunity cost

pb,t−1 of the fraction φt−1 of equity funding devoted to each unit of lending.The FOCs of the

CHC’s first-stage decision problem are also in Internet Appendix A.25

The right-hand side of the Bellman equation follows from two steps. First, we use Equa-

tion (4) and the expression of the optimal dividend yield of the CHC to write a recursive

expression for vf,t, that is, the value at t of net worth resulting from the investment of one

unit of corporate equity at t − 1. Second, we plug the resulting expression in the definition

of pf,t−1 ≡ Et−1(Λtvf,t).

1.3 Banks

The representative BHC manages the equity investments of the households in individual

banks located on all the islands. All individual banks in island j are ex-ante identical,

although ex-post island-idiosyncratic shocks produce heterogeneity in the performance of

their loan portfolios. Because we are interested in a symmetric equilibrium, we assume a

representative bank per island. Similarly to the CHC, the BHC solves a two-stage problem.

In the first stage (date t − 1), the BHC chooses how to invest its equity Nb,t−1 across its

portfolio banks and how much these banks should lever up using insured deposits dt−1 to

make loans bf,t−1 = Nb,t−1 + dt−1 to the firms in their island.26 This results in a “capital

ratio” (the regulatory name for the equity to asset ratio) defined as

φt−1 =
Nb,t−1

Nb,t−1 + dt−1

. (7)

25These FOCs define the optimal contracting terms between the firm and its bank as in the costly state
verification formulation of Bernanke, Gertler and Gilchrist (1999).

26This is equivalent to banks directly making these choices without any agency frictions between banks
and the BHC.
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Prudential capital regulation constrains banks to operate with a capital ratio no lower than

a minimum capital requirement φ.

At date t shocks realize and the second stage of the BHC decision problem begins. As

derived in the description of the firms’ problem above, a firm in island j pays in full the

loan received at t − 1 if it experiences a firm-idiosyncratic shock no lower than ωjt . If the

firm-idiosyncratic shock is lower, the firm defaults, and the bank recovers a fraction 1− µf
of the firm’s asset value, yt + (1− δ)qtkt−1, due to asset repossession costs. Hence, the gross

return on assets of the bank in island j is:

R̃f,t(ωj) =
(1− µf )ωj[yt + (1− δ)qtkt−1]

bf,t−1

∫ ωj
t

0

ωidFi,t(ωi) +Rf,t−1

∫ ∞
ωj
t

dFi,t(ωi). (8)

Thus the bank in island j obtains gross loan repayments R̃f,t(ωj)bf,t−1 which are increasing

in the realization of the island idiosyncratic shock ωj at date t.

We assume that a bank supervisor regards each bank as ex-post well-capitalized if it

complies with the minimum capital requirement on an ex post basis, that is, R̃f,t(ωj)bf,t−1−

Rd,t−1dt−1 ≥ φbf,t−1, where Rd,t−1dt−1 are the bank’s deposit repayment obligations and,

hence, the left-hand side represents the net worth with which the bank arrives at t. This

condition is equivalent to having ωj ≥ ω̂b,t, where ω̂b,t solves:

R̃f,t(ω̂b,t)−Rd,t−1(1− φt−1) = φ. (9)

A bank that is not well-capitalized (ωj < ω̂b,t) can only avoid its failure by covering its

capital shortfall with an emergency equity injection. As in the case of the CHC, the BHC can

arrange the required injection from the household at a cost 1+γ per unit of raised net funds.

If, alternatively, the bank is allowed to fail, the BHC suffers (i) the loss of any residual net

worth of the failed bank (which is appropriated by the DGS in the process of liquidation of

the bank) and (ii) an additional loss equal to µBbf,t−1 which captures all failure-related costs
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incurred by the BHC. These may include reputation-restoration costs, litigation losses, the

re-acquisition of informational capital lost with the failure of the portfolio bank, or the cost of

replacing the failed bank. These losses effectively work as the charter (or continuation) value

of the potentially failing bank that the BCH can preserve with the emergency recapitalization

of the bank.

Thus, in the second stage of its problem, the BHC must decide for which realizations of

ωj < ω̂b,t its undercapitalized banks should avoid failure using an emergency equity injection,

djb,t = 0, and for which ones banks should be allowed to fail, djb,t = 1. In this stage, after

receiving all the gross equity returns from its non-failed banks, the BHC also decides how

much dividend to pay to the household. As in the case of the CHC, we assume that the BHC

has an exogenous target δb for its gross dividend yield xb,t defined as proportion of the equity

invested in banks in the previous period Nb,t−1. Deviating from the target implies a penalty

ψb

2
(δb−xb,t)2Nb,t−1 that directly reduces the net dividends paid to the household at date t but

allows the BHC to optimally choose the net worth retained to invest in its portfolio banks

for one more period. Figure 3 represents the timeline for the decisions regarding banks.

Figure 3: Timeline of BHC decisions

Stage 1 (date t− 1) Stage 2 (date t)
BHC starts with net worth Nb,t−1 Aggregate shocks and idiosyncratic

shocks ωi, ωj realize
Bank-level funding and lending decisions
dated t− 1 made For undercapitalized banks, BHC

(dt−1, bf,t−1, φt−1) decides on letting them fail (djb,t = 1)

or not (djb,t = 0)

Non-failed banks pay net worth
back to BHC

BHC decides gross dividend yield xb,t
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1.3.1 Bank second-stage decisions

We start from the second stage of the BHC problem before moving to the first stage. The

second stage problem (bank failure and BCH dividend choice) at time t can be represented

by the following value function:

Vb,t(Nb,t−1) = max
djb,t∈{0,1},xb,t

{[xb,t −
ψb
2

(δb − xb,t)2]Nb,t−1 (10)

− 1 + γ

φt−1

{∫ ω̂b,t

0

(1− djb,t)[φ+Rd,t−1 (1− φt−1)− R̃f,t(ωj)]dFj,t+1(ωj)

}
Nb,t−1

+ Et (Λt+1Vb,t+1(Nb,t))},

where Nb,t follows the law of motion

Nb,t =


∫∞
ω̂b,t

[R̃f,t(ωj)–Rd,t–1(1–φt–1)]dFj,t(ωj) +
∫ ω̂b,t

0
[(1–djb,t)φ–djb,tµB]dFj,t(ωj)

φt−1

− xb,t

Nb,t–1,

(11)

Equation (10) states that the value of the BHC which had invested net worth of Nb,t−1

in the previous period is given by dividends net of the costs of missing the payout target

and of the costs of recapitalizing any undercapitalized banks plus the continuation value of

the BHC with invested net worth Nb,t. Net worth invested in portfolio banks Nb,t is equal to

the gross profits of its portfolio banks plus the net worth of recapitalized banks net of bank

default costs and dividend payouts, see Equation (11).

We guess and verify that the BHC’s value function is linear inNb,t−1, that is, Vb,t(Nb,t−1) =

vb,tNb,t−1. Substituting this in Equation (10) produces the following functional equation for
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the per-unit value of equity:

vb,t = max
djb,t∈{0,1},xb,t

{xb,t −
ψb
2

(δb − xb,t)2 − 1 + γ

φt−1

∫ ω̂b,t

0

(1− djb,t)[φ+Rd,t−1 (1− φt−1)

−R̃f,t(ωj)]dFj,t+1(ωj) + Et[Λt+1vb,t+1(
1

φt−1

{
∫ ω̂b,t

0

[(1− djb,t)φ− d
j
b,tµB]dFj,t(ωj)

+

∫ ∞
ω̂b,t

[R̃f,t(ωj)−Rd,t−1(1− φt−1)]dFj,t(ωj)} − xb,t)]}. (12)

Throughout the analysis, we will assume that the cost of raising emergency equity exceeds

the BHC’s marginal cost of cutting down the dividend yield ratio, that is, γ > ψb
(
δb − xb,t

)
,

for relevant values of xb,t.
27 This means that emergency equity is only optimally used at the

minimal scale needed to avoid the failure of some portfolio banks but not to increase Nb,t.

Finally it is helpful to define pb,t ≡ Et(Λt+1vb,t+1) as the (expected discounted) continua-

tion value of one unit of the equity invested by the BHC in its portfolio banks at t. Together

with µB, this shadow value is a key determinant of the charter value that the BHC aims

to protect when recapitalizing its undercapitalized portfolio banks. pb,t also appears as the

shadow value of bank equity in the participation constraint of the bank that determines the

pricing of bank loans in firms’ problem; see Equation (6).

Bank recapitalization decision. Avoiding the failure of an under-capitalized bank

(djb,t = 0) is optimal if and only if pb,t(µB + φ) ≥ (1 + γ){φ − [R̃f,t(ωj) − (1 − φt−1)Rd,t−1]}

where the left-hand side is the value of the BHC’s net worth that is preserved by avoiding

the failure of the undercapitalized bank and the right hand side is the cost of the emergency

equity injection needed to avoid such a failure.

The above condition determines a threshold ω̄b,t for the island idiosyncratic shock below

27We numerically check that this is the case.
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(above), which a bank is allowed to fail (recapitalized) by the BHC. The threshold solves

R̃f,t(ω̄b,t)− (1− φt−1)Rd,t−1 = φ−
pb,t(φ+ µB)

1 + γ
. (13)

and depends negatively on pb,t(φ+ µB), which works as the charter value (per unit of loans)

of the undercapitalized bank. This charter value is increasing in the shadow value of bank

capital pb,t, meaning that when a bank’s net worth is scarcer and, hence, more valuable, it

is profitable to save even more deeply undercapitalized banks.

Bank dividend decision. The FOC with respect to the dividend yield ratio xb,t leads

to the dividend policy function xb,t = δb − pb,t−1

ψb
, which implies xb,t < δb for pb,t > 1.28 In

this formulation, deviating from the dividend yield ratio target δb has a cost that reduces

the “net dividend” effectively received by the household. Taking additionally into account

the costs of the optimal emergency equity injections, we can express the optimal net payout

from banks to the household as

Ξb,t =

{
δb −

1

2ψb
(p2
b,t–1)− 1 + γ

φt−1

∫ ω̂b,t

ω̄b,t

[φ+Rd,t−1(1− φt−1)− R̃f,t(ωj)]dFj,t(ωj)

}
Nb,t−1.

Intuitively, the negative term in p2
b,t accounts for the (quadratic) cost of optimally reducing

the dividend yield below its target δb when the shadow value of bank equity is higher than

one. In fact, δb − 1
2ψb

(p2
b,t − 1) can turn negative (implying an equity injection from the

household to the BHC) if bank equity is sufficiently scarce (which can occur after sufficiently

large bank net worth losses at the aggregate level).

28This will be the case at and around the steady state in our calibration. The restriction on the cost of
emergency equity, and the FOC requires having pe,t < 1 + γ a condition that holds our calibration.
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1.3.2 Bank first-stage decisions

In the first stage problem (at date t − 1), the BHC decides how to allocate equity across

banks and also on how leveraged the banks should be that is, their capital ratio φt−1. The

linearity of Equation (10) implies indifference with respect to the allocation of equity across

banks. Since we are interested in a symmetric equilibrium, we assume that the allocation

is symmetric. The optimal leverage of the portfolio banks emerges from the solution to the

following Bellman equation:

pb,t−1 = max
φt−1≥φ

Et−1[(Λt(δb +
1

2ψb
)− (δb +

1

ψb
)pb,t +

1

2ψb
p2
b,t

− 1 + γ

φt−1

∫ ω̂b,t

ω̄b,t

{φ− [R̃f,t(ωj)−Rd,t−1(1− φt−1)]}dFj,t(ωj)

+
pb,t
φt−1

{
∫ ∞
ω̂b,t

[R̃f,t(ωj)−Rd,t−1(1− φt−1)]dFj,t(ωj) + φ [Fj,t(ω̂b,t)− Fj,t(ω̄b,t)]

−µBFj,t(ω̄b,t)})]. (14)

The right-hand side of the Bellman equation follows from two steps. First, we use Equa-

tion (12) and the expression of the optimal dividend to write a recursive expression for vb,t.

Second, we plug the resulting expression in the definition of pb,t−1 ≡ Et−1(Λtvb,t). The FOCs

of this problem are in Internet Appendix A.

1.4 Capital Production

At each date t, capital producers combine the final good, It, with the last period capital

goods, Kt−1, in order to produce new capital goods that they competitively sell to firms at

price qt. Capital producers face adjustment costs, S
(

Ik,t
Kt−1

)
, as in Jermann (1998).29 The

29We adopt the form S
(
Ik,t
Kt−1

)
=

ak,1
1− 1

ψk

(
It

Kt−1

)1− 1
ψk + ak,2, where ak,1 and ak,2 are chosen to guarantee

that in the steady state the investment-to-capital equals the depreciation rate and S′ (It/Kt−1) equals one.
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law of motion of the capital stock can be written as

Kt = (1− δ)Kt−1 + S

(
It

Kt−1

)
Kt−1. (15)

where δ is the capital depreciation rate. The FOC for the maximization of the profits from

capital production implies:

qt =

(
S ′
(

It
Kt−1

))−1

. (16)

1.5 Deposit Guarantee Scheme

The deposit guarantee scheme (DGS) guarantees bank deposits in full and ex-post balances

its budget in each period by charging a lump-sum tax to the BHC. The lump sum tax Tt

covers the difference between the gross deposit repayments that the DGS has to honor in

failing banks and the repossession value of the loan portfolio of those banks:

Tt =

(
Fj,t (ω̄j,t)Rd,t−1 −

1− µb
1− φt−1

∫ ω̄b,t

0

R̃f,t (ωj) dFj,t (ωj)

)
dt−1, (17)

where µb is the cost of repossessing bank assets. This expression uses the fact that equilibrium

bank lending at t− 1 can be written as bf,t−1 = dt−1/ (1− φt−1).

