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Javier Menćıaa,∗, Enrique Sentanab
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1. Introduction

It is now widely accepted that the volatility of financial assets changes
stochastically over time, with fairly calmed phases being followed by more
turbulent periods of uncertain length. For financial market participants, it
is of the utmost importance to understand the nature of those variations
because volatility is a crucial determinant of their investment decisions. Al-
though many model-based and model-free volatility measures have been pro-
posed in the academic literature (see Andersen, Bollerslev, and Diebold, 2009,
for a recent survey), the Chicago Board Options Exchange (CBOE) volatil-
ity index, widely known by its ticker symbol VIX, has effectively become the
standard measure of volatility risk for investors in the US stock market. The
goal of the VIX index is to capture the volatility (i.e., standard deviation)
of the Standard and Poor’s 500 (S&P500) over the next month implicit in
stock index option prices. Formally, it is the square root of the risk-neutral
expectation of the integrated variance of the S&P500 over the next 30 cal-
endar days, reported on an annualised basis. Despite this rather technical
definition, both financial market participants and the media pay a lot of at-
tention to its movements. To some extent, its popularity is due to the fact
that VIX changes are negatively correlated to changes in stock prices. The
most popular explanation is that investors trade options on the S&P500 to
buy protection in periods of market turmoil, which increases the value of the
VIX. In fact, as Andersen and Bondarenko (2007) and many others show,
the VIX almost uniformly exceeds realised volatility because investors are, on
average, willing to pay a sizeable premium to acquire a positive exposure to
future equity-index volatility. For that reason, some commentators refer to
it as the market’s fear gauge, even though a high value does not necessarily
imply negative future returns.

But apart from its role as a risk indicator, nowadays it is possible to
directly invest in volatility as an asset class by means of VIX derivatives.
Specifically, on March 26, 2004, trading in futures on the VIX began on the
CBOE Futures Exchange (CFE). They are standard futures contracts on
forward 30-day implied vols that cash settle to a special opening quotation
(VRO) of the VIX on the Wednesday that is 30 days prior to the 3rd Friday
of the calendar month immediately following the expiring month. Further,
on February 24, 2006, European-style options on the VIX index were also
launched on the CBOE. Like VIX futures, they are cash settled according
to the difference between the value of the VIX at expiration and their strike
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price. Importantly, they can also be interpreted as options on VIX futures,
which one can exploit to simplify their valuation and avoid compounding
errors made in valuing futures. VIX options and futures are among the most
actively traded contracts at CBOE and CFE, averaging close to 260,000
contracts combined per day in 2010, with much larger volumes on certain
days.1 One of the main reasons for the high interest in these products is
that VIX derivative positions can be used to hedge the risks of investments
in the S&P500 index. Szado (2009) finds that such strategies do indeed
provide significant protection, especially in downturns. Moreover, by holding
VIX derivatives investors can achieve exposure to S&P500 volatility without
having to delta hedge their S&P500 option positions with the stock index. As
a result, it is often cheaper to be long in out-of-the-money VIX call options
than to buy out-of-the-money puts on the S&P500. Due to this possibility,
VIX options are the only asset in which open interest is highest for out-of-
the-money call strikes (Rhoads, 2011).

Although these new assets certainly offer additional investment and hedg-
ing opportunities for financial market participants, their correct use requires
reliable valuation models that adequately capture the features of the under-
lying volatility index. In turn, the empirical performance of those valuation
models can shed some light on the stochastic process for the VIX, and stock
market volatility more generally, which is of interest to academic researchers.
Moreover, the prices of volatility derivatives contain valuable information
about the views financial market participants hold about the future, and we
need reliable valuation models to make the correct inferences in a world with
risk-averse agents.

Somewhat surprisingly, several theoretical approaches to price VIX deriva-
tives appeared in the academic literature long before they could be traded.
Specifically, Whaley (1993) priced volatility futures assuming that the ob-
served volatility index on which they are written follows a Geometric Brown-
ian Motion (GBM). As a result, his model does not allow for mean-reversion
in the VIX, which, as we shall see, seems to be at odds with the recent empir-

1For comparison purposes, this value represents about 37% of the average daily volume
of S&P500 options, which was 695,000 in 2010. However, the volume of VIX derivatives is
growing at a much faster rate. Specifically, the volume of VIX options already represented
52% of the volume of S&P500 options during the first ten months of 2011. In this sense,
Rhoads (2011) points out that the volume traded is executed over a smaller time frame
(7:20 am - 3:15 pm Central Time) than for other derivatives markets.
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ical evidence.2 The two most prominent mean-reverting models proposed so
far for volatility indexes have been the square root process (SQR) considered
by Grünbichler and Longstaff (1996), and the log-normal Ornstein-Uhlenbeck
(LOU) process analysed by Detemple and Osakwe (2000).

Several authors have previously looked at the empirical performance of
these pricing models for VIX derivatives. In particular, Zhang and Zhu
(2006) study the empirical validity of the SQR model by first estimating its
parameters from VIX historical data, and then assessing the pricing errors
of VIX futures implied by those estimates. Following a similar estimation
strategy, Dotsis, Psychoyios, and Skiadopoulos (2007) also use VIX futures
data to evaluate the gains of adding jumps to an SQR diffusion. In addition,
they estimate a GBM process. Surprisingly, this model yields reasonably
good results, but the time span of their sample is perhaps too short for
the mean-reverting features of the VIX to play any crucial role. In turn,
Wang and Daigler (2011) compare the empirical fit of the SQR and GBM
models using data on options written on the VIX. They also find evidence
supporting the GBM assumption. However, one could alternatively interpret
their findings as evidence in favour of the LOU process, which also yields the
Black (1976) option formula if the underlying instrument is a VIX futures
contract, but at the same time is consistent with mean-reversion.

Despite this empirical evidence, both the SQR and the LOU processes
show some glaring deficiencies in capturing the strong persistence of the
VIX, which produces large and lasting deviations of this index from its long-
run mean. In contrast, the implicit assumption in those models is that this
volatility index mean-reverts at a simple, non-negative exponential rate. Such
a limitation becomes particularly apparent during bearish stock markets, in
which volatility measures such as the VIX typically experience large increases
and remain at high levels for long periods. Arguably, the apparent success
of those models is to a large extent due to the fact that the sample periods
considered in the existing studies only cover the relatively long and quiet bull
market that ended in the summer of 2007.

In this context, the initial objective of our paper is to study the empirical
ability of existing mean-reverting models for volatility indexes to price deriva-

2The stationarity of volatility seems to depend on the historical period considered.
Schwert (1990) and Pagan and Schwert (1990) find strong evidence for a unit root in stock
volatility if the data span the 1930s. In contrast, Schwert (2011) convincingly argues that
during the 2008–2009 crisis, volatility exhibits more mean-reversion than in the past.
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tives on the VIX over a longer sample span that includes data before, during,
and after the unprecedented recent financial crisis, which provides a unique
testing ground for our study. To do so, we use an extensive database that
comprises all futures and European option prices on the VIX from February
2006, when options were introduced, until December 2010. As a result, we
can study whether the SQR and LOU models are able to yield reliable in-
and out-of-sample prices in a variety of market circumstances.

Our findings indicate that although a LOU process for the VIX provides
a better fit than an SQR model, especially for VIX options, its performance
deteriorates during the market turmoil of the second part of our sample. For
that reason, we consider an extension of the SQR model advocated by Bates
(2012), among others, which allows for a time-varying central tendency in the
mean as well as stochastic volatility that is unspanned by the VIX. Similarly,
we generalise the LOU process by proposing several novel but empirically rel-
evant extensions: a time-varying central tendency in the mean, jumps, and
stochastic volatility. A central tendency, which was first introduced by Je-
gadeesh and Pennacchi (1996) and Balduzzi, Das, and Foresi (1998) in the
context of term structure models, allows the “average” volatility level to be
time-varying, while stochastic volatility permits a changing dispersion for the
(log) volatility index, and together with jumps, introduces non-normality in
its conditional distribution. Importantly, we study the role that risk pre-
miums play in reconciling the dynamics of the VIX with the prices of VIX
derivatives in order to determine the existence of economically important
systematic risks.

We estimate the SQR and LOU models by maximum likelihood. However,
a closed-form expression for the likelihood is not available for many of the
extensions. As a consequence, following Trolle and Schwartz (2009), among
others, we specify our extensions in state space form and calibrate their pa-
rameters by pseudo maximum likelihood. We use both derivative prices and
historical observations on the VIX itself since we want to estimate both real
and risk-neutral measures. In order to compute the theoretical derivatives
prices, we often need to invert the conditional characteristic function using
Fourier methods (see Carr and Madan, 1999; and Amengual and Xiu, 2012).

To validate the models, we analyse the discrepancies between actual and
theoretical derivatives prices. But we also go beyond pricing errors, and anal-
yse the implications of the aforementioned extensions for the term structures
of VIX futures, and the option volatility “skews,”all of which are of consid-
erable independent interest. Since we combine futures and options data, we
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can also assess which of those additional features is more relevant for pricing
futures, and which one is more important for options.

Importantly, our approach differs from Sepp (2008), who prices VIX
derivatives by using data on the S&P500 only. Although the relevant distri-
bution of future values of the VIX conditional on current information might
arguably depend not only on the current level of the VIX but also on the
value of the S&P500, it seems odd to completely neglect the information
content of contemporaneously observed VIX values. This is particularly rel-
evant in view of the fact that one cannot reproduce the spot VIX index by
using the model proposed by Sepp (2008) for the purposes of obtaining the
required S&P500 option values that feed in the closed-form CBOE formula
for this volatility index.3 In order to avoid compounding valuation errors,
therefore, we prefer to treat the current VIX level as our “sufficient statis-
tic,”and to treat VIX futures likewise for the purposes of valuing options,
instead of assigning that role to the S&P500. The same assumption has re-
cently been made by Song and Xiu (2012). Ideally, though, one would like to
use both, but we leave this for future research. In this sense, it is important
to emphasise that the univariate stochastic processes that we consider for
the VIX are not necessarily incompatible with models for S&P500 options
capable of reproducing this observed volatility index.

Our analysis can also shed some light on the long-lasting debate sur-
rounding the modeling and stationarity of the (instantaneous) volatility of
this broad stock market index. In particular, given the relationship between
the observed VIX and the unobserved integrated volatility of the S&P500,
our results imply that the sophisticated stochastic volatility models that
many researchers and practitioners use for valuing S&P options should prob-
ably allow for a slower mean-reversion than usually considered, as well as for
time-varying volatility of volatility.

The rest of the paper is organised as follows. We describe the data in
Section 2, and explain our estimation strategy in Section 3. Then, we assess
the empirical performance of existing models in Section 4 and consider our
proposed extensions in Section 5. Finally, we conclude in Section 6. Auxiliary
results are gathered in several Appendices.

3A relevant analogy would be the use of a model for the dividends and risk premia of
the 500 individual stocks that constitute the index for the purposes of valuing S&P500
derivatives discarding the information in the index itself, even though any such multivariate
model would very likely fail to reproduce the value of the index.
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2. Preliminary data analysis

2.1. The CBOE Volatility Index

VIX was originally introduced in 1993 to track the Black-Scholes im-
plied volatilities of options on the S&P100 with near-the-money strikes (see
Whaley, 1993). The CBOE redefined the index in 2003, renamed the original
index as VXO, and released a time series of daily closing prices starting in
January 1990 (see Carr and Wu, 2006). Nowadays, VIX is computed in real
time using as inputs the mid bid-ask market prices for most calls and puts
on the S&P500 index for the front month and the second month expirations
with at least eight days left (see Chicago Board Options Exchange, 2009).4

Since VIX is expressed in annualised terms, investors typically divide it by
16(=

√
256) to gauge the expected size of the daily movements in the stock

market implied by this index (see Rhoads, 2011).
Fig. 1a displays the entire historical evolution of the VIX. Between Jan-

uary 1990 and December 2010, its average closing value was 20.4. As other
volatility measures, though, it is characterised by swings from low to high
levels, with a temporal pattern that shows mean-reversion over the long run
but displays strongly persistent deviations from the mean during extended
periods. The lowest closing price (9.31) corresponds to December 22, 1993.
Fig. 1b, which focuses on the sample period in our derivatives database,
shows that volatility was also remarkably low between February 2006 and
July 2007, with values well below 20. During this period, the lowest value
was 9.89 on January 24, 2007, in what some have called “the calm before
the storm.”Indeed, although the Dow Jones Industrial Average closed above
14,000 for the first time in history in the summer of 2007, some warning
signals were observed around this period. In particular, on June 22, 2007,
Bear Stearns pledged up to $3.2 billion in loans to bail out one of its hedge
funds, which was collapsing due to bad bets on subprime mortgages. More-
over, on July 18, 2007, this investment bank disclosed that its two subprime
hedge funds had lost all of their value, and one day later Fed Chairman Ben
Bernanke warned the US Senate Banking Committee that subprime losses

4Currently, CBOE applies the VIX methodology to three-month options on the S&P500
(VXV), as well as one-month options on the most important US stock market indexes:
DJIA (VXD), S&P100 (VXO), Nasdaq-100 (VXN), and Russell 2000 (RVX). They also
construct analogous short-term volatility indexes for Crude Oil (OVX), Gold (GVZ), Soy-
bean (SIV), Corn (CIV), and the US $/eexchange rate (EVZ).
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could top $100 billion. Perhaps not surprisingly, over the following year
VIX increased to values between 20 and 35. Finally, in the autumn of 2008
it reached unprecedented levels. In particular, the largest historical clos-
ing price (80.86) took place on November 20, 2008, although on October 24
the VIX reached an intraday value of 89.53. After this peak, VIX followed
a decreasing trend over the following months until the beginning of April
2010, when the Greek debt crisis started worsening. These markedly differ-
ent regimes offer a very interesting testing ground to analyse the performance
of valuation models for volatility derivatives. In particular, we can assess if
the models calibrated with pre-crisis data perform well under the extreme
conditions of the 2008–2009 financial crisis.

