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Abstract: In this paper, I first provide a simple unifying approach to static Mean-
Variance analysis and Value at Risk, which highlights their similarities and differences. Then I
use it to explain how fund managers can take investment decisions within the well-known Mean-
Variance allocation framework that satisfy the VaR restrictions imposed on them by regulators.
I do so by introducing a new type of line to the usual mean – standard deviation diagram, called
IsoVaR, which represents all the portfolios that share the same VaR for a fixed probability level.
Finally, I analyse the “shadow cost” of a VaR constraint.
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1. INTRODUCTION

Mean-Variance analysis and Value at Risk (VaR) are tools routinely used by fund man-
agers all over the world in their portfolio allocation decision-making. Therefore, it is not sur-
prising that vast amounts of academic papers and books have been written on both topics, some
of which discuss their relationship (see e.g. Alexander and Baptista (2000), Cuoco et al. (2001),
Dowd (1999), Gourieroux and Monfort (2001), or section 14.4 of Jorion (1997)). Nevertheless,
there is not yet a simultaneous treatment of the two that is “backward compatible” with the most
widely used textbooks on financial investments. In this respect, the purpose of this paper is
twofold. First, to offer a simple unifying approach, which highlights the similarities and differ-
ences between static Mean-Variance analysis and Value at Risk. And second, to explain how
fund managers can take informed investment decisions that satisfy the risk-taking restrictions

1A previous draft of this paper was circulated under the title “Value at Risk and Mean-Variance Analysis”. I am grateful
to Jose M. Campa, John Campbell, Nour Meddahi, Hashem Pesaran, Fons Quix, Rafael Repullo, Steve Satchell, Hyun
Song Shin and Luis Viceira for helpful comments and suggestions. Of course, the usual caveat applies. Thanks are also
due to Cristina Barceló for her help in producing the graphs. 
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often imposed on them by internal or external regulators without abandoning the well-known
mean-variance allocation framework.

I do so by adding a new type of line to the usual mean - standard deviation diagram,
which represents all the portfolios that share the same VaR (as a proportion of the available
funds) for a fixed probability level. For obvious reasons, I call such lines IsoVaRs. Given some
pre-specified risk control parameters, the corresponding IsoVaR effectively constrains the
investment opportunity set, which is otherwise characterised by the usual portfolio frontier.
Then, I simply have to superimpose the investors’ risk preferences to find out the optimal
restricted portfolio.

In this respect, this paper is more closely related to Gourieroux and Monfort (2001),
who study efficient portfolios for parametric expected utility functions with general risk level
constraints, and Cuoco et al. (2001), who analyse dynamic portfolio choice with a VaR limit
when asset returns follow a multivariate geometric Brownian motion, than to Leibowitz and
Kogelman (1991) and Alexander and Baptista (2000), who effectively replace mean-variance
preferences by mean-VaR preferences. The concept of IsoVaR, though, turns out to be equiva-
lent to the “shortfall line” introduced by Leibowitz and Kogelman (1991), although their empha-
sis was on achieving a minimum positive target return over the long run rather than on control-
ling losses over the short run.2

For simplicity of exposition, I make the assumption that a riskless asset is available for
unlimited borrowing and lending at a common rate, although one could cope with the alterna-
tive assumptions of different rates, no borrowing, or no riskless asset with little additional effort.
I also assume throughout that asset returns follow a joint multivariate elliptically symmetric dis-
tribution, of which the multivariate normal and the multivariate t are rather special cases. Apart
from the obvious fact that many empirical studies indicate that the marginal distribution of asset
returns has substantially fatter tails than the normal, and their cross-sectional dependence struc-
ture is non-linear, the two main advantages of weakening the standard Gaussianity assumption
in this direction are that (i) mean-variance analysis still coincides with expected utility optimi-
sation regardless of the exact form of the preferences, and (ii) the IsoVaRs remain straight lines
in mean-standard deviation space.

The rest of the paper is organised as follows. I introduce the three basic building blocks
(i.e. portfolio frontiers, indifference curves and IsoVaR lines) in section 2. Then, in section 3 I
solve the general mean-variance portfolio allocation with a VaR cap problem, and analyse the
“shadow cost” of the constraint. Finally, section 4 contains a brief summary of the results.