1.6 Aggregate Shocks

We assume the following AR(1) law of motion for TFP shocks:

log(At+1) = ρAlog(At) + σAεA,t+1, (18)

where εA,t+1 is normally distributed with mean zero and variance one.

The standard deviation of the distribution of each idiosyncratic shock is time-varying
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and evolves as an AR(1) process

log

(
σωϑ,t+1

σ̄ωϑ

)
= ρσi log

(
σωϑ,t

σ̄ωϑ

)
+ σϑεωϑ,t+1 (19)

for ϑ= i, j, where εωϑ,t+1 is normally distributed with mean zero and variance one.30 Shocks

to the variance of Firm- and Island-priductivity shocks are common across firms and islands.

These shocks resemble the risk and uncertainty shocks commonly used in the literature

(Bloom, 2009; Christiano, Motto and Rostagno, 2014). We will refer to them as firm- and

island-risk shocks. In the next sections we will show that these shocks are an important

source of aggregate risk in the model and will be vital to generate fluctuations in firm and

bank defaults.

1.7 Aggregation, Market Clearing, and Equilibrium

Aggregate Shocks, model aggregation, and market clearing conditions, as well as the exhaus-

tive list of equilibrium conditions of the model, are reported in Internet Appendix A.

2 Solution, Estimation and Model Validation

We now present the solution of the model, the estimation, and the validation results.

2.1 Solving the Model

We solve the system of stochastic difference equations implied by the equilibrium conditions

using a pruned state-space system for the third-order approximation around the steady state

as defined in Andreasen, Fernandez-Villaverde and Rubio-Ramirez (2017). This approach

eliminates explosive sample paths and greatly facilitates inference. In particular, it ensures

30This specification is similar to the one adopted in Christiano, Motto and Rostagno (2014).
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the existence of unconditional moments. This enables us to estimate the parameters of the

model by applying the generalized method of moments (GMM).

The bank’s participation constraint (6) is an important equation in the model which

states that the profit a bank makes from giving a loan must generate the BHC’s required

rate of return on equity. As equation (27) in Internet Appendix A shows, a bank’s profit

depends on several integrals involving its loan return contingent on the realization of the

island shock R̃f,t+1 (ωj). In order to use perturbation methods to approximate the solution

to the model, we need to get tractable analytical expressions for these integrals.

As already mentioned in the previous section, R̃f,t+1 (ωj) is not log-normally distributed

because ωj enters non-linearly in its definition. This introduces a complication: integrals

involving R̃f,t+1 (ωj), as well as their derivatives, cannot be written as an explicit function

of the state variables. We overcome this challenge by (i) splitting the relevant integrals into

the sum of integrals taken over smaller intervals and (ii) computing a series of quadratic

Taylor approximations of R̃f,t+1 (ωj) around the mid-point of each interval. Because the

powers of log-normally distributed variables are themselves log-normally distributed, the

quadratic approximations to the corresponding expressions are themselves approximately

log-normally distributed and the expressions as well as their derivatives can be computed as

explicit functions of the state variables.31 This approach is tractable and highly accurate.

More details are provided in Internet Appendix B.

2.2 Model Estimation

The estimation of the model follows a two-step procedure. First, prior to the estimation

procedure, some parameters are set to commonly used values in the literature. Second, we

estimate the rest of the parameters using quarterly euro area (EA) data between 1992:Q1

and 2016:Q4. See Internet Appendix C for further data details.

31The state variables of the model are wt =
(
Dt,Kt, Ht, Ne,t, Nb,t, qt, wt, Rf,t, Rd,t, At−1, σωj ,t−1, σωi,t−1

)
.
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Table 1: Estimated Parameters

Par. Description Value Par. Description Value
σ̄ωi

Mean firm-risk shock 0.36 σ̄ωj
Mean island-risk shock 0.37

δ̄f Firm dividend target 0.39 δ̄b Bank dividend target 0.025
ψf Firm equity adj. cost 0.15 ψb Bank equity adj. cost 7.50
µF Cost of firm distress 0.01 µB Cost of bank undercapitalization 0.04
ψk Capital adjustment cost 2.00 γ Cost of emergency eq. issuance 0.60
σA Std TFP shock 0.004 ρA Persistence TFP shock 0.98
σi Std firm-risk shock 0.07 ρσi Persistence firm-risk shock 0.60
σj Std island-risk shock 0.08 ρσj Persistence island-risk shock 0.41

Notes: The reader should note that σi is not the standard deviation of firm-risk shock, which is σi√
1−ρ2σi

The same applies for the standard deviation of the island-risk shock.

First Step. Since we use quarterly data, the discount factor of the households, β, is set

to 0.995, the Frisch elasticity of labor supply, η, to one, the value of capital depreciation,

δ, to 0.025, and the capital-share parameter of the production function, α, to 0.30.32 The

bankruptcy parameters µf and µb are both set equal to 0.30, in line with empirical studies

(e.g. Alderson and Betker, 1995; Djankov et al., 2008; Granja, Matvos and Seru, 2017).33 The

capital requirement level, φ, is set to be 0.08, to match the 8 percent regulatory minimum

in the Basel II regime. Finally, the labor utility parameter, ϕ, which only affects the scale

of the economy, is normalized to one.

Second Step. We estimate the parameters summarized in Table 1 by targeting a num-

ber of macroeconomic, financial and banking moments. We target the standard devia-

tions of GDP, investment and consumption growth, the mean ratio of corporate loans to

32The discount factor β of 0.995 implies the steady-state level of the deposit rate of 2%. This value was
chosen to match the average level of the 3-month Euribor rate in the Euro Area.

33Similar values of firm default costs are used, among others, in Carlstrom and Fuerst (1997), who refer
to the evidence in Alderson and Betker (1995), where estimated liquidation costs are as high as 36 percent
of asset value. Among non-listed bank-dependent firms, these costs can be expected to be larger than those
among the highly levered, publicly traded US corporations studied in Andrade and Kaplan (1998), where
estimated financial distress costs fall in the range of 10 percent to 23 percent. Our choice of 30 percent is
consistent with the large foreclosure, reorganization, and liquidation costs found in some of the countries
analyzed by Djankov et al. (2008). Our choice is also in line with Granja, Matvos and Seru (2017), who find
that the average FDIC loss from selling a failed bank is 28% of assets.

29



GDP (Bt/GDPt in the model) along with the standard deviation of loan growth and the

mean and standard deviation of the loan spread (Rf,t − Rt in the model).34 Additionally,

we also target the mean and standard deviation of the net payout ratio for both banks

and firms, the mean total capital ratio of banks, and the share of undercapitalized banks

and distressed firms.35 Finally, we match the mean and standard deviation of the condi-

tional expectation of firm and bank default rates and the unconditional correlation between

the two default probabilities. The conditional expectation of firm defaults is defined as

DFt = Et
(∫∞

0

∫ ω̄t+1(ωj)

0
dFi,t+1 (ωi) dFj,t+1 (ωj)

)
, while the conditional expectation of bank

defaults is DBt = Et
(∫ ω̄j,t+1

0
dFj,t+1 (ωj)

)
.

Table 2 shows that our model matches the data targets reasonably well, including the

bank- and firm-level moments, along a number of important dimensions. First, the net

payout ratio and its volatility for banks and firms implied by the model are close to their

empirical counterparts. Second, the model can match jointly the banks’ average expected

default frequency (EDF) of about 0.69%, the endogenous bank capital buffer of around 4%

above the regulatory capital minimum of 8%, and the average share of undercapitalized

banks. The model also does a good job of matching the distribution of firm riskiness,

including both the firm default and financial distress frequency. Finally, the model is able

to reproduce the positive unconditional correlation between firm and bank default (0.64 in

the data versus 0.62 in the model).36 Matching this correlation turns out to be of first-order

importance when drawing conclusions about optimal bank capital requirements.

34Bankruptcy costs in the model are reflected in output. Hence, we define GDPt as GDPt = Ct + It.
35Net payout ratio is defined as (stock repurchases + dividends - stock issuance + real asset growth) as

a share of previous quarter book equity from the Euro Area Flow of Funds data. We consider a bank to
be undercapitalized if its total capital ratio falls below the regulatory requirement of 8%. We compute the
share of firms in distress as the proportion of firms downgraded to a rating CCC or below per quarter.

36The expected firm and bank default variables in the data are measured using the asset-weighted average of
EDFs within one year provided by Moody’s KMV for individual EA non-financial corporations and banks.
The expected firm default variable captures EA banks’ exposure to small and medium-sized enterprises
(SMEs) and large firms. A similar correlation can be observed in US data.
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Table 2: Targeted Moments: Baseline Model

Variable Data Model Variable Data Model
STD GDP growth 0.69 0.78 STD Cons. growth 0.56 0.67
MEAN Loans/GDP 2.44 2.29 STD Loan growth 1.20 1.97
MEAN Loan spread 1.24 1.07 STD Loan spread 0.68 0.66
MEAN Firm default (DF) 2.64 2.44 STD Firm default 1.10 1.34
MEAN Bank default (DB) 0.66 0.69 STD Bank default 0.84 0.68
CORR (DF & DB) 0.64 0.62 STD Inv. growth 1.39 1.24
MEAN Share undercap banks 1.18 0.89 MEAN Share distress firms 0.25 0.09
MEAN Dividend Ratio Banks 0.91 0.71 STD Dividend Ratio Banks 0.78 0.53
MEAN Dividend Ratio Firms 1.16 1.58 STD Dividend Ratio Firms 0.69 0.51
MEAN Capital Ratio 12.01 12.47

Notes: Interest rates, equity returns, default rates, and spreads are reported in annualized percentage points.
The standard deviations (Std) of GDP growth, Investment (Inv), and Loan growth are reported in quarterly
percentage points.

2.3 Model Validation

As shown in Table 2, the model is able to match the unconditional moments related to

defaults and macroeconomic variables targeted in the calibration. In this section, we perform

model validation by comparing the model’s implications for important untargeted conditional

moments of firm and bank defaults and GDP growth. This is a relevant step since the

assessment of the benefits and costs of higher capital requirements hinges upon the ability

of the model to match key features of the data, including the frequency and severity of bank

insolvency crises.

2.3.1 Defaults and economic performance in the data

Firm and bank defaults are positively correlated, as successfully matched in the estimation.

However, as Figure 4 reveals, the overall positive correlation between the two default rates

hides substantial non-linearity in their co-movement. The figure displays a scatter plot of
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the average EDFs of firms and banks in the euro area (EA) over the period 1992-2016.37

Broadly speaking, one can identify three main regimes in the relationship between firm

and bank default. In the most frequent regime, the default rates of both firms and banks are

low. In another regime, the firm default rate is high, but the bank default rate is modest.

The last regime is one in which the default rates of both firms and banks are elevated.38 We

deem the EDFs of firms and banks to be ”high” when they are above their respective 90th

percentile in the data.

Figure 4: Firm and Bank Default
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Left panel: Scatter plot of Moody’s cross-sectional average of the EDFs within one year for the 1992:M1 to
2016:M12 (monthly frequency) sample of firms (non-financial corporations) and banks in the EA; series in
percent. Right panel: scatter plot of firm and bank default produced with the baseline model.

37Each dot represents a monthly average of the corresponding probabilities of default over one year. The
underlying EDFs are estimates provided by Moody’s.

38The same pattern can be observed in other countries, including the US.
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Figure 5: Quantile Regression: Data vs Model
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Notes: The left panel of this figure presents coefficients ζτ from the quantile regression in Equation (20).
The right panel of this figure presents coefficients βτ from the quantile regression in Equation (21). Both
equations are estimated on EA data (1992-2016) and on simulated data from the baseline model.

Another way of representing the non-linear relationship between firm and bank default

risk is through quantile regressions of the following form:

BankDeft(τ) = ζτFirmDeft, (20)

where FirmDeft is firm EDF and BankDeft is bank EDF.

The left panel of Figure 5 (red line) plots the quantile regression coefficients ζτ in Equa-

tion (20). The non-linearity in the relationship between the two defaults is clearly visible and

highly statistically significant. At higher levels of bank default risk, the coefficient obtained

by regressing bank on firm defaults is higher. The quantile regression coefficients indicate

that the correlation between firm and bank default is state-dependent and increases with

the bank default rate.39

39The variance of firm and bank defaults is roughly constant across bank default quantiles.
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Table 3: Average Quarterly GDP Growth

High Firm Def. Twin Defaults
Euro Area -0.0466 -0.5842
Germany -0.2550 -0.6690
France -0.0718 -0.6605
Italy -0.0242 -0.5471

Netherlands -0.5043 -2.1904
Belgium -0.3645 -0.4051

US -0.0781 -0.9790

Notes: First column refers to periods of high firm defaults and low bank defaults, whereas the second column

uses periods of twin defaults. GDP growth rates (demeaned) are reported in quarterly rates. Sample: EA

1992Q1-2016Q4, US: 1940:Q1-2016:Q4.

Next, we explore the relationship between aggregate economic activity and firm and bank

defaults, respectively. A simple way to analyze this relationship is to look at GDP growth

during the different firm and bank default regimes discussed above. As documented in Table

3, the growth rates of GDP in the EA, the US, and a number of European countries are

below normal when firm default is high but much lower when firm and bank defaults are

both high. This is consistent with standard definitions of a systemic financial crisis and

the large bank default rates and output losses associated with them (see, e.g., Laeven and

Valencia, 2013).40

We investigate the relationship between firm and bank defaults and GDP growth using

quantile regressions of the following form:

∆yt(τ) = βτDeft−1 + γτ∆yt−1, (21)

where Deft−1 can either be FirmDeft−1 or BankDeft−1 and ∆yt represents GDP growth.