In order to characterise the time-series dynamics of the VIX, we have
estimated several autoregressive-moving-average (ARMA) models using the
entirety of VIX historical observations from 1990 to 2010; see French, Schw-
ert, and Stambaugh (1987) for a related analysis. Fig. 2a compares the
sample autocorrelations of the log VIX with those implied by the estimated
models. There is clear evidence of high persistence, with a first-order autocor-
relation above 0.98 and a slow rate of decay for higher orders. Consequently,
an AR(1) model seems unable to capture the shape of the sample correlo-
gram. An alternative illustration of the failure of this model is provided by
the presence of positive partial autocorrelations of orders higher than one, as
Fig. 2b confirms. Therefore, it is necessary to introduce a moving average
component to take into account this feature. An ARMA(1,1) model, though,
only offers a slight improvement. In contrast, an ARMA(2,1) model turns out
to yield autocorrelations and partial autocorrelations that are much closer
to the sample values. As we shall see below, our preferred continuous time
models have ARMA(2,1) representations in discrete time. Importantly, this
result is not due to the behaviour of the VIX during the financial crisis, since
an ARMA(2,1) is also necessary to capture the autocorrelation profile when
we only consider data from 1990 until the summer of 2007.

We have also analysed the presence of time-varying features in the volatil-
ity of the log VIX. In particular, we have tested for generalised autoregres-
sive conditional heteroskedasticity (GARCH) effects in the residuals of the
ARMA(2,1) estimation.5 Interestingly, we can easily reject the conditional

5Following Demos and Sentana (1998), we carry out a one-sided Lagrange multiplier
(LM) test of conditional homoskedasticity against GARCH as TR̃2 from the regression of
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homoskedasticity of the log VIX at all conventional levels. As we shall in Sec-
tion 5.4, the volatility of our preferred continuous time specification closely
matches the volatility of an ARMA(2,1)-GARCH(1,1) model.

2.2. VIX derivatives

Our sample contains daily closing bid-ask mid prices of futures and
European put and call options on the VIX, which we downloaded from
Bloomberg. We apply several filters to ensure the reliability of the data that
we finally use. Following Dumas, Fleming, and Whaley (1998), we exclude
derivatives with fewer than six days to expiration due to their illiquidity. In
addition, we only retain those prices for which open interests and volumes
are available. We consider the entire history of these series since options were
introduced in February 2006 until December 2010. In terms of maturity, we
have data on all the contracts with expirations between March 2006 and May
(July) 2011 for options (futures). CFE may list futures for up to nine near-
term serial months, as well as five months on the February quarterly cycle
associated to the March quarterly cycle for options on the S&P500. In turn,
CBOE initially lists some in-, at-, and out-of-the-money strike prices, and
then adds new strikes as the VIX index moves up or down. Generally, the
options expiration dates are up to three near-term months plus up to three
additional months on the February quarterly cycle.6

All in all, we have 8,665 and 87,870 prices of futures and options, respec-
tively. Of those option prices, 58,099 correspond to calls and 29,771 to puts.
We have between four and six daily futures prices during 2006; afterwards,
eight prices per day become available, on average. The number of option
prices per day is also smaller at the beginning of the sample, but it tends to
stabilise in 2007 at around 20 for puts and 40 for calls. The number of call
prices per day increases again after mid-2009 and is greater than 60 at the
end of the sample. We proxy for the riskless interest rate by using the daily
Eurodollar rates at one-week, one, three and six months, and one year, which
we interpolate to match the maturities of the futures and option contracts

the squared ARMA(2,1) residuals on a constant and the RiskMetrics volatility estimate
(see RiskMetrics Group, 1996).

6VIX futures contracts have a multiplier of 1,000, while VIX option contracts have a
multiplier of 100. This means that the value of the VIX futures contract is determined
by multiplying $1,000 times the quoted futures price. On March 2, 2009, the CBOE
introduced mini-VIX futures, which have a multiplier of 100 (see Rhoads, 2011).
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that we observe.7

Fig. 3a shows the evolution of the VIX term structure implicit in VIX
futures. Futures prices remained low albeit above the volatility index until
mid-2007, which suggests that market participants perceived that the VIX
was too low during those years. For instance, on October 12, 2006, the VIX
was 11.09, while the price of VIX futures expiring on February 14, 2007,
was 15.72. The spot price reflected the expected volatility for the period of
October 12 to November 11, while the futures price reflected the expected
volatility for the period of February 14 to March 16, 2007. Fig. 3a clearly
confirms that there was an initial increase in the summer of 2007 and a
substantial level shift in the last quarter of 2008. The negative slope during
the latter period, though, indicates that the market did not expect the VIX
to remain at such high values forever, a fact already highlighted by Schwert
(2011). Eventually, this prediction turned out to be on the winning side
and futures prices significantly came down until April 2010, right before the
beginning of the European sovereign debt crisis.

Figs. 3b and 3c show the average implied volatility skews implicit in
VIX option prices for different times to maturity. We consider low volatility
days on Fig. 3b and high volatility days on Fig. 3c. We define low (high)
volatility days as those in which the implied volatility of one-month at-the-
money options remains below (above) their average value over the sample.
Interestingly, we observe a consistent pattern of implied volatility smirks with
positive slope regardless of the time to maturity and volatility of the VIX.
There only seems to be a small change in slope for deep in-the-money calls
(or out-of-the-money puts). Therefore, any pricing model must adequately
capture these empirical features. Finally, although Figs. 3b and 3c show
that option prices were higher for longer maturities on average, this is not
necessarily the case on all the days in the sample. In particular, option prices
decreased with maturity at the peak of the financial crisis (November 2008)
because the market expected a fall in the volatility of the VIX.

7Given that Eurodollar and London interbank offered rates (LIBOR) are very similar,
the results are unlikely to be sensitive to this choice. As usual in the option pricing
literature, we assume constant interest rates in our models. Although interest rates are of
course not constant in practice, we have checked that their changes are not significantly
correlated with changes in the VIX.

10



3. Pricing and estimation strategy

We assume that there is a risk-free asset with instantaneous rate r.
Let V (t) be the VIX value at time t. We define F (t, T ) as the actual price of
a futures contract on V (t) that matures at T > t. Similarly, we will denote
the prices at t of call and put options maturing at T with strike price K
by c(t, T,K) and p(t, T,K), respectively. Importantly, since the VIX index
is a risk-neutral volatility forecast, not a directly traded asset, there is no
cost of carry relationship between the price of the futures and the VIX (see
Grünbichler and Longstaff, 1996, for more details). There is no convenience
yield either, as in the case of futures on commodities. Therefore, absent any
other market information, VIX derivatives must be priced according to some
model for the risk-neutral evolution of the VIX. This situation is similar, but
not identical, to term structure models.

Let M index the asset pricing models that we consider. Then, the theo-
retical futures price implied by model M will be:

FM(t, T, V (t),φ) = EQ
M[V (T )|I(t),φ], (1)

where Q indicates that the expectation is evaluated at the risk-neutral mea-
sure, φ is the vector of free parameters of model M, and I(t) denotes the
information available at time t, which includes V (t) and its past values.

We can analogously express the theoretical value of a European call option
with strike K and maturity at T under this model as

cM[t, T,K, F (t, T ),φ] = exp(−rτ)EQ
M[max(V (T )−K, 0)|I(t),φ], (2)

where τ = T − t. Nevertheless, we can exploit the fact that V (T ) = F (T, T )
to price calls using the futures contract that expires on the same date as the
underlying instrument, instead of the actual volatility index. In this way, we
make sure that the pricing errors of options are not caused by distortions
in our futures valuation formulas. Similarly, European put prices p(t, T,K)
underM can be easily obtained from the put-call-forward parity relationship

pM[t, T,K, F (t, T ),φ] = cM[t, T,K, F (t, T ),φ]− exp(−rτ)[F (t, T )−K].

We use futures and options prices, as well as data on the VIX index,
which allows us to estimate the risk premia implicit in the market of VIX
derivatives. We estimate the parameters by maximum likelihood for the
models whose likelihood is known in closed form, and by pseudo maximum
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likelihood for the remaining ones. In both cases, we assume the existence of
pricing errors such that

F (t, T ) = FM(t, T, V (t),φ) + ξft + εft,T ,

c(t, T,K) = cM[t, T,K, F (t, T ),φ] +$(M(t, T )) [(1− ηo)ξot + ηoεct,T (K)] ,

p(t, T,K) = pM[t, T,K, F (t, T ),φ] +$(M(t, T )) [(1− ηo)ξot + ηoεpt,T (K)] ,

where εft,T ∼ N(0, σ2
fε), εct,T (K) ∼ N(0, 1), and εpt,T (K) ∼ N(0, 1) are

orthogonal and independent and identically distributed (iid) over time and
across strikes and maturities, while ξft ∼ N(0, σ2

fξ) and ξot ∼ N(0, 1) are
also orthogonal and iid over time but common for all futures and options,
respectively. Thus, we decompose pricing errors into common and idiosyn-
cratic terms. Thanks to this parametrisation, we allow for contemporaneous
correlation between the pricing errors. As noted by Bates (2000), ignoring
this feature would affect the relative weighting that the options and futures
would receive in the estimation. In contrast, the inclusion of common factors
avoids overestimating the amount of truly independent information in the
data.8 In addition, we parametrise the variances of option pricing errors by
means of the quadratic function

$2(M(t, T )) = σa + σb(M(t, T )− σc)2, (3)

where M(t, T ) = log(K/F (t, T )) measures the moneyness of the option. In
this way, we avoid giving undue weight to higher priced or in-the-money
options whose pricing errors are higher simply because of their larger scale.
Importantly, we also employ different parameters for the pricing error vari-
ances of futures and options, thereby implicitly adjusting their relative weight
in the likelihood.

We can write the log likelihood at a particular time t as

l[ot, ft, V (t)|I(t− 1)] = lo(ot|ft, V (t), I(t− 1)) + lf (ft|V (t), I(t− 1))

+lv[V (t)|I(t− 1)],

where ot and ft are, respectively, the set of option and futures prices traded
at t, lo(ot|ft, V (t), I(t− 1)) is the log density of the option prices conditional

8Nevertheless, empirical results without the common factors ξft and ξot, which are
available from the authors upon request, yield qualitatively similar results.
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on futures prices and VIX, lf (ft|V (t), I(t − 1)) is the log likelihood of the
futures prices conditional on the volatility index, and lv[V (t)|I(t− 1)] is the
log density of the volatility index.9 Thus, the log likelihood reflects that we
price futures conditional on the value of the VIX, in the same way as we
price options conditional on the value of the futures. In addition, we take
into account the contribution of the VIX to the log likelihood in order to
obtain the parameters under the real measure.

A nontrivial advantage of our estimation method over traditional cali-
bration procedures is that we do not have to treat the model parameters
as deterministic functions of time. In addition, we can also obtain standard
errors for our parameter estimators, which can in turn be used to conduct for-
mal hypothesis tests. Furthermore, we can exploit the relationship between
actual and risk-neutral measures to estimate prices of risk (see Appendices
Appendix B and Appendix C for details).

