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 a b s t r a c t

Using an industry-dynamics innovation model, we explore the interplay between patent screening 
and patent enforcement. When patent enforcement is imperfect, genuine sequential innovators 
may see their market access blocked by potentially abusive infringement claims from prior in-
novators. In this case, the patent’s office leniency towards obvious innovators may contribute to 
reduce the presence of blocking incumbent monopolists, encouraging innovation and improving 
welfare. This result is robust across multiple extensions of the baseline framework.

1.  Introduction

Innovation, entry, exit, and the level of competition are complex interrelated phenomena in every industry, and especially so in 
those that are more dynamic and technologically intensive. Many of these industries rely on patents and other intellectual property 
rights (IPRs) as a source of temporary market power that allows successful innovators to obtain a return from their innovation invest-
ments. Intellectual property, however, is a double-edged sword for the technological progress of an industry since, once innovators 
become established incumbents, it may discourage subsequent innovation. Incumbents can use the threat of litigation to fend off en-
try or to obtain a favorable settlement in licensing negotiations with future innovators. Under perfect IPR enforcement this trade-off 
between current and future innovation is optimally resolved by protecting significant innovators from minor subsequent innovators 
but not from significant subsequent innovators (Hopenhayn et al., 2006).

In this paper we study the optimal patent policy in situations where IPR enforcement is imperfect. We show that reducing the 
barriers to entry for low value innovations during the patent granting process and/or by courts, when confronting accusations of 
patent infringement, may increase overall innovation and enhance social welfare. This result arises from a new mechanism that 
operates dynamically at the industry level. If high quality innovators face the possibility of being blocked or obliged to pay licensing 
fees by prior innovators, a higher leniency towards low quality innovation may be socially optimal. Low quality innovators bring 
competition to business niches previously monopolized by high quality innovators. By doing so, they reduce the incentives of the 
incumbents to legally oppose entry, effectively improving the returns to subsequent high-quality innovators.

Our results are obtained within a sequential-innovation model of an industry made of many market niches. Successful developers 
of improved versions of the product corresponding to each niche contribute to welfare and appropriate temporary monopoly profits 
as in a standard quality ladder model with limit pricing (Grossman and Helpman, 1991; Aghion and Howitt, 1992). Innovation can be 
of two types, genuine or obvious. Genuine innovations represent an improvement large enough over the state of the art to entitle the 
owner to a valid patent while also being outside the breadth of previous patents in the corresponding niche. In contrast, an obvious 
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$\partial W'(\lambda _d)/\partial L$


\begin {equation*}\frac {\partial W'(\lambda _d)}{\partial L}= \frac {1}{\left ( \Pi +L\right ) } m^{\prime }\left ( \lambda _{d}\right ) <0\end {equation*}


$m_B(\lambda )$


$m_B(\lambda )>m(\lambda )$


$\lambda $


$\sqrt {\Pi (\Pi \alpha ^2+4(p-\alpha ))}>\Pi (2p-\alpha )$


$\alpha > p$


$\mu _1<1$


$\mu _1=1$


$p=\alpha $


$m_B(\lambda )=m(\lambda )$


$\mu _1<1$


$4\Pi (\alpha -p)(p\Pi -1)>0$


$\lambda $


$p\Pi >1$


\begin {align}\label {eq:FEC_w_trolls} [\alpha \mu _{1}+ \left ( 1-\alpha \right ) \lambda \mu _{0}\beta ^T(m)]v(m)=1.\end {align}


$pv=1$


$p$


$v$


$v(m)$


$m$


$v$


$m$


$p$


$\mu _1=1$


$p=\alpha $


$\beta ^T(m)=0$


$\mu _1<1$


\begin {equation*}\alpha \frac { \alpha \mu _{1}+(1-\alpha )\lambda \mu _{0} }{\alpha +(1-\alpha )\lambda \mu _{0}}>\alpha \mu _{1}+\left ( 1-\alpha \right ) \lambda \mu _{0}\left ( \frac { \beta m\alpha \left ( 1-\mu _{1} \right ) (1-\varphi )}{1-\beta +\beta m \left \lbrace \alpha [1 - \varphi (1-\mu _1)] + \left ( 1-\alpha \right ) \lambda \mu _{0} \right \rbrace }\right ).\end {equation*}


$\beta $


$m$


$\beta =m=1$


\begin {equation*}\frac { 1 }{\alpha +(1-\alpha )\lambda \mu _{0}}> \frac { 1-\varphi }{\alpha [1 - \varphi (1-\mu _1)] + \left ( 1-\alpha \right ) \lambda \mu _{0} },\end {equation*}


$\varphi [\alpha \mu _1 +(1-\alpha )\lambda \mu _{0}]>0$
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innovation represents a small inventive step that, under perfect screening and enforcement conditions, would not be enough to either 
obtain a valid patent or to avoid being considered infringers of prior patents in their market niches.

In every period, potential innovators observe market conditions and invest in R&D until the quasi-rents from innovation are 
dissipated. After investment, firms discover whether their product constitutes a genuine or an obvious improvement. Every innovator, 
genuine or obvious, applies for a patent, as is this the only way to appropriate rents. All genuine innovations obtain patents, whereas 
the probability of granting patents to obvious innovations depends negatively on the effort of the patent office in screening them out. 
Patent enforcement is also probabilistic meaning that, although in purity genuine innovation should not be regarded to infringe prior 
patents whereas obvious innovation should, courts can make mistakes along both dimensions (Lemley and Shapiro, 2005; Farrell and 
Shapiro, 2008).1

Innovators face uncertainty on whether their product will reach a market niche monopolized by a prior genuine innovator which 
will oppose to entry by alleging the infringement of its patent rights or a competitive niche where such an opposition does not 
occur. This assumption captures the so-called “tragedy of anticommons” (Heller and Eisenberg, 1998).2 If the innovator lands on a 
monopolized niche, the incumbent goes to court. If the court rules against the incumbent, both firms compete in the same niche, 
driving the prior incumbent’s profits to zero and turning the entrant into the new monopolist (of its incremental product quality 
improvement). If the court rules in favor of the incumbent, the innovator can still enter by negotiating a license. Frictions may preclude 
licensing from taking place, resulting in situations where the innovation goes to waste. If the innovator lands on a competitive niche, 
entry is accommodated.3 Industry dynamics follows from the fact that the successful entry of genuine innovators turns market niches 
into (or maintains them as) monopolized ones, while obvious entry turns them into (or maintains them as) competitive ones.

In this context, we show that when patent enforcement is imperfect (in the sense that incumbents can prevent firms with genuine 
innovations from entering the market) the leniency of the patent grating and enforcement system towards obvious innovations has an 
inverted U-shaped effect on innovation and social welfare. This leniency changes market structure in a way that effectively reduces 
the barriers to entry faced by future innovators. In a counteracting manner, it also reduces the value of the rents that successful 
genuine entrants obtain conditional on entry. Our results show that for low leniency levels the first effect may dominate in promoting 
innovation and increasing welfare, while the second effect tends to dominate thereafter.

Patent licensing plays an important role in this setup. We show that when it is possible without frictions, the leniency towards 
obvious innovators that maximizes innovation and social welfare coincide, as welfare grows proportionally to the rate of technological 
progress. This is not the case if there are frictions that prevent licensing in some instances, in the sense that an incumbent and an 
entering genuine innovator fail to reach an agreement with some probability, resulting in the innovation going to waste. In this 
context it is optimal to foster the entry of obvious innovators beyond the level that maximizes innovation, as there is an extra gain 
from reducing the hurdle faced by future genuine innovators: avoiding the waste of the innovations blocked because licensing fails.

Importantly, these results are not driven by our assumptions on how licensing takes place. Our baseline formulation considers 
the most competition-friendly case, where a genuine entrant that loses in court pays a licensing fee to produce and compete with the 
incumbent, who remains in the market. We also analyze an alternative arrangement where the incumbent that wins in court buys out 
the innovation of the entrant (avoiding competition between the new product and the previous top-quality product). This strategy 
increases the total profits earned in the niche, as it allows the incumbent to monopolize a larger quality differential with respect to 
the highest-quality competing alternative. We show that these higher profits actually increase the incentives to innovate and, yet, 
our main results on the potential desirability of some leniency in patent screening (and the rationale for it) remain qualitatively 
unchanged.4

The mechanism explaining the social value of leniency towards obvious innovations in our baseline model hinges on the assumption 
that incumbents with obvious innovations obtain no profits and, therefore, they have no incentives to defend their patents in court. 
Recent literature, however, has brought attention to the fact that in some instances these patent holders, sometimes denoted as patent 
trolls, might be able to extract a licensing payment from a future entrant using (the threat of) a patent infringement lawsuit. We 
analyze this possibility in a variation of the model in which all incumbents, regardless of the quality of their innovation, pose the 
same legal obstacle to potential entrants. In this case our entry-facilitating mechanism does not operate and innovation is reduced 
relative to the baseline setup. However, some screening leniency towards obvious innovators remains socially desirable when court 
enforcement is imperfect. This occurs because the prospect of becoming a patent troll if the innovation is not genuine also provides 
an incentive to innovate (given the uncertainty about the quality of the innovation when the investment is undertaken).

The article is organized as follows. In the remainder of this section, we discuss the related literature. Section 2 introduces the 
baseline model. Section 3 shows that, for a given time-invariant screening leniency towards obvious innovations, the model displays 
a unique steady-state equilibrium. We provide the comparative statics of such an equilibrium and characterize the socially optimal 
patent screening leniency. Section 4 discusses the effects of static deadweight losses arising from market power, of incumbents able 

1 Other works in which courts make probabilistic rulings include Spier (1994), Daughety and Reinganum (1995), and Landeo et al. (2007). By 
adopting this probabilistic approach, we also abstract away from the traditional patent length and breadth discussion (Scotchmer, 2004).
2 Lemley (2008) argues that, due to the large number of overlapping rights, firms decide to innovate first and deal later with the lawsuits that 

ensue from existent patent holders. This strategy is also supported by the large proportion of patents brought to court that end up being invalidated 
(Allison and Lemley, 1998).
3 As further discussed below, we also consider a variation of the model in which this assumption is relaxed, giving raise to patent trolls.
4 For simplicity, our baseline model abstracts from the static dead-weight loss from market power. However, we also show that our results are 

robust to that. In this case, however, the leniency rate that maximizes social welfare turns out to be lower, as promoting entry further increases 
niche turnover and reduces monopoly power.
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to accumulate innovations, of patent trolling linked to successful obvious innovation, and of licensing prior to litigation. Section 5 
discusses the empirical and policy implications of the analysis and concludes. All proofs are in the Appendix.

Related literature. To our knowledge, this is the first article providing a formal framework to understand the interaction between 
patent screening and enforcement, as well as their impact on innovation and market dynamics. Our analysis builds, however, upon 
several strands of the literature.

In our model, innovation is sequential (or cumulative). The literature on sequential innovation has studied various dimensions 
of patent policy, including patentability requirements (Scotchmer and Green, 1990; O’Donoghue, 1998), patent breadth and length 
(O’Donoghue et al., 1998), forward protection (Denicolò, 2000; Denicolò and Zanchettin, 2002), or lack of protection (Bessen and 
Maskin, 2009). This literature has also covered aspects such as antitrust implications (Segal and Whinston, 2007), optimal buyouts 
schemes (Hopenhayn et al., 2006), growth and industry dynamics (Denicolò and Zanchettin, 2014), and product-market competition 
(Marshall and Parra, 2019). We add to this literature by exploring the dynamic trade-offs that shape the interaction between patent 
screening and enforcement.