This exercise is similar in spirit to the one performed in Adrian, Boyarchenko and Giannone

(2019), which runs a quantile regression of GDP growth on lagged GDP growth and an

40Average growth rates have been demeaned using the unconditional mean of GDP growth for each country.
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index of financial conditions using US data. Firm and bank defaults are the main proxies for

financial conditions in our framework. Hence, we regress GDP growth on the lagged GDP

growth and the lagged level of default (Deft−1) of either firms or banks. The right panel of

Figure 5 plots the coefficients for either firm (the dashed red lines) or bank (the solid red

lines) default in the corresponding quantile regressions estimated on EA data.

The results highlight three key features of the non-linear relationship between defaults

and real activity. First, the link between both defaults and economic growth is weak for

GDP growth quantiles close to the median. This suggests that defaults (whether bank or

firm) have only a weak correlation with GDP growth in normal times. Second, the negative

relationship between bank default and GDP growth becomes quantitatively more negative

for the bottom quantiles. Increases in bank defaults have a larger (negative) impact on GDP

growth when the economy is already in a recession (i.e. at the bottom quantile for GDP

growth). Third, the above relationship does not hold for firm default. In sharp contrast to

the non-linear pattern between bank default and economic activity, the impact of corporate

defaults on GDP growth is small and flat across all GDP growth quantiles. Thus, Figure 5

(right panel) clearly shows that it is the risk of bank failures that are driving the deterioration

in macroeconomic performance during periods of twin defaults identified in Table 3. This link

between bank default and economic performance during the twin default crises will explain

the importance of capital regulation in mitigating the downside risk to the real economy.

2.3.2 Defaults and economic performance in the model

Section 2.3.1 established a number of important data facts regarding the co-movement be-

tween default rates and GDP growth. We learned that the marginal impact of corporate

failures on bank solvency is stronger when banks are weaker. We saw that twin defaults

are associated with deeper recessions. Finally, our results established that the correlation

of bank (but not firm) defaults with real activity is higher in recessions. We now test the
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model’s performance in reproducing these important empirical regularities not targeted in

the estimation.

In the previous section, we used a 90th percentile-based criterion to identify the low

default, high firm default, and twin default regimes in the EA data. Here, we use DFt and

DBt as the model counterparts for firm and bank EDFs, respectively, and we employ the

same criterion to split the model-simulated time series into these three regimes.

Table 4 compares the model-simulated (Baseline Model) and EA data (Data) averages for

firm default, bank default, and GDP growth within the different regimes. The baseline model

does a good job in reproducing these untargeted conditional moments thanks to its capacity

to generate an empirically realistic positive relationship between firm and bank default rates,

as shown in the right panel of Figure 4. First, the model reproduces the frequency of the

default regimes remarkably well. Second, it reproduces the same ranking observed in the

data in terms of the drop in GDP growth across regimes. The twin default regime features

by far the worst GDP growth realizations, whereas the high firm default regime features

a relatively mild recession despite the fact that firms’ default rates are very similar across

these two regimes. The table also reports a fourth regime where the bank default rate is

above the 90th percentile, but firm default is below the 90th percentile.41

In the previous section, we also used quantile regressions to characterize the non-linear

relationships between the two default series and GDP growth. The black lines in Figure 5

show that our model can replicate both quantile regressions well.42 The model is qualitatively

and quantitatively consistent with the key facts identified in our description of the quantile

regressions on EA data. The correlation between firm and bank default is higher when

banks are more fragile, and their probability of default is high. During times of average

41Even though the average firm default in this regime is below the 90th percentile, it remains at elevated
levels (on average at about the 85th percentile in the model).

42Regression coefficients for the model are obtained using simulations of the model for 100,000 periods.
When reporting moments generated by the model, we use realized firm and bank default rates, DFt and
DBt, as the model counterparts for firm and bank EFDs, respectively.
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Table 4: The Default Regimes in the Data and theModel

Frequency GDP growth Bank default Firm default

Low Default Regime
Data 86.0% 0.0923 0.4346 2.3480
Baseline Model 84.7% 0.10111 0.5042 2.0568
Merton-type Model 81.0% 0.076144 0.56438 2.3997

High Firm Default Regime
Data 4.00% -0.0466 0.4033 4.8500
Baseline Model 5.35% -0.38327 0.87401 5.0714
Merton-type Model 9.00% -0.32938 0.52211 4.9994

High Bank Default Regime
Data 3.00% -0.6744 2.1056 3.7604
Baseline Model 5.35% -0.65094 2.2649 4.2974
Merton-type Model 9.00% -0.29141 2.7337 2.4591

Twin Defaults Regime
Data 7.00% -0.8189 3.0224 4.6076
Baseline Model 4.65% -0.84251 2.5536 5.6439
Merton-type Model 1.00% -0.58292 2.7013 5.127

Notes: This table compares the model and data averages for firm default, bank default and GDP growth

within default regimes for the EA data and the simulated data from different models. Merton-type Model

corresponds to the model in which the Merton-type specification of bank asset returns is adopted. Twin

Defaults episodes are defined as the simultaneous occurrence of firm and bank default above their respective

90th percentiles. High Firm (Bank) Default are episodes with firm (bank) default above the 90th percentile

and bank (firm) default below the 90th percentile. In Low Default episodes, both bank and firm default are

below the 90th percentile. The default thresholds used to define the three regimes in the Merton-type model

and the 1st Order App. model are the ones determined by the baseline model. Model results are based on

1,000,000 simulations. GDP growth is demeaned.
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GDP growth, neither firm nor bank defaults affect economic performance in a significant

manner. Bank (but not firm) defaults have a large and negative impact on GDP growth

when the economy is already in recession.43

Both the island-idiosyncratic productivity shocks and the island-risk shocks are vital in

generating realistic conditional and unconditional correlation patterns between firm and bank

defaults and economic activity. When the non-diversifiable risk is constant (no island-risk

shocks), the relationship between the two defaults and between bank default and GDP growth

is significantly weakened. Hence, non-diversifiable risk shocks are essential to reproduce the

non-linearities observed in the data well. When the non-diversifiable risk is absent (no island-

idiosyncratic productivity shocks), banks do not default in our calibrated model.44 In the

absence of island-idiosyncratic shocks, banks are only exposed to aggregate shocks, and their

net worth evolves ex-post in a fully symmetric manner. Bank default could only occur as

a result of implausibly large aggregate shocks that would, thus, happen with a very low

probability. Additionally, this would imply that either all banks default at the same time or

none does, which would be counterfactual.

Given the non-linearity in bank asset returns with respect to non-diversifiable borrower

risk, a crucial element for the ability of our model to reproduce the non-linearities observed

in the data is the use of a higher-order solution method. Internet Appendix E shows that the

model solved with linear approximation methods underestimates (overestimates) the severity

of the twin defaults (high firm default) regime in terms of GDP growth.45

Overall, our model reproduces well the importance of financial vulnerabilities as deter-

minants of the economy’s downside risk (see Adrian, Boyarchenko and Giannone, 2019). In

particular, it reproduces the fact that a deterioration in bank default risk corresponds to

43The model also produces a non-linear relationship between bank equity returns and future GDP as in
Baron, Verner and Xiong (2021). Internet Appendix D shows the model-implied relationship between GDP
at time t and bank return on equity (RoE) at time t − 1. Very low bank RoE is associated with a much
larger decline in future GDP compared to the increase associated with a strong RoE.

44Internet Appendix E explores the importance of each of these shocks in detail.
45Internet Appendix E shows that the second-order model fails to match the non-linearities in the data.
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an increase in the downside risk to GDP growth, consistent with what is observed in EA

data. In the next section, we will show that the reason why our model can replicate these

non-linearities observed in the data is because it features a non-linear structure of bank asset

returns. This is essential for the model to generate the right frequency and severity of the

twin default episodes and the associated macroeconomic outcomes.

3 Understanding the Model: Bank Asset Returns

Results above show that our structural model of bank default risk is able to replicate well

the frequency and severity of the twin default episodes and the associated macroeconomic

outcomes. Next, we confirm the result of Gornall and Strebulaev (2018) and Nagel and

Purnanandam (2020), who show that a reduced-form approach to bank default risk that uses

a Merton-type formulation – with bank asset returns following a log-normal distribution –

cannot capture the downward skewness in loan portfolio returns and, hence, the frequency

and severity of twin defaults.46

Bank asset returns in our model. A distinguishing feature of our model is the

structural approach to loan default risk whereby banks fail only when a significant fraction

of the borrowers in their imperfectly diversified loan portfolios default. Hence, even if the

banks’ finance underlying projects with log-normal returns, the distribution of bank asset

returns is downwardly skewed. If borrowers repay, they repay a fixed contractual amount.

If they default, the loan recovery value is a fraction of the firms’ asset values.

The top left panel of Figure 6 depicts the gross loan returns of the representative bank

of an island j, R̃f,t+1 (ωj) as a function of the island-idiosyncratic shock, ωj. This clearly

shows that bank asset returns are highly non-linear in the island-idiosyncratic productivity

shock (ωj). When ωj is very high, all borrowers repay, and the bank receives the promised

46Baron, Verner and Xiong (2021) document that at the start of banking crises, the distribution of bank
equity returns is considerably more left-skewed than that of non-financial equity returns.
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Figure 6: Bank Asset Returns: Baseline vs Merton-type Model

Bank Asset Returns

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Histogram of Bank Asset Returns

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

lo
g(

de
ns

ity
)

Bank Asset Returns

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Histogram of Bank Asset Returns

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
10 -7

10 -6

10 -5

10 -4

10 -3

lo
g(

de
ns

ity
)

Notes: The top panels of this figure present bank asset gross returns as a function of the non-diversifiable
island shock ωj (left plot) and the histogram of bank asset returns (right plot) in the baseline model. The
bottom panels of this figure present bank asset returns as a function of the bank-idiosyncratic shock ωb (left
plot) and the histogram of bank asset returns (right plot) in the Merton-type version of our model.
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repayment, including interest, from all its borrowers. But the upside is limited for the lender,

as is naturally the case under a standard debt contract. However, the presence of default

creates downside risk for the bank. As the island’s idiosyncratic shock takes lower and lower

values, the fraction of defaulting firms on the island increases, and bank asset returns decline

in a highly non-linear fashion.

The top right panel Figure 6 depicts the distribution of R̃f,t+1 (ωj).
47 Importantly, this

distribution is not log-normal, even though the underlying idiosyncratic shocks are assumed

to be log-normally distributed, as standard in the literature. The density of the returns

spikes at the level at which all borrowers repay. Bank asset returns are left-skewed with

a long left tail of low-return realizations caused by high firm defaults. Considering the

asymmetric distribution of loan returns in general equilibrium is a distinctive feature of our

macro-banking framework.48

Comparison to the Merton-type model.

A common approach in the macro-banking literature is to consider banks with (ex-ante)

perfectly diversified loan portfolios and to capture the heterogeneity in bank asset returns

by introducing bank-specific shocks that affect ex-post the aggregate performance of their

loan portfolio returns without directly affecting the performance of the underlying borrowers.

This approach makes loan returns and their implications for bank equity returns and bank

failure similar to the classical Merton (1974) approach to corporate default.

To create a Merton-type version of our model, we modify Equation (8) in two ways.

First, we remove the impact of the island-idiosyncratic shocks by setting them to unity at

all times ωj = 1. This is equivalent to assuming that banks are perfectly diversified across

islands. Second, to introduce ex-post heterogeneity in bank default outcomes, we include a

47For these figures, we have fixed qt+1, kt, yt+1, bf,t, Rd,t, dt to their steady-state values obtained with the
parameter values described in Section 2.2. We set σωϑ,t+1 such that the expected bank default rate equals
its targeted value from Table 2. We use 10,000,000 draws of ωj to plot the histograms.

48In Internet Appendix D, we show that the distribution of asset returns for major European banks is
asymmetric and left skewed as in our model.
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log-normally distributed bank-idiosyncratic shock to bank revenues ωb. The loan portfolio

returns under this specification are determined by

R̃f,t(ωb) = ωb

(
(1− µf )[yt + (1− δ)qtkt−1]

bf,t−1

∫ ωi
t

0

ωidFi,t(ωi) +Rf,t−1

∫ ∞
ωi
t

dFi,t(ωi)

)
. (22)

Identically to the island-idiosyncratic shock, the standard deviation of the distribution

of the bank-idiosyncratic shock, ωb, is also time-varying and has a standard deviation that

evolves as in (19). Importantly, we parametrize the Merton-type model to match the set of

moments in Table 2. We keep the rest of the model identical. Hence, both in the Merton-

type model and in our model, firms issue non-recourse, non-contingent debt in the form

of bank loans. The main difference concerns the way heterogeneity in bank asset returns is

introduced via firm- and island-productivity shocks, which directly hit bank borrowers in our

structural model, versus via bank-idiosyncratic shocks that do not directly affect borrowers

as in the Merton-type version of the model.

The bottom panels of Figure 6 depict the gross loan portfolio returns, R̃f,t+1 (ωb), as a

function of the idiosyncratic shock to bank loan revenues (left panel) and its distribution

(right panel). The Merton-type model produces bank asset returns that are linear in the

bank-idiosyncratic shock that produces heterogeneity in bank performance.49 Thus, banks

symmetrically experience upside and downside shocks. Since ωb is log-normal, R̃f,t+1 (ωb) is

log-normal too. Thus, bank returns feature a much smaller left tail.

Characterizing bank asset returns in an accurate manner is essential when studying the

relationship between firm and bank defaults. In particular, Internet Appendix F shows that

the Merton-type model fails to reproduce the non-linearity in the relationship between firm

49This linearity is not the result of the type of claims held by banks (e.g., because banks hold equity
claims instead of debt claims) but of the way heterogeneity in bank asset returns is introduced (e.g., via
bank idiosyncratic shocks to aggregate loan returns).
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and bank defaults along several dimensions.50 Table 4 shows that the frequency of the twin

default regime implied by the Merton-type model is much lower than the one observed in the

data and in our baseline model (while the frequency of both the high firm default regime and

high bank default regime are overestimated). The Merton-type approach also underestimates

(overestimates) the severity of the twin defaults (high firm default) regime in terms of GDP

growth.51 In Section 5, we will show that, as a result of this, the Merton-type variant of our

model also implies a lower optimal level of capital requirements than our baseline model.