We consider two estimation samples that correspond to two distinct volatil-
ity phases described in Section 2: until 15-Aug-2008 and full sample. We use
the first sample to evaluate the out-of-sample empirical fit of the models.10

Thus, we can assess model performance following a major volatility increase
in global stock markets.

4. Existing one-factor models

4.1. Model specification

We first compare the two mean-reverting volatility models that have
been used so far in the literature: the square root and the log Ornstein-
Uhlenbeck processes. As we mentioned before, Grünbichler and Longstaff
(1996) proposed the square root process (SQR) to model a standard devia-
tion index. This model, which was used by Cox, Ingersoll, and Ross (1985)
for interest rates and Heston (1993) for the instantaneous variance of stock

9The usefulness of this additive decomposition is limited, though, because most model
parameters affect more than one component.

10We analyse out-of-sample performance using the parameter estimates obtained in-
sample. We also use the current value of the VIX to compute futures prices and the current
value of futures prices to compute option prices, just as a financial market participant
would do in real time. In addition, in the models with more than one factor, we follow the
standard procedure of filtering the additional factor using the past evolution of the VIX
and its derivatives with the in-sample estimates.
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prices, satisfies the diffusion

dV (t) = κP [θ̄P − V (t)]dt+ σ
√
V (t)dW P (t),

where W P (t) is a Brownian motion under the real measure. Following Dai
and Singleton (2000), we specify a price of risk that is proportional to the
instantaneous volatility. Specifically, we assume that Λv(t) = ς

√
V (t), so

that dWQ(t) = dW P (t) + ς
√
V (t)dt. Then, it is straightforward to show

that V (t) satisfies the square root diffusion

dV (t) = κ[θ̄ − V (t)]dt+ σ
√
V (t)dWQ(t)

under the equivalent risk-neutral measure, where κ = κP + σς and θ̄ =
κP θ̄P/κ.

As is well known, the risk-neutral distribution of 2cV (T ) given V (t) is a
non-central chi-square with ν = 4κθ̄/σ2 degrees of freedom and non-centrality
parameter ψ = 2cV (t) exp(−κτ), where

c =
2κ

σ2(1− exp(−κτ))
.

As a result, the price of the futures contract (1) can be expressed in this case
as

FSQR(t, T, V (t), κ, θ̄, σ) = θ̄ + exp(−κτ)[V (t)− θ̄]. (4)

We can interpret θ̄ as the long-run mean of V (t), since the conditional ex-
pected value of the volatility index converges to θ̄ as τ goes to infinity. In
addition, κ is usually interpreted as a mean-reversion parameter because the
higher it is, the more quickly the process reverts to its long-run mean.11

Interestingly, the SQR model introduces stochastic volatility because the
conditional variance of the VIX implied by this model is an affine function
of V (t) (see Appendix Appendix D).

The call price formula (2) for this model becomes

cSQR(t, T,K, κ, θ̄, σ) = V (t) exp(−(κ+ r)τ)[1− FNC2(2cK; ν + 4, ψ)]

+θ̄[1− exp(−κτ)] exp(−rτ)[1− FNC2(2cK; ν + 2, ψ)]

−K exp(−rτ)[1− FNC2(2cK; ν, ψ)], (5)

11As remarked by Hansen and Scheinkman (2009), the density of this distribution will
be positive at V (T ) = 0 if the Feller condition 2κθ̄ ≥ σ2 is violated.
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where FNC2(·; ν, ψ) is the cumulative distribution function (CDF) of a non-
central chi-square distribution with ν degrees of freedom and non-centrality
parameter ψ. Hence, it is straightforward to express the call price as a
function of F (t, T ) by exploiting the relationship between futures prices and
V (t) in (4).

Subsequently, Detemple and Osakwe (2000) considered the log-normal
Ornstein-Uhlenbeck (LOU) diffusion:

d log V (t) = κ[θ̄P − log V (t)]dt+ σdW P (t).

If once again we follow Dai and Singleton (2000) in specifying the price of
risk as Λv(t) = ς, then V (t) will satisfy the LOU diffusion

d log V (t) = κ[θ̄ − log V (t)]dt+ σdWQ(t)

under the risk-neutral measure, where θ̄ = θ̄P − σς/κ.
As is well known, this model implies that log V (t) would follow a condi-

tionally homoskedastic Gaussian AR(1) process if sampled at equally spaced
discrete intervals. More generally, the conditional risk-neutral distribution
of log V (T ) given V (t) would be Gaussian with mean

µ(t, τ) = θ̄ + exp(−κτ)[log V (t)− θ̄]

and variance

ϕ2(τ) =
σ2

2κ
[1− exp(−2κτ)]. (6)

As in the SQR process, θ̄ and κ can be interpreted as the long-run mean
and mean-reversion parameters, respectively, but now it is the log of V (t)
that mean-reverts to θ̄. And although (6) shows that the LOU model is
homoskedastic for the log VIX, it can be shown that the process followed
by the VIX is heteroskedastic due to Jensen’s inequality (see Appendix Ap-
pendix D for more details). In this context, it is straightforward to show that
the futures price is

FLOU(t, T, V (t), κ, θ̄, σ) = exp(µ(t, τ) + 0.5ϕ2(τ)),

while the call price can be expressed as

cLOU(t, T,K, κ, θ̄, σ) = exp(−rτ)F (t, T )Φ

[
log(F (t, T )/K) + 1

2
ϕ2(τ)

ϕ(τ)

]
−K exp(−rτ)Φ

[
log(F (t, T )/K)− 1

2
ϕ2(τ)

ϕ(τ)

]
(7)
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if we take the futures contract as the underlying instrument, where Φ(·)
denotes the standard normal CDF. This is the well-known Black (1976) for-
mula, although in this case the implied volatility ϕ(τ) in (6) is not constant
across maturities. In this sense, the pricing formula proposed by Whaley
(1993) based on a geometric Brownian motion can also be expressed as (7)
if ϕ(τ) is taken as a constant irrespective of τ .

4.2. Empirical performance

We have estimated the parameters of these two models over the two
sample periods described at the end of Section 3. Table 1 reports the in- and
out-of-sample root mean square pricing errors (RMSE). We observe that the
SQR model yields larger in-sample price distortions than the LOU model.
Those distortions remain in the out-of-sample period. We have re-estimated
the two models with VIX and futures data only to check that the use of
option data in the estimation of the parameters is not driving the results.
We have found that the LOU model still yields a better performance in that
case.

Table 2 reports the parameter estimates that we obtain under the real
measure, as well as the parameters of the pricing error variances. Although
the values are not directly comparable because volatility is expressed in lev-
els in the SQR model and in logs in the LOU model, in both cases the
mean-reversion parameter κ is quite sensitive to the sample period used for
estimation purposes (see footnote 2 and references therein). In contrast, the
volatility parameter σ is more stable for the LOU process, probably because
the log transformation is more appropriate to capture the distortions pro-
duced by the large movements of the VIX that took place at the end of our
sample. Table 2 also shows that the parameters of the quadratic function
(3) are highly significant. Therefore, allowing for different variances of pric-
ing errors across strikes seems to be relevant in ensuring that higher priced
options do not receive undue weight.

An alternative, more illustrative way to assess the validity of the LOU
model is by considering the implied volatilities obtained with the Black (1976)
formula (7). As we mentioned before, the implied volatility of the LOU
process is constant for different degrees of moneyness, but not across different
maturities because (6) depends on τ . Hence, if this model were correct, then
we should obtain constant implied volatilities for a given maturity regardless
of moneyness. As we have seen in Figs. 3b and 3c, this is not at all the case.
In fact, we generally observe that implied vols have a positive moneyness
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slope. In addition, the comparison of these figures suggests that the volatility
of the log VIX is not constant over time, as the LOU model assumes. In this
sense, the LOU process is not only unable to generate the observed volatility
skews, but it also fails to capture the average level of implied volatilities. As
we will see in Section 5.5, though, the SQR model generates volatility skews,
but they have the opposite slope to the actual skews in Figs. 3b and 3c.

5. Extensions

5.1. Model specification

The results of the previous section indicate that a LOU process offers
a better empirical fit than a SQR process. Unfortunately, their performance
tends to deteriorate during the recent financial crisis. For that reason, in
this section we explore several extensions to those models. For the sake of
brevity, though, we focus on the risk-neutral measure and the prices of risk.
Further details can be found in Appendices Appendix B and Appendix C.

Specifically, we extend the SQR model by considering the concatenated
SQR (CSQR) proposed by Bates (2012), among others:

dV (t) = κ[θ(t)− V (t)]dt+ σ
√
V (t)dWQ

v (t),

with
dθ(t) = κ̄[θ̄ − θ(t)]dt+ σ̄

√
θ(t)dWQ

θ (t).

We specify the prices of risk that link the Wiener processes under P and Q
as

dWQ
v (t) = dW P

v (t) + ς
√
V (t)dt, (8)

dWQ
θ (t) = dW P

θ (t) + ς̄
√
θ(t)dt, (9)

where WQ
v (t) and WQ

θ (t) are independent Brownian motions. These specifi-
cations ensure that the VIX follows the same process under the real measure.
As we mentioned before, an important deficiency of previously existing mod-
els is that they assume that the volatility index mean-reverts at a simple,
non-negative exponential rate, which is in fact zero in the GBM model pro-
posed by Whaley (1993). However, the long, persistent swings in the VIX
in Fig. 1a suggest that we need to allow for more complex dynamics. In
this sense, the CSQR allows the VIX to revert towards a central tendency,
which in turn fluctuates stochastically over time around a long-run mean θ̄.
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As a consequence, the conditional mean of V (T ) is a function of the distance
between V (t) and the central tendency θ(t), as well as the distance between
θ(t) and θ̄.12 More explicitly,

EQ[V (T )|I(t)] = θ̄ + δ(τ)[θ(t)− θ̄] + exp(−κτ)[V (t)− θ(t)], (10)

where

δ(τ) =
κ

κ− κ̄
exp(−κ̄τ)− κ̄

κ− κ̄
exp(−κτ). (11)

Importantly, the CSQR model introduces stochastic volatility that is not
spanned by the VIX, since the conditional variance under this model is an
affine function of V (t) and θ(t) (see Appendix Appendix B).

In turn, we add three empirically relevant features to the LOU model:
a time-varying mean, jumps, and stochastic volatility. We consider these
extensions first in isolation, and then in combination. As a general rule, we
model the price of risk of the continuous part of the diffusions as in the one-
factor models, while we assume that jump risk is not priced. All in all, we
compare the following cases:

• Central tendency (CTOU):

d log V (t) = κ[θ(t)− log V (t)]dt+ σdWQ
v (t),

with
dθ(t) = κ̄[θ̄ − θ(t)]dt+ σ̄dWQ

θ (t), (12)

where WQ
v (t) and WQ

θ (t) are independent Brownian motions. We spec-
ify the prices of risk that link the Wiener processes under P and Q
as

dWQ
v (t) = dW P

v (t) + ςdt, (13)

dWQ
θ (t) = dW P

θ (t) + ς̄dt. (14)

These specifications ensure that the process followed by the log VIX is
also affine under the real measure.

We show in Appendix Appendix C that the exact discretisation of
log V (t) in the above model is a Gaussian ARMA(2,1) process, which

12Unlike in the SQR model, the convergence of (10) to the long-run mean is not neces-
sarily a monotonic function of τ .
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is consistent with the evidence reported in Section 2 (see Fig. 2).
Therefore, its likelihood function can be computed in closed form. As
discussed in Jegadeesh and Pennacchi (1996) and Balduzzi, Das, and
Foresi (1998), (12) allows the volatility index to revert towards a time-
varying central tendency whose long-run mean is θ̄. As a consequence,
the conditional mean of log V (T ) is a function of the distance between
log V (t) and the central tendency θ(t), as well as the distance between
θ(t) and θ̄.13 More explicitly,

EQ[log V (T )|I(t)] = θ̄ + δ(τ)[θ(t)− θ̄]
+ exp(−κτ)[log V (t)− θ(t)], (15)

where δ(τ) is given by (11). Notice that, although (10) and (15) have a
similar structure, the two formulas are not equivalent because the VIX
appears in levels in (10). In addition, the CTOU model can equivalently
be expressed as the “superposition” (i.e., sum) of two LOU factors.
Therefore, the structure in (12) is not restrictive for the CTOU.14

• Jumps (LOUJ):

d log V (t) = κ[θ̄ − log V (t)]dt+ σdWQ
v (t) + dZ(t)− λ

κδ
dt, (16)

where Z(t) is a pure jump process independent of WQ
v (t), with inten-

sity λ, and whose jump amplitudes are exponentially distributed with
mean 1/δ, or Exp(δ) for short. Note that the last term in (16) simply
introduces a constant shift in the distribution of log V (t) which ensures
that θ̄ remains the long-run mean of log V (t). Jumps in models for in-
stantaneous volatility have been previously considered by Duffie, Pan,
and Singleton (2000) and Eraker, Johannes, and Polson (2003), among
others, while Todorov and Tauchen (2011) also consider jumps in mod-
eling the VIX. Unlike pure diffusions, this model allows for sudden
movements in volatility indexes, which nevertheless have lasting effects

13As in the CSQR model, the convergence of (15) to the long-run mean is not necessarily
a monotonic function of τ .