2 For a recent, comprehensive analysis of multiperiod investment decisions, see Campbell and Viceira (2001).
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2. THE THREE BUILDING BLOCKS

2.1 Mean-Variance Portfolio Frontiers
Consider a world with one riskless asset, and a finite number N of risky assets. Let Rs

denote the gross return on the safe asset (that is, the total payoff per unit invested), 
R = (R1,R2,…,RN)’ the vector of gross returns on the N remaining assets, with vector of means
and matrix of variances and covariances υυ and ΣΣ respectively, which I assume bounded. Let 
p = wsRs+…+wNRN denote the payoffs to a portfolio of the N + 1 primitive assets with weights
given by ws and the vector w = (w1 ,w2 ,…,wN)’. Importantly, I assume that there are no trans-
action costs or other impediments to trade, and in particular, that short-sales are allowed. I also
assume that the wealth of any particular investor is such that her individual behaviour does not
alter the distribution of returns.

There are at least three characteristics of portfolios in which investors are usually inter-
ested: their cost, the expected value of their payoffs, and their variance, given by C(p) = ws +
w’ιι, E(p) = ws Rs + w’υυ and V(p) = w’ΣΣw respectively, where ιι is a vector of N ones. Let P be
the set of payoffs from all possible portfolios of the N + 1 original assets, i.e. the linear span of
(Rs,R’)’. Within this set, several subsets deserve special attention. For instance, it is worth con-
sidering all unit cost portfolios R = {p ∈ P : C(p) = 1} whose payoffs can be directly understood
as returns per unit invested; and also all zero cost, or arbitrage portfolios A = {p ∈ P : C(p) = 0}.
In this sense, note that any non-arbitrage portfolio can be transformed into a unit-cost portfolio
by simply scaling its weights by its cost. Similarly, if  r = R-Rsιι denotes the vector of returns on
the N primitive risky assets in excess of the riskless asset, it is clear that A coincides with the lin-
ear span of r. The main advantage of working with excess returns is that their expected values
µµ = υυ-Rsιι directly give us the risk premia of R, without altering their covariance structure. On
the other hand, one must distinguish between riskless portfolios, S = {p ∈ P : V(p) = 0} and the
rest. In what follows, I shall impose restrictions on the elements of S so that there are no risk-
less “arbitrage”’ opportunities. In particular, I shall assume that ΣΣ is regular, so that S is limited
to the linear span of  Rs, and the law of one price holds (i.e. portfolios with the same payoffs
have the same cost). I shall also assume that Rs is strictly positive (in practice, Rs ≥ 1 for no-
minal returns).

A simple, yet generally incomplete method of describing the choice set of an agent is in
terms of the mean and variance of all the portfolios that she can afford. Let us consider initially
the case of an agent who has no wealth whatsoever, which means that she can only choose port-
folios in A. In this context, frontier arbitrage portfolios, in the usual mean-variance sense, will
be those that solve the program min V(p) subject to the restrictions C(p) = 0 and E(p) = µ, with
µ real. Given that C(p) = 0 is equivalent to p = w’r, I can re-write this problem as minww’ΣΣw
subject to w’µµ = µ . There are two possibilities: (i) µµ = 0, when the frontier can only be defined
for µ = 0; or (ii) µµ ≠ 0, in which case the solution for each µ is 

w*(µ) = µ (µµ ΣΣ-1µµ)-1 ΣΣ-1µµ
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As a consequence, the arbitrage portfolio rp = (µµ ΣΣ-1µµ)-1 ΣΣ-1r generates the whole
zero-cost frontier, in what can be called one-fund spanning. Moreover, given that the variance
of the frontier portfolios with mean µ will be µ (µµ’ΣΣ-1µµ)-1, in mean-standard deviation space
the frontier is a straight line reflected in the origin whose efficient section has slope √√µµ’ΣΣ−−11 µµ  .
Therefore, this slope fully characterises in mean-variance terms the investment opportunity set
of an investor with no wealth, as it implicitly measures the trade-off between risk and return that
the available assets allow at the aggregate level.