Our contribution is also related to the literature on entry efficiency and IPRs. Patent screening and enforcement limit appropri-
ability in two ways: affecting the duration of the incumbency status (as in O’Donoghue et al., 1998) and acting as an entry barrier to 
future innovations (Gilbert and Newbery, 1982). We show that these mechanisms are in tension, making imperfect patent screening 
desirable. In this respect, we complement the analysis of Parra (2019), which studies the optimal patent design when market structure 
is endogenously determined by (an exogenous) patent strength.

We also add to the literature that endogenizes the effective strength of patent rights. Caillaud and Duchêne (2011) study how 
congestion at the patent office leads to poorer screening, inducing low-quality innovators to apply for a patent. Atal and Bar (2014) 
explore the equilibrium consequences on R&D, patent quality, and welfare of introducing a two-tier patent system discriminating on 
innovation quality. Schankerman and Schuett (2021) study various policy instruments, such as screening intensity and screening fees, 
in a framework where patent challenges emerge endogenously, and court rulings are perfect. Picard and van Pottelsberghe de la Pot-
terie (2013) analyze the interaction between patent screening and enforcement in a static framework. We complement previous 
contributions by uncovering the dynamic implications of imperfect patent enforcement on the optimal patent screening policy.

Finally, our research is also related to the debate among US scholars on whether the patent office has been “rationally ignorant” 
(Lemley, 2001; Lemley and Sampat, 2008) or “irrationally ignorant" (Frakes and Wasserman, 2019) when devoting limited resources 
to the review of patent applications, implying the grating of many invalid patents. Such a debate is based on comparing the direct costs 
of ex ante screening with the direct costs of ex post litigation. In our paper we abstract from those costs and identify an innovation 
enhancing effect associated with the presence of invalid patents that may justify the social desirability of not having a full screen-out 
of invalid patents by the patent office when patent enforceability is imperfect.

2.  The model

Consider a discrete-time infinite-horizon model of innovation in an industry comprised of a measure-one continuum of business 
niches. Time is denoted by 𝑡 and agents’ discount factor is 𝛽 < 1. Each niche has an incumbent producer, protected by a patent, 
supplying the highest quality product available in that niche. In each period, potential new producers invest in R&D aiming to 
improve the quality of existing products and to enter a niche. As further explained below, successfully accessing the market requires 
obtaining a patent with which to defend the innovation from future imitators, as well as surmounting the opposition of incumbents 
claiming patent infringement. A patent office imperfectly screens the innovation’s quality and decides whether to grant a patent, 
while decisions on patent infringement lawsuits are made by evidence-based courts with incomplete information about the quality 
of the innovation.

The Industry. There is a measure-one continuum of homogeneous infinitely-lived consumers purchasing at each business niche. For 
each niche product, consumers have a unit-inelastic demand from which they derive utility of the form 𝑈𝑡 = 𝑄𝑡 − 𝑃𝑡, where 𝑄𝑡 is 
the product’s quality and 𝑃𝑡 its price. Utility is additive across dates and niches. Within a niche, firms compete in price and through 
innovation in a quality-ladder framework. So, 𝑄𝑡 denotes the best available product quality at date 𝑡 and 𝑃𝑡 the equilibrium price 
charged for such a quality. Production costs are assumed to be zero.

Innovators. In every period, an endogenous mass 𝑚𝑡 ∈ [0, 1] of potential innovators undertake an R&D investment with cost normal-
ized to one to obtain a new product. Innovation is subject to two sources of uncertainty. First, it might be genuine or obvious with 
exogenous probabilities 𝛼 and 1 − 𝛼, respectively. Second, it is untargeted, in the sense that there is uncertainty regarding over which 
of the existing products it will improve upon. We capture this by assuming that each innovation may end up challenging any of the 
existing niches with equal probability.5

5 The assumption that innovation is untargeted implies that innovation undertaken by incumbents would be no different from innovation un-
dertaken by outsiders, since incumbents would have a zero probability of innovating into their own niche. Our analysis abstracts, however, from 
incumbents’ capability to undertake innovation directed to their own niche, an issue which would give rise to trade-offs and complexities which 
cannot be discussed within the limited length of this paper.
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A genuine innovation constitutes a quality improvement 𝜋 > 0 upon the incumbent product. When allowed to reach the market 
with the protection of a patent, the owner of a genuine innovation becomes the new incumbent, effectively monopolizing the cor-
responding niche. Price competition with the previous incumbent and the unit-demand assumption imply that when the innovator 
successfully enters, it earns a per-period profit flow of 𝜋 while monopolizing the new top-quality product.6

An obvious innovation, in turn, provides a quality improvement of negligible size which, for simplicity we assume to be 0. This 
means that the new product is an almost perfect substitute for the previous incumbent product. If allowed to access the market, an 
obvious innovator competes away the rents of the existing incumbent and, as the new incumbent, obtains per-period profits of 0.

Obtaining a patent. Innovators can apply for a patent at a cost assumed to be zero. We assume that holding a patent is essential 
for innovators to profit from their innovations because, otherwise, other producers would imitate the leading quality and compete 
away any rents, making market entry unprofitable.7 With negligible patent application and entry costs, applying for a patent and 
attempting to enter the market if the application succeeds is the innovators’ optimal decision regardless of their innovation’s quality.8

Patents are granted by the patent office after a screening process. The patentability of an innovation requires usefulness, novelty, 
and non-obviousness. In our quality-ladder formulation, we assume that genuine innovations satisfy the three requirements, while 
obvious innovations fail on their non-obviousness, since they are too similar to the previous top quality. We assume that the patent 
office always successfully identifies genuine innovations, granting patents to them, while wrongly granting patents to obvious innova-
tions with probability 𝜆. So 𝜆 measures the patent office’s leniency towards obvious innovations. This leniency rate can be interpreted 
as the result of an insufficient search for prior art or an overestimation of the distance to such an art by the patent office.

Attempted entry and patent enforcement. We assume that the resulting mass of new innovators granted a patent at date 𝑡, [𝛼 + (1 −
𝛼)𝜆]𝑚𝑡, gets uniformly distributed over the existing niches so that all have the same probability of being challenged by just one new 
innovator.9 Leading incumbent firms in each niche lose their status whenever a subsequent innovator is allowed to access the market. 
An incumbent can respond to attempted entry by suing the potential entrant for the infringement of its patent. We assume that 
incumbents with genuine innovations sue their challengers, aiming to protect their profits 𝜋. In contrast, incumbents with obvious 
innovations accommodate entry without litigation, thus allowing the innovators to become the new incumbents.10

Courts make independent probabilistic evidence-based decisions on each patent infringement case. Courts rule in favor of obvious 
and genuine innovators with exogenous probabilities denoted by 𝜇0 and 𝜇1, respectively. Due to the sequential nature of innovation, 
court decisions boil down to assessing the size of the inventive step of the corresponding innovations relative to the incumbent’s 
technology. Absent any noise in the assessment, genuine innovations should be regarded outside the breadth of the incumbent’s 
patent, implying 𝜇1 = 1, while obvious innovations should be regarded within that breadth, implying 𝜇0 = 0. Reflecting noise in the 
court examination process, we assume instead that patent enforcement is imperfect and 0 < 𝜇0 < 𝜇1 < 1.

Licensing. If the court rules that an innovation infringes the incumbent’s patent, the incumbent and the infringer can engage in an 
ex-post licensing negotiation with probability 1 − 𝜑, where 𝜑 ∈ [0, 1] captures exogenous frictions (e.g. financial constraints of the 
infringer) that prevent reaching a mutually beneficial agreement. We model the negotiation assuming that, at this point, both the 
incumbent and the infringer know the quality of the innovation, and the incumbent makes a take-it-or-leave-it offer to license its 
technology to the infringer who, if accepts it, becomes the new incumbent monopolist, exploiting its own innovation.11 If the licensing 
offer is rejected or the negotiation does not take place, the incumbent keeps its status, and the infringer’s innovation goes to waste.

Notation conventions. To simplify terminology in what follows we refer to niches monopolized by a genuine innovator as monopolized 
niches and to those monopolized by an obvious innovator as competitive niches. We will denote the proportion of monopolized niches 
by 𝑥𝑡 ∈ [0, 1]. The crucial difference between both types of niches is the hurdle that a subsequent innovator faces when attempting to 
enter them.

6 In equilibrium, genuine monopolists charge a price 𝑃𝑡 = 𝜋 for their product capturing as profit the full quality improvement of their innovations, 
and generating no deadweight loss. Section 4.1 discusses an alternative environment where firms invest in cost-reducing innovations, and consumers’ 
demand is not unit-inelastic. In that case, the exercise of market power implies a deadweight loss, altering the welfare implications but not our main 
results.
7 The model regards patents as the only means to sustain a technological lead. In practice, firms may profit from their innovations using first-mover 

advantages and trade secrets. The former are prevalent in markets with switching costs, network externalities, or reputation. The latter presents an 
unexplored trade-off in the context of sequential innovation: avoiding making the developed knowledge public versus a weaker position to enter 
and to defend the market from entry.
8 Thus, it is irrelevant whether the innovator learns the quality of the innovation before or after accessing the market. If the patent application 

and entry costs were not negligible and the innovator learned the quality of the innovation after accessing the market, the strategy would remain 
optimal provided that 𝜋 is large enough.
9 This formulation simplifies the analysis by abstracting from entry congestion—as found in the literature on random search—and patent races 

(e.g., Loury, 1979; Lee and Wilde, 1980).
10 This could be justified assuming that innovators would succeed in persuading courts about the invalidity of the obvious incumbent’s patent, 
voiding its infringement allegations against potential entrants, and making the legal defense of its incumbency unprofitable. In Section 4.3 we 
analyze the alternative situation in which obvious incumbents can engage in patent trolling to extract rents from subsequent innovators.
11 In Section 4.4 we show the robustness of our results to the situation with asymmetric information in which only the infringer observes the 
realized quality of its innovation when this negotiation takes place.
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Fig. 1. Game tree in the baseline model. The tree represents possible contingencies from the perspective of an entering innovator (𝐸) in period 
𝑡. Pairs at the terminal nodes describe the payoffs of the entering innovator and, if applicable, the incumbent (𝐼) of the niche in which entry is 
attempted, in this order. Labels on branches describe probabilistic outcomes or decisions at each node.

Obviously, incumbents in competitive niches extract zero value from their position in the market, whereas an incumbent in a 
monopolized niche obtains an endogenous value 𝑣𝑡 derived below.