14The “component” GARCH model proposed by Ding and Granger (1996) to capture
“long memory” features of volatility (see also Engle and Lee, 1999) can be regarded as a
discrete time analogue to (12).
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due to the fact that the mean-reversion parameter κ is bounded. Again,
we assume (13) for the price of diffusion risk.

• Stochastic volatility (LOUSV):

d log V (t) = κ[θ̄ − log V (t)]dt+
√
ω(t)dWQ

v (t),

where ω(t) follows an OU-Γ process, which belongs to the class of Lévy
OU processes considered by Barndorff-Nielsen and Shephard (2001).
Specifically,

dω(t) = −λ̄ω(t)dt+ dZ̄(t), (17)

where Z̄(t) is a pure jump process with intensity λ̄ and Exp(δ̄) jump
amplitude, while WQ

v (t) is an independent Brownian motion. We use
this extension to assess to what extent the price distortions in the
previous models are due to the assumption of constant volatility over
time. Importantly, the model that we adopt is consistent with the
presence of mean-reversion in ω(t), since

EQ [ω(T ))|ω(t)] = δ̄−1 + exp(−λ̄τ)
[
ω(t)− δ̄−1

]
. (18)

Hence, δ̄−1 can be interpreted as the long-run mean of the instan-
taneous volatility of the log VIX, while λ̄ will be the corresponding
mean-reversion parameter. Another nontrivial advantage of this model
over other alternatives such as a square root process for ω(t) is that it
allows the valuation of derivatives by inverting the conditional charac-
teristic function (see Appendix Appendix C for details). Once again, we
consider a price of diffusion risk proportional to instantaneous volatility
to ensure that the log VIX under the real measure remains an affine
process (see Dai and Singleton, 2000). Specifically, we assume

dWQ
v (t) = dW P

v (t) + ςω
√
ω(t)dt. (19)

Under this specification, the price of risk has a stronger impact when
the volatility of the VIX is larger.

• Central tendency and jumps (CTOUJ):

d log V (t) = κ[θ(t)− log V (t)]dt+ σdWQ
v (t) + dZ(t)− λ

κδ
dt, (20)
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where θ(t) follows the diffusion (12) and Z(t) is a pure jump process
with intensity λ and Exp(δ) jump amplitude, while WQ

v (t) and WQ
θ (t)

are independent Brownian motions. We again introduce a constant
shift in (20) to ensure that θ̄ is the long-run mean of both θ(t) and
log V (t). As in the CTOU model, we assume that the prices of risk are
given by (13) and (14).

• Central tendency and stochastic volatility (CTOUSV):

d log V (t) = κ[θ(t)− log V (t)]dt+
√
ω(t)dWQ

v (t),

where θ(t) follows the diffusion (12) while ω(t) is defined in (17). As
in previous cases, the jump variable Z̄(t) and the Brownian motions
are mutually independent. Similarly, we consider the prices of risk
specifications (14) and (19).

Despite the apparent differences between (13), (14), and (19), they are
all special cases of a generic specification. In particular, following Cherid-
ito, Filipović, and Kimmel (2007), we can write the risk-neutral probability
measure in terms of the real measure for all the extensions that we consider
as

q = exp

[
−
∫ T

t

(Λv(s)dWv(s) + Λθ(s)dWθ(s))−
1

2

∫ T

t

(
Λ2
v(s) + Λ2

θ(s)
)
ds

]
,

where Λv(t) = ςω
√
ω(t) and Λθ(t) = ς̄ in our case.15

Except for the CTOU model, it is not generally possible to price deriva-
tive contracts for these extensions in closed form. However, it is possible to
obtain the required prices by Fourier inversion of the conditional character-
istic function. In particular, we use formula (5) in Carr and Madan (1999)
to invert the relevant characteristic functions of the extensions to the LOU
model (see Appendix Appendix C). However, this approach is not valid for
the CSQR model, where we need to follow recent results by Amengual and
Xiu (2012) to invert the characteristic function (see Appendix Appendix B).

Some of the previous extensions introduce as additional factors a time-
varying tendency, a time-varying volatility, or both, which we need to filter

15Note that ω(t) = σ2 in the extensions without stochastic volatility. Accordingly, we
define ς = ςωσ in those cases.
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out for estimation purposes. In this regard, we use the standard Kalman filter
to “estimate” θ(t). And although the jump variable Z(t) in (16) can also be
interpreted as an additional factor, its impact cannot be separately identified
from the impact of the diffusion shocks dWQ

v (t) because both variables share
the same mean-reversion coefficient κ. Finally, following Trolle and Schwartz
(2009) and others, we employ the extended Kalman filter to deal with ω(t)
(see once again Appendix Appendix C for further details).

5.2. Empirical performance

Table 3 reports the in- and out-of-sample RMSEs of the extensions
introduced in the previous section. As expected, the CSQR process is able
to yield much smaller RMSEs than the SQR and LOU models, both in- and
out-of-sample. Nevertheless, the CTOU model achieves a slightly superior fit,
especially out-of-sample. In any case, a persistent time-varying mean seems
to capture a crucial feature of the data. On the other hand, the introduction
of jumps in the LOU model does not introduce improvements in the aggregate
RMSEs. Similarly, adding jumps to the CTOU model does not substantially
improve the fit either. However, it is important to emphasise that Table 3
does not assess the importance of jumps on the historical dynamics of the
VIX, only their pricing implications.

In contrast, we find significant improvements when we consider stochastic
volatility. The LOUSV introduces important reductions in the RMSEs, but
the combination of central tendency and stochastic volatility provided by the
CTOUSV model yields the overall best fit. Importantly, this model is able
to describe the out-of-sample behaviour of the VIX during the more extreme
periods of the financial crisis.

Fig. 4 compares the empirical CDFs of the square pricing errors of fu-
tures and option prices separately. This figure shows that the CTOUSV
model dominates in the first-order stochastic sense all the other models for
both futures and options. The ordering of the remaining models, though,
depends on the type of derivative asset considered. In the case of futures,
the CTOUSV is closely followed by the CSQR and then by the other central
tendency specifications (CTOU and CTOUJ), which display almost identical
results. In turn, they are followed by the LOUSV, LOUJ, LOU, and SQR
models. But for options, the second-best model is LOUSV, which is followed
by the CTOUJ, LOUJ, CTOU, LOU, SQR, and CSQR models. Thus, we ob-
serve that the central tendency is relatively more important for futures, while
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stochastic volatility offers greater gains on options. At the same time, a cen-
tral tendency does not harm the option pricing performance of the CTOUSV
model, while stochastic volatility does not cause any distortions to futures
prices. This is not surprising, given that we show in Appendix Appendix C
that option prices for the extensions of the LOU model do not depend on θ(t)
once we condition on the current futures price. As for jumps, Fig. 4 shows
that they do indeed help in pricing options but they hardly provide any im-
provement for futures. The small impact of jumps on futures is again to be
expected because we can also show that jumps in the LOUJ model generate
identical futures prices as a LOU model up to first order.16 And, compared
to stochastic volatility, jumps seem to yield a minor improvement even for
options. In this sense, Bakshi, Cao, and Chen (1997) find that, once stochas-
tic volatility is modeled, adding jumps only leads to second-order pricing
improvements. Lastly, the SQR model offers the worst overall results, while
the CSQR model also yields a poor fit for option prices.

Fig. 5a compares the “actual” futures prices for a constant 30-day ma-
turity, which we obtain by interpolation of the adjacent contracts, with the
daily estimates of 30-day futures prices generated by the SQR, LOU, and
CTOU models. By focusing on a constant maturity, we can not only com-
pare the absolute magnitude of the pricing errors, but also their sign and
persistence. As can be seen, the pricing errors of the SQR process are larger
than those of the LOU process, especially after mid-2007. In turn, those of
the LOU model are not only substantially larger than those of the CTOU,
but they also display much stronger persistence. For instance, the SQR and
LOU models systematically underprice futures from October 2008 until the
end of the sample. The slower mean-reverting properties of the VIX are
probably responsible for these persistent biases in the one-factor models. We
can also observe in Fig. 5b that the pricing errors of the CSQR, CTOU, and
CTOUSV models are almost identical, albeit with slightly smaller oscilla-
tions for the CTOUSV model. This feature confirms once again that central
tendency is the most relevant extension for pricing futures.

Table 4 reports the parameter estimates that we obtain under the real

16Formally, when we consider a Taylor expansion of the futures price formula of model
LOUJ around λ/δ for λ/δ > 0 but small, we only observe deviations from the LOU
expression for the second and higher terms. This probably reflects the fact that the
conditional mean of the VIX is essentially unaffected by the presence of jumps although
they alter skewness and kurtosis.
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measure in the extensions to the SQR and LOU models we are considering.
In the models with central tendency, we observe fast mean-reversion of the
VIX to θ(t), which in turn mean-reverts rather more slowly to its long-run
mean θ̄ (i.e., κ � κ̄). Importantly, the estimates of these parameters are
very stable in models with central tendency. In contrast, jump intensities
vary substantially depending on the sample period considered for estima-
tion. Specifically, we obtain smaller values of λ when we include the crisis
period. For the full sample, we estimate around five jumps per year in the
LOUJ specification, and almost seven jumps per year in the CTOUJ model.
On the other hand, the estimates of the mean-reversion parameter λ̄ in the
stochastic volatility models tend to be larger when central tendency is not
simultaneously included. Since this parameter is also responsible for jump
intensity in the OU-Γ model, this result has two interesting implications.
First, a smaller value of λ̄ tends to reduce jump activity in Z̄(t). Specifically,
the expected number of jumps per year decreases from 15 in the LOUSV
model to two in the CTOUSV extension. Second, the deviations of ω(t)
from its long-run mean are more persistent in the CTOUSV case because
mean-reversion is slower the smaller λ̄ is, as (18) indicates. These features
are also important from a time-series perspective. As mentioned before, cen-
tral tendency is consistent with ARMA(2,1) dynamics in discrete time, while
stochastic volatility introduces GARCH-type persistent variances for the log
VIX.

5.3. Risk pricing

Table 5 shows the point estimates of the price of risk parameters for
our preferred model. We also conduct Wald tests to assess the statistical
significance of these estimates. The price of risk related to the VIX Eq. (19),
ςω, is highly significant in the two samples. In contrast, ς̄, which is the price
of risk related to the innovations in (12), is insignificant in both cases.

The negative sign of ςω implies a more adverse distribution in the Q
measure, because the VIX mean-reverts towards a higher long-run level than
in the P measure. This result, which is consistent with the evidence found
by Egloff, Leippold, and Wu (2010), should be taken into account in inferring
the market expectation about future values of the VIX from its derivatives.

The difference between the properties of the VIX under the real and
risk-neutral measures implies, within the framework of our model, that an
economically important systematic risk is priced in the market of VIX deriva-
tives. In addition, the statistical significance of the estimate of ςω implies that
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the impact of the price of risk is larger when the VIX is more volatile (see
Eq. 19).

5.4. Evolution of the factors

Fig. 6a shows that the filtered values of the central tendency factor
θ(t) are rather insensitive to the particular specification that we use. We
have also found that our preferred CTOUSV model generates almost indis-
tinguishable filtered values for θ(t) for the two estimation samples that we
consider. Not surprisingly, Fig. 6a also confirms that the log of the VIX
oscillates around θ(t), which in turn changes over time rather more slowly.
In fact, the main reason for central tendency models to work so well during
the recent financial crisis is because they allow for large temporal deviations
of θ(t) from its long-term value θ̄, thereby reconciling the large increases of
the VIX observed during that period with mean-reversion over the long term.

Fig. 6b compares the filtered instantaneous volatilities of the LOUSV
and CTOUSV models. Interestingly, both series display an almost identical
pattern, with substantial persistent oscillations over time. This figure also
shows that large increases in the value of the VIX are associated with volatile
periods, as measured by ω(t). This is particularly visible in August 2007,
October 2008, and May 2010. As with central tendency, we have found that
the filtered values of ω(t) obtained from the CTOUSV model are also quite
insensitive to the sample period used to estimate the model parameters.