Traditionally, however, the frontier is usually obtained for unit-cost portfolios, and not
for arbitrage portfolios. Nevertheless, given that the payoffs of any portfolio in R can be repli-
cated by means of a unit of the safe asset and a portfolio in A, in mean-standard deviation space,
the frontier for R is simply the frontier for A shifted upwards in parallel by the amount Rs. And
although now we will have two-fund spanning, for a given safe rate, the slope √√µµ’ΣΣ−−11 µµ  con-
tinues to fully characterise the investment opportunity set of an agent with positive wealth.

An alternative graphical interpretation of the same result would be as follows. The
trade-off between risk and return of any unit-cost portfolio in R is usually measured as the ratio
of its risk premium to its standard deviation. More formally, if Ru ∈ R, where then su = µu /σu,
where µu = E(ru), σu = V(ru), and ru = Ru – Rs. This expression, known as the Sharpe ratio of
the portfolio, remains constant for any portfolio whose mean excess return and standard devia-
tion lie along the ray which, starting at the origin, passes through the point (µu,σu). As can be
seen in Figure 1, geometrically the Sharpe ratio coincides with the slope of the appropriate ray.
As a result, the steeper (flatter) a ray is (i.e. the closer to the y (x) axis), the higher (lower) the
corresponding Sharpe ratio.
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Then, since µp = 1 and σu =  (µµ’ΣΣ-1µµ)-1, the slope sp = µu/σu = √√µµ’ΣΣ−−11 µµ will give
us the Sharpe ratio of 

Rp(wrp ) = Rs+wrp

for any wrp > 0, which is the highest attainable. Therefore, in mean excess return-standard devi-
ation space, all Rp(wrp) lie on a positively sloped straight line that starts from the origin, as 
depicted in Figure 1. As the investor moves away from the origin, where she is holding all her
wealth in the safe asset, the net total position invested in the riskless asset is steadily decreasing,
and eventually becomes zero. Beyond that point, she begins to borrow in the money market to
lever up her position in the financial markets.

2.2 Mean-Variance Indifference Curves

The analysis in the previous section shows that any investor endowed with unit wealth
who only cares about the mean and variance of her returns will always choose some portfolio
Rp(wrp), which exclusively combines Rs and rp. Given my assumption that the joint distribution
of the primitive asset returns belongs to the elliptical class,3 such mean-variance preferences are
compatible with standard Von-Neumann-Morgensten expected utility theory regardless of the
specific functional form describing the investor’s risk attitudes towards the underlying random
payoffs (see Chamberlain (1983) or chapter 4, appendix B in Ingersoll (1987)). As a conse-
quence, her optimal investment strategy will display two-fund separation. Nevertheless, the pro-
posed allocation is incomplete, as the investor still has to determine the degree of leverage of her
chosen position, wrp.

The traditional solution to such a scale indeterminacy is to use a particular parametri-
sation for the derived utility function that depends exclusively on the mean and variance of the
portfolio returns. For instance, a commonly used specification is: 

γ γ
E(Ru) - —— V(Ru) = Rs + E(ru) - —— V(ru)                                    (1)

2 2
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3 The vector of risky asset returns R will be distributed as an elliptically symmetric multivariate random variable of
dimension N if and only if it can be written as an affine transformation of ρt ·ut, where ut is uniformly distributed on

the unit sphere surface in RN, and  ρt is a non-negative random variable that is independent of ut. When ρt is propor-
tional to the square root of an F random variable with N and 1/η degrees of freedom, we obtain the multivariate t dis-
tribution, which in turn converges to the multivariate normal as η → 0 (see Fang et al., 1990).

2
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where γ is a positive risk aversion parameter.4 The indifference curves associated with
such preferences will be parallel straight half-lines with slope γ/2 in mean-variance space, and
parallel half parabolas in mean-standard deviation space, as depicted in Figure 2. The indif-
ference curves become steeper as the risk aversion coefficient γ increases. In particular, they
will be almost vertical for an extremely risk averse individual, while they would be flat for a
risk neutral agent (i.e. γ = 0). For given risk preferences, though, the utility level of the agent
increases as we move up in a northwesterly direction across her indifference curves.