Timing. Fig. 1 summarizes the timing of events in a given period from the perspective of an entering innovator (labeled 𝐸) that faces 
the potential legal opposition of an established incumbent (labeled 𝐼). In the industry as a whole, there is an initial stage in which an 
endogenous mass 𝑚𝑡 of potential innovators invest in R&D in order to develop an innovation. For any of these innovators, the quality 
of their innovation is then realized, after which the patent office determines whether to grant a patent or not. Innovators that receive 
a patent attempt to enter their assigned niches. When the niche is monopolized by a prior genuine innovator, litigation ensues, and 
a court dictates whether the innovation infringes the incumbent’s patent or not. Finally, if the court rules in favor of the incumbent 
and the innovation is genuine, ex-post negotiation on the licensing of the incumbent’s patent to the entrant may ensue.12

As reflected in the terminal nodes of the tree in Fig. 1, the sequence of events ends up with either the innovator replacing some 
previous incumbent or the incumbent preserving its prior position. The final outcomes across possible contingencies differ in terms of 
the turnover or not of the leading producer within each niche, whether the innovation is exploited or goes to waste, and the resulting 
monopolized versus competitive status of the niche. Below we analyze how these outcomes influence the innovation flow (𝑚𝑡), the 
proportion of monopolized niches (𝑥𝑡), the probability with which an innovation succeeds in accessing the market (𝑝𝑡), the value of 
monopolist incumbency (𝑣𝑡), and the welfare associated with the innovation process (𝑊𝑡).

3.  Equilibrium of the industry

We can recursively characterize the value of an incumbent monopolist at date 𝑡 using the following Bellman-type equation: 

𝑣𝑡 = 𝜋 + 𝛽{1 − 𝑚𝑡+1[(1 − 𝛼)𝜆𝜇0 + 𝛼𝜇1]}𝑣𝑡+1. (1)

12 The negotiation when the innovation is obvious does not make sense since the infringer would not be willing to pay more than zero to enter the 
niche.
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This value equals the sum of the current flow of monopoly profits 𝜋 and the discounted value of having the possibility of maintaining 
the monopoly position one period later, 𝛽𝑣𝑡+1. The incumbent has the opportunity to retain its monopoly position unless an innovator 
attempts to enter the niche and wins in court. Innovation at each niche happens with probability 𝑚𝑡+1 and is of obvious or genuine 
quality with probabilities 1 − 𝛼 and 𝛼, respectively. The terms in 𝜆𝜇0 and 𝜇1 account for the compounded probabilities with which 
innovations of each quality obtain both a favorable assessment by the patent office and a positive court ruling.

Importantly, 𝑣𝑡 is independent of whether licensing takes place or not after a genuine innovator is declared to infringe the incum-
bent’s patent and, hence, independent of 𝜑. To see this, notice that if the incumbent confronts an infringing genuine innovator at t+1, 
with probability 𝜑 a friction precludes licensing, so the incumbent remains in the niche, with continuation value 𝑣𝑡+1. With probability 
1 − 𝜑, the incumbent and the infringer negotiate for the latter to become the new incumbent. Since entry leads the incumbent to earn 
zero profits thereafter, it requests a payment of at least 𝑣𝑡+1 to give up its incumbency. On the other hand, the infringer is willing to 
pay at most the value of being an incumbent in the niche. Hence, 𝑣𝑡+1 is the only feasible licensing fee (and the incumbent’s payoff) 
independently of whether licensing occurs or not. This also explains why if the infringer cannot pay 𝑣𝑡+1 (e.g., because it has no liquid 
wealth and borrowing against 𝑣𝑡+1 is limited by incentive issues), licensing will not take place and its innovation will go to waste.13

The transitions across the two classes of niches, contingent on each possible realization of the relevant uncertainty in each period 
are summarized in Fig. 1. Accordingly, the law of motion governing the evolution of the proportion of monopolized niches, 𝑥𝑡, 
between 𝑡 and 𝑡 + 1 can be described as follows: 

𝑥𝑡+1 = 𝑥𝑡[1 − 𝑚𝑡+1(1 − 𝛼)𝜆𝜇0] + (1 − 𝑥𝑡)𝛼𝑚𝑡+1, (2)

where the first term represents the proportion of niches already monopolized at 𝑡 that remain monopolized at t+1. These are all the 
monopolized niches that do not experience the successful entry of obvious innovators since only that entry turns them competitive. 
The second term in the right hand side of (2) measures the previously competitive niches that become monopolized due to the entry 
of genuine innovators.

The equilibrium innovation flow 𝑚𝑡 is determined by a free-entry condition. Developing an innovation has a cost normalized to 1. 
Innovation leads to a monopolistic incumbency of value 𝑣𝑡, only if innovation is genuine and the potential opposition of the previous 
incumbent is surmounted; otherwise the innovator obtains zero. Thus, an innovator obtains the value 𝑣𝑡 with probability 

𝑝𝑡 = 𝛼(1 − 𝑥𝑡 + 𝑥𝑡𝜇1). (3)

That is, the innovation has to be genuine and the firm must either land in a competitive niche or in a monopolized niche and 
innovator wins in court, which occurs with probability 𝜇1. The free entry of innovators implies that in an equilibrium involving an 
interior innovation flow 𝑚𝑡 ∈ (0, 1) we must have 

𝑝𝑡𝑣𝑡 = 1, (4)

so that the innovator obtains zero net present value from the investment. As in the case of 𝑣𝑡, licensing frictions do not affect this 
free-entry condition since, as already explained, irrespectively of reaching a deal or not with the incumbent, the genuine entrant is 
left with a zero payoff from entry if losing in court.

3.1.  Steady-state equilibrium

Our analysis focuses on the interior-innovation equilibrium of the model characterized by equations  (1)–(4). They determine four 
key endogenous variables at each date 𝑡: 𝑥𝑡, 𝑝𝑡, 𝑚𝑡, and 𝑣𝑡. To ease notation, we denote the steady-state value of these variables simply 
by 𝑥, 𝑝, 𝑚, and 𝑣, respectively.

Lemma 1. The model has a unique steady-state equilibrium with an interior innovation flow 𝑚 ∈ (0, 1) if and only if 𝜋 ∈
(

𝜋, 𝜋 + 𝛽𝑥−1
)

,
where 𝜋 = (1 − 𝛽)∕𝑝. This equilibrium is given by 

𝑥 = 𝛼
𝛼 + (1 − 𝛼)𝜆𝜇0

, (5)

𝑝 = 𝛼
𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0
𝛼 + (1 − 𝛼)𝜆𝜇0

, (6)

𝑚 =
𝜋𝑝 − (1 − 𝛽)

𝛽
[

𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0
] , (7)

𝑣 = 1
𝑝
. (8)

13 In Section 4.2, we consider the case in which the incumbent monopolist can buy out the genuine innovation from the infringer, avoiding that it 
goes to waste. We exclude this possibility in the baseline case studied here because the accumulation of monopoly power on subsequent innovations 
by an incumbent might be questionable from an anti-trust perspective.
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In this equilibrium, innovation flows in until the expected value of developing an innovation, 𝑝𝑣, equals the unit research cost. 
Intuitively, a higher innovation flow increases the speed at which successful innovators get replaced by subsequent ones, reducing the 
value of incumbency. A higher value of the profit parameter 𝜋 has a positive impact on the equilibrium value of 𝑚, while it does not 
affect any of the other equilibrium variables highlighted in Proposition 1. This means that the impact of 𝜋 on the value of incumbency 
is fully offset by the change in the innovation flow 𝑚, without altering the steady state values of the proportion of monopolized niches 
𝑥 or the probability of successful entry 𝑝, whose steady-state values are fully determined by parameters describing the proportion of 
genuine and obvious innovations, 𝛼, the leniency of the patent office towards obvious innovations, 𝜆, and the rates at which courts 
rule in favor of innovations of each type, 𝜇0 and 𝜇1.14

It is also worth noting that parameters 𝜆 and 𝜇0 always appear in combination, as 𝜆𝜇0, which represents the rate at which obvious 
innovations, if landing in a monopolized niche, succeed in replacing the incumbent monopolist. Notice also that the parameter 𝜑
capturing frictions in licensing negotiations between incumbent monopolists and infringing genuine innovators does not affect any 
of the variables highlighted in Proposition 1. However, 𝜑 will have an impact on the welfare calculations below, since it affects the 
probability with which infringing genuine innovations go to waste.

Assumption 1. We assume 𝜋 ∈
(

𝜋, 𝜋 + 𝛽𝑥−1
) for every relevant value of the leniency rate 𝜆.

Assumption 1 restricts the profit parameter 𝜋 so that the steady-state equilibrium of the model involves an interior entry flow 
𝑚 ∈ (0, 1) for every relevant value of the policy parameter 𝜆. By fully differentiating Eqs. (1)–(4), we obtain the comparative statics 
of the steady-state equilibrium summarized next.

Corollary 1. The effect of marginal changes in the parameters on the steady-state equilibrium variables 𝑥, 𝑝, 𝑚, and 𝑣 have the signs shown 
in the following table:

𝜋 𝛽 𝛼 𝜆 𝜇0 𝜇1 𝜑
𝑥 0 0  +  –  – 0 0
𝑝 0 0  +  +  +  + 0
𝑚  +  +  + ? ?  + 0
𝑣 0 0  –  –  –  – 0

Besides the already commented impact of parameters 𝜋 and 𝜑, the table shows that the effects of the discount factor 𝛽 are 
qualitatively identical to those of the profit parameter 𝜋. We now turn to the effect of the remaining parameters on each of the 
equilibrium variables.

The proportion of niches operating under monopoly, 𝑥, is increasing in the probability that an innovation is genuine, 𝛼, and 
decreasing in the rate at which obvious innovations succeed in accessing monopolized niches, 𝜆𝜇0. Intuitively, the higher the prob-
ability that a firm with an obvious patent arises and is allowed to produce, (1 − 𝛼)𝜆𝜇0, the more often monopolist incumbents lose 
their positions. In contrast, the probability with which genuine innovators succeed in court vis-a-vis an incumbent patent holder, 𝜇1, 
does not affect 𝑥 since the niche will remain in any case monopolized by either the prior incumbent or the genuine innovator.

Due to the free-entry condition, the value of incumbency 𝑣 is inversely related to the probability with which innovators profitably 
reach the status of new monopolists, 𝑝. Such probability increases in the proportion of innovations that are genuine, 𝛼, and the 
probability that courts rule in favor of genuine innovators when confronting a monopolist incumbent, 𝜇1. More surprisingly, 𝑝 is 
also increasing in the rate at which obvious innovations reach monopolized niches, 𝜆𝜇0, even if this does not give them the status 
of incumbent monopolists. This effect occurs because this entry reduces the proportion of monopolized niches 𝑥 and, with it, the 
probability that a genuine innovator faces opposition from an incumbent monopolist. This pro-innovation effect of the success of 
obvious innovation explains the ambiguous sign attached to the impact of 𝜆𝜇0 on the innovation flow, which we will further analyze 
below.

The effects of other parameters on the innovation flow are standard. Together with the profit parameter 𝜋 and the discount factor 
𝛽, an increase in the courts’ probability of ruling in favor of a genuine innovator, 𝜇1, or in the probability of obtaining a genuine 
innovation, 𝛼, also fosters the investment in innovation, as it increases the probability of profitably reaching the market.

The next proposition fully characterizes the impact of the patent office’s leniency rate 𝜆 on the innovation flow.15

Proposition 1  (Screening leniency promotes innovation). The relationship between the innovation flow 𝑚 and the patent office’s leniency 
rate 𝜆 is single-peaked. Specifically, there exists a threshold 𝜇1 = 1∕

√

𝛼Π ∈ (0, 1), where Π ≡ 𝜋∕(1 − 𝛽), such that the innovation-maximizing 
leniency rate involves: i) full screening, 𝜆𝑚 = 0, if 𝜇1 ≥ 𝜇1, and ii) screening leniency with 

𝜆𝑚 =
𝛼
(

(1 − 𝜇1)
√

𝛼Π − (𝛼Π𝜇1 − 1)
)

(1 − 𝛼)𝜇0(𝛼Π − 1)
> 0, (9)

if 𝜇1 < 𝜇1. 