We compute the 30-day-ahead standard deviations of log V (t) implied
by the CTOUSV model to assess the extent to which the filtered values of
ω(t) make sense. In Fig. 6c we compare those standard deviations with
the Black (1976) implied volatilities of at-the-money options that are exactly
30 days from expiration, which we again obtain by interpolation. The high
correlation between the two series shows that the filtered values of stochastic
volatility are indeed related to the changing perceptions of the market about
the standard deviation of the VIX.

Finally, Fig. 6d compares the one-day-ahead standard deviations under
the real measure implied by the models with the standard deviations ob-
tained from a discrete ARMA(2,1)-GARCH(1,1) model for the log VIX. We
only consider the two most relevant extensions to the LOU model to avoid
cluttering the picture. As we have already mentioned in Section 4, both the
SQR and LOU models yield time-varying variances for the VIX. However,
the variance implied by the SQR process seems to be too high until mid-2007
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and too low afterwards. The LOU model performs better over tranquil peri-
ods, but it underestimates actual volatility levels in the most severe phases of
the financial crisis. In contrast, the CTOUJ and especially the CTOUSV do
a much better job, while the CSQR significantly overestimates the standard
deviations during low volatility periods.

5.5. Term structures of derivatives and implied volatility skews

So far, we have focused on the overall empirical performance of the
different models. In principle, though, our results could change for different
time horizons or different degrees of moneyness. For that reason, Table 6
shows the RMSEs of futures contracts for different ranges of maturity. We
observe that the models without central tendency tend to yield larger distor-
tions for longer maturities. In contrast, the models with central tendency are
relatively worse at pricing the shortest maturity. Nevertheless, even the worst
RMSE of the CTOUSV model is still much smaller than the best RMSE of
either the SQR or the LOU models without central tendency.

To gain some additional insight, in Fig. 7 we look at the term structure
of futures prices for four particularly relevant days. Futures prices were ex-
tremely low on June 21, 2007, even though the first warning signals about
the impending crisis were starting to appear. Prices had already risen sig-
nificantly by August 15, 2008, one month before the collapse of Lehman
Brothers. Nevertheless, they were much higher on November 20, 2008, which
is the day in which the VIX reached its maximum historical closing value
at 80.86. The increase is particularly remarkable at the short end of the
curve. Since then, though, VIX futures prices significantly came down until
the beginning of April 2010, right before the European sovereign debt crisis.
The figure confirms that a central tendency is crucial for the purposes of re-
producing the changes in the level and slope of the actual term structure of
VIX futures prices. We can also observe that the LOU and LOUJ processes
yield futures prices which are almost identical, while the CTOUJ model can
be barely distinguished from the CTOU extension.

Tables 7 and 8 provide the RMSEs of calls and puts for different ranges of
maturity and moneyness. In this case, we generally observe the highest price
distortions for at-the-money call and put options. The SQR, CSQR, LOU,
LOUJ, CTOU, and CTOUJ models seem to do a better job for moneyness
smaller than −0.3. However, once again we can confirm that stochastic
volatility models provide the best fit uniformly across all moneyness and
maturity ranges.
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In Fig. 8 we assess the ability of the different models to fit the average
implied volatility skews in Figs. 3b and 3c. Once again, we only plot the
most relevant extensions to the LOU model to avoid cluttering the pictures.
In addition to the average implied skews of actual prices, we also consider 5%
and 95% percentiles as a measure of dispersion. The figures confirm that the
LOU model yields a constant implied volatility for all strikes. In contrast,
the SQR and CSQR yield volatility skews but with a negative slope, which
is inconsistent with the positive slope in the data. In contrast, both the
CTOUJ and CTOUSV models are able to reproduce this positive slope, with
the latter generally providing the best fit. Specifically, the CTOUJ model
does not capture the shifts of the implied skews due to rises in volatility and
it also performs poorly for low strikes.

6. Conclusions

We carry out an extensive empirical analysis of VIX derivatives val-
uation models. We consider daily prices of futures and European options
from February 2006 until December 2010. Therefore, we not only cover an
unusually tranquil period, but also the early turbulences that took place be-
tween August 2007 and August 2008, the worst months of the recent financial
crisis (autumn 2008), as well as the months in 2010 in which the European
sovereign debt crisis unfolded. These markedly different periods provide a
very useful testing ground to assess the empirical performance of the dif-
ferent pricing models. We estimate the models using not only futures and
options data, but also historical data on the VIX itself, which allows us to
look at the relationship between real and risk-neutral measures. We initially
focus on the two existing mean-reversion models: the square root (SQR)
and the log-normal Ornstein-Uhlenbeck processes (LOU). Although SQR is
more popular in the empirical literature, we find that the LOU model yields
a better fit, especially during the crisis. However, both models yield large
price distortions during the crisis. In addition, they do not seem to capture
either the level or the slope of the term structure of futures prices, or indeed
the volatility skews. Part of the problem is that these models implicitly as-
sume that volatility either mean-reverts at a simple exponential rate or does
not mean-revert at all, which cannot accommodate the long and persistent
swings of the VIX observed in our sample. In this sense, we show that the
simple AR(1) structure that they imply in discrete time is not consistent
with the empirical evidence of ARMA dynamics for the VIX. In addition,
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these models are also inconsistent with the strong presence of GARCH-type
heteroskedasticity that we find in this volatility index.

We investigate the potential sources of mispricing by considering several
empirically relevant generalisations. In particular, we consider the concate-
nated SQR process (CSQR), which substantially extends the SQR model
by introducing a time-varying central tendency and allowing for unspanned
stochastic volatility. We also extend the LOU model by introducing a time-
varying central tendency, jumps, and stochastic volatility. Our parameter
estimates indicate that the VIX rapidly mean-reverts to a central tendency,
which in turn reverts more slowly to a long-run constant mean. This flexible
structure can reconcile the large variations of the VIX over our sample pe-
riod with mean-reversion to a long-run constant value. Except for the CTOU
model, though, it is not generally possible to price derivatives in closed form
for the extensions that we consider. For that reason, we obtain the required
prices by Fourier inversion of the conditional characteristic function.

Interestingly, our results indicate that a time-varying central tendency
is crucial for pricing futures, regardless of whether the model is expressed
in levels or logs. We also find evidence of time-varying volatility in the
VIX. As expected, stochastic volatility plays a much more important role for
options while leaving futures prices almost unaffected. The CSQR model,
though, seems unable to generate the positive slope of the option-implied
volatility skews. It is also worth mentioning that jumps only provide a minor
improvement for options and do not change futures prices (up to first order).
Nevertheless, we would like to emphasise that jumps seem to be a relevant
feature to describe the historical dynamics of the VIX, even though they only
yield second-order gains for pricing VIX derivatives.

Importantly, our results remain valid when we focus exclusively on the
out-of-sample performance with parameters estimated using data prior to the
autumn of 2008. In view of these findings, we conclude that a generalised
LOU model that combines a time-varying central tendency with stochastic
volatility is needed to obtain a good pricing performance during bull and
bear markets, as well as to capture the term structures of VIX futures and
options, and the positive slope of the implied volatility skews of options.
Interestingly, the price of risk of this specification is highly significant and
implies that the VIX mean-reverts towards a higher long-run mean under the
risk-neutral measure than under the real measure. The difference between
the properties of the VIX under the real and risk-neutral measures implies
that an economically important systematic risk is priced in the market of
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VIX derivatives.
Given the relationship between the observed VIX index and the unob-

served integrated volatility of the S&P500, our analysis also has important
implications for the models and stationarity of this broad stock index com-
monly used by participants in markets for stock index options. Specifically,
our results imply that stochastic volatility models for the S&P500 should
allow for slow mean-reversion by including two volatility factors, and a time-
varying volatility of volatility. Amengual (2009) considers such a model for
volatility swaps.

We could extend our empirical exercise to other recently introduced volatil-
ity derivatives such as binary options or American options on VIX futures, or
even the futures and options on the CBOE Gold ETF Volatility Index. So-
phisticated filtering procedures for the volatility of VIX might also be worth
exploring, as well as tractable ways of modeling jump and stochastic volatil-
ity risk for Lévy processes. It would also be interesting to investigate the
incremental information content of the contemporaneous observations of the
S&P500 over and above the spot VIX for pricing VIX futures, and above and
beyond VIX futures for pricing VIX options. This question is also relevant
for the purposes of integrating the valuation of VIX derivatives with the val-
uation of the underlying options on the S&P500 that are used to compute
this volatility index, as suggested by Lin and Chang (2009). We plan to
address these points in subsequent research.
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Appendix A. Affine model conditional characteristic function

The extensions that we consider belong to the class of affine jump-
diffusion state processes analysed by Duffie, Pan, and Singleton (2000). In
particular, consider an N -dimensional vector Y(t) that satisfies the diffusion

dY(t) = K(Θ−Y(t))dt+
√

S(t)dW(t) + dZ(t), (A.1)

where W(t) is an N -dimensional vector of independent standard Brownian
motions, K is an N × N matrix, Θ is a vector of dimension N , S(t) is a
diagonal matrix of dimension N whose ith diagonal element is ci0 + c′i1Y(t),
and finally, Z(t) is a multivariate pure jump process with intensity λ whose
jump amplitudes have joint density fJ(·).

Duffie, Pan, and Singleton (2000) show that the conditional characteristic
function of Y(T ) can be expressed as

φY (t, T,u) = E[exp(iu′Y(T ))|I(t)]

= exp(ϕ0(τ) +ϕ′Y (τ)Y(t)),

where ϕ0(τ) and ϕY (τ) satisfy the following system of differential equations:

ϕ̇Y (τ) = −K′ϕY (τ) +
1

2
ςY (τ),

ϕ̇0(τ) = Θ′KϕY (τ) +
1

2
ϕ′Y (τ)diag(c0)ϕY (τ) + λ[J(ϕY (τ))− 1],

where J(u) =
∫

exp(u′x)fJ(x)dx and ςY (τ) is an N -dimensional vector
whose kth element is ςY,k(τ) = ϕ′Y (τ)diag(ck1)ϕY (τ).

Appendix B. The CSQR model

Given the prices of risk (8) and (9), we can write the CSQR process
under the real measure as

dV (t) = κP [θP (t)− V (t)]dt+ σ
√
V (t)dW P

v (t),

with
dθP (t) = κ̄P [θ̄P − θP (t)]dt+ σ̄P

√
θ(t)dW P

θ (t),
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where κ = κP + σς, κ̄ = κ̄P + σ̄ς̄,

θ̄ =
κP κ̄P

(κP + σς)(κ̄P + σ̄ς̄)
θ̄P ,

σ̄ = σ̄P
√

κP

κP + σς
,

and

θ(t) =
κP

κP + σς
θP (t).

Let X(t) = [θ(t), V (t)]′. Following Fackler (2000), it can be shown that the
conditional mean and variance of X(T ) given information known at time t
is the affine function of X(t):[

E[X(T )|I(t)]
vec[V [X(T )|I(t)]]

]
=

[
m0

v0

]
+

[
M1

V1

]
X(t),

where m0, v0, M1 and V1are 2×1, 4×1, 2×2 and 4×2 vectors and matrices,
respectively, such that[

m0

v0

]
= [exp(τA)− I6] A−1a,[

M1

V1

]
= exp(τA)

[
I2

04×2

]
,

a is a 6 × 1 vector whose first element is κ̄θ̄ and all the other elements are
zero; I6 is the identity matrix of order 6; 04×2 is a 4× 2 matrix of zeros; and

A =

[
R 02×4

Σ (R⊗ I2) + (I2 ⊗R)

]
,

with

R =

[
−κ̄ 0
κ −κ

]
, Σ =


σ̄2 0
0 0
0 0
0 σ2

 .
It can be tediously shown that m0 + M1X(t) yields (10).

Using the results form Appendix Appendix A, we can express the condi-
tional characteristic function of this model as

φCSQR(τ, u) = E [exp((α + iu)V (T ))|I(t)]

= exp [ϕCSQR,0(τ) + ϕCSQR,θ(τ)θ(t) + ϕCSQR,V (τ)V (t)] ,
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where

ϕ̇CSQR,θ(τ) = −κ̄ϕCSQR,θ(τ) + κϕCSQR,V (τ) +
1

2
σ̄2ϕ2

CSQR,θ(τ),

ϕ̇CSQR,V (τ) = −κϕCSQR,V (τ) +
1

2
σ2ϕ2

CSQR,V (τ),

ϕ̇CSQR,0(τ) = κ̄θ̄ϕCSQR,θ(τ),

with the conditions ϕCSQR,θ(0) = 0, ϕCSQR,V (0) = α+ iu, and ϕCSQR,0(0) =
0. Furthermore, it can be shown that

ϕCSQR,V (t) =
(α + iu) exp(−κτ)

1− (α + iu)
σ2(1− exp(−κτ))

2κ

.