4 The Anatomy of Twin Default Crises

After validating the quantitative implications of our framework, we are well-equipped to

understand the factors that lead to financial recessions in our model. An appealing feature

of our setup is that episodes of simultaneously high firm and bank defaults appear due

to sequences of small negative island-risk shocks that become increasingly amplified as the

probability of bank failure increases. Intuitively, the non-linearity in bank asset returns

implies that once banks have a high risk of failure, the marginal impact of additional credit

losses on banks’ solvency is much larger than in normal times. When the probability of twin

defaults is high, even small shocks to bank borrowers can cause a severe contraction in credit

and economic activity.

Figure 7 shows the average path leading to high firm default (blue line) and twin de-

faults (red line) regimes.52 Two facts are noteworthy. First, the model implies that twin

50High positive correlation between firm and bank default could be exogenously imposed in the Merton-
type variant of our model by assuming correlation in the firm- and bank-idiosyncratic shocks. However, the
model would still fail to reproduce the non-linearity in the relationship between the two defaults.

51Bank asset returns would also be linear if, in our island context, banks were holding equity claims instead
of debt claims on the firms that they finance. Models in which banks directly hold productive assets (e.g.
Gertler and Kiyotaki (2015)) and suffer bank-idiosyncratic shocks to the performance of those assets will
feature returns similar to the Merton-type formulation described above. With aggregate shocks being the
only source of risk for banks, the model would instead deliver a degenerate distribution of bank asset returns.

52The figure is generated by simulating the model for 1,000,000 periods, identifying periods in which
defaults are above the 90th percentile, and then computing the average realizations of shocks and endogenous
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Figure 7: Paths to Crises
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default episodes generate output falls that are more than two times larger than high firm

default events. Second, the model captures the evolution of bank defaults for both regimes

remarkably well. Bank defaults rise to around 2.5 percent during twin defaults, which is

close to what we observe in the EA data during crisis periods. In contrast, bank failures

barely increase in the episodes of high firm defaults. Both cases are very close to the evidence

reported in Table 4. The declines in output, investment, and lending are more pronounced

in the case of twin defaults than in cases of high firm defaults.

The island-risk shocks are crucial to generate twin defaults. The increase in the volatil-

ity of the island-idiosyncratic productivity shocks (island risk) leads to high rates of firm

default, which affects banks in several important ways. First, as the evolution of bank eq-

uity and banks’ capital ratios show, the shock causes bank losses, depleting their net worth.

Second, the riskier environment characterized by the jump in bank defaults and the share

of under-capitalized banks encourages banks to contract credit provision in a precautionary

manner. Hence, lending rates increase sharply, and loan volumes fall. This amplifies the

drop in firm investment and production associated with the initial impact of the shock. In

addition, the bankruptcy costs associated with the joint realization of high firm and bank

default rates cause very large deadweight economic losses, which also weigh on the economy’s

performance. Once the economy starts to recover from the crisis, firm defaults fall, banks

contract dividends, and their equity starts to recover gradually together with loan supply.

In contrast, firm-risk shocks alone can only give rise to high firm default events. The

increase in the volatility of the firm-idiosyncratic productivity shocks (firm risk) also leads

to high firm default, causing bank losses but in a more evenly distributed manner. Con-

sequently, the share of under-capitalized banks does not increase, and banks actually relax

lending standards by cutting lending rates and allowing their capital ratios to fall further

instead of cutting lending massively. As a result, bank default only increases marginally, and

the impact on the real economy is considerably reduced compared to twin default episodes.

variables for twenty periods before and after the crisis periods.
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The figure also shows that, on average, TFP remains broadly unchanged in both episodes.

The two risk shocks instead play an important role. The rise in the firm-risk shocks plays

a role in both high firm defaults and twin defaults, while the rise in the island-risk shocks

plays a key role in generating twin default crises.

Finally, the model does not need very large risk shocks to generate a financial recession.

These episodes occur following a sequence of small and positive risk shocks that accumu-

late into a two-standard deviation increase. Thus, in addition to matching the data, the

microfounded link between the solvency of banks and firms also introduces an amplifica-

tion mechanism that allows the model to generate crisis episodes without the need for large

exogenous aggregate shocks.

Internet Appendix E shows the importance of these non-linearities, which is corroborated

by the fact that if solved to a first-order approximation, the model only generates twin default

crises if hit by implausibly large realizations of the island-risk shock. The strong non-linear

effects of island-risk shocks can also be demonstrated using generalized impulse response

(GIRFs) functions as in Andreasen, Fernandez-Villaverde and Rubio-Ramirez (2017). The

GIRFs show that island-risk shocks have a much larger impact when conditioning on either

twin defaults or a high firm default episode. In contrast, the GIRFs conditional only on high

firm default show much less amplification than when we condition on a twin default episode.

5 Implications for Capital Requirements

After documenting the quantitative performance of our model and analyzing how twin de-

faults arise, this section provides implications for the optimal level and dynamic adjustment

of capital requirements. The rationale for capital requirements in this model is related to the

presence of safety net guarantees and externalities associated with the cost of bank failures

and the disruption of bank lending during twin default crises. The presence of safety net

guarantees modeled in the form of insured deposits makes the interest rate on deposit fund-
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ing independent of banks’ leverage choices. Further, banks operate under limited liability

and do not internalize the social cost of their failures and the effects of their choices on

aggregate bank equity returns and, hence, on the next period aggregate lending capacity of

the banking sector.53 Feedback effects operating at the general equilibrium level provide a

clear rationale for the macroprudential calibration of bank capital requirements.

5.1 Optimal Capital Requirement Level

We first assess the implications of different capital requirement levels, φ, on the mean of the

ergodic distribution of selected variables for our baseline model.54 Figure 8 shows that the

imposition of higher capital requirements implies a trade-off between reducing the probability

of twin default crises and maintaining the supply of bank credit. Higher capital requirements

reduce bank leverage and make banks better protected against non-diversifiable risk, con-

tributing to preserving aggregate bank net worth and, hence, reducing bank default.55 Banks

hedge against this risk by charging higher interest rates to leveraged borrowers and endoge-

nously increasing their voluntary capital buffers. This endogenous reaction to higher capital

requirements further protects banks’ solvency. As a result, twin default crises become less

frequent, and deadweight losses associated with bankruptcy costs decline.

Higher capital requirements are, however, also costly for the economy. They increase

the relative scarcity of bank net worth and, hence, the average cost of bank funding. This

implies, on average, a reduction in the provision of bank credit, higher borrowing costs, and

lower firm investment.

53In our model, the market segmentation does apply to the funding of banks. In every period, the BHC
invests the aggregate net worth of the whole banking sector symmetrically across all banks.

54We change φ while keeping all other parameters unchanged and equal to the baseline calibration.
55As shown in the Internet Appendix F (see Figure E.4 and related discussion), leveraged banks with a

positive risk of default engage in risk shifting by underpricing risky loans and by choosing lower voluntary
buffers over the minimum capital requirements. Higher capital requirements reduce banks’ probability of
failing and discourage them from risk shifting. Once banks are subject to more stringent minimum capital
requirements, the probability of failing becomes very small, but the risk of failing to satisfy the new higher
capital requirements on an ex-post basis increases.
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Figure 8: Comparative Statics with Respect to Capital Requirement Level
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Notes: This figure shows the implications of different values of the capital requirement φ on the mean of the
ergodic distribution of selected variables for our baseline model.

This trade-off is reflected in the overall effects of higher capital requirements on social

welfare. The solid black line in Figure 9 reports the ergodic mean of household welfare as a

function of the level of bank capital requirements. A 16 percent minimum capital requirement

is optimal, implying a total capital ratio (including the voluntary capital buffers) of around

22 percent. Moving the minimum capital ratio from the baseline to the optimum would

bring welfare gains of approximately 0.1 percent in certainty equivalent consumption terms

relative to the baseline model, which features a minimum bank capital requirement of 8

percent and a total capital ratio of 12.5 percent.56

56Due to the assumption of log utility, our results provide a lower bound of the welfare gains delivered
by higher capital requirements. To the best of our knowledge, model-based estimates of the welfare gains
of optimal macroprudential policy range from a modest 0.1% to a substantial 1.4% in terms of the annual
consumption equivalent (e.g. Bianchi (2011); Van der Ghote (2021)). Importantly, our results refer to gains
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Starting from the 8 percent minimum capital requirement, welfare first increases because

the gains from the reduction in the probability of bank default outweigh the losses from

imposing higher funding costs on banks. At the optimum, the probability of bank default is

around 0.2 percent, and further reductions in bank failures have a limited impact on welfare.

For a capital requirement above 16 percent, the negative effect of elevated borrowing costs

for firms dominates, and welfare declines.

In order to understand the implications of higher capital requirements on the emergence

of twin default crisis, Internet Appendix Figure E.2 compares the baseline path to a crisis

with the minimum bank capital requirements of 8 percent (Baseline) with the path implied

by a capital requirement level closer to the optimum (Higher Cap. Req).57 We find that

under higher bank capital requirements (dashed line) the model needs a much larger (3

standard deviation) increase in the island-risk shock to generate a twin default episode than

under the minimum capital requirement of 8 percent. This is because, with higher capital

requirements, the economy experiences a much lower frequency of the twin default regime.

These results are corroborated by the implications of a higher level of capital requirements

for the performance of the model in terms of untargeted conditional moments also reported

in Internet Appendix Table E.1.58

relative to the baseline capital requirement level, while the larger numbers in the literature refer to gains
over the laissez-faire economy.

57As in Table 4, the thresholds used to define the high firm and bank regimes are the same as in the
baseline model.

58Internet Appendix F also reports robustness of the results to a lower calibration of bank default costs, µb.
The bank capital requirement that brings the probability of twin defaults close to zero and maximizes social
welfare is always substantially higher than the baseline level and higher than in the standard Merton-type
formulation, regardless of the calibration of bankruptcy costs.
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Figure 9: Welfare Effects of the Capital Requirement in Different Scenarios
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Notes: This figure reports the ergodic mean of household welfare as a function of the level of bank capital
requirements in different scenarios. The baseline (black solid line) corresponds to our baseline model. Merton-
type model (blue dashed line) corresponds to the model in which the Merton-type specification of bank asset
returns is adopted. Higher Contribution of Island Risk, Borrower Risk Unchanged (red dashed-dotted line)
corresponds to the model in which we increase the average standard deviation of the island-idiosyncratic
shock and reduce the average standard deviation of the firm-idiosyncratic shock while keeping the probability
of firm default unchanged.

5.2 The Role of Non-diversifiable Bank Risk

To gain some insights regarding the importance of properly quantifying the impact of bor-

rower default risk on bank insolvencies, we consider two counterfactual experiments. First,

firm default risk is assumed to be less diversifiable at the bank level than in the calibrated

model. Hence, the link between the default of firms and banks is much stronger, implying

a much higher probability of twin defaults. This is obtained by increasing the average stan-

dard deviation of the island-idiosyncratic shock and reducing the average standard deviation

of the firm-idiosyncratic shock while keeping the probability of firm default unchanged.59

59The firm default rate is the same as in the calibrated model. The only difference between the two
versions of the model is the composition of diversifiable and non-diversifiable (firm- vs island-idiosyncratic)
firm default risk for banks. The average standard deviation of the island-idiosyncratic shock is increased by
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This reduces the extent to which banks can diversify away firm default risk. The red dashed

line in Figure 9 shows social welfare as a function of the capital requirement level in this

counterfactual scenario. As expected, when firm default risk is less diversifiable at the bank

level, the optimal capital requirement needs to be higher, i.e., close to 19 percent.

Figure 10: Paths to high bank default episodes
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Notes: This figure shows the average path leading to a high bank default episode under the baseline model
(red solid line) and under a Merton-type model (blue dashed line). The figure is generated by simulating
the model for 1,000,000 periods, identifying periods of high bank defaults, and then computing the average
realizations of shocks and endogenous variables for ten periods before and after the crisis periods. We define
a high bank default episode as a bank default above the 90th percentile.

In the second experiment, we assume that all firm default risk is ex-ante diversifiable

at the bank level (no island-idiosyncratic risk), and the default risk of banks comes from

10 percent, whereas the average standard deviation of the firm-idiosyncratic shock is reduced by 6.3 percent.
While the average probability of firm default remains equal to 2.25 percent, the probability of bank default
increases from 0.59 percent to 1.03 percent. The probability of twin default crises increases from 5.9 percent
to 8.8 percent.
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an exogenous disturbance that directly hits the banks’ loan returns. This aligns with the

standard Merton-type model of bank default risk used in the previous literature. Figure 9

reports welfare as a function of the capital requirement also under this alternative specifi-

cation (blue dashed line). Even though the probability of bank default is the same in both

models, under the Merton-type formulation, the optimal capital requirement is more than

six percentage points lower, i.e. just under 10 percent.60 In addition, the welfare gain from

imposing higher minimum capital requirements is also much smaller at 0.01 percent.

Figure 10 reports the difference in key variables in the high bank default episodes in each

model version. It clearly shows that, in the Merton-type model, high bank defaults are not

accompanied by an increase in firm defaults and the deadweight losses associated with them.

Therefore, the overall losses associated with bank default are lower, translating into a less

sizable drop in economic activity. This explains why the standard model of bank default

risk underestimates the welfare gains from increasing capital requirements compared to our

baseline model.

Overall, our results show that capturing the special nature of bank asset returns and

their implications for bank default risk is essential to provide accurate prescriptions on the

optimal level of capital requirements. Indeed, microfounding the relationship between firm

and bank defaults is crucial to reproduce the frequency and severity of twin defaults observed

in the data and, thus, properly account for the costs associated with bank insolvencies and

the net benefits of higher capital requirements.