14 Throughout the paper we interpret having 𝜇0 > 0 and 𝜇1 < 1 as saying that courts are imperfect. The imperfection might come from pure mistakes 
or from systematic biases (as in Jacobsmeyer, 2018).
15 As previously noted, a parallel result could be established in terms of the parameter 𝜇0 as it always enters the relevant expressions multiplied 
by and together with 𝜆
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Note: Parameter values are 𝛼 = 0.1, 𝜋 = 0.3, 𝛽 = 0.98—implying ̂𝜇1 = 0.816—and 𝜇0 = 0.25.

Fig. 2. Impact of screening leniency on innovation. The solid line depicts a case (with 𝜇1 = 0.75) in which the innovation flow 𝑚(𝜆) is maximized 
under strictly positive screening leniency, 𝜆 > 0. The dashed line shows the case with 𝜇1 = 𝜇1 = 0.816 in which full screening maximizes innovation.

This result uncovers an interesting non-monotonic relationship between innovation and the leniency rate. The main driver of this 
result is that a change in 𝜆 engenders two effects with opposite signs. On the one hand, a higher leniency rate reduces, as noted 
above, the proportion of monopolized niches 𝑥 in which genuine innovators are challenged in court, reducing the innovators’ hurdle 
to successfully enter the market. On the other hand, a higher leniency decreases the value of incumbency, 𝑣, increasing the probability 
that successful innovators once established as monopolist incumbents see their rents competed away by an entrant with an obvious 
innovation.

When the probability of success in court of an entrant with a genuine innovation, 𝜇1, is close to one, the first effect becomes 
irrelevant (since incumbents’ opposition is futile against genuine innovators), and innovation monotonically decreases with 𝜆. In 
contrast, when 𝜇1 is sufficiently low, the entry-facilitating effect associated with having a lower proportion of monopolized niches 
dominates for lower values of the leniency rate giving rise to an interior innovation-maximizing value of 𝜆. This is illustrated in Fig. 2. 
As we will show next, this result has important implications for the discussion on the socially optimal level of patent-office leniency 
towards obvious innovations 𝜆 in contexts where the patents of prior genuine innovators impose a significant hurdle (a low 𝜇1) to 
the successful market access of subsequent genuine innovators.
Corollary 2.  When 𝜇1 < 𝜇1, 𝜆𝑚 decreases in both 𝜇0 and 𝜇1. 
At entry-maximizing leniency, both genuine and obvious entrant success rates are substitutes for leniency. Since only obvious entrants 
with a patent can turn a niche competitive, a higher success rate in court, 𝜇0, can be compensated with a smaller leniency, creating 
the same rate of competitive niche creation and the same entry rate. The pro-competitive effect of allowing obvious innovations is 
only required to compensate for the mistake of not allowing genuine entrants. As the success rate of genuine entrants increases, 𝜇1, 
less leniency is needed.

3.2.  Optimal patent screening

The leniency rate 𝜆 affects welfare through the innovation flow 𝑚 and the rate at which genuine innovations access the market, 
allowing society to benefit from the product quality improvement 𝜋 that they originate. In our quality-ladder model, those improve-
ments become permanent welfare gains either in the form of producers’ profits (while the genuine innovators operate as incumbent 
monopolists) or consumers’ surplus (once those innovators lose their incumbency).

The present value of the social welfare created by a genuine innovation, conditional on market access, is given by Π. The probability 
with which an innovation is genuine and obtains access the market is, in turn, given by 𝛼[1 − 𝑥(1 − 𝜇1)𝜑] since this access only fails 
if the innovation is considered to have infringed an incumbent’s patent and the subsequent licensing negotiations fail. The total 
per-period net addition to welfare associated with the innovation flow in steady-state can be expressed as 

𝑊 (𝜆) = 𝑚(𝜆)
{

𝛼
[

1 − 𝑥(𝜆)(1 − 𝜇1)𝜑
]

Π − 1
}

, (10)

where we are making explicit the dependency of equilibrium variables 𝑚 and 𝑥 on 𝜆.16 Assumption 1 implies that the expression in 
braces in (10) is always positive.17 Thus, welfare is positive.

16 We can obtain the same expression for 𝑊  as the sum of the additions of consumer surplus, Δ𝐶𝑆, and producer surplus, Δ𝑃𝑆, that occur in every 
period. We then have 𝑊 = Δ𝐶𝑆 + Δ𝑃𝑆, where

Δ𝐶𝑆 = 𝑚(𝜆)𝑥(𝜆)
{

𝛼[𝜇1 + (1 − 𝜇1)(1 − 𝜑)] + (1 − 𝛼)𝜆𝜇0
}

Π = 𝑚(𝜆)
{

𝛼
[

1 − 𝑥(𝜆)(1 − 𝜇1)𝜑
]

Π
}

,

since consumers receive the surplus from prior genuine innovations every time the incumbent of a monopolized niche loses its incumbency. On 
the other hand, in steady state, the fraction of monopolized niches remains constant and, hence, also the overall surplus appropriated by producers 
conditional on entry. However, innovators pay an aggregate cost 𝑚(𝜆) per period. So Δ𝑃𝑆 = −𝑚(𝜆), which combined with the expression for Δ𝐶𝑆
implies (10).
17 Specifically, Assumption 1 implies 𝜋 > (1 − 𝛽)𝑝−1. Replacing the profit lower-bound into the square brackets we obtain 𝛼[1 − 𝑥(𝜆)(1 − 𝜇1)𝜑)

]

Π −
1 > 𝛼(1 − 𝜇1)(1 − 𝜑)∕[𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0] ≥ 0.
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The derivative of the welfare function with respect to the leniency rate 𝜆 is 
𝑊 ′(𝜆) = 𝑚′(𝜆)

{

𝛼
[

1 − 𝑥(𝜆)(1 − 𝜇1)𝜑
]

Π − 1
}

− 𝛼(1 − 𝜇1)𝜑Π𝑚(𝜆)𝑥′(𝜆). (11)

Leniency affects welfare through two channels: the innovation flow, 𝑚(𝜆), and the probability of landing in a monopolized niche, 
𝑥(𝜆), since for 𝜑 > 0 that implies a positive probability that the genuine innovation goes to waste. When this second entry-facilitating 
channel is not socially relevant (𝜑 = 0), maximizing welfare is equivalent to maximizing the innovation flow, and the results in 
Proposition 1 are directly applicable to the socially optimal leniency rate, which coincides with 𝜆𝑚.

When the entry-facilitating channel is relevant (𝜑 > 0), Corollary 1 implies 𝑥′(𝜆) < 0, making the second term in (11) overall 
positive, and pushing, other things equal, towards a higher socially-optimal leniency rate. Reducing the proportion of monopolized 
niches beyond the level that maximizes the innovation flow, further reduces the chances of confronting an incumbent monopolist 
that, by succeeding in court, would prevent a genuine innovation from being implemented.

When the innovation-maximizing leniency rate is just zero, the second effect may not be strong enough to make the welfare-
maximizing leniency rate strictly positive (this is clearly the case from 𝜇1 → 1, when the second term in (11) approaches zero). In 
contrast, when 𝜆𝑚 is strictly positive, the entry-facilitating channel makes the socially optimal leniency rate strictly higher than 𝜆𝑚.
Proposition 2  (Screening leniency enhances welfare). Social welfare is maximized at a unique value of the patent office’s leniency 
rate 𝜆𝑤(𝜑). Without licensing frictions, this rate equals the innovation-maximizing rate 𝜆𝑚. Otherwise, the welfare-maximizing leniency rate 
𝜆𝑤(𝜑) is weakly larger than 𝜆𝑚. In particular, if 𝜆𝑚 is interior, then the welfare-maximizing rate entails a strictly larger screening leniency, 
(𝜆𝑤(𝜑) > 𝜆𝑚 > 0), for 𝜑 > 0. Moreover, the optimal leniency increases as the licensing frictions increase. 

So far we have assumed that patent screening is costless. If screening were costly and, in particular, if the screening cost function 
satisfied Inada-type conditions with respect to the precision rate 1 − 𝜆, the optimal leniency rate would always be positive. Proposi-
tion 2 goes further by saying that, even if screening is costless, there may be circumstances (specifically if 𝜇1 is sufficiently low) in 
which granting patents to some obvious innovations enhances welfare.18

Propositions 1 and 2 point to two complementary forces behind this result. Both forces originate from how the access of obvious 
innovators to the market reduces the proportion of monopolized niches 𝑥 and, through them, the entry hurdle of subsequent genuine 
innovators when 𝜇1 < 1. The first force, by reducing such a hurdle, can boost innovation (for 𝜇1 < 𝜇1). The second force, which is only 
relevant in the presence of licensing frictions (𝜑 > 0), by reducing 𝑥 it additionally reduces the proportion of genuine innovations 
that go to waste (arising because a license from the incumbent monopolist is not obtained after being found to infringe its patent). 
Thus, a positive level of screening leniency may be socially optimal even with 𝜑 = 0, and it increases with 𝜑.

These implications of our analysis can be seen as the result of a model à la Dixit and Stiglitz (1977) that features insufficient 
entry due to the innovators’ inability to fully appropriate the value of their innovations. In our model, genuine innovators may fail 
to appropriate the value of investment either because of they are blocked by the patent rights of previous innovators or because 
they might be displaced by subsequent entrants. Protecting incumbents against genuine entrants would damage the appropriability 
of innovations’ value through the first channel but increase it through the second channel. Due to discounting, however, the first 
channel dominates, making it socially optimal to have 𝜇1 = 1, as in the standard sequential innovation setup (e.g., Hopenhayn et al., 
2006).

When 𝜇1 = 1, no hurdle to the market access of genuine innovations exists and the entry-facilitating motive to be lenient towards 
obvious innovators disappears. Hence, the optimal 𝜆 becomes zero (or equivalently, the optimal 𝜇0 becomes zero). More generally, 
if the barrier-to-entry effect is sufficiently small (𝜇1 → 1), the optimal screening strategy consists of thoroughly screening out low-
value innovations, consistent with the classical results in Green and Scotchmer (1995) and O’Donoghue et al. (1998). The following 
corollary states these points.
Corollary 3. Social welfare is maximized by setting no hurdle to genuine innovations, 𝜇1 = 1. In that case, it is also socially optimal to fully 
weed out obvious innovations either with full ex-ante screening, 𝜆 = 0, or by blocking them in court, 𝜇0 = 0. 

In contrast, if courts are fallible (𝜇1 < 1), the presence of incumbent monopolists acts as a barrier-to-entry for genuine innovators. 
In this case, for the entry-facilitating reasons already explained at length above, it can be socially optimal that both the patent office 
and courts are lenient towards obvious innovations (𝜆 > 0 and 𝜇0 > 0).

4.  Robustness and extensions

In this section, we develop several extensions of the baseline model and show that the main insights from our previous analysis 
are robust to these changes. First, we consider the case in which innovation reduces production costs (rather than improving product 
quality) and demand is not unit-inelastic, in which case the exercise of monopoly power entails a static inefficiency. The second 
extension develops the case in which incumbents can buy infringing innovations, preventing them to go to waste but also extending 
their monopoly power over multiple steps in the quality ladder. The third extension considers the situation in which successful 
obvious innovators can act as patent trolls. That is, they can use the threat of an infringement court ruling against subsequent 
genuine innovators as a way to extract rents. The fourth and final extension analyzes the effects of asymmetric information as well 
as the usage of out-of-court settlements.