Then, we can follow Amengual and Xiu (2012) in showing that the price of
a European call option with strike K can be expressed as

c(t, T,K) =
exp(−rτ)

π

∫ ∞
0

Re

[
φCSQR(τ, u)

exp[−K(α + iu)]

(α + iu)2

]
du,

where the smoothing parameter α must be such that

α <
2κ

σ2(1− exp(−κτ))
.

Appendix C. Extensions of LOU processes

Appendix C.1. General case

If we place log V (t) as the first element of Y(t) in (A.1), then the
conditional characteristic function of log V (t) will be φ(t, T, u) = φY (t, T,u0),
where u0 = (u, 0, · · · , 0)′. Following Carr and Madan (1999), the price of a
call option with strike K can then be expressed as

c(t, T,K) =
exp(−α log(K))

π

∫ ∞
0

exp(−iu log(K))ψ(u)du, (C.1)

where

ψ(u) =
exp(−rτ)φ(t, T, u− (1 + α)i)

α2 + α− u2 + i(1 + 2α)u

and α is a smoothing parameter. We evaluate (C.1) by numerical integration.
In our experience, α = 1.1 yields good results.
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Given that the estimation algorithm requires the evaluation of the objec-
tive function at many different parameter values, we linearise option prices
with respect to ω(t) in the models with stochastic volatility to speed up the
calculations. Our procedure is analogous to the treatment of other stochastic
volatility models, which are sometimes linearised to employ the Kalman filter
(see, e.g., Trolle and Schwartz, 2009). Specifically, we linearise call prices for
day t around the volatility of the previous day as follows:

cLOUSV (t, T,K, ω(t)) ≈ cLOUSV

(
t, T,K, ω

(
t− 1

360

))
+
∂cLOUSV (t, T,K, x)

∂x

∣∣∣∣
x=ω(t− 1

360)

[
ω (t)− ω

(
t− 1

360

)]
.

Due to the high persistence of ω(t), its previous-day value turns out to be
a very good predictor, which reduces the approximation error of the above
expansion. In fact, the linearisation error, expressed in terms of the RMSEs
of options, is very small (below 0.25%). In any case, we calculate the exact
pricing errors once we have obtained the final parameter estimates.

Appendix C.2. Central tendency

Given the prices of risk (13) and (14), the diffusions under the real
measure can be expressed as

d log V (t) = κ[θP (t)− log V (t)]dt+ σdW P
v (t),

dθP (t) = κ̄[θ̄P − θP (t)]dt+ σ̄dW P
θ (t),

where

θ̄P = θ̄ +
σς

κ
+
σ̄ς̄

κ̄
,

and
θP (t) = θ(t) +

σς

κ
.

Following León and Sentana (1997), it can be shown that the conditional
distribution of log V (T ) given information up to time t is Gaussian with
mean µCTOU(t, τ) given in (15) and variance

ϕ2
CTOU(τ) =

σ2

2κ
[1− exp(−2κτ)]

+σ̄2

(
κ

κ− κ̄

)2
[

1−exp(−2κ̄τ)
2κ̄

+ 1−exp(−2κτ)
2κ

−21−exp(−(κ+κ̄)τ)
κ+κ̄

]
.
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By exploiting log-normality, we can write futures prices as

FCTOU(t, T, V (t), κ, θ, σ) = exp(µCTOU(t, τ) + 0.5ϕ2
CTOU(τ)),

while call prices follow the Black (1976) formula with volatility ϕCTOU(τ).
This confirms that the prices of options do not depend on θ(t) once we
condition on the futures price.

In terms of time series dynamics, it can be shown that θ(t) and log V (t)
jointly follow a Gaussian first-order vector autoregressive process (VAR(1))
if sampled at equally spaced intervals. Specifically,(

θ(T )
log V (T )

)
= gτ + Fτ

(
θ(t)

log V (t)

)
+ ετ ,

where

gτ =

[
1− exp(−κ̄τ)

1− exp(−κτ)− κ
κ−κ̄ (exp(−κ̄τ)− exp(−κτ))

]
θ̄,

Fτ =

[
exp(−κ̄τ) 0

κ
κ−κ̄ [exp(−κ̄τ)− exp(−κτ)] exp(−κτ)

]
,

and ετ ∼ iid N(0,Στ ), where Στ is a symmetric 2× 2 matrix with elements

Στ (1, 1) =
σ̄2

2κ̄
[1− exp(−2κ̄τ)],

Στ (1, 2) =
κσ̄2

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
,

and Στ (2, 2) = ϕ2
CTOU(τ). From here, it is straightforward to obtain the

marginal process followed by log V (t), which corresponds to the following
ARMA(2,1) model:

log V (t) = h0(τ)+h1(τ) log V (t−τ)+h2(τ) log V (t−2τ)+u(t)+g(τ)u(t−τ),

where u(t), u(t− τ), · · · ∼ iid N(0, p2(τ)) and

h0(τ) = θ̄ (1− h1(τ)− h2(τ)) ,

h1(τ) = Fτ (1, 1) + Fτ (2, 2),

h2(τ) = −Fτ (1, 1)Fτ (2, 2),

g(τ)p2(τ) =
(

Fτ (2, 1) −Fτ (1, 1)
)

Στ

(
0
1

)
,

(1 + g2(τ))p2(τ) =
(

Fτ (2, 1) −Fτ (1, 1)
)

Στ

(
Fτ (2, 1)
−Fτ (1, 1)

)
+ Στ (2, 2).
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Appendix C.3. Jumps

Once again, we assume that dWQ
v (t) = dW P

v (t) + ςdt holds and that
jump risk is not priced. Then, it can be shown that log V (t) satisfies the
diffusion

d log V (t) = κ[θ̄P − log V (t)]dt+ σdW P
v (t) + dZ(t)− λ

κδ
dt

under the real measure, where θ̄P = θ̄ + σς/κ.
The conditional characteristic function reduces to

φLOUJ(t, T, u) = exp [ϕLOUJ,0(τ) + ϕLOUJ,V (τ) log V (t)] ,

where

ϕLOUJ,0(τ) = iu

(
θ̄ − λ

κδ

)
[1− exp(−κτ)]− σ2u2

4κ
[1− exp(−2κτ)]

+
λ

κ
log

[
δ − iu exp(−κτ)

δ − iu

]
and

ϕLOUJ,V (τ) = iu exp(−κτ).

Appendix C.4. Stochastic volatility

We consider a price of risk such that dWQ
v (t) = dW P

v (t) + ςω
√
ω(t)dt,

but we again assume that jump risk related to Z(t) is not priced. Then, the
process under the real measure can be expressed as

d log V (t) = κ
[
θ̄ +

ςω
κ
ω(t)− log V (t)

]
dt+

√
ω(t)dW P

v (t),

dω(t) = −λ̄ω(t)dt+ dZ̄(t).

Since in this case the processes under the real and risk-neutral measures are
different, we will describe them separately.

Appendix C.4.1. Risk-neutral measure

The conditional characteristic function simplifies to

φLOUSV (t, T, u) = exp

[
ϕLOUSV,0(τ) + ϕLOUSV,V (τ) log V (t)

+ϕLOUSV,ω(τ)ω(t)

]
,
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where

ϕLOUSV,V (τ) = iu exp(−κτ),

ϕLOUSV,ω(τ) =
u2

2(2κ− λ)
[exp(−2κτ)− exp(−λτ)] ,

and
ϕLOUSV,0(τ) = iθ̄u[1− exp(−κτ)] + λ [κ(τ, u)− τ ] ,

with

κ(τ, u) =

∫ τ

0

δ̄

δ̄ − u2

2(2κ−λ)
[exp(−2κx)− exp(−λx)]

dx. (C.2)

Appendix C.4.2. Real measure

We can write the characteristic function under the real measure as

φPLOUSV (t, T, u) = EP [exp(iu log V (T ) + ivω(T ))|V (t), ω(t)]

= exp
[
ϕPLOUSV,0(τ) + ϕPLOUSV,V (τ) log V (t) + ϕPLOUSV,ω(τ)ω(t)

]
,

where
ϕPLOUSV,0(τ) = iuθ̄[1− exp(−κτ)] + λ̄[κ(τ)− τ ],

ϕPLOUSV,V (τ) = iu exp(−κτ),

ϕPLOUSV,ω(τ) = iv exp(−λ̄τ)− iu ςω
κ− λ̄

[
exp(−κτ)− exp(−λ̄τ)

]
+

u2

2(2κ− λ̄)

[
exp(−2κτ)− exp(−λ̄τ)

]
and

κ(τ) =

∫ τ

0

δ̄ δ̄ − iv exp(−λ̄x) + iu
ςω[exp(−κx)−exp(−λ̄x)]

κ−λ̄

−u2[exp(−2κx)−exp(−λ̄x)]
2(2κ−λ̄)

dx.
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Based on the characteristic function, it is possible to show that

E [log V (T )|V (t), ω(t)] = θ̄[1− exp(−κτ)]

− λ̄ςω
δ̄(κ− λ̄)

[
1− exp(−κτ)

κ
− 1− exp(−λ̄τ)

λ̄

]
+ exp(−κτ) log V (t)

− ςω
κ− λ̄

[
exp(−κτ)− exp(−λ̄τ)

]
ω(t)

E [ω(T )|V (t), ω(t)] =
1

δ̄
[1− exp(−λ̄τ)] + exp(−λ̄τ)ω(t),

V [log V (T )|V (t), ω(t)] =
λ̄

(2κ− λ̄)δ̄

[
1− exp(−λ̄τ)

λ̄
− 1− exp(−2κτ)

2κ

]
+

2ς2
ωλ̄

δ̄2(κ− λ̄)2

[
1− exp(−2κτ)

2κ
+

1− exp(−2λ̄τ)

2λ̄
− 2

1− exp(−(κ+ λ̄)τ)

κ+ λ̄

]
+

1

2κ− λ̄
[
exp(−λ̄τ)− exp(−2κτ)

]
ω(t),

V P [ω(T )|V (t), ω(t)] =
1− exp(−2λ̄τ)

δ̄2
,

and

cov [log V (T ), ω(T )|V (t), ω(t)] = − 2ςωλ̄

δ̄2(κ− λ̄)

[
1− exp(−(κ+ λ̄)τ)

κ+ λ̄
− 1− exp(−2λ̄τ)

2λ̄

]
.

Appendix C.5. Central tendency and jumps

For this case, we use the same prices of risk as in the CTOU model
and assume that jump risk is not priced. Then, we obtain

d log V (t) = κ[θP (t)− log V (t)]dt+ σdW P
v (t) + dZ(t)− λ

κδ
dt,

dθP (t) = κ̄[θ̄P − θP (t)]dt+ σ̄dW P
θ (t),

under the real measure, where

θ̄P = θ̄ +
σς

κ
+
σ̄ς̄

κ̄
,

and
θP (t) = θ(t) +

σς

κ
.
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The conditional characteristic function becomes

φCTOUJ(t, T, u) = E [exp(iu log V (T ) + ivθ(T )|V (t), θ(t)]

= exp [ϕCTOUJ,0(τ) + ϕCTOUJ,θ(τ)θ(t) + ϕCTOUJ,V (τ) log V (t)] ,

where

ϕCTOUJ,0(τ) = ivθ̄ [1− exp(−κ̄τ)]

+iu

(
θ̄ − λ

κδ

)
κκ̄

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]
− σ̄

2v2

4κ̄
[1− exp(−2κ̄τ)]− σ2u2

4κ
[1− exp(−2κτ)]

− σ̄
2u2

2

(
κ

κ− κ̄

)2
[

1−exp(−2κ̄τ)
2κ̄

+ 1−exp(−2κτ)
2κ

−21−exp(−(κ+κ̄)τ)
κ+κ̄

]

−uvσ̄2 κ

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
+
λ

κ
log

[
δ − iu exp(−κτ)

δ − iu

]
−iu λ

κδ

κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] ,

ϕCTOUJ,θ(τ) = iv exp(−κ̄τ) + iu
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] ,

and
ϕCTOUJ,V (τ) = iu exp(−κτ).