60We parametrize the Merton-type version of the model so as to ensure that the mean and standard
deviation of bank default are the same as in our baseline model. However, since firm default is not the main
driver of bank default in such a model version, the probability of twin defaults drops to 1 percent, which
is considerably lower than what is observed in the data and produced by our baseline model. In addition,
the symmetric normal distribution of bank asset returns in the Merton-type model means that higher bank
capital requirements are unrealistically effective at making banks safe compared to our downward-skewed
fat-tailed bank asset return distribution. See Figure F.2 in Internet Appendix F.
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Figure 11: Paths to Twin Defaults with and without CCyB
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Notes: This figure shows the average path leading to a twin default episode under different policy assump-
tions. The baseline (red solid line) corresponds to our baseline model with a constant capital requirement
set to 8 percent (φ = 0.08). ’CCyB’ (blue dashed line) corresponds to the model with a capital requirement
policy rule that adjusts the capital requirement in response to credit growth. Dynamic adjustment parameter
κ is set to 1. The figure is generated by simulating the model for 1,000,000 periods, identifying periods of
twin defaults, and then computing the average realizations of shocks and endogenous variables for twenty
periods before and after the crisis periods. We define a twin default episode as the simultaneous occurrence
of firm and bank default above their respective 90th percentiles. The 90th percentile default thresholds used
to define the three regimes in the three models are always the ones determined by the baseline model.

5.3 Dynamic Adjustment of Bank Capital Requirements

In what follows, we evaluate dynamic adjustment of bank capital requirements, i.e. require-

ments that are higher in good times than in bad. In line with the prescription of the Basel

III framework, we focus on the role of a Counter-cyclical capital buffer (CCyB). We assume

a rule that adjusts the minimum capital requirement in response to the credit growth as

follows: φ
t

= φSS + κ(log(Bf,t) − log((Bf,t−1))), where φSS is the steady-state level of the
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requirement and κ controls its dynamic adjustment in response to the credit growth.

Figure 12: Comparative Statics with respect to the degree of countercyclical adjustment
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Notes: This figure reports the ergodic mean of household welfare, the probability of bank default, the
probability of a twin default crisis, and the average decline of lending in a crisis as a function of the degree
of adjustment of bank capital requirements in response to credit growth (CCyB). ’Min. Capital Req. =
8 %’ (black solid line) corresponds to our baseline model with an 8 percent minimum capital requirement.
’Min. Capital Req. = 16 %’ (blue dashed line) corresponds to the 16 percent capital requirement, which
maximizes expected social welfare.

Figure 11 compares the path to crisis simulation under the baseline model with a con-

stant minimum capital ratio of 8 % and under a dynamic capital requirement with the same

baseline level, which is adjusted counter-cyclically. The figure reveals the trade-offs intro-

duced by using the CCyB. It is beneficial because it allows bank capital ratios to fall by more

during financial recessions, thus dampening the increase in lending rates and mitigating the

fall in credit and GDP. The cost of this measure is that it leads to a slightly larger increase
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in bank failures.

Figure 12 examines the welfare impact of the strength of the countercyclical response

both in the baseline with an 8% minimum capital ratio (solid line) and when the capital

ratio is at its optimal steady-state value of 16% (dashed line). We see that the dashed line

peaks at a much higher responsiveness of the CCyB to the credit cycle than the solid line. In

other words, strong counter-cyclical adjustment of minimum capital ratios is more beneficial

only when the level of bank capital ratios is already very high. Indeed, adjusting bank capital

ratios helps to dampen the fall in bank lending during crises at the cost of slightly increasing

the likelihood of bank failure and the probability of a twin default crisis. Once banks are

very well capitalized, bank failures and twin defaults become very low probability events,

which are less sensitive to prevailing bank capital ratios. It, therefore, becomes optimal to

use the CCyB more aggressively.

6 Conclusions

The assessment of the benefits and costs of higher capital requirements requires a framework

that adequately quantifies the trade-off between a lower frequency of bank insolvency crises

and a more limited provision of credit to the wider economy. Thus, it crucially hinges upon

the ability of the model to match key features of the data, including the frequency and

severity of twin defaults, i.e. episodes characterized by deep recessions and abnormally high

default rates among both banks and their borrowers.

With this purpose in mind, we build a quantitative structural general equilibrium model

of bank default risk in which bank solvency problems arise endogenously from high default

rates among bank borrowers. Our paper represents the first quantitative exploration of the

way bank borrowers’ default translates into rare but severe episodes of bank insolvencies and

the large output losses associated with them.

Microfounding the link between bank and firm solvency allows our framework to capture
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a very important aspect of bank loan portfolios: they deliver asymmetrically distributed

payoffs that feature limited upside potential but significant downside risk due to borrowers

defaults. This feature allows our model to reproduce the non-linearities associated with

firm and bank defaults and macroeconomic outcomes observed in the data. Thus, our model

captures the behavior of the economy well, not only in normal times but also in twin defaults.

We show that our model implies higher optimal capital requirements than standard

Merton-type models of bank default risk, which underestimate the impact of borrower de-

fault on bank solvency. Thus, our results suggest that a structural approach to bank default

risk is crucial for the assessment of the net benefits of higher capital requirements.
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Internet Appendix

Twin Defaults
and Bank Capital Requirements

A Model Details

A.1: First Order Conditions

Household. The household’s problem yields the following FOCs with respect to con-
sumption,

UCt = λt, (23)

labor supply,
− UHt = wtλt, (24)

and demand for the portfolio of insured deposits,

1 = Et (Λt+1)Rd,t, (25)

where λt is the Lagrange multiplier of the budget constraint and Λt+1 ≡ β λt+1

λt
is the house-

hold’s stochastic discount factor.

Firm first-stage decisions. The model section states the CHC’s first-stage problem
in term of decisions made at date t − 1 by firms that produce at t. For greater coherence
with the coding of the model, here the write the FOCs for the decisions made at t by the
firms that produce at t+ 1. To make expressions more compact, let

Πf,t+1 = −(1 + γ)

∫ ∞
0

∫ ω̂j
f,t+1

ω̄j
f,t+1

{Rf,tBf,t − ωiωj [yt + (1− δ) qtkt−1]} dFi,t+1(ωi)dFj,t+1(ωj)

+pf,t+1

∫ ∞
0

∫ ∞
ω̂j
f,t+1

{ωiωj[yt+1 + (1− δ) qt+1kt]−Rf,tBf,t} dFi,t+1 (ωi) dFj,t+1 (ωj)

−pf,t+1

∫ ∞
0

µFF (ω̄jf,t+1) (wtht + qtkt) dFj,t+1 (ωj) , (26)
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and

Πb,t+1 = −1 + γ

φt

∫ ω̂b,t+1

ω̄b,t+1

[φ− R̃f,t+1(ωj) +Rd,t(1− φt)]dFj,t+1(ωj)

+
pb,t+1

φt
{
∫ ∞
ω̂b,t+1

[R̃f,t+1(ωj)−Rd,t(1− φt)]dFj,t+1(ωj) + φ[(Fj,t+1(ω̂b,t+1)

−Fj,t+1(ω̄b,t+1)]− µBFj,t+1(ω̄b,t+1)}, (27)

which collect the terms affected by first-stage decisions in the per-period payoffs of the CHC
and the BHC in date t versions of Equations (5) and (14), respectively.

The FOCs of the CHC with respect to capital, labor, bank borrowing, and interest rates
on loans can be expressed as

Et
(

Λt+1
∂Πf,t+1

∂kt

)
+ ζf,tqt − ξf,tEt

(
Λt+1

∂Πb,t+1

∂kt

)
= 0, (28)

Et
(

Λt+1
∂Πf,t+1

∂ht

)
+ ζf,twt − ξf,tEt

(
Λt+1

∂Πb,t+1

∂ht

)
= 0, (29)

Et
(

Λt+1
∂Πf,t+1

∂Bf,t

)
− ζf,t − ξf,tEt

(
Λt+1

∂Πb,t+1

∂Bf,t

)
+ ξf,tpb,tφt = 0, (30)

and

Et
(

Λt+1
∂Πf,t+1

∂Rf,t

)
− ξf,tEt

(
Λt+1

∂Πb,t+1

∂Rf,t

)
= 0, (31)

where ζf,t is the Lagrange multiplier associated to the balance sheet constraint (imposing
wtht + qtkt = bf,t + Nf,t) and ξf,t is the Lagrange multiplier of the bank’s participation
constraint; the date t version of Equation (6). This second constraint links the leverage and
input decisions of each firm to the loan rate Rf,t agreed with its bank. Since banks in the
model are perfectly competitive, this loan rate is the minimum one that allows the bank
to obtain a RoE that compensates for the opportunity cost of the bank equity required to
finance the loan.

Bank first-stage decisions. The model section states the BHC’s first-stage problem
in terms of decisions made at date t−1 by banks that receive their returns from lending at t.
For greater coherence with the coding of the model, here we write the optimality conditions
for the decisions made at t by the banks that receive lending returns at t + 1. If banks’
optimal leverage at date t is interior (φt > φ), it must satisfy the following FOC:

∂Et(Λt+1Πb,t+1)

∂φt
= 0. (32)
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But if the solution to (32) is below φ, assuming the relevant second-order condition holds,
the solution is at the corner φt = φ.

A.2: Firm equity return.

Prior equations imply that the gross book return on corporate equity, ρf,t ≡ Ξf,t+Nf,t

Nf,t−1
, which

is used in the calibration of the model can be written as follows:

ρf,t = xf,t −
ψf
2

(
δf − xf,t

)2 − 1 + γ

θt−1

∫ ∞
0

∫ ω̂j
f,t

ω̄j
f,t

[
Rf,t−1 (1− θt−1)− ωiωjRk

t

]
dFi,t(ωi)dFj,t(ωj)

+
1

θt−1

∫ ∞
0

{
∫ ∞
ω̂j
f,t

[
ωiωjR

k
t −Rf,t−1(1− θt−1)

]
dFi,t (ωi)− µFFi,t(ω̄jf,t)}dFj,t (ωj)− xf,t.(33)

where the first three terms contain the net dividend yield components in Equation (4) and
the last two contain the gross rate of growth of book equity Nf,t/Nf,t−1, taken also from the
continuation value part of Equation (4).

A.3: Bank equity return.

Prior equations imply that the gross book return on bank equity, ρb,t ≡ Ξb,t+Nb,t

Nb,t−1
, which is

used in the calibration of the model can be written as follows

ρb,t = xb,t −
ψb
2

(
δb − xb,t

)2 − 1 + γ

φt−1

∫ ω̂b,t

ω̄b,t

[φ− R̃f,t(ωj) +Rd,t−1(1− φt−1)]dFj,t(ωj)

+
1

φt−1

{
∫ ∞
ω̂b,t

[R̃f,t(ωj)−Rd,t−1(1− φt−1)]dFj,t(ωj) + φ[Fj,t(ω̂b,t)− Fj,t(ω̄b,t)]

−µBFj,t(ω̄b,t)} − xb,t, (34)

where the first three terms contain the net dividend yield components in Equation (12) and

the last two terms contain the gross rate of growth of equity,
Nb,t

Nb,t−1
, taken also from the

continuation value part of Equation (12).

A.4: Aggregate Shocks

We assume the following AR(1) law of motion for the TFP shock log(At+1) = ρAlog(At) +
σAεA,t+1, where εA,t+1 is normally distributed with mean zero and variance one. The standard
deviation of the distribution of each idiosyncratic shock is time-varying and evolves as an

3



AR(1) process

log

(
σωϑ,t+1

σ̄ωϑ

)
= ρσi log

(
σωϑ,t

σ̄ωϑ

)
+ σϑεωϑ,t+1

for ϑ= i, j, where εωϑ,t+1 is normally distributed with mean zero and variance one.61 These
shocks resemble the risk and uncertainty shocks commonly used in the literature (Bloom,
2009; Christiano, Motto and Rostagno, 2014). We will refer to them as firm- and island-risk
shocks. Our results show that these shocks are important sources of aggregate risk in the
model and vital to generate fluctuations in firm and bank defaults.

A.5: Model Aggregation and Market Clearing

In this subsection, we describe model aggregation and market clearing conditions. To help
explain the statement of these conditions, notice that in writing up the model and the
equations that follow, we have differentiated quantities on each side of the market by using
capital letters for one side and small letters for the other. Typically we have used small
letters for decisions made by either firms or banks. In the case of the loan market, where
firms and banks interact, Bf,t denotes loan demand by firms and bf,t loan supply by banks.

Final good The clearing of the market for final goods requires

Yt = yt, (35)

where aggregate output Yt equals household consumption, Ct, plus the investment in the
production of new capital, It, plus the resources absorbed by the deadweight losses asso-
ciated with firm and bank default, the emergency recapitalization of distressed firms and
undercapitalized banks to prevent default, and deviations from target dividend ratios:

Yt = Ct + It + Σf,t + Σb,t, (36)

61This specification is similar to the one adopted in Christiano, Motto and Rostagno (2014).
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where

Σf,t = µF

∫ ∞
0

Fi,t(ω̄f,t(ωj))dFj,t (ωj) (wtHt−1 + qt−1Kt−1)

+ µf

∫ ∞
0

∫ ω̄j
f,t

0

ωiωj [Yt + (1− δ) qtKt−1] dFi,t (ωi) dFj,t (ωj)

+ γ

∫ ∞
0

∫ ω̂j
f,t

ω̄j
f,t

{Rf,t−1Bf,t−1 − ωiωj [Yt + (1− δ) qtKt−1]} dFi,t (ωi) dFj,t (ωj)

+
ψf
2

(δ̄f − xf,t)2Nf,t−1 (37)

and

Σb,t = µBFj,t(ω̄b,t) + µb

∫ ω̄b,t

0

R̃f,t (ωj)Bf,t−1dFj,t (ωj)

+ γ

∫ ω̂b,t

ω̄b,t

[φ− R̃f,t (ωj) +Rd,t−1(1− φt−1)]Bf,t−1dFj,t (ωj)

+
ψb
2

(δ̄b − xb,t)2Nb,t−1. (38)

Each of these expressions comprises, for firms and banks, respectively, losses suffered by the
corresponding holding company due to the default of their subsidiaries, asset repossession
costs suffered by banks or the DGS when firms or banks default, emergency equity injection
costs, and costs from deviating from target dividend ratios.