18 This is in contrast with the result in the setup of Farrell and Shapiro (2008), where the leniency of the patent office generates weak patents—
similar to our obvious innovations—which are detrimental to welfare.
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Fig. 3. Monopoly profits and deadweight losses with cost-saving innovations. This figure identifies as areas under the relevant demand curve 
the profits (𝜋) and deadweight losses (𝓁) associated with two subsequent successful genuine cost-saving innovations. The innovator reducing the 
marginal cost from 𝑧0 to 𝑧1, monopolizes the market by selling at price 𝑝 = 𝑧0 (the cost of the next most efficient producer), generating profits A 
and deadweight losses B. Likewise, the innovator reducing the marginal cost to 𝑧2 sells the product at price 𝑧1, generating profits 𝐶 +𝐷 = 𝐴 and 
deadweight losses 𝐸 = 𝐵.

4.1.  Cost-saving innovations and static inefficiency

The baseline model considers quality-improving innovations in an environment where demand is inelastic. In that context, genuine 
innovators during their incumbency as monopolists extract all the surplus from consumers, avoiding static deadweight losses and 
simplifying the welfare analysis. We now provide a tractable framework, inspired in Marshall and Parra (2019), that extends our 
analysis to a case of cost-reducing innovations where the exercise of market power involves welfare losses.

In this setup, there is also a continuum of niches of size 1. In each niche, the good produced is homogeneous. Firms compete 
in prices, facing a demand function 𝑞(𝑝) = 𝑎∕𝑝. Each genuine innovation decreases the existing marginal cost by a proportion 1 − 𝛿
where 𝛿 ∈ (0, 1). That is, if 𝑧 represents the baseline marginal cost, after 𝑖 genuine innovations the marginal cost becomes 𝑧𝑖 = 𝛿𝑖𝑧.

Lemma 2. In a sequential cost-saving innovations setup, the profit flow 𝜋 and the deadweight loss 𝓁 generated by a genuine innova-
tion are independent of the baseline marginal cost 𝑧 and the cumulative number of innovations 𝑖. They are equal to 𝜋 = 𝑎(1 − 𝛿) and 
𝓁 = 𝑎

[

ln(𝛿−1) − (1 − 𝛿)
]

> 0, as illustrated in Fig. 3. 
Under this formulation, because profits are invariant to the cumulative number of innovations, firm behavior and the industry 

dynamics described in Section 3 go through without alterations, generating the same equilibrium conditions and expressions for the 
steady-state equilibrium variables reported in Lemma 1.

The expression for the welfare function, however, needs to be revised to account for the deadweight loss 𝓁. In particular, the 
main difference with respect to the baseline model is that the successful access of any innovator to a monopolized niche converts the 
deadweight loss 𝓁 into consumer surplus. Thus, social welfare increases by 𝓁 on a permanent basis. The resulting revised expression 
for social welfare is provided in the following lemma.
Lemma 3. Social welfare in the cost-saving innovations setup can be written as 

𝑊 = 𝑚(𝜆)
{

𝛼[1 − 𝑥(𝜆)(1 − 𝜇1)𝜑](Π + 𝐿) − 1
}

, (12)

where 𝐿 ≡ 𝓁∕(1 − 𝛽). 
The new term 𝐿 in 𝑊  captures the gain of consumer surplus associated with the removal of prior monopoly power due to the 

successful market entry of genuine and obvious innovators. Expression (12) coincides with (10) when 𝐿 = 0.19 The next proposition 
shows the implications of the presence of this deadweight loss for the socially optimal leniency towards obvious innovations.
Proposition 3  (Optimal leniency and static inefficiency). The unique welfare maximizing leniency rate, 𝜆𝑑 (𝜑,𝐿), i) is contained in 
the interval [𝜆𝑚, 𝜆𝑤(𝜑)]; ii) equals the innovation-maximizing leniency rate, 𝜆𝑚, when there are no licensing frictions (𝜑 = 0) or genuine 
innovators are always allowed by courts (𝜇1 = 1); iii) strictly exceeds the innovation-maximizing rate (𝜆𝑑 (𝜑,𝐿) > 𝜆𝑚) when 𝐿 > 0 and the 
innovation-maximizing rate entails screening leniency, 𝜆𝑚 > 0; iv) converges to the welfare-maximizing leniency rate without static inefficiency 
when there is no deadweight loss (𝜆𝑑 (𝜑, 0) = 𝜆𝑤(𝜑)); and v) increases with the licensing friction 𝜑 and decreases in the deadweight loss 𝐿. 

19 𝐿 enters (12) in a way parallel to 𝜋, which is the present value of the profit flow associated with genuine innovation. This is so in spite of the 
fact that the removal of market power from prior incumbent monopolists and the subsequent recovery of consumer surplus 𝐿 i) does not occur when 
genuine innovators access a non-monopolized niche, and ii) occurs when obvious innovators access a monopolized niche. It turns out, however, that 
the rate at which these two processes occur is endogenously equalized in steady state (so that the fraction of monopolized niches remains constant), 
explaining the result.
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Unsurprisingly, the socially optimal leniency rate is the same as in the benchmark setup when 𝐿 = 0. Moreover, as in such a setup, 
the socially optimal leniency rate coincides with the innovation maximizing one when there are no licensing frictions (𝜑 = 0) or legal 
hurdle to the entry of genuine innovation is null (𝜇1 = 1). More interestingly, when screening leniency contributes to maximizing 
innovation (𝜆𝑚 > 0), the welfare maximizing leniency rate entails strictly more leniency (𝜆𝑑 (𝜑,𝐿) > 𝜆𝑚) but strictly less than in the 
absence of static inefficiency (𝜆𝑑 (𝜑,𝐿) < 𝜆𝑤(𝜑)). This result reveals that the cost of static inefficiency, 𝐿, pushes the socially optimal 
leniency rate closer to the innovation maximizing rate, as innovation favors the turnover of incumbent monopolists and, thus, the 
recovery of deadweight losses from their exercise of market power. As a result, as the deadweight loss 𝐿 increases, the optimal leniency 
𝜆𝑑 (𝜑,𝐿) approaches the innovation maximizing leniency rate, 𝜆𝑚, from above. Favoring innovation and turnover among incumbent 
monopolists (relative to the case with 𝐿 = 0) increases welfare even if that implies an increase in the equilibrium proportion of 
monopolized niches, 𝑥.

4.2.  Buying out infringing innovations

In the benchmark model we assume that when courts rule against a genuine innovator, this firm can license the incumbent’s 
technology to enter the niche and sell its higher-quality product. In this scenario, the innovator faces the latent competition of the old 
incumbent, thus obtaining a profit flow equal to 𝜋. In this section, we allow for an alternative arrangement where the incumbent buys 
out the innovation of the infringing genuine innovator who then exits the market. As a result, the incumbent expands the quality gap 
with its closest competitor, increasing its profit flow by an extra 𝜋. Over time, the incumbent piles up the improvements of genuine 
innovators defeated in court until an innovator eventually defeats the incumbent. In contrast with the baseline model, here we assume 
that the incumbent always has the resources to buy out the entering innovation, avoiding the frictions in the baseline model.20

We start by recursively characterizing the present value of profits of an incumbent who has accumulated 𝑛 improvements at time 
𝑡 as 

𝑣𝑛𝑡 = 𝑛𝜋 + 𝛽
(

{

1 − 𝑚𝑡+1
[

𝛼 + (1 − 𝛼)𝜆𝜇0
]}

𝑣𝑛𝑡+1 + 𝑚𝑡+1𝛼
(

1 − 𝜇1
)

𝑣𝑛+1𝑡+1

)

. (13)

This expression indicates that, at 𝑡, the incumbent collects per-period profits of 𝑛𝜋. At 𝑡 + 1, three things may occur. As in the benchmark 
model, if no innovator challenges the niche, the incumbent preserves the existing monopoly, and its continuation value becomes 𝑣𝑛𝑡+1. 
If a genuine innovator is considered to infringe the incumbent’s patent, which occurs with probability 𝑚𝑡+1𝛼

(

1 − 𝜇1
)

, the incumbent 
makes a take-it-or-leave-it offer equal to the innovator’s outside option, equal to 0. This results in a future value of 𝑣𝑛+1𝑡+1 . Finally, 
whenever the court rules in favor of an entering innovator, obvious or genuine, the incumbent loses the value of incumbency and its 
payoff becomes zero.

The game tree describing this case is similar to the one in Figure 1 with three differences. First, the payoff of a genuine innovator 
that enters successfully is now 𝑣1𝑡  rather than 𝑣𝑡. Second, in the final nodes where, after the attempted entry of an obvious innovator, 
the niche remains monopolized by an incumbent—now with 𝑛 accumulated improvements—the payoffs are (0, 𝑣𝑛𝑡 ). Finally, when a 
court rules in favor of the incumbent after the attempted entry of a genuine innovator, there is no friction preventing the licensing 
to the incumbent—i.e. 𝜑 = 0—and the final payoffs are (0, 𝑣𝑛+1𝑡 ).

In a steady state, where 𝑣𝑛𝑡 = 𝑣𝑛𝑡+1 = 𝑣𝑛 for all 𝑡 and 𝑛, we can verify, after guessing that 𝑣𝑛 is linear in 𝑛, that the following expression 
for 𝑣𝑛 solves (13) for all 𝑛: 

𝑣𝑛 = 𝜋𝑛
1 − 𝛽[1 − 𝑚(𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0)]

+
𝜋𝑚𝛼𝛽

(

1 − 𝜇1
)

(

1 − 𝛽
{

1 − 𝑚
[

𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0
]})2

. (14)

This expression is linear in 𝑛. Differently from the baseline model in which (1) implies a negative impact of the innovation flow 
on the value of incumbency, here the effect of 𝑚 on 𝑣 is ambiguous. The reason is that a higher innovation rate, 𝑚, has two effects 
pointing in opposite directions. It increases the probability that an innovator challenges the incumbent and wins in court, decreasing 
the duration of incumbency and its value. At the same time, it also increases the probability that a genuine innovator is found to 
infringe the incumbent’s patent and the incumbent can benefit from buying out the innovation, increasing its profit flow. It is easy 
to check that 𝜇1 > 1∕2 is a necessary and sufficient condition for the first effect to strictly dominate for all values of 𝜆 and 𝑚.

The law of motion of the proportion of monopolized niches 𝑥𝑡 and the probability with which an innovator is genuine and 
successfully reaches the market 𝑝𝑡 are still described by (2) and (3), respectively. In steady-state, the proportion of monopolized 
niches, 𝑥, and the probability that innovation leads to profits, 𝑝, have the same steady-state values as in the baseline model. The 
free-entry condition determining the steady-state innovation flow, if interior, is now 𝑝𝑣1 = 1. Replacing 𝑝 from (6) and 𝑣1 from (14) 
in this expression, we can obtain the steady-state innovation flow as 

𝑚(𝜆) =
(1 − 𝛽)

2𝛽
[

𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0
]

{

(Π𝛼 − 2) +
√

Π
[

Π𝛼2 − 4(𝛼 − 𝑝)
]

}

. (15)

Assumption 1 guarantees that the expression within the square root is non-negative and that the innovation flow is positive. The next 
result compares this rate with its counterpart in the baseline model.