Using the characteristic function, we can show that

E [log V (T )|V (t), θ(t)] = θ̄

[
1− exp(−κτ)

− κ
κ−κ̄ (exp(−κ̄τ)− exp(−κτ))

]
+

κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] θ(t) + exp(−κτ) log V (t),

V [log V (T )|V (t), θ(t)] =

(
σ2

2κ
+

λ

κδ2

)
[1− exp(−2κτ)]

+σ̄2

(
κ

κ− κ̄

)2
[

1−exp(−2κ̄τ)
2κ̄

+ 1−exp(−2κτ)
2κ

−21−exp(−(κ+κ̄)τ)
κ+κ̄

]
,
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V [log V (T ), θ(T )|V (t), θ(t)] =
κσ̄2

κ− κ̄

[
1−exp(−2κ̄τ)

2κ̄

−1−exp(−(κ+κ̄)τ)
κ+κ̄

]
.

Appendix C.6. Central tendency and stochastic volatility

The price of risk is such that dWQ
v (t) = dW P

v (t) + ςω
√
ω(t)dt and

dWQ
θ (t) = dW P

θ (t) + ς̄dt, which yields

d log V (t) = κ
[
θ(t) +

ςω
κ
ω(t)− log V (t)

]
dt+

√
ω(t)dW P

v (t),

dθ(t) = κ̄[θ̄P − θ(t)]dt+ σ̄dW P
θ (t),

dω(t) = −λ̄ω(t)dt+ dZ̄(t),

under the real measure, where

θ̄P = θ̄ +
ς̄ σ̄

κ̄
.

Appendix C.6.1. Risk-neutral measure

The conditional characteristic function is

φCTOUSV (t, T, u) = exp

[
ϕCTOUSV,0(τ) + ϕCTOUSV,V (τ) log V (t)
+ϕCTOUSV,ω(τ)ω(t) + ϕCTOUSV,θ(τ)θ(t)

]
,

where

ϕCTOUSV,V (τ) = iu exp(−κτ),

ϕCTOUSV,ω(τ) =
u2

2(2κ− λ)
[exp(−2κτ)− exp(−λτ)] ,

ϕCTOUSV,θ(τ) = iu
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] ,

and

ϕCTOUSV,0(τ) = iuκ̄θ̄
κ

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]
−1

2
σ̄2u2

(
κ

κ− κ̄

)2
[

1−exp(−2κ̄τ)
2κ̄

+ 1−exp(−2κτ)
2κ

−21−exp(−(κ+κ̄)τ)
κ+κ̄

]
+λ [κ(τ, u)− τ ] ,

with κ(τ, u) defined in (C.2).
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Appendix C.6.2. Real measure

We can write the characteristic function under the real measure as

φP (t, T, u1, u2, u3) = E

[
exp

[
iu1 log V (T ) + iu2θ(T )

+iu3ω(T )

]∣∣∣∣V (t), θ(t), ω(t)

]
= exp

[
ϕPCTOUSV,0(τ) + ϕPCTOUSV,V (τ) log V (t)
+ϕPCTOUSV,θ(τ)θ(t) + ϕPCTOUSV,ω(τ)ω(t)

]
,

where

ϕPCTOUSV,0(τ) = iu2θ̄(1− exp(−κ̄τ))

+iu1θ̄
κκ̄

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]
−u2

2

σ̄2

2

1− exp(−2κ̄τ)

2κ̄

−u2
1

σ̄2

2

(
κ

κ− κ̄

)2
[

1−exp(−2κ̄τ)
2κ̄

+ 1−exp(−2κτ)
2κ

−21−exp(−(κ+κ̄)τ)
κ+κ̄

]

−u1u2σ̄
2 κ

κ− κ̄

[
1− exp(−2κ̄τ)

2κ̄
− 1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
+λ̄[κ(τ)− τ ],

ϕPCTOUSV,V (τ) = iu1 exp(−κτ),

ϕPCTOUSV,θ(τ) = iu2 exp(−κ̄τ) + iu1
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)]

ϕPCTOUSV,ω(τ) = iu3 exp(−λ̄τ)− iu1
ςω

κ− λ̄
[
exp(−κτ)− exp(−λ̄τ)

]
+

u2
1

2(2κ− λ̄)

[
exp(−2κτ)− exp(−λ̄τ)

]
and

κ(τ) =

∫ τ

0

δ δ − iu3 exp(−λ̄x) + iu1
ςω[exp(−κx)−exp(−λ̄x)]

κ−λ̄

−u21[exp(−2κx)−exp(−λ̄x)]
2(2κ−λ̄)

dx.
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Based on the characteristic function, it is possible to show that

E [log V (T )|V (t), θ(t), ω(t)] = θ̄P
κκ̄

κ− κ̄

[
1− exp(−κ̄τ)

κ̄
− 1− exp(−κτ)

κ

]
− λ̄ςω
δ̄(κ− λ̄)

[
1− exp(−κτ)

κ
− 1− exp(−λ̄τ)

λ̄

]
+ exp(−κτ) log V (t)

+
κ

κ− κ̄
[exp(−κ̄τ)− exp(−κτ)] θ(t)

− ςω
κ− λ̄

[
exp(−κτ)− exp(−λ̄τ)

]
ω(t)

E [θ(T )|V (t), θ(t), ω(t)] = θ̄P [1− exp(−κ̄τ)] + exp(−κ̄τ)θ(t)

E [ω(T )|V (t), θ(t), ω(t)] =
1

δ̄
[1− exp(−λ̄τ)] + exp(−λ̄τ)ω(t),

V [log V (T )|V (t), θ(t), ω(t)] =
λ̄

(2κ− λ̄)δ̄

[
1− exp(−λ̄τ)

λ̄
− 1− exp(−2κτ)

2κ

]
+σ̄2

(
κ

κ− κ̄

)2 [
1− exp(−2κ̄τ)

2κ̄
+

1− exp(−2κτ)

2κ
− 2

1− exp(−(κ+ κ̄)τ)

κ+ κ̄

]
+

2ς2
ωλ̄

δ̄2(κ− λ̄)2

[
1− exp(−2κτ)

2κ
+

1− exp(−2λ̄τ)

2λ̄
− 2

1− exp(−(κ+ λ̄)τ)

κ+ λ̄

]
+

1

2κ− λ̄
[
exp(−λ̄τ)− exp(−2κτ)

]
ω(t),

V [θ(T )|V (t), θ(t), ω(t)] = σ̄2 1− exp(−2κ̄τ)

2κ̄

V [ω(T )|V (t), θ(t), ω(t)] =
1− exp(−2λ̄τ)

δ̄2
,

cov [log V (T ), θ(T )|V (t), θ(t), ω(t)] =
σ̄2κ

κ− κ̄

[
1−exp(−2κ̄τ)

2κ̄

−1−exp(−(κ+κ̄)τ)
κ+κ̄

]
and

cov [log V (T ), ω(T )|V (t), θ(t), ω(t)] = − 2ςωλ̄

δ̄2(κ− λ̄)

[
1−exp(−(κ+λ̄)τ)

κ+λ̄

−1−exp(−2λ̄τ)

2λ̄

]
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Appendix D. One-factor model variances and autocorrelations

Let V (t) follow the SQR process. Then, it can be shown that

V [V (T )|V (t)] =
σ2

2κ
(1− exp(−κτ))2 +

σ2

κ
exp(−κτ)(1− exp(−κτ))V (t),

and corr[V (T ), V (t)] = exp(−κτ).
Alternatively, if V (t) follows the LOU process, it holds that

V [V (T )|V (t)] = exp

[
2θ̄(1− exp(−κτ)) +

σ2

2κ
(1− exp(−2κτ))

]
×
[
exp

[
σ2

2κ
(1− exp(−2κτ))

]
− 1

]
[V (t)]2 exp(−κτ),

and

corr[V (T ), V (t)] =
exp

[
σ2

2κ
exp(−κτ)

]
− 1

exp
[
σ2

2κ

]
− 1

.
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Grünbichler, A., Longstaff, F. A., 1996. Valuing futures and options on
volatility. Journal of Banking & Finance 20, 985–1001.

Hansen, L. P., Scheinkman, J. A., 2009. Long-term risk: an operator ap-
proach. Econometrica 77, 177–234.

Heston, S. L., 1993. A closed-form solution for options with stochastic volatil-
ity with applications to bond and currency options. Review of Financial
Studies 6, 327–343.

Jegadeesh, N., Pennacchi, G. G., 1996. The behavior of interest rates implied
by the term structure of Eurodollar futures. Journal of Money, Credit and
Banking 28, 426–446.

León, A., Sentana, E., 1997. Pricing options on assets with predictable white
noise returns, LSE FMG Discussion Papers 267.

Lin, Y. N., Chang, C. H., 2009. VIX option pricing. Journal of Futures
Markets 29, 523–543.

Pagan, A. R., Schwert, G. W., 1990. Alternative models for conditional stock
volatility. Journal of Econometrics 45, 267–290.

Rhoads, R., 2011. Trading VIX Derivatives: Trading and Hedging Strategies
Using VIX Futures, Options and Exchange Traded Notes. John Wiley and
Sons, New York.

RiskMetrics Group, 1996. RiskMetrics Technical Document.

Schwert, G. W., 1990. Stock returns and real activity: a century of evidence.
Journal of Finance 45, 1237–1257.

45



Schwert, G. W., 2011. Stock volatility during the recent financial crisis. Eu-
ropean Financial Management 17, 789–805.

Sepp, A., 2008. VIX option pricing in a jump-diffusion model. Risk Magazine,
84–89 April.

Song, Z., Xiu, D., 2012. A tale of two option markets: state-price densities
implied from S&P500 and VIX option prices. Unpublished working paper,
Federal Reserve Board and University of Chicago.

Szado, E., 2009. VIX futures and options: A case study of portfolio diversifi-
cation during the 2008 financial crisis. Journal of Alternative Investments
12, 68–85.

Todorov, V., Tauchen, G., 2011. Volatility jumps. Journal of Business and
Economic Statistics 29, 356–371.

Trolle, A. B., Schwartz, E. S., 2009. Unspanned stochastic volatility and the
pricing of commodity derivatives. Review of Financial Studies 22, 4423–
4461.

Wang, Z., Daigler, R. T., 2011. The performance of VIX option pricing mod-
els: empirical evidence beyond simulation. Journal of Futures Markets 31,
251–281.

Whaley, R. E., 1993. Derivatives on market volatility: hedging tools long
overdue. Journal of Derivatives 1, 71–84.

Zhang, J. E., Zhu, Y., 2006. VIX futures. Journal of Futures Markets 26,
521–531.

46



Table 1
Root mean square pricing errors in existing one-factor models.

The pricing errors of futures and options on the VIX have been considered. Es-

timation of the parameters by maximum likelihood using data on the VIX index

and its options and futures. “SQR” denotes square root model while “LOU” refers

to the log-normal Ornstein-Uhlenbeck process.

Aug08–Mar10 estimates Full sample estimates
Feb06–Aug08 Aug08–Dec10 Feb06–Dec10

In-sample Out-of-sample

SQR 0.807 2.037 2.454
LOU 0.779 1.982 1.533

47



T
a
b
le

2
P

ar
am

et
er

es
ti

m
at

es
of

th
e

ex
is

ti
n

g
on

e-
fa

ct
or

m
o
d

el
s.

E
st

im
at

io
n

b
y

m
ax

im
u

m
li
k
el

ih
o
o
d

u
si

n
g

d
at

a
o
n

th
e

V
IX

in
d

ex
a
n

d
it

s
o
p

ti
o
n

s
a
n

d
fu

tu
re

s
fr

o
m

F
eb

0
6

u
n
ti

l
D

ec
1
0
.

“
S

Q
R

”

d
en

ot
es

sq
u

ar
e

ro
ot

m
o
d

el
w

h
il

e
“L

O
U

”
re

fe
rs

to
th

e
lo

g
-n

o
rm

a
l

O
rn

st
ei

n
-U

h
le

n
b

ec
k

p
ro

ce
ss

.
S

ta
n

d
a
rd

er
ro

rs
,

d
is

p
la

ye
d

in

p
ar

en
th

es
es

,
h

av
e

b
ee

n
ob

ta
in

ed
b
y

u
si

n
g

th
e

ou
te

r-
p
ro

d
u

ct
o
f

th
e

sc
o
re

to
es

ti
m

a
te

th
e

in
fo

rm
a
ti

o
n

m
a
tr

ix
.
σ
f
ε

a
n

d
σ
f
ξ

a
re

th
e

p
ar

am
et

er
s

of
th

e
fu

tu
re

s
p

ri
ci

n
g

er
ro

rs
.
η o

,
σ
a
,
σ
b
,

a
n

d
σ
c

a
re

th
e

p
a
ra

m
et

er
s

o
f

th
e

o
p

ti
o
n

p
ri

ci
n

g
er

ro
rs

,
w

h
o
se

va
ri

a
n

ce

is
th

e
q
u

ad
ra

ti
c

fu
n

ct
io

n
of

m
on

ey
n

es
s

(3
).