Labor The clearing of the labor market requires

Ht = ht. (39)

Physical capital The clearing of the market for physical capital requires

Kt = kt. (40)

Loans The clearing of the market for loans, requires

Bf,t = bf,t. (41)

Bank deposits The clearing of the market for bank deposits, requires

Dt = dt. (42)
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Profits from capital production Profits received by households from capital-producing
firms are

Ξk,t = qtS

(
It

Kt−1

)
Kt−1 − It. (43)

A.6: Model Equilibrium Conditions

In this section we provide the exhaustive list of equilibrium conditions for our model, which
altogether define an Equilibrium. We begin with the equilibrium conditions related to the
household, then the CHC and firms, then the BHC and banks, then the capital production
sector, and finally the market clearing conditions.

Household Using equations (23) and (24) we obtain

− UHt

UCt

= wt, (44)

Equation (25) is part of the Equilibrium conditions. Hence, we have

1 = Et(Λt+1)Rd,t. (45)

CHC Equations (5) is part of the Equilibrium conditions

pf,t = Et{Λt+1[(δf +
1

2ψf
)− (δf +

1

ψf
)pf,t+1 +

1

2ψf
p2
f,t+1 (46)

− 1 + γ

θt

∫ ∞
0

∫ ω̂j
f,t+1

ω̄j
f,t+1

[
Rf,t(1− θt)− ωiωjRk

t+1

]
dFi,t+1(ωi)dFj,t+1(ωj)

+
pf,t+1

θt

∫ ∞
0

{
∫ ∞
ω̂j
f,t+1

[
ωiωjR

k
t+1–Rf,t (1–θt)

]
dFi,t+1(ωi)–µFFi,t+1(ω̄jf,t+1)}dFj,t+1 (ωj)]},

where the next two definitions are also part of the Equilibrium conditions

θt =
Nf,t

ωtHt + qtKt

(47)

and

Rk
t =

Yt + (1− δ) qtKt−1

wt−1Ht−1 + qt−1Kt−1

. (48)
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The law of motion of the net worth of the CHC in Equation (3) is also part of the Equilibrium:

Nf,t =

(∫ ∞
0

{∫ ∞
ω̂j
f,t

[
ωiωjR

k
t −Rf,t−1(1− θt−1)

]
dFi,t(ωi)

−
∫ ω̂j

f,t

0

di,jf,tµFdFi,t(ωi)

}
dFj,t(ωj)− xf,t

)
Nf,t−1

θt−1

(49)

The production functions, and the definitions of ω̂jf,t, and ω̄jf,t are also part of the Equilibrium
conditions:

Yt+1 = At+1K
α
t H

1−α
t , (50)

ω̂jf,t =
Rf,t−1(1− θt−1)

ωjRk
t

. (51)

ω̄jf,t =
(1 + γ)Rf,t−1(1− θt−1)− pf,tµF

(1 + γ)ωjRk
t

. (52)

The optimal condition for dividends is also part of the Equilibrium conditions:

xf,t = δf −
pf,t − 1

ψf
. (53)

The FOCs for capital, labor, bank borrowing, and loan interest rates are also part of the
Equilibrium conditions. They require consideration of the definition

Πf,t+1 = pf,t+1

∫ ∞
0

∫ ∞
ω̂j
f,t+1

(ωiωj (Yt+1 + (1− δ) qt+1Kt)−Rf,tBf,t) dFi,t+1 (ωi) dFj,t+1 (ωj)

− pf,t+1

∫ ∞
0

µFF (ω̄jf,t+1) (wtHt + qtKt) dFj,t+1 (ωj) (54)

− (1 + γ)

∫ ∞
0

∫ ω̂j
f,t+1

ω̄j
f,t+1

[Rf,tBf,t − ωiωj (Yt + (1− δ) qtKt−1)] dFi,t+1(ωi)dFj,t+1(ωj),

the balance sheet constraint

Bf,t +Nf,t = wtHt + qtKt, (55)

and the FOCs with respect to the four decision variables:

Et
(

Λt+1
∂Πf,t+1

∂Kt

)
+ ζf,tqt − ξf,tEt

(
Λt+1

∂Πb,t+1

∂Kt

)
= 0, (56)
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Et
(

Λt+1
∂Πf,t+1

∂Ht

)
+ ζf,twt − ξf,tEt

(
Λt+1

∂Πb,t+1

∂Ht

)
= 0, (57)

Et
(

Λt+1
∂Πf,t+1

∂Bf,t

)
− ζf,t − ξf,tEt

(
Λt+1

∂Πb,t+1

∂Bf,t

)
+ ξf,tpb,tφt = 0, (58)

and

Et
(

Λt+1
∂Πf,t+1

∂Rf,t

)
− ξf,tEt

(
Λt+1

∂Πb,t+1

∂Rf,t

)
= 0. (59)

BHC The equations of the BHC problem that enter the Equilibrium conditions are
described next. Equation (14) gives us:

pb,t = Et[Λt+1((δb +
1

2ψb
)− (δb +

1

ψb
)pb,t+1 +

1

2ψb
p2
b,t+1

− 1 + γ

φt

∫ ω̂b,t+1

ω̄b,t+1

{φ− [R̃f,t+1(ωj)−Rd,t(1− φt)]}dFj,t+1(ωj)

+
pb,t+1

φt
{
∫ ∞
ω̂b,t+1

[R̃f,t+1(ωj)−Rd,t(1− φt)]dFj,t+1(ωj) + φ [Fj,t+1(ω̂b,t+1)− Fj,t+1(ω̄b,t+1)]

−µBFj,t+1(ω̄b,t+1)})]. (60)

The law of motion of Nb,t in Equation (11) is part of the Equilibrium:

Nb,t =


∫ ω̂b,t

0
[(1–djb,t)φ–djb,tµB]dFj,t(ωj) +

∫∞
ω̂b,t

[R̃f,t(ωj)–Rd,t–1(1–φt–1)]dFj,t(ωj)

φt−1

− xb,t

Nb,t–1,

(61)

The definitions of R̃f,t, ω̂b,t, and ω̄b,t in Equations (8), (9), and (13) are part of Equilibrium:

R̃f,t(ωj) =
(1− µf )ωj[yt + (1− δ)qtkt−1]

bf,t−1

∫ ωj
t

0

ωidFi,t(ωi) +Rf,t−1

∫ ∞
ωj
t

dFi,t(ωi). (62)

R̃f,t(ω̂b,t)−Rd,t−1(1− φt−1) = φ, (63)

and

R̃f,t(ω̄b,t)− (1− φt−1)Rd,t−1 = φ−
pb,t(φ+ µB)

1 + γ
. (64)

The optimal condition for dividends is also part of the Equilibrium conditions:

xb,t = δb −
pb,t − 1

ψb
. (65)
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The conditions for the optimality of bank leverage implied by equations (27) and (32) are
also part of the Equilibrium:

Πb,t+1 = −1 + γ

φt

∫ ω̂b,t+1

ω̄b,t+1

[φ− R̃f,t+1(ωj) +Rd,t(1− φt)]dFj,t+1(ωj)

+
pb,t+1

φt
{
∫ ∞
ω̂b,t+1

[R̃f,t+1(ωj)−Rd,t(1− φt)]dFj,t+1(ωj) + φ[(Fj,t+1(ω̂b,t+1)

−Fj,t+1(ω̄b,t+1)]− µBFj,t+1(ω̄b,t+1)}, (66)

and
∂Et(Λt+1Πb,t+1)

∂φt
= 0. (67)

Finally, the balance sheet of the banks,

bf,t = Nb,t + dt, (68)

and the definition of capital ratio φt in Equation (7),

Nb,t = φtbf,t, (69)

are also part of the Equilibrium conditions.

Capital production The evolution of capital is controlled by the FOC of the capital
producer and the law of motion of capital, i.e. Equations (15) and (16)

qt =

[
S ′
(

It
Kt−1

)]−1

and (70)

Kt = (1− δ)Kt−1 + S

(
It

Kt−1

)
Kt−1. (71)

Deposit insurance costs By using Dt = dt we can write the deposit insurance costs
in Equation (17) as:

Tt = ΩtDt−1, (72)

where

Ωt = Fj,t (ω̄j,t)Rd,t−1 −
1− µb
1− φt

∫ ω̄b,t

0

R̃f,t (ωj) dFj,t (ωj) . (73)
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Market clearing The aggregate resource constraint equation (36) can be written as

Yt = Ct + It + Σb,t + Σf,t. (74)

B Approximating Banks’ Expected Profits

In order to use perturbation methods to approximate the solution to the model, we need to
compute several integrals involving the loan returns of a given bank j as a function of the
corresponding island shock, R̃f,t+1 (ωj).

We take qt+1, kt, yt+1, bf,t, Rd,t, dt as given and use the notation of R̃f,t+1 to represent a
function of the island shock, ωj, only. From the analysis in Section 1, it should be clear that
R̃f,t+1 (ωj) is not log-normally distributed. Mathematically, this is due to the fact that the
critical value for the firm idiosyncratic shock ωi for which a firm on island j defaults is a
highly non-linear function of the island shock ωj. This critical value is a limit of integration
in equation (8) and its non-linear dependence on ωj makes R̃f,t+1 (ωj) non-linear. As a
result, integrals involving this variable cannot be computed as explicit functions of the state
variables and perturbation methods cannot be applied. We overcome this challenge by (i)
splitting each of these integrals into the sum of integrals taken over smaller intervals, (ii)
computing a series of quadratic Taylor approximations of R̃f,t+1 (ωj) around the mid-point
of each interval.

Formally, we split the domain of ωj into N intervals of equal length defined on N + 1
points xk ranging from x1 = ω̄j,t+1 to xN+1 = ωmax

j where the highest point ωmax
j is chosen

such that R̃f,t+1

(
ωmax
j

)
= Rf,t almost surely. Given those assumptions, any integral of

R̃f,t+1 (ωj) over a given interval of values of ωj can be approximated by:

N∑
k=1

(∫ xk+1

xk

Θk (ωj) dFj,t+1 (ωj)

)
+ [1− Fj,t+1 (xN+1)]Rf,t (75)

where Θk (ωj) is a Taylor approximation of R̃f,t+1 (ωj) around a point ωj = x̄k ≡ xk+1+xk
2

and is given by

Θk (ωj) = R̃f,t+1 (x̄k) + R̃′f,t+1 (x̄k) (ωj − x̄k) +
1

2
R̃′′f,t+1 (x̄k) (ωj − x̄k)2 (76)

All the derivatives of R̃f,t+1 are with respect to ωj and can be computed as an explicit
function of the state variables. Using the simplified expression for Θk (ωj) we can rewrite
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∫ xk+1

xk
Θk (ωj) dFj,t+1 as follows:∫ xk+1

xk

Θk (ωj) dFj,t+1 = Q0 (x̄k) +Q1 (x̄k)

∫ xk+1

xk

ωjdFj,t+1 +Q2 (x̄k)

∫ xk+1

xk

ω2
jdFj,t+1 (77)

where: Qi (x̄k) are just constants given by:

Q0 (x̄k) = [Fj,t+1 (xk+1)− Fj,t+1 (xk)]

[
R̃f,t+1 (x̄k)− x̄kR̃′f,t+1 (x̄k) +

1

2
x̄2
kR̃
′′
f,t+1 (x̄k)

]
,

Q1 (x̄k) = [Fj,t+1 (xk+1)− Fj,t+1 (xk)]

[
R̃′f,t+1 (x̄k)−

1

2
x̄kR̃

′′
f,t+1 (x̄k)

]
,

Q0 (x̄k) = [Fj,t+1 (xk+1)− Fj,t+1 (xk)]

[
1

2
R̃′′f,t+1 (x̄k)

]
,

Given our assumption of log-normally distributed island shock, ωj, we have expressions for∫ xk+1

xk
ωjdFj,t+1 and

∫ xk+1

xk
ω2
jdFj,t+1 as explicit functions of the state variables. Consequently,

we can easily and very accurately derive the approximation of the relevant integrals of
R̃f,t+1 (ωj).

C Data

• Investment: Gross Fixed Capital Formation, Millions of euros, Chain linked volume,
Calendar, and seasonally adjusted data, Reference year 1995, Source: the Area Wide
Model (AWM) dataset.

• Gross Domestic Product (GDP): we define the GDP as the sum of Consumption and
Investment.

• Loans: Outstanding amounts of loans at the end of quarter (stock) extended to non-
financial corporations by Monetary and Financial Institution (MFIs) in EA, Source:
MFI Balance Sheet Items Statistics (BSI Statistics), Monetary and Financial Statistics
(S/MFS), European Central Bank.

• Loan Spread: Spread between the composite interest rate on loans and the composite
risk-free rate. We compute this spread in two steps.

1. Firstly, we compute the composite loan interest rate as the weighted average of
interest rates at each maturity range (up to 1 year, 1-5 years, over 5 years).

2. Secondly, we compute corresponding composite risk-free rates that take into ac-
count the maturity breakdown of loans. The maturity-adjusted risk-free rate is
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the weighted average (with the same weights as in the case of composite loan
interest rate) of the following risk-free rates chosen for maturity ranges:

– 3 month EURIBOR (up to 1 year).