Therefore, it is not surprising that in the absence of any further constraints, her pre-
ferred portfolio will be such that the slope of the indifference curve at that point coincides with
the maximum Sharpe ratio attainable, as can be seen in Figure 3. For the preferences in (1), in
particular, this will happen for ru = wrp rp, where 

1   E(rp)     1                    1
wrp= — ——— = — (µ’Σ-1µµ) = — sp

γ   V(rp)      γ                    γ

4 The derived utility function in (1) is usually justified by a combination of constant absolute risk aversion and multi-
variate normality, which are unnecesarily restrictive assumptions for the purposes of this paper. Nevertheless, it helps
illustrate the most important features of more general mean-variance preferences.
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2.3 IsoVaRs

Nowadays, however, many institutional investors regularly use risk management pro-
cedures based on the ubiquitous Value at Risk to control for the risks associated with their port-
folios.

Let W > 0 denote the initial wealth of an investor. Hence, if Ru ∈ R denotes the gross
return on her chosen portfolio, the random final value of her wealth will be 

WRu = WRs + Wru,

which contains both a safe component, WRs, and a random component Wru. Therefore, the prob-
ability that she suffers a reduction in wealth larger than some fixed positive threshold value V
will be given by the following expression 

P[W(1 - Rs) - Wru ≥ V] = P(ru ≤ 1 - Rs –V/W)

= P

where µu and  σu are the mean and variance of ru, and F(.) is the cumulative distribution func-
tion of a zero mean – unit variance random variable within the appropriate elliptical class.5 The
value of V which makes the above probability equal to some pre-specified value α (0< α <1/2)

1100
Revista de 
ECONOMÍA FINANCIERA

5 Due to the properties of the elliptical distributions (see theorem 2.16 in Fang et al, 1990), the cumulative distribution
function F(.) does not depend in any way on µµ, ΣΣ or the vector of portfolio weights wu. In contrast, F(.) will usually
depend on some “tail thickness” parameters (e.g. the degrees of freedom in the multivariate t). In any case, note that
the tail behaviour of the distribution of portfolio returns can be significantly non-Gaussian.
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is known as the 100α% Value at Risk of the portfolio Ru. For convenience, though, the portfo-
lio VaR is often reported in fractional form as V/W.

As we saw before (cf. Figure 1), there are infinitely many portfolios in R that will share
the same Sharpe ratio, and they all line in a ray starting from the origin in mean excess return -
standard deviation space. It turns out there are also infinitely many portfolios in R that will share
the same fractional VaR V/W for a fixed probability level α. In fact, it is straightforward to see
all such portfolios will also lie along a straight line in mean excess return-standard deviation
space. Specifically, 

µu = (1 - Rs -V/W) -  F-1(α)·σu (2)

where F-1(.) is the quantile (or inverse cumulative distribution) function of a zero mean - unit
variance variate within the corresponding elliptical class. For obvious reasons, we shall call
these locuses IsoVaR lines, or simply IsoVaRs.

Since we have assumed that 0< α <1/2, the IsoVaRs will be positively sloped, the more
so the smaller α is. In fact, they will become almost vertical as α → 0, and almost flat as α →
1/2, as depicted in Figure 4. In contrast, changes in the target fractional VaR, V/W, will simply
produce parallel shifts in the IsoVaRs. In particular, increases (decreases) in V/W will produce
southeastward (northwestward) movements in the IsoVaRs, reflecting the fact that the VaR
restriction has become looser (tighter).

3. MEAN-VARIANCE PORTFOLIO ALLOCATION WITH A VAR CAP

As we saw in section 2.1, an investor endowed with unit wealth who only cares about
the mean and variance of her returns will always choose some portfolio Rp (wrp), which exclu-
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sively combines Rs and rp. Suppose, however, that because of an internal or external regulation,
the investor’s overriding concern is that she can only risk losing a fraction V/W or larger of her
initial wealth with probability α. Then, her effective choice set will be given by the section of
the efficient mean-variance frontier between the origin and its intersection with the IsoVaR cor-
responding to α and V/W. Therefore, her optimal investment strategy will still display two-fund
separation, the only effect of the VaR constraint being a reallocation of funds from rp to Rs.6

Given that along the efficient frontier E[rp(wrp)] = wrp and V[r p(wrp)] = wrp σp, I can
solve for wrp from (2) to find that the intersection point will be: 

as long as the VaR significance level α is such that 1 + F-1(α)/sp < 0  for Rs – 1 + V/W ≥ 0. In
this respect, note that if α is high enough so that –F-1 (α) ≤ sp, then wrp becomes unbounded.
The reason is that the overall risk-return trade-off that the fund manager faces is so good that the
portfolio VaR restriction is effectively void.