20 One of the natural interpretations of 𝜑 > 0 is the result of financial constraints that could prevent innovators from licensing the incumbent’s 
technology. At the same time, in the benchmark model, licensing did not result in any private gains, implying that firms had no real incentives to 
reach an agreement. In contrast, in this case, when an incumbent buys a genuine innovation, per-period producer surplus increases by 𝜋, encouraging 
firms to overcome licensing frictions and reinforcing our assumption in this case.
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Note: Parameter values are 𝛼 = 0.1, 𝜋 = 0.3, 𝛽 = 0.98, 𝜇1 = 0.75, and 𝜇0 = 0.25. 
Fig. 4. Innovation when the incumbent buys out infringing innovations. This figure shows a case in which the innovation flow is maximized 
by a positive leniency rate 𝜆 both in the baseline model (dashed line) and with incumbent buyouts (solid line).

Proposition 4  (Incumbent buyouts increase innovation).  Under imperfect enforcement (𝜇1 < 1), the innovation flow when the incumbent 
can buy out infringing innovations is larger than when the incumbent licenses its patent to the entrant. 

As Fig. 4 illustrates, the innovation flow in this case can also reach a maximum at an interior value of the leniency rate. For all 
values of 𝜆, the innovation flow is higher than in the baseline model. Intuitively, for any given level of the innovation flow, the 
odds that an innovator appropriates the value of being an incumbent monopolist are the same as in the baseline model, while the 
value of incumbency is higher due to the possibility of accumulating monopoly rents over several subsequent innovations. This spurs 
innovation, making 𝑣1 decline until the free entry condition holds again.

Notice that, since in this scenario there are no licensing frictions, the welfare function (10) becomes 𝑊 (𝜆) = 𝑚(𝜆)(𝛼Π − 1). Con-
sequently, the welfare-maximizing leniency matches the innovation-maximizing leniency. As illustrated in Fig. 4, there are values of 
the parameters of the model for which setting a strictly positive leniency rate 𝜆 remains socially optimal.

4.3.  Patent trolling

In the baseline model, niches occupied by incumbents with obvious patents are competitive and assumed to create no barrier to 
entry for subsequent innovators. We justified this assumption on the absence of incentives for producers in these niches to legally 
defend a market position that generates no rents. However, this assumption implies that they cannot use the patents on their obvious 
innovations as a means to extract rents from future genuine innovators.21

In this section, we explore the opportunistic behavior that arises when these firms, denoted as patent trolls, are able to win their 
patent infringement case in court and, if that happens, force genuine innovators to pay a licensing fee to occupy their niche. This 
behavior implies a transfer from genuine innovators to trolls (the former obvious innovators). This reduces the prospect of profitably 
entering a niche as a genuine innovator but simultaneously increases the value of entering as an obvious innovator. Such a value was 
zero in the baseline model and will be denoted by 𝑣𝑇𝑡  in this extension. Beyond that, the equations describing the law of motion of 
the fraction of monopolized niches, 𝑥𝑡, and the value of being an incumbent monopolist, 𝑣𝑡, remain unchanged.

We assume that trolls can make a take-it-or-leave-it offer to those genuine innovators who, after attempting to enter their niche, 
are considered to be infringers by courts, which occurs with probability 1 − 𝜇1. The value of trolling will then satisfy the following 
recursive expression: 

𝑣𝑇𝑡 = 𝛽
{

𝛼𝑚𝑡+1
(

1 − 𝜇1
)

(1 − 𝜑)𝑣𝑡+1 +
[

1 − 𝑚𝑡+1
(

𝛼 + (1 − 𝛼)𝜆𝜇0 − 𝛼𝜑
(

1 − 𝜇1
))]

𝑣𝑇𝑡+1
}

. (16)

Consistently with the game tree depicted in Fig. 5, a troll in period 𝑡 + 1 can only extract a payoff 𝑣𝑡+1 from licensing its patent when 
a genuine innovator enters its niche, is defeated in court, and the licensing negotiation succeeds. This explains the first term inside 
the curly brackets in (16). The second term accounts for the value associated with the probability of remaining as a troll, which is 
one minus the probability with which the troll licenses its patent or losses in court against an entering innovator of either type.

The new free-entry condition involves two modifications relative to the baseline model. First, an innovator which turns out to be 
genuine has a lower probability of appropriating the value of monopoly incumbency; this probability is now just 𝜇1 independently 
of whether the entered niche was monopolized by a prior genuine incumbent or occupied by a troll. Second, an innovator with an 
obvious innovation which successfully enters a niche (which happens with probability 𝜆𝜇0) obtains the value of being a troll. The 
resulting free-entry condition is then 

𝛼𝜇1𝑣𝑡 + (1 − 𝛼)𝜆𝜇0𝑣𝑇𝑡 = 1. (17)

21 This baseline scenario could be further justified by arguing that entrants to niches occupied by prior obvious innovators would succeed in making 
courts declare the incumbent innovations obvious and hence invalid.
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Fig. 5. Game tree under patent trolling. Patent trolling in the model describes the situation in which incumbents with prior obvious innovations 
(in “trolled niches”) are able to extract rents from subsequent genuine innovators if they win a patent infringement case against them.

In the steady-state, the proportion of monopolized niches coincides with the baseline model, whereas the value of being an 
incumbent monopolist and a troll can be written, using (16) and (17), as the following functions of the steady-state innovation flow: 

𝑣(𝑚) = 𝜋
1 − 𝛽

{

1 − 𝑚
[

(1 − 𝛼)𝜆𝜇0 + 𝛼𝜇1
]} , 𝑣𝑇 (𝑚) = 𝛽𝑇 (𝑚)𝑣(𝑚). (18)

where 𝛽𝑇 (𝑚) < 1 is an endogenous discount factor that reflects the expected discounted time at which the troll will successfully license 
its patent for a fee 𝑣(𝑚) to a genuine innovator who loses in court: 

𝛽𝑇 (𝑚) =
𝛽𝑚𝛼

(

1 − 𝜇1
)

(1 − 𝜑)

1 − 𝛽 + 𝛽𝑚
{

𝛼[1 − 𝜑(1 − 𝜇1)] + (1 − 𝛼)𝜆𝜇0
} < 1. (19)

In the polar cases in which financial or other bargaining frictions prevent licensing with probability one (𝜑 = 1) or incumbents 
always succeed in court (𝜇1 = 1), we have 𝛽𝑇 (𝑚) = 0 and trolling is ineffective. This occurs because licensee fees are the mechanism 
that allows trolls to appropriate rents from defeated entrants.

The following proposition shows that, with 𝜇1 < 1 and 𝜑 > 0, patent trolling is necessarily detrimental to innovation. Intuitively 
this happens because the incentives to innovate derived from the prospect of becoming a troll (if the innovation turns out to be 
obvious) do not exceed the disincentives coming from the reduction in the expected payoff from genuine innovation caused by 
trolling.22

Proposition 5. Under imperfect enforcement (𝜇1 < 1) and licensing frictions (𝜑 > 0), the innovation flow when trolls can extract rents from 
future genuine innovators is lower than in the baseline model.

What is the impact of patent screening in this setup? Fig. 6 shows that the relationship between the innovation flow 𝑚 and the 
leniency rate 𝜆 can still be non-monotonic—although in the depicted example 𝑚(𝜆) has much less curvature than in the baseline 
model without trolling. In the benchmark model, a more lenient patent screening, by decreasing the proportion of monopolized 
niches, removes some of the hurdles to profitable entry faced by genuine innovators. When patent trolling occurs, this benefit no 
longer exists since trolls pose an obstacle to profitable entry in competitive niches. The force that makes 𝑚(𝜆) potentially increasing 

22 Notice that when a genuine innovator faces a troll there is a probability (1 − 𝜇1)𝜑 that the troll wins in court and licensing negotiations fail, in 
which case the innovation goes to waste.
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Fig. 6. Impact of screening leniency on innovation with trolling. This figure shows that, even when trolling occurs, innovation is maximized 
with some screening leniency (solid line), and that innovation is less than in the benchmark model (dashed line). .

when 𝜆 is low is the direct effect of leniency on the prospect of profiting from innovation by becoming a troll when the innovation 
is obvious—this effect was zero in the baseline model but is clearly positive in (17), for given values of 𝑣 and 𝑣𝑇 . The force that 
makes 𝑚(𝜆) decreasing for larger values of 𝜆 is of the same nature as in the baseline model: by reducing the expected duration of the 
incumbency status, leniency decreases both 𝑣 and 𝑣𝑇 .

Welfare is also affected in this environment. Without trolling, genuine innovators could enter unopposed when they landed on a 
competitive niche. Now, they face the opposition of a troll, leading to the waste of innovations whenever their owners are defeated 
in court and licensing negotiations fail. Thus, the proportion of monopolized niches is no longer directly relevant for welfare since 
genuine innovations go to waste with the same probability in all niches. Hence, social welfare is now given by 

𝑊 (𝜆) = 𝑚(𝜆)
{

𝛼
[

1 − 𝜑
(

1 − 𝜇1
)]

Π − 1
}

, (20)

where the effect of the leniency rate is just the one occurring through the innovation rate. Since, as shown by Fig. 6, the innovation 
rate can be maximized at some strictly positive value of 𝜆, it follows that some screening leniency may still be welfare-enhancing 
under patent trolling. Numerical results indicate that this is more likely to be the case when 𝜇1 is small.

4.4.  Licensing under asymmetric information

Throughout our analysis, we have assumed there was no asymmetric information regarding the quality of the innovations. We now 
consider the case in which litigation and the potential negotiation about licensing around such a litigation occurs under asymmetric 
information, that is, with the quality of the innovation being private information of the entering innovator.

Having assumed that legal costs are negligible—compared to the value of being a monopolist—implied that it was a dominant 
strategy for incumbents to go to court regardless of the kind of innovation they faced. Our results for the case in which licensing 
negotiations occur after the court ruling are unchanged by the presence of asymmetric information since an obvious infringer is never 
willing to pay more than zero to become the new incumbent, while the existing incumbent monopolist would require a licensing fee 
of at least 𝑣𝑡 to give up its incumbency. At the same time, 𝑣𝑡 is the maximum licensing fee that the infringer would accept if holding a 
genuine innovation. Hence, the equilibrium with asymmetric information involves a take-it-or-leave offer by the incumbent requesting 
a licensing fee 𝑣𝑡, and this offer will only be accepted by the infringer if the innovation is genuine. This implies the same payoffs, 
niche turnover, and welfare implications as in our baseline analysis.

Our results are also robust to the possibility of licensing happening prior to litigation, a procedure extensively discussed in the 
literature as a way to avoid the costs of going to court. Prior literature also discusses asymmetric information as a potential obstacle to 
efficient ex-ante licensing (e.g., Llobet, 2003, in a vertical differentiation framework), the strategic use of litigation when information 
is asymmetric (Figueroa and Lemus, 2024; Pease et al., 2023; Righi and Simcoe, 2023), and how some informational asymmetries 
(e.g., regarding the gains of an incumbent from going to court) might provide additional incentives to litigate (Choi, 1998).