– German Bund 3 year yield (1-5 years).

– German Bund 10-year yield (over 5 years for commercial loans).

– German Bund 7-year yield (5-10 years for housing loans).

– German Bund 20-year yield (over 10 years for housing loans).

Source: MFI Interest Rate Statistics of the European Central Bank, Bloomberg.

• Return on equity of banks: Bank Equity Return (after tax), EA. Source: Global
Financial Development, World Bank.

• Expected default of Banks: Asset weighted average of expected default frequency
(EDF) within one year for the sample of banks in EA. The series is available on a
monthly basis and aggregated at quarterly frequency by averaging the monthly series
within a quarter.62 Source: Moody’s KMV.

• Expected default of non-financial firms: we compute it using the individual expected
default frequency (EDF) series by Moody’s KMV for non-financial corporations in the
EA. To mimic the exposure to small and medium-sized enterprises (SMEs) and large
firms in the loan portfolio of banks in the EA, we proceed in two steps. First, use the
individual non-financial corporations’ EDFs provided by Moody’s KMV to construct
two separate EDF indices: i) for SMEs ii) for large firms.63 Second, we build an
aggregate default series for non-financial firms as a weighted average of EDF indices
for SMEs and large firms. As weights we use the share of loans extended by banks in
EA to SMEs and large firms.64 The EDF data are available on a monthly basis. We
aggregate it to quarterly series by averaging the monthly series within a quarter.

• Net payout ratio is computed as the sum of stock repurchases and dividends, net of
equity issuance, as a share of the previous quarter’s book equity. Because our model is
stationary, we correct for real asset growth of the respective sector. This yields a net
payout ratio = repurchases + dividends - issuance + real asset growth. The time-series
data on the aggregate ingredients needed to compute the payout ratio (dividends, stock
repurchases, equity issuance, book equity, total assets, deflator) comes from the Euro

62See detailed EDF description on the Moody’s webpage.
63EDF indices are constructed as asset weighted average of EDF within one year for non-financial firms

within each size category. We define SMEs as firms with average total assets below e43 m (following the
definition of the European Commission).

64The data on the share of SMEs loans in total loans is from the Financing SMEs and Entrepreneurs
database of OECD.
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Area Flow of Funds. Banks are defined as monetary financial institutions, and firms
are defined as non-financial corporations. Source: Eurostat Flow of Funds

• Bank total capital ratio and share of undercapitalized banks: we collect the data on the
total capital ratio (total capital/risk-weighted assets) of individual Euro Area banks
from BankScope and BankFocus. We compute the aggregate banking sector capital
ratio as the average capital ratio of individual banks weighted by total assets. The
share of undercapitalized banks is computed as the proportion of banks whose total
capital ratio fell below the regulatory requirement of 8%. Source: BankScope and
BankFocus

• Share of distressed firms: We compute the average share of firms in distress as the
proportion of firms that were downgraded to a rating CCC or below in a given quarter.
Source: Moody’s KMV

D Additional Empirical Results

D.1: Relationship between GDP and banks’ Rate of Return on
Equity

This appendix shows the model-implied relationship between GDP at time t and the bank’s
rate of return on equity (RoE) at time t − 1. Very low bank RoE is associated with a
much larger decline in future GDP compared to the increase associated with a strong RoE
out-turn.
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Figure D.1: GDP at different percentiles of banks’ Rate of Return on Equity
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Notes: This figure shows the model-implied relationship between GDP at time t at different percentiles of
the bank’s rate of RoE at time t− 1. GDP is defined as the output deviation from the mean. The figure is
generated by simulating the model for 1,000,000 periods.

D.2: Empirical distribution of bank asset returns

Here, we show that the distribution of asset returns for major European banks is asymmetric
and left skewed as in our model
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Figure D.2: Histograms of Return on Assets of individual European banks: Part 1
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Notes: Return on Assets of major European banks.

15



Figure D.3: Histograms of Return on Assets of individual European banks: Part 2
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E Additional Model Results

Our model, with its endogenous connection between firm and bank solvency, features a num-
ber of idiosyncratic and aggregate risk shocks that are important for the transmission of firm
defaults to bank defaults and to the macroeconomy at large. In this section, we investigate
the importance of each of these shocks. We do this by removing them on an individual basis
and then examining the extent to which this deteriorates the model’s performance in replicat-
ing the quantile regressions in Section 2.1. We also show the importance of solving the model
non-linearly by reporting the results that one would obtain by solving it using a first-order
(instead of a third-order) approximation. Further, we also document non-linearities in the
transmission of shocks in the model using generalized impulse response functions (GIRFs).
We examine the importance of modeling bank asset returns in a structural way compared
to the Merton-type model of banks. We also perform the sensitivity of our results on the
optimal level of capital requirement to changes in the bank default costs and report the
empirical distribution of bank asset returns.

E.1: Importance of the higher approximation order

Table E.1 reports the performance of the model solved with linear approximation methods
(1st Order App.) in terms of untargeted conditional moments in the three default regimes.
The frequency of the twin default regime reproduced by the linearized model is lower than
the one observed in the data and in our baseline model.

The importance of the non-linearities introduced by the structural modeling of bank asset
returns is underlined by the fact that, if solved to a first-order approximation, the model only
generates twin default crises if hit by larger realizations of the island-risk shock. The dotted-
dashed line in Figure E.2 shows that, in the first-order approximation, island-risk shocks need
to increase by more than 2.5 standard deviations in the baseline. The thresholds used to
define the three regimes are always the ones determined by the baseline model. Nevertheless,
despite the large shocks, the first-order approximation cannot generate a realistic increase in
the probability of bank default. This is consistent with the fact that, as shown in Table E.1,
the linear model can only produce twin defaults with a 0.6% probability. In contrast, the
frequency implied by the baseline model is 4.7%, which is much closer to the 7% observed
in the data.

Finally, we investigate the role of our solution method by comparing the quantile re-
gressions implied by our baseline model (which is solved using third-order approximation)
with the quantile regressions implied by first-order (green lines) or second-order (blue lines)
approximate solutions. We estimate the parameters of the first- and second-order approxi-
mation versions of our model to match the set of moments presented in Table 2. The bottom
panels of Figure E.1 shows the results. Both the linear and the second-order models clearly
fail to match the non-linearities found in the data. They generate flat quantile regression
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coefficients in both panels. Intuitively, a model solved to first or second order works well in
normal times but fails to generate the sharp and non-linear deterioration of economic and
financial conditions in crises or recessions. In contrast, a third-order approximation captures
the non-linearity in the co-movements of firm and bank defaults and economic activity.

We have already discussed in Section 3 modeling bank portfolios as consisting of default-
able loans introduces an important non-linearity into bank asset returns and hence into bank
default realizations. It is, therefore, natural that a non-linear solution method is needed to
capture such non-linearities in an accurate manner. Our results show that a third-order
solution is sufficient for this purpose.

E.2: Importance of the island-idiosyncratic and island-risk shocks

We start with the island-idiosyncratic and island-risk shocks. In our framework banks default
when they experience abnormally low realizations of the island-idiosyncratic shock. Our
model also allows aggregate fluctuations in the non-diversifiable (island) risk by means of
island-risk shocks, i.e., shocks to the dispersion of the island-idiosyncratic risk. These shocks
increase the probability of very low realizations of the island-idiosyncratic shocks, making
banks more vulnerable.

The results of eliminating island-idiosyncratic and island-risk shocks are shown in the
top panels of Figure E.1. The figure presents the quantile regression coefficients for Equa-
tions (20) and (21) for the model without island-idiosyncratic shocks (green line), i.e., when
the island-idiosyncratic shock is set to one, and without the island-risk shocks (blue line).
The red and black lines correspond to our baseline model and the data, respectively.65

The figure shows that both island-idiosyncratic and island-risk shocks are vital in gen-
erating a realistic sensitivity of bank default to firm default and of GDP growth to bank
defaults. In the model without island-idiosyncratic shocks, the quantile regression coeffi-
cients go to zero because banks are perfectly diversified, and their loan portfolio returns are
very stable. Firms continue to default because of the firm-idiosyncratic shocks, but banks
are diversified against these shocks. And while aggregate shocks induce some fluctuations in
firm default, these are too small to make banks fail since our banks’ solvency is protected
by their equity buffers. Thus, if the bank is fully diversified, bank defaults do not hap-
pen and cannot possibly affect GDP growth. The model without island-risk shocks shows
that, although eliminating this shock does not lead to fully diversified banks, keeping the
non-diversifiable risk (and hence the probability of bank default) low and relatively constant
reduces the model’s capability to match the sensitivity of bank default to firm default and
of GDP growth to bank default. Clearly, the model without island-risk shocks, although it
does a better job than the model without island-idiosyncratic shocks, fails to generate the
state-dependent relationship between firm and bank defaults and economic activity that we

65Note that when we eliminate the island-idiosyncratic shocks, the island-risk shocks become irrelevant.
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see in the data.
This experiment clearly indicates the importance of both island-idiosyncratic and island-

risk shocks in generating realistic conditional and unconditional correlation patterns between
firm and bank defaults and economic activity. When the non-diversifiable risk is constant
(no island-risk shocks), bank defaults are rare, they are mostly unaffected by firm defaults,
and they do not affect real economic activity. When the non-diversifiable risk is absent (no
island-idiosyncratic shocks), banks do not default.

E.3: Importance of the firm-idiosyncratic and firm-risk shocks

The other source of risk to firms in our model comes from firm-idiosyncratic and firm-risk
shocks, i.e. shocks to the dispersion of the firm-idiosyncratic risk. These shocks capture
risks to individual firms that are diversifiable at the individual bank level. Firm-risk shocks
increase firm defaults, but they affect different banks evenly rather than concentrating the
bulk of losses on a few unlucky banks, as is the case for island-risk shocks.

In this section, we investigate how the model’s ability to replicate the quantile regression
coefficients for Equations (20) and (21) changes when we eliminate the firm-idiosyncratic
and -risk shocks. The middle panels of Figure E.1 show the results. This time, the green line
displays the quantile regression coefficients in the model where we set the firm-idiosyncratic
shock equal to unity for all firms, while the blue line presents the results from the model
where firm-risk shocks are shut down.

Both the green and blue lines display a relationship between firm and bank defaults.
Intuitively, the green lines in the middle panels of Figure E.1 correspond to an economy
with fully non-diversified banks in which the defaults of banks and firms are almost perfectly
correlated. This makes the sensitivity of bank default to firm default very large and rather
constant over states. The impact of shutting down the firm-risk shocks is qualitatively
similar to the elimination of the firm-idiosyncratic shocks but not as quantitatively large
with respect to the quantile regression coefficients for Equation (20). The right middle panel
shows that eliminating firm-idiosyncratic generates a state-dependent relationship between
bank defaults and economic activity that is too strong compared both with the data and the
implications of our baseline model.

This experiment clearly indicates the importance of both firm and island shocks in gen-
erating realistic conditional and unconditional correlation patterns between firm and bank
defaults and economic activity. When we eliminate non-diversifiable risk (no island shocks),
the conditional and unconditional correlation between firm and bank default is too small.
Instead, when we eliminate diversifiable risk (no firm shocks), the conditional and uncon-
ditional correlation between firm and bank default is too large. In both instances, the
conditional and unconditional correlation between bank default and economic activity is too
low.
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Figure E.1: Quantile Regressions: Key Model Features
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Notes: The figure explores the importance of non-diversifiable risk (top panels), diversifiable risk (middle
panels) and approximation order (bottom panels). The left column presents coefficients ζτ from the quantile
regression in Equation (20), while the right column presents coefficients βτ from the quantile regression in
Equation (21).
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Figure E.2: Path to Twin Defaults in Different Scenarios
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Notes: This figure shows the average path leading to a twin default episode under different model assump-
tions. Baseline (red solid line) corresponds to our baseline model with the capital requirement set to 8
percent (φ = 0.08) and solved with third-order perturbation methods. Capital Requirement = 16% (green
dashed line) corresponds to the model with the capital requirement set to 16 percent (φ = 0.16). 1st Order
App. (pink dashed-dotted line) corresponds to the model solved with a first-order perturbation method.
The figure is generated by simulating the model for 1,000,000 periods, identifying periods of twin defaults,
and then computing the average realizations of shocks and endogenous variables for twenty periods before
and after the crisis periods. We define a twin default episode as the simultaneous occurrence of firm and
bank default above their respective 90th percentiles. The 90th percentile default thresholds used to define
the three regimes in the three models are always the ones determined by the baseline model. TFP, Island
Risk and Firm Risk represent the level of At,

σωj,t+1

σ̄ωj
and

σωi,t+1

σ̄ωi
in their respective standard deviation units.
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Table E.1: The Default Regimes in the Model

Frequency GDP growth Bank default Firm default

Low Default Regime
Data 86.0% 0.0923 0.4346 2.3480
Baseline Model 84.7% 0.10111 0.5042 2.0568
Linear Model 95.9% 0.029577 0.40248 1.9874
Higher Cap. Req. Model 92.4% 0.051184 0.16423 2.0235

High Firm Default Regime
Data 4.0% -0.0466 0.4033 4.8500
Baseline Model 5.35% -0.38327 0.87401 5.0714
Linear Model 3.26% -0.64025 1.1559 4.6815
Higher Cap. Req. Model 7.31% -0.58188 0.58711 5.2541

High Bank Default Regime
Data 3.0% -0.6744 2.1056 3.7604
Baseline Model 5.35% -0.65094 2.2649 4.2974
Linear Model 0.239% -0.69736 1.6654 3.7619
Higher Cap. Req. Model 0.0115% -0.90339 1.7183 3.8298

Twin Defaults Regime
Data 7.0% -0.8189 3.0224 4.6076
Baseline Model 4.65% -0.84251 2.5536 5.6439
Linear Model 0.643% -0.90121 1.7428 5.0967
Higher Cap. Req. Model 0.327% -1.4192 1.9443 6.8585

Notes: This table compares the model and data averages for firm default, bank default and GDP growth

within three default regimes for the EA data and the simulated data from different models. The baseline

model corresponds to a capital requirement set to 8 percent (φ = 0.08) and solved with third-order pertur-

bation. Merton-type Model corresponds to the model in which the Merton-type specification of bank asset

returns is adopted. 1st Order App. corresponds to the model solved with first-order perturbation methods.