Therefore, the optimal constrained portfolio for an agent with mean-variance prefe-
rences will be the minimum of wrp and wrp. If the agent is sufficiently risk averse, then wrp will 

also solve the restricted problem, while if the agent is less risk averse, then wrpwill be chosen
instead. The optimal solution in the latter case is represented in Figure 5.
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6 The same result is obtained by Cuoco et al. (2001) in their dynamic set-up.
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7 For instance, for the mean-variance preferences in (1), the “shadow” Share ratio, sp* say, would be given by the for-
mula sp* =                  =  as long as wrp < wrp.

8 The corresponding pairs of expected excess returns and standard deviations (in percentage terms) will be (9, 18) and
(5, 10) respectively.

The previous analysis highlights an important fact that is very often blurred in discus-
sions of the effects of VaR constraints on portfolio allocation. As this figure clearly illustrates,
the expected return of the constrained portfolio cannot be larger than the expected return of the
unconstrained portfolio, because the fund manager must put aside some additional funds in the
safe asset to achieve the required VaR when the restriction is binding. Not surprisingly, the risk
of the restricted portfolio is also smaller. From the point of view of the fund manager, though,
there will be a positive “shadow cost” to a binding risk constraint.

Such a cost can be measured in different ways, but perhaps the most useful measure is
the reduction in the overall Sharpe ratio that would induce the fund manager to choose an unre-
stricted portfolio along the same indifference curve as the constrained one.7 Graphically, this is
given by the differences in slope between the actual and the “shadow” efficient frontiers in
Figure 5.

As a numerical illustration, suppose that the investor’s preferences are given by (1) with
γ = 1, the net return on the safe asset is 0, and the returns on the primitive risky assets follow a
multivariate t distribution with 8 degrees of freedom such that µµ’ ΣΣ-1 ιι ≠ 0. If the maximum
Sharpe ratio attainable is .5, which is roughly the value that reflects the performance of the US
stock market over the period 1977 to 1997, an unconstrained investor will put 25% of her wealth
in the optimal portfolio of risky assets, and the rest in the safe asset. As a result, the expected
excess return on her optimally chosen portfolio will trivially be 25%, with a standard deviation
of 50%. In contrast, an investor who must limit to 5% the probability of her losses exceeding
20%, will invest 91% of her initial wealth in the safe asset, a proportion that increases to just
above 95% if the probability of incurring in such losses can only be 1%.8 In the first case, the
“shadow” Sharpe ratio is .384, while in the second case is .299, which implies that the shadow
cost of a VaR constraint can indeed be substantial.

3. SUMMARY

In this paper I provide a simple unifying approach to static Mean-Variance analysis and
Value at Risk, which can be used to carry out informed investment decisions within the well-
known mean-variance allocation framework that satisfy the Value at Risk restrictions often
imposed on fund managers by internal or external regulators.

This is achieved by introducing a new type of line to the usual mean - standard devia-
tion diagram, which I call IsoVaR, which represents all the portfolios that share the same Value
at Risk (as a proportion of the available funds) for a fixed probability level α. Given some pre-
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specified risk control parameters, I show that the restricted portfolio allocation decision can be
solved by simply superimposing the investors’ mean-variance risk preferences on the section of
the efficient frontier that is delimited by the appropriate IsoVaR. Therefore, the optimal mix of
risky assets will be preserved, the only effect of the VaR constraint being a proportional reallo-
cation of funds from the risky assets to the safe one.

Importantly, I show that from the point of view of the fund manager, there will be a
“shadow cost” to a binding VaR constraint. This cost simply reflects the fact that the VaR restric-
tion is imposed on the fund manager by an internal or external regulator, whose risk attitudes
and objectives are different from the risk attitudes and objectives of the manager.
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