To discuss ex-ante licensing and the implications of asymmetric information in our setup, we extend the baseline model to allow 
the incumbent, facing an entering innovator, to make an ex-ante take-it-or-leave-it licensing offer of its patent to the entrant, which, 
if accepted, avoids litigation. At this point, the incumbent ignores whether the entering innovation is genuine or obvious, while the 
innovator knows. By accepting the offer, the entrant becomes the new incumbent. Otherwise, both firms go to court, and the game 
unfolds as in the baseline setup. Reflecting the same frictions as in the baseline model, we maintain the assumption that there is an 
exogenous probability 𝜑 that the licensing negotiations fail and the case goes to court even if the innovator is willing to accept the 
offer. The timing of the model is summarized in Fig. 7.

In general, the incumbent’s optimal licensing offer depends on its beliefs about the quality of the entering innovation and on the 
expected response of the innovator. Similarly to the case with ex-post licensing, an obvious innovator’s expected value from becoming 
the new incumbent is zero, so making an offer that an obvious innovator may accept would be unprofitable for the incumbent, since 
it would be strictly dominated by the expected payoff from going to court and having a chance to remain a monopolist incumbent. 
This means that it is optimal for the incumbent to offer the highest licensing fee that a genuine innovator is willing to accept, which 
is such an innovator’s expected payoff (1 − 𝜇1)𝑣𝑡 from going to court and having the probability 1 − 𝜇1 that the incumbent wins and 
preserves the incumbency value 𝑣𝑡.
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Fig. 7. Game tree with ex-ante licensing. The incumbent, without having observed the quality of the entering innovation, can offer a license with 
fee 𝑙 to the innovator to avoid litigation.

When the innovation is genuine, this offer leads to a licensing agreement with probability 1 − 𝜑, and to litigation otherwise. When 
the innovation is obvious, the challenger rejects the offer, and the case goes to court. As a result, ex ante licensing produces the same 
industry dynamics and (expected) payoffs for both the incumbent and the innovator as the baseline model. Thus, our results under 
ex-ante licensing are equivalent to those with ex-post licensing and are not affected by asymmetric information.

This equivalence relies on having assumed the same probability of failure of the licensing negotiations in both scenarios. However, 
if the licensing frictions captured by 𝜑 are directly related to some heterogeneous incidence of financial constraints among the entering 
innovators (e.g. different levels of available liquid wealth or exogenous collateral), the scenario with ex-ante licensing might involve 
an effectively lower value of 𝜑 than the baseline scenario with ex-post licensing. Why? Because in the former, the licensing fee that 
the incumbent requires is (1 − 𝜇1)𝑣𝑡, which is lower than the licensing fee 𝑣𝑡 required when the negotiation happens after having 
defeated the innovator in court. The lower ex-ante licensing fee might be financially feasible to a strictly larger proportion of genuine 
innovators, implying a lower probability of failing to reach an agreement than under ex-post licensing. This would imply a lower 
probability that the genuine innovation goes to waste and, other things equal, it would reduce the welfare-maximizing level of patent 
screening leniency, bringing it closer to the innovation-maximizing level (Proposition 2).

5.  Concluding remarks

This paper explores how patent systems affect innovation when technological progress occurs sequentially along a quality lad-
der. Patents not only reward inventors but can also be strategically used by their incumbent holders to block or extract rents from 
future innovators. In an ideal legal system, high-quality innovations should be patentable and protected from such behavior, while 
low-quality (or “obvious”) innovations might justifiably be excluded. However, under imperfect enforcement, courts may wrongly 
block genuine innovations, causing a misallocation of innovation incentives. We show that relaxing patentability standards for ob-
vious innovations—granting them some protection—can reduce the risk faced by genuine innovators because their presence brings 
competition to the market and diminishes litigation threats on further entrants.

Our analysis suggests that some leniency towards obvious innovation may improve social welfare, particularly when patent licens-
ing is subject to frictions. By making the corresponding industry more competitive, leniency fosters innovation and prevents valuable 
innovations from being stifled. This result is robust across different settings, including scenarios with standard welfare losses and al-
ternative informational and licensing assumptions. We also consider variations where obvious innovators may engage in rent-seeking 
behavior (“patent trolling”) and show that leniency is still optimal, although for slightly different reasons.

Our results entail empirically testable implications for the relationship between patent leniency and innovation outcomes across 
different industries, particularly in sectors with high litigation activity or where sequential innovation is prominent (e.g., pharma-
ceuticals or software). Such a relationship has greater welfare implications in the presence of licensing frictions such as financial 
constraints. Specifically, our analysis predicts that the net gains from such patent screening leniency (and hence the optimal leniency 
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rate) are higher in industries or economies in which innovators face tighter financial constraints. Our analysis also predicts that when 
financial frictions are an obstacle to efficient licensing, having innovators negotiating licensing agreements with incumbents before 
going to court may be superior to doing so after the innovator loses in court, as the implied licensing payment is lower (and hence 
potentially more financial affordable) before the uncertainty about the court’s ruling is resolved.

From a policy perspective, our analysis sheds new light on the relationship between ex-ante patent screening (or patent standards) 
and the enforcement of patent rights in court. It takes us to the novel implication that imperfections whereby courts excessively protect 
incumbents against subsequent genuine innovators may justify having looser patenting standards since the access to the market of 
obvious innovations may strategically facilitate the future entry of genuine innovations —by making them less likely to confront an 
incumbent willing to fiercely defend its monopoly position in court.
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Appendix A. 

Proof.  (Lemma 1) To show existence, we start by imposing the steady condition 𝑥𝑡 = 𝑥 for all 𝑡 in eq. (2), obtaining eq. (5). Replacing 
𝑥 into (3) we obtain eq. (6). Using the free-entry condition (4), we obtain 𝑣 = 𝑝−1. Finally, using condition (4) again and in the steady 
state of (1), we find the expression for the innovation flow (7). Because all these equations are linear, we have a unique solution.

To determine when the innovation flow is positive, observe that (7) is positive if and only if 𝜋 > 𝜋 and lower than one if and only 
if 𝜋 < 𝜋 + 𝛽𝑥−1. ∎

Proof.  (Corollary 1) Comparative statics follow from differentiating expressions (5–8) with respect to the respective variables. ∎
Proof.  (Proposition 1) Let 𝑝(𝜆) denote 𝑝 as a function of 𝜆 as defined in (6). Then, using (7) the relationship between the equilibrium 
innovation flow and 𝜆 can be described as

𝑚(𝜆) =
𝜋𝑝(𝜆) − (1 − 𝛽)

𝛽
[

𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0
] .

The derivative of this function with respect to 𝜆 is

𝑚′(𝜆) =
(1 − 𝛽)(1 − 𝛼)𝜇0

𝛽
(

𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0
)2

[

1 − 𝛼Π
(

𝑝(𝜆)
𝛼

)2
]

.

Since the terms outside the square brackets are positive, the sign of this derivative depends on the term in square brackets.
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Consider first the case with 𝜇1 = 1. In this scenario, 𝑝(𝜆) = 𝛼, and the square brackets becomes [1 − 𝛼Π]. The condition for positive 
innovation, 𝜋 > 𝜋̄, simplifies to 𝛼Π > 1, resulting in 𝑚′(𝜆) < 0 and with an optimal solution 𝜆𝑚 = 0.

Consider now 𝜇1 < 1. If innovation is maximized at interior value of 𝜆, then 1 = 𝛼Π(𝑝(𝜆)∕𝛼)2 must hold. We show that this point 
determines a maximum. The second derivative of innovation with respect to 𝜆 is

𝑚′′(𝜆) = −
2(1 − 𝛽)(1 − 𝛼)2𝜇2

0

𝛽
(

𝛼𝜇1 + (1 − 𝛼)𝜇0𝜆
)3

[

1 − 𝛼Π
(

𝑝(𝜆)
𝛼

)3
]

.

The terms outside the square brackets are negative; the sign of 𝑚′′(𝜆) is the opposite of the sign in square brackets. Interior leniency, 
1 = 𝛼Π(𝑝(𝜆)∕𝛼)2, automatically implies 

1 − 𝛼Π
(

𝑝(𝜆)
𝛼

)3
= 𝛼Π

(

𝑝(𝜆)
𝛼

)2
− 𝛼Π

(

𝑝(𝜆)
𝛼

)3
= 𝛼Π

(

𝑝(𝜆)
𝛼

)2(

1 −
𝑝(𝜆)
𝛼

)

> 0

as 𝑝(𝜆) < 𝛼 whenever 𝜇1 < 1. Thus, if there exists a 𝜆𝑚 that leads to an interior leniency, then the second-order condition holds. More 
generally, because 𝑝′(𝜆) > 0, 𝑚′′(𝜆) < 0 for every 𝜆 ≥ 𝜆𝑚. We will use this fact in other proofs. This fact also means that the derivative 
is always negative after an interior maximum (if one exists) and the function 𝑚(𝜆) is, therefore, single-peaked.

We now derive conditions for which an interior 𝜆𝑚 exists. Solving 1 = 𝛼Π(𝑝(𝜆∗)∕𝛼)2 as a function of 𝑝(𝜆∗), we obtain two solutions. 
One solution leads to a negative probability; the other leads to a positive, well-defined, probability 𝑝(𝜆∗) =

√

𝛼Π∕Π ∈ (0, 1). Since 𝑝(𝜆)
is one-to-one with 𝜆, we can solve for 𝜆∗, obtaining

𝜆∗ =
𝛼
(

(1 − 𝜇1)
√

𝛼Π − (𝛼Π𝜇1 − 1)
)

(1 − 𝛼)𝜇0(𝛼Π − 1)
.

It is easy to show that 𝜆∗ > 0 if 𝜇1 < 𝜇̂1 = 1∕
√

𝛼Π < 1. In this case we set 𝜆𝑚 = 𝜆∗ > 0. Otherwise, when 𝜇1 ≥ 𝜇̂1, 𝜆∗ < 0, which can 
not be. Since 𝑚(𝜆) is single peaked, 𝑚′(𝜆) < 0 for every 𝜆 > 𝜆∗ and thus, 𝜆𝑚 = 0, proving the result. ∎

Proof.  (Proposition 2) First notice that when 𝜑 = 0 or when 𝜇1 = 1, welfare problem (10) simplifies to 𝑊 = 𝑚(𝜆)(𝛼Π − 1). Since, by 
Assumption 1, 𝛼Π − 1 > 0, and the optimal leniency coincides with the one that maximizes innovation and 𝜆𝑤 = 𝜆𝑚.

Suppose now that 𝜑 ∈ (0, 1] and 𝜇1 ∈ (0, 1). The first derivative is characterized in (11). Evaluate the derivative at 𝜆∗ from Propo-
sition 1, then it becomes:

𝑊 ′(𝜆) = −𝑚
(

𝜆∗
)

Π𝛼
(

1 − 𝜇1
)

𝜑𝑥′
(

𝜆∗
)

> 0,

as 𝑥′(𝜆) < 0. This implies that the welfare-maximizing 𝜆𝑤 is larger than 𝜆∗. But, since 𝜆∗ might be negative, in that case, 𝜆𝑚 = 0 and 
𝜆𝑤 can be larger or equal to zero. When 𝜆𝑚 = 𝜆∗ > 0, then 𝜆𝑤 > 𝜆𝑚. By single-peakeness of 𝑚(𝜆), the last result also implies that, 
𝑚′(𝜆𝑤) < 0 and 𝑚′′(𝜆𝑤) < 0.