Higher Cap. Req. corresponds to the model with a capital requirement set to 16 percent (φ = 0.16). Twin

default episodes are defined as the simultaneous occurrence of firm and bank default above their respective

90th percentiles. High Firm Defaults are episodes with firm defaults above the 90th percentile and bank

defaults below the 90th percentile. In Low Default episodes, both bank and firm default are below the 90th

percentile. The default thresholds are used to define the three regimes in the Merton-type model and the

1st Order App. model are the ones determined by the baseline model. Model results are based on 1,000,000

simulations. GDP growth is demeaned.
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E.4: Generalized Impulse Response Functions to an Island-risk
Shock

We now use the Generalized Impulse Response Functions (GIRFs) to show that the economy
“accelerates” into a twin default event as the impact of additional island-risk shocks grows.
Following Koop, Pesaran, and Potter (1996), the GIRF for any variable in the model var in
period t+ l following a disturbance to the nth shock of size ν in period t+ 1 is defined as

GIRFvar(l, εn,t+1 = ν,wt) = E [vart+l|wt, εn,t+1 = ν]− E [vart+l|wt] , (78)

where wt are the value of the state variables of the model at time t and n ∈ {A, δ, i, j}.66

Hence, the GIRF depends on the value of the state variables when the shocks hit. For
example,

GIRF∆ log Yt(4, εA,t+1 = −3, (1.1Dss, 0.9Kss, . . . , 1.01σ̄ωi
))

is the GIRF of GDP growth, ∆ log Yt, at period t + 4, after a TFP shock of value −3 in
period t + 1, when Dt was 10 percent above the steady state, Kt was 10 percent below the
steady state, . . . , and σωi,t was one percent above steady state.

But GIRF defined in Equation (78) is conditioned on the value of the state variables when
the shocks hit. In what follows, instead, we want to compute GIRFs that are conditioned
on the values of observables when the shocks hit. For example, we would condition on the
expected default rate of firms, EDf,t, to be above one percent at the time of the shock. In
this case, we want to compute the following GIRF

GIRFvar(l, εn,t+1 = ν, EDf,t > 0.01) =

∫
1{EDf,t>0.01} (wt)GIRFvar(l, εn,t+1 = ν,wt)f (wt) dwt,

(79)
where 1{EDf,t>0.01} (wt) takes a value equal to one if the state variables at time t are such
that he expected default rate of firms is above one percent at time t and zero otherwise and
where f (wt) is the unconditional density of the state variables. Of course, Equation (79)
needs to be computed by simulation.

Figure E.3 reports three sets of GIRFs to a one standard deviation island-risk shock. The
solid line shows the unconditional GIRF, the blue dashed line shows the GIRF conditional
on the economy being at a high firm default episode, and the red dashed line shows the
GIRF conditional on the economy being in a twin default episode. The internal propagation
shown in the figure helps us understand why the model generates twin default crises without
the need for huge shocks.

The shock has a much larger impact when conditioning on a twin defaults.67 The GDP
drop is much larger than the effect in the unconditional GIRF. The same is true for the drop

66The state variables of the model are wt =
(
Dt,Kt, Ht, Ne,t, Nb,t, qt, wt, Rf,t, Rd,t, At−1, σωj ,t−1, σωi,t−1

)
.

67It is important to note that the traditional linear IRFs are independent of the state of the economy.
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Figure E.3: Conditional Impulse Response Functions: Island Risk Shock
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Notes: This figure reports three sets of generalized impulse response functions (GIRFs) to a one standard
deviation island-risk shock. For comparability with other shocks, we set the persistence of each shock to 0.9.
The solid black line shows the unconditional GIRF, the black dashed line shows the GIRF conditional on the
economy being in a low default episode, the blue dashed line shows the GIRF conditional on the economy
being at a high firm default episode, and the red dashed line shows the GIRF conditional on the economy
being in a twin default episode. We define a twin default episode as the simultaneous occurrence of firm and
bank default above their respective 90th percentiles. High firm default episodes are those where firm default
is above the 90th percentile and bank default is below the 90th percentile. In the low default regime, both
bank and firm default are below the 90th percentile.
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in investment and the price of capital and for the impact on firm and bank defaults. This
shows how the model solved with a third-order approximation is able to amplify island-risk
shocks during crisis times differently than during normal times. In our model, once the
economy finds itself in a situation of twin defaults, it becomes very vulnerable to island-risk
shocks.
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E.5: Determinants of Bank Risk Taking

Figure E.4: Determinants of Bank Risk Taking
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Notes: This figure shows a representative bank’s loan pricing schedule, i.e., the relationship that determines
the interest rate that borrowing firms must pay for each given leverage choice. We also show the associated
leverage choice by the bank on a partial equilibrium basis – i.e. assuming that all prices and funding costs,
with the exception of the loan rate, are fixed to their steady-state values. The figure considers four scenarios:
i) baseline case in which firm idiosyncratic and island risk are set to calibrated values and minimum capital
requirement is 8% (black solid line), ii) higher firm idiosyncratic risk and lower island specific risk while
keeping total borrower risk unchanged (red dashed line), iii) higher island risk and lower firm idiosyncratic risk
while keeping total borrower risk unchanged (blue dash-dotted line), iv) higher minimum capital requirements
of 15% (green dotted line).

In our model, bank failures are costly both because they cause deadweight costs ex post
and because they create a limited liability/deposit insurance subsidy to bank risk-taking.
To delve deeper into the mechanism that makes capital requirements a potentially welfare-
improving policy tool in this set-up, we compare banks’ loan pricing schedules (and other
associated decisions) under a number of alternative settings in which the bank’s decision
is examined in partial equilibrium. In the top left panel of Figure E.4, we consider the
loan rates that a perfectly competitive bank would apply (on a partial equilibrium basis) for
different leverage choices of its borrowing firms. In other words, we consider the combination
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of loan rates and firm leverage that lie on the bank’s participation constraint (equation (16)
in the main text). The top right panel shows the bank’s own capital ratio choice that
would accompany each possible leverage (and loan rate) choice by the borrowing firms. The
bottom row shows the resulting default probabilities for the bank (bottom left panel) and
its borrowing firms (bottom right panel).

The black solid line is produced by varying firm leverage under the baseline calibration
of the model. The upward-sloping loan rate schedule is typical of papers in the tradition of
(see e.g. Bernanke, Gertler and Gilchrist, 1999), but a crucial difference is that the lending
in our model is done by with limited liability and deposit insurance which distort their
pricing of the underlying default risk. Starting from low levels of leverage, loan rates are
first insensitive to changes in leverage as borrowers’ probability of default is close to zero.
Under our baseline calibration, further increases in firm leverage are associated with higher
firm and bank defaults. The top right panel also shows that the bank’s own capital ratio
first increases as firms become riskier and banks deleverage in order to protect their charter
value. However, this prudent behaviour by banks is reversed (i.e. the voluntary buffers on
top of the regulatory minimum fall) once risk increases sufficiently.

To shed more light on banks’ loan pricing behavior and leverage choice, it is useful to
draw a distinction between the two sources of higher borrowers’ riskiness in our model - firm
idiosyncratic shocks and island shocks. Figure E.4 compares the baseline parameterization
of the model with two other parameterizations that reduce the importance of the two sources
of borrowers’ riskiness, one at a time. The red dashed line depicts a version of the model
where the variance of the firm idiosyncratic shocks is higher while the variance of island
shocks is lower in a way that leaves overall firm riskiness unchanged. The blue dashed line
corresponds to a version of the model in which the opposite is true - the island shocks have a
higher variance at the expense of firm idiosyncratic shocks. The figure clearly indicates that
higher firm leverage is associated with higher bank default only in the presence of significant
island risk. Indeed, island-specific shocks make the returns of all firms in a given island
volatile and, thus, non-diversifiable at the island/bank level. Higher firm leverage increases
the probability that a large fraction of borrowers of an island-specific bank becomes ex-post
insolvent. This increases the probability of banks becoming under-capitalized or failing.

The top left panel of the figure shows that banks that are more likely to fail (the blue
dashed line) display a greater tendency to under-price borrowers’ risk. Banks set the interest
rate on loans by maximizing the expected discounted value of returns on the portfolio of loans
under limited liability – i.e. disregarding the losses (due to low loan returns) incurred when
they default. As a result of this mispricing of risk, the unconditional expectation of the loan
return declines with firm leverage (not shown in the graphs). When the loan pricing curve
shifts downwards, it indicates that banks are happy to take more risk for a given expected
return. The same message is corroborated by the behavior of the bank’s capital ratio in the
blue dashed line (high volatility of island risk). Despite facing a greater risk than in the
baseline, banks choose a lower capital ratio which is another indication of risk shifting.
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The situation is very different when the increase in leverage happens when island risk
is lower, as shown in the red dashed line. Higher firm leverage increases the probability
of individual borrowers’ default and hence reduces the returns obtained by the bank on
the corresponding loans. The bank’s reaction indicates no risk shifting. The loan rate is
increased sharply to protect banks from the higher risk of losses on individual loans. The
bank’s capital ratio now actually increases with higher firm riskiness to make sure they can
absorb the potentially larger losses. Because island risk is low, banks have an almost zero
probability of failing, Instead, they worry about becoming under-capitalized and having to
raise costly equity to bring the bank back to full compliance with the minimum capital
ratio. The bank wants to avoid this, which is why it increases the ex-ante capital ratio.
With a zero probability of failure but a positive probability of becoming under-capitalized,
small increases in risk actually make banks more risk-averse, leading them to tighten lending
standards and deleverage. This is in contrast with its risk-shifting behavior under high levels
of island risk.

Finally, Figure E.4 also shows the behavior of the model under the baseline level of
island and idiosyncratic risk but under a higher minimum capital requirement (15 percent).
The tighter regulation forces the bank to increase its capital ratio, thus bringing its failure
probability close to zero. Risk shifting disappears, and high-leverage/high-risk loans are no
longer under-priced. Moreover, the bank now responds to an increase in firm leverage by
increasing its capital ratio to protect itself from the risk of becoming under-capitalized due to
bad loan return out-turns. This demonstrates a clear benefit of higher capital requirements:
it makes banks safer, thus helping to avoid deadweight default losses, but it also improves
their incentives to price risky loans appropriately.
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E.6: Sensitivity to the size of deadweight costs of bank failure (µb)

Figure E.5: Welfare Effects of the Capital Requirement: sensitivity to µb
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Notes: Ergodic mean of household welfare under different values of µb.

In the main body of the paper, we showed that the model implies an optimal capital
requirement of 16 percent under the baseline calibration. In this section, we examine the
sensitivity of the optimal capital requirements to the size of deadweight costs of bank failure
(µb). Figure E.5 compares expected household welfare under the baseline value of µb = 0.3
(black solid line) and under a lower value of µb = 0.2 (green solid line). We see that when
deadweight losses from bank default are lower, the optimal bank capital requirement declines
to 14 percent. The optimal capital requirement in the Merton model (dashed lines in the
Figure) is also affected by µb falling to 9 percent when µb = 0.2.

29



F Additional Results Merton-type Model

Figure F.1: Scatter Plots and Quantile Regressions: Baseline vs Merton-type Model
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Notes: The top panels display the scatter plot of firm and bank default produced with the baseline model (top
left plot) and the Merton-type version of our model (top right). The bottom left panel presents coefficients
ζτ from the quantile regression in Equation (20), whereas the bottom right panel presents coefficients βτ
from the quantile regression in Equation (21) for the Merton-type model (blue line), the data (red line) and
the baseline model (black line).

Characterizing bank asset returns in an accurate manner is essential when studying the
relationship between firm and bank defaults. The Merton-type model fails to reproduce the
non-linearity in the relationship between firm and bank defaults along several dimensions.
The top right panel of Figure F.1 presents a scatter plot of firm and bank defaults implied
by the Merton-type model, which uses R̃M

f,t+1 (ωb) instead of R̃f,t+1 (ωj). Contrary to what
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is implied by our model (top left panel), the standard Merton-type representation of bank
asset returns implies a very low correlation between firm and bank failures.68 Our mechanism
treats instead the two defaults as intimately linked, endogenously generating an empirically
realistic positive relationship between them.

Figure F.2: Comparative Statics with Respect to Capital Requirement Level for baseline
model and for Merton-type model
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Notes: This figure shows the implications of different values of the capital requirement φ on the mean of the
ergodic distribution of selected variables for our baseline and Merton-type model.

Another way to examine the relationship between firm and bank defaults is through
quantile regressions. The bottom panels of Figure F.1 compare the quantile regression co-
efficients for Equations (20) and (21) in our model (black line) to those obtained from its
Merton-type variant (blue line). For completeness, we also include the estimated coefficient
using EA data (red line). Yet again, in the Merton-type model, the relationship between firm
and bank defaults is very weak at all quantiles of bank default. The standard approach to
bank default risk also fails to match the relationship between GDP growth and bank default
at both the top and the bottom quantiles of GDP growth.

68Following the existing literature, heterogeneity in bank default outcomes is generated by adding ex-
ogenous idiosyncratic disturbances to banks’ asset values directly rather than to the performance of banks’
borrowers. If such shocks follow log-normal distributions, bank asset returns are distributed exactly as in
Merton (1974). The standard reduced-form approach implies that banks can default when borrowers repay
in full. This generates a close to zero correlation between the default rates of banks and their borrowers.
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