We now show that 𝑊 (𝜆) has a unique maximizer. Call 𝜆◦ any point satisfying 𝑊 ′(𝜆◦) = 0. If 𝜆◦ doesn’t exist, 𝑊 (𝜆) is uniquely 
maximized at a corner. Computing the second derivative of the welfare function at 𝜆◦

𝑊 ′′(𝜆◦) = [𝛼Π(1 − 𝑥(𝜆◦)(1 − 𝜇1)𝜑) − 1]𝑚′′(𝜆◦)

−2𝛼Π(1 − 𝜇1)𝜑 𝑚′(𝜆◦)𝑥′(𝜆◦) − 𝛼Π(1 − 𝜇1)𝜑 𝑚(𝜆◦)𝑥′′(𝜆◦) < 0,

where the negative sign stems from the fact that: [𝛼Π(1 − 𝑥(𝜆◦)(1 − 𝜇1)𝜑) − 1] > 0 by Assumption 1, we already showed 𝑚′(𝜆◦) <
0, 𝑚′′(𝜆◦) < 0 and 𝑥′(𝜆) < 0, and it easy to verify that 𝑥′′(𝜆) > 0. Hence, if interior, 𝜆◦ characterizes a maximum. Moreover, since 
𝑊 ′′(𝜆◦) < 0 at every candidate 𝜆◦, the maximum is unique. Call it 𝜆′𝑤(𝜑) > 0, which may not be interior.

To show 𝜆′𝑤(𝜑) > 0 when not at a corner, we use the implicit function theorem. Compute the cross-derivative between 𝜆 and 𝜑: 
𝜕𝑊 ′(𝜆𝑤)

𝜕𝜑
= −𝛼Π(1 − 𝜇1)

[

𝑚′(𝜆𝑤)𝑥(𝜆𝑤) + 𝑚(𝜆𝑤)𝑥′(𝜆𝑤)
]

> 0

Then, by the implicit function theorem, 

𝜆′𝑤(𝜑) = −
𝜕𝑊 ′(𝜆𝑤)∕𝜕𝜑
𝑊 ′′(𝜆𝑤)

> 0,

implying that, in an interior solution, the derivative is positive. ∎

Proof.  (Lemma 2) Let 𝑖 > 1 be an arbitrary number of innovations in the quality ladder and 𝑧𝑖 = 𝛿𝑖𝑧 for any 𝑧 > 0. In a monopolized 
niche, due to the unit elasticity of demand, the incumbent wants to charge the highest price feasible. In this case 𝑝 = 𝑧𝑖−1. Then, the 
incumbent profits are given by 𝜋 = (𝑝 − 𝑧𝑖)𝑞 = 𝑎(1 − 𝛿) which is independent of the number of innovations and the baseline cost 𝑧. 
The dead-weight loss in the market is given by 

∫

𝑧𝑖−1

𝑧𝑖
𝑞(𝑝)𝑑𝑝 − 𝜋 = 𝑎

(

ln
(

𝛿−1
)

− (1 − 𝛿)
)

also independent of 𝑖 and 𝑧. ∎
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Proof.  (Lemma 3) The gross welfare originated from an additional innovation can be written as
𝑤 = 𝛼(1 − 𝑥)Π + 𝛼𝑥

[

𝜇1 +
(

1 − 𝜇1
)

(1 − 𝜑)
]

(Π + 𝐿) + (1 − 𝛼)𝜆𝑥𝜇0𝐿

This expression distinguishes three situations where surplus can be created as a result of innovation: i) when genuine innovation occurs 
in a competitive niche, it creates a surplus Π that is appropriated by the firm; ii) when a genuine innovator replaces a monopolist, it 
appropriates Π, but it also frees the static loss 𝐿 generated by the previous incumbent; and iii) when an obvious innovator succeeds 
in court against a monopolist incumbent, 𝐿 is freed.

The previous expression can be rewritten as 𝑤(𝜆) = 𝛼(Π + 𝐿)[1 − (1 − 𝜇1)𝑥(𝜆)𝜑] which once we account for the size of the innovation 
flow 𝑚 and its cost, results in the expression for social welfare function

𝑊 (𝜆) = 𝑚(𝜆)(𝑤(𝜆) − 1) = 𝑚(𝜆)
{

𝛼[1 − 𝑥(𝜆)(1 − 𝜇1)𝜑](Π + 𝐿) − 1
}

,

as reported in (12). ∎

Proof.  (Proposition 3) When 𝐿 = 0, the expression for welfare in (12) converges to that is (10), leading to the same solution: 
𝜆𝑤(𝜑). Similarly, when 𝜑 = 0 or when 𝜇1 = 1, the expression becomes 𝑊 (𝜆) = 𝑚(𝜆)[𝛼(Π + 𝐿) − 1], which reaches a maximum at the 
innovation-maximizing leniency rate 𝜆𝑚. More generally, the derivative of 𝑊  with respect to 𝜆 can be written as

𝑊 ′(𝜆) =
{

[𝛼
[

1 − 𝑥(𝜆)
(

1 − 𝜇1
)

𝜑
]

(Π + 𝐿) − 1
}

𝑚′(𝜆) − 𝛼
(

1 − 𝜇1
)

𝜑(Π + 𝐿)𝑚(𝜆)𝑥′(𝜆).

Similar to the proof of Proposition 2, evaluating the derivative at 𝜆∗ from Proposition 1, then it becomes:
𝑊 ′(𝜆) = −𝛼

(

1 − 𝜇1
)

𝜑(Π + 𝐿)𝑚
(

𝜆∗
)

𝑥′
(

𝜆∗
)

> 0,

implying that the welfare-maximizing 𝜆𝑑 (𝜑,𝐿) ≥ 𝜆𝑚 and strictly larger when 𝜆𝑚 > 0.
The steps to show that 𝑊 (𝜆) has a unique maximizer are identical to those in Proposition 2. For completeness, we present the 

second derivative of the welfare function at the candidate maximum 𝜆𝑑
𝑊 ′′(𝜆𝑑 ) =

{

𝛼
[

1 − 𝑥
(

𝜆𝑑
)(

1 − 𝜇1
)

𝜑
]

(Π + 𝐿) − 1
}

𝑚′′(𝜆𝑑 )

− 2𝛼(1 − 𝜇1)𝜑(Π + 𝐿) 𝑚′(𝜆𝑑 )𝑥′(𝜆𝑑 ) − 𝛼(1 − 𝜇1)𝜑(Π + 𝐿)𝑚(𝜆𝑑 )𝑥′′(𝜆𝑑 ) < 0,

where the negative sign stems from the same argument given in Proposition 2. Hence, since 𝑊 ′′(𝜆𝑑 ) < 0 at every candidate 𝜆𝑑 , the 
maximum is unique (possibly a corner).

To show 𝜕𝜆𝑑 (𝜑,𝐿)∕𝜕𝐿 < 0 when not at a corner, we use the implicit function theorem, which tells us 𝜕𝜆𝑑 (𝜑,𝐿)∕𝜕𝐿 =
−(𝜕𝑊 ′(𝜆𝑑 )∕𝜕𝐿)∕𝑊 ′′(𝜆𝑑 ). We already showed 𝑊 ′′(𝜆𝑑 ) < 0. We show that the other derivative is also negative. Computing: 

𝜕𝑊 ′(𝜆𝑑 )
𝜕𝐿

= 𝛼
[

1 − 𝑥
(

𝜆𝑑
)(

1 − 𝜇1
)

𝜑
]

𝑚′(𝜆𝑑
)

− 𝛼
(

1 − 𝜇1
)

𝜑𝑚
(

𝜆𝑑
)

𝑥′
(

𝜆𝑑
)

,

where the first term is negative and the second term is positive. Observe that 𝑊 (𝜆𝑑 ) = 0 implies

𝛼
(

1 − 𝜇1
)

𝜑𝑚
(

𝜆𝑑
)

𝑥′
(

𝜆𝑑
)

= 𝑚′(𝜆𝑑
)

(

𝛼
[

1 − 𝑥
(

𝜆𝑑
)(

1 − 𝜇1
)

𝜑
]

− 1
(Π + 𝐿)

)

replacing back into 𝜕𝑊 ′(𝜆𝑑 )∕𝜕𝐿 and re-arranging we obtain
𝜕𝑊 ′(𝜆𝑑 )

𝜕𝐿
= 1

(Π + 𝐿)
𝑚′(𝜆𝑑

)

< 0

proving the result. ∎

Proof.  (Proposition 4) Let’s denote by 𝑚𝐵(𝜆) the innovation flow under innovator buyouts. We need to show 𝑚𝐵(𝜆) > 𝑚(𝜆) for every 
𝜆. Using equations  (7) and (15) the condition becomes 

√

Π(Π𝛼2 + 4(𝑝 − 𝛼)) > Π(2𝑝 − 𝛼). Assumption 1 guarantees that the root on the 
left-hand side is well-defined. The right-hand side can be negative as 𝛼 > 𝑝 for every 𝜇1 < 1. If 𝜇1 = 1, then 𝑝 = 𝛼 and 𝑚𝐵(𝜆) = 𝑚(𝜆). 
Suppose 𝜇1 < 1, when the right-hand side is negative, the result follows. So, we just need to prove the inequality in the case when 
the right-hand side is positive. Squaring on both sides and rearranging the expression becomes 4Π(𝛼 − 𝑝)(𝑝Π − 1) > 0, which is true 
for every 𝜆, as 𝑝Π > 1 under Assumption 1. ∎

Proof.  (Proposition 5) Using (18), the free entry condition in (17) can be written as 
[𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0𝛽𝑇 (𝑚)]𝑣(𝑚) = 1. (A.1)

This condition contrasts with that of the baseline model where, in an interior solution, we have that 𝑝𝑣 = 1 with 𝑝 given by (6) and 
𝑣 given by (8). Notice that 𝑣(𝑚) is decreasing in 𝑚 and equals 𝑣 when 𝑚 takes its baseline value in (7). Hence, to show that the 
equilibrium innovation flow is lower under trolling, it is enough to show that the probability of profitable entry in the benchmark 
model, 𝑝, is greater than the expression in parentheses in (A.1). When courts are perfect (𝜇1 = 1), there is no opportunistic behavior, 
𝑝 = 𝛼, 𝛽𝑇 (𝑚) = 0, and the innovation flow in both scenarios coincides. When 𝜇1 < 1, we need to show that

𝛼
𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0
𝛼 + (1 − 𝛼)𝜆𝜇0

> 𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0

(

𝛽𝑚𝛼
(

1 − 𝜇1
)

(1 − 𝜑)

1 − 𝛽 + 𝛽𝑚
{

𝛼[1 − 𝜑(1 − 𝜇1)] + (1 − 𝛼)𝜆𝜇0
}

)

.
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In this inequality, the right-hand side is increasing in 𝛽 and 𝑚. So a sufficient condition for it to hold is that it holds for 𝛽 = 𝑚 = 1. 
After some algebra, this sufficient condition simplifies to

1
𝛼 + (1 − 𝛼)𝜆𝜇0

>
1 − 𝜑

𝛼[1 − 𝜑(1 − 𝜇1)] + (1 − 𝛼)𝜆𝜇0
,

which, in turn, simplifies to 𝜑[𝛼𝜇1 + (1 − 𝛼)𝜆𝜇0] > 0, which is true. ∎
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