R
ea

l
m

ea
su

re
p

ar
am

et
er

s
P

ri
ci

n
g

er
ro

r
p

a
ra

m
et

er
s

M
o
d

el
E

st
im

at
io

n
κ

θ̄
σ

σ
f
ε

σ
f
ξ

σ
a

η o
σ
b

σ
c

S
Q

R
F

u
ll

sa
m

p
le

2.
55

5
2
4.

35
0

4
.5

0
4

0
.1

2
2

0
.0

8
1

0
.0

0
6

0
.4

9
7

0
.4

3
7

-0
.9

0
1

(0
.0

71
)

(0
.6

61
)

(0
.0

0
5
)

(0
.0

0
1
)

(0
.0

0
9
)

(2
.8

1
0
−
4
)

(0
.0

1
9
)

(0
.0

1
7
)

(0
.0

0
2
)

U
n
ti

l
A

u
g

08
1.

49
5

19
.6

66
2
.9

1
6

0
.0

4
0

0
.0

0
8

0
.0

0
6

0
.3

6
9

0
.2

7
5

-0
.7

2
7

(0
.0

15
)

(0
.1

50
)

(0
.0

0
6
)

(4
.1

1
0
−
4
)

(0
.0

0
1
)

(2
.6

1
0
−
4
)

(0
.0

2
4
)

(0
.0

0
9
)

(0
.0

0
3
)

L
O

U
F

u
ll

sa
m

p
le

2.
89

8
3.

09
9

0
.8

8
4

0
.0

7
5

0
.0

3
0

0
.0

0
6

0
.4

5
5

0
.2

0
7

-0
.9

0
1

(0
.0

04
)

(0
.1

12
)

(4
.4

1
0
−
4
)

(0
.0

0
1
)

(0
.0

0
3
)

(2
.4

1
0
−
4
)

(0
.0

1
7
)

(0
.0

0
7
)

(0
.0

0
2
)

U
n
ti

l
A

u
g

08
1.

73
2

2.
92

7
0
.7

1
0

0
.0

4
2

0
.0

0
8

0
.0

0
5

0
.4

1
2

0
.1

7
4

-0
.7

7
3

(0
.0

09
)

(0
.1

71
)

(0
.0

0
1
)

(4
.2

1
0
−
4
)

(0
.0

0
1
)

(2
.2

1
0
−
4
)

(0
.0

2
1
)

(0
.0

0
6
)

(0
.0

0
5
)

48



Table 3
Root mean square pricing errors in the extended models.

The pricing errors of futures and options on the VIX have been considered. Estimation

of the parameters by maximum likelihood for the CTOU model, and by pseudo maximum

likelihood in the remaining ones. The data employed in the estimation includes the VIX

index and its options and futures. “LOUJ” introduces jumps in the log-normal Ornstein-

Uhlenbeck process (LOU), whose size follows an exponential distribution. “CTOU” adds

central tendency to the LOU process. “LOUSV” denotes a LOU model with stochastic

volatility modeled with a Gamma OU Lévy process. “CTOUJ” adds central tendency and

jumps to the LOU model, while “CTOUSV” introduces central tendency and stochastic

volatility. “CSQR” is the concatenated square root process.

Aug08-Mar10 estimates Full sample estimates
Feb06–Aug08 Aug08–Dec10 Feb06–Dec10

In-sample Out-of-sample

CTOU 0.348 0.713 0.655
LOUJ 0.837 2.160 1.634
LOUSV 0.664 1.617 1.303
CTOUJ 0.354 0.691 0.631
CTOUSV 0.232 0.344 0.306
CSQR 0.424 1.156 0.691
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Table 5
Prices of risk in the CTOUSV model.

The estimates have been obtained by pseudo maximum likelihood using data on

the VIX index and its options and futures from Feb 06 until Aug 10. Standard

errors are displayed in parentheses below the estimates, and p-values are reported

below the Wald tests. “CTOUSV” introduces central tendency and stochastic

volatility in a log-normal Ornstein-Uhlenbeck process.

Estimates Wald tests
ςω ς̄ ςω = 0 ς̄ = 0 Joint

Full sample -1.27 0.15 76.35 0.32 76.99
(0.15) (0.26) (0.00) (0.57) (0.00)

Until Aug 08 -1.19 0.14 45.63 0.11 46.67
(0.18) (0.44) (0.00) (0.74) (0.00)
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Table 7
Root mean square pricing errors of call prices by moneyness and maturities.

Estimation of the parameters by maximum likelihood for the SQR, LOU and CTOU

models, and by pseudo maximum likelihood in the remaining ones. The data employed

in the estimation includes the VIX index and its options and futures from Feb 06 until

Dec 10. Moneyness is defined as log(K/F (t, T )), where K and F (t, T ) are the strike and

futures prices, respectively. “SQR” denotes square root model and “LOU” refers to a

log-normal Ornstein-Uhlenbeck process. “LOUJ” introduces jumps in the LOU model,

whose size follows an exponential distribution. “CTOU” adds central tendency to the

LOU process. “LOUSV” denotes a LOU model with stochastic volatility modeled with

a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to the LOU

model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR”

is a concatenated SQR model. The column labeled N gives the number of prices per

category. τ denotes time to maturity.

Panel A: τ < 1 month

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 2199 0.155 0.138 0.133 0.142 0.110 0.204 0.142 0.214

[−0.3,−0.1) 2080 0.516 0.373 0.352 0.381 0.140 0.375 0.237 0.601
[−0.1, 0.1) 2260 0.867 0.597 0.527 0.531 0.245 0.509 0.227 0.800
[0.1, 0.3) 2254 0.771 0.615 0.535 0.414 0.344 0.409 0.187 0.640
≥ 0.3 3085 0.389 0.361 0.338 0.214 0.253 0.213 0.160 0.349

Panel B: 1 month< τ < 3 months

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 3553 0.250 0.176 0.177 0.174 0.151 0.253 0.214 0.390

[−0.3,−0.1) 4217 0.560 0.381 0.384 0.394 0.166 0.372 0.270 0.768
[−0.1, 0.1) 4701 0.787 0.494 0.486 0.495 0.199 0.476 0.173 0.792
[0.1, 0.3) 4638 0.864 0.573 0.557 0.452 0.368 0.434 0.192 0.704
≥ 0.3 8089 0.573 0.448 0.443 0.272 0.328 0.261 0.178 0.482

Panel C: τ > 3 months

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 3229 0.321 0.198 0.215 0.187 0.195 0.251 0.250 0.606

[−0.3,−0.1) 3719 0.486 0.360 0.356 0.370 0.222 0.351 0.280 0.806
[−0.1, 0.1) 4491 0.614 0.451 0.426 0.430 0.254 0.407 0.256 0.741
[0.1, 0.3) 3971 0.860 0.608 0.583 0.455 0.401 0.432 0.297 0.734
≥ 0.3 5613 0.758 0.564 0.555 0.312 0.395 0.319 0.289 0.648

Panel D: All maturities

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 8981 0.260 0.176 0.183 0.171 0.160 0.241 0.213 0.451

[−0.3,−0.1) 10016 0.524 0.372 0.367 0.382 0.185 0.365 0.267 0.751
[−0.1, 0.1) 11452 0.742 0.500 0.472 0.479 0.231 0.457 0.219 0.774
[0.1, 0.3) 10863 0.844 0.595 0.562 0.446 0.376 0.428 0.235 0.702
≥ 0.3 16787 0.615 0.476 0.467 0.277 0.340 0.274 0.219 0.524
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Table 8
Root mean square pricing errors of put prices by moneyness and maturities.

Estimation of the parameters by maximum likelihood for the SQR, LOU and CTOU

models, and by pseudo maximum likelihood in the remaining ones. The data employed

in the estimation includes the VIX index and its options and futures from Feb 06 until

Dec 10. Moneyness is defined as log(K/F (t, T )), where K and F (t, T ) are the strike and

futures prices, respectively. “SQR” denotes square root model and “LOU” refers to a

log-normal Ornstein-Uhlenbeck process. “LOUJ” introduces jumps in the LOU model,

whose size follows an exponential distribution. “CTOU” adds central tendency to the

LOU process. “LOUSV” denotes a LOU model with stochastic volatility modeled with

a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to the LOU

model, while “CTOUSV” introduces central tendency and stochastic volatility. “CSQR”

is a concatenated SQR model. The column labeled N gives the number of prices per

category. τ denotes time to maturity.

Panel A: τ < 1 month

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 457 0.268 0.232 0.212 0.248 0.101 0.345 0.199 0.268

[−0.3,−0.1) 1657 0.568 0.415 0.391 0.425 0.141 0.420 0.259 0.636
[−0.1, 0.1) 2239 0.870 0.598 0.533 0.536 0.242 0.517 0.240 0.813
[0.1, 0.3) 1787 0.833 0.660 0.579 0.464 0.350 0.459 0.192 0.691
≥ 0.3 1385 0.442 0.409 0.386 0.283 0.275 0.281 0.188 0.400

Panel B: 1 month< τ < 3 months

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 1970 0.304 0.224 0.222 0.231 0.159 0.347 0.244 0.380

[−0.3,−0.1) 4274 0.581 0.399 0.400 0.410 0.160 0.394 0.268 0.746
[−0.1, 0.1) 3966 0.814 0.515 0.507 0.513 0.199 0.496 0.178 0.792
[0.1, 0.3) 2272 0.968 0.663 0.640 0.510 0.373 0.505 0.202 0.765
≥ 0.3 1505 0.651 0.512 0.498 0.333 0.346 0.321 0.218 0.538

Panel C: τ > 3 months

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 1698 0.366 0.269 0.276 0.279 0.205 0.394 0.260 0.687

[−0.3,−0.1) 2764 0.547 0.411 0.410 0.418 0.240 0.410 0.299 0.810
[−0.1, 0.1) 2174 0.745 0.523 0.515 0.489 0.271 0.476 0.288 0.805
[0.1, 0.3) 990 1.068 0.746 0.730 0.556 0.404 0.542 0.344 0.920
≥ 0.3 633 0.747 0.566 0.548 0.376 0.337 0.368 0.404 0.628

Panel D: All maturities

Moneyness N SQR LOU CTOU LOUJ LOUSV CTOUJ CTOUSV CSQR
< −0.3 4125 0.327 0.245 0.245 0.253 0.175 0.367 0.246 0.521

[−0.3,−0.1) 8695 0.568 0.406 0.402 0.415 0.186 0.404 0.277 0.748
[−0.1, 0.1) 8379 0.812 0.540 0.516 0.513 0.231 0.497 0.228 0.801
[0.1, 0.3) 5049 0.944 0.679 0.638 0.504 0.371 0.497 0.234 0.773
≥ 0.3 3523 0.598 0.485 0.468 0.323 0.318 0.315 0.252 0.507
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(a) 1990–2010
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Fig. 1. Historical evolution of the VIX index.



(a) Autocorrelations
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Fig. 2. Time series autocorrelations of the log-VIX and estimated ARMA models. Results
are based on the 1990-2010 sample (5280 daily observations).



(a) Term structure of VIX futures
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(c) Implied volatility smirk on high volatility days
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Fig. 3. Term structure of VIX derivatives. The lines in Panels B and C show the average implied

volatility for a certain moneyness and time to maturity (denoted by τ) within a given interval. Implied

volatilities have been obtained by inverting the Black (1976) call price formula. Moneyness is defined

as log(K/F (t, T )). Low (high) volatility days are those in which one-month at-the-money implied

volatilities are below (above) their average value over the sample.



(a) Futures
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(b) Options
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Fig. 4. Empirical cumulative distribution function of the square pricing errors. “SQR” denotes square

root model and “LOU” refers to a log-normal Ornstein-Uhlenbeck process. “LOUJ” introduces jumps

in the LOU model, whose size follows an exponential distribution. “CTOU” adds central tendency to

the LOU process. “LOUSV” denotes a LOU model with stochastic volatility modeled with a Gamma

OU Lévy process. “CTOUJ” adds central tendency and jumps to the LOU model, while “CTOUSV”

introduces central tendency and stochastic volatility. “CSQR” is the concatenated SQR model. Estima-

tion by maximum likelihood for the SQR, LOU and CTOU models, and by pseudo maximum likelihood

in the remaining ones. The data employed in the estimation includes the VIX index and its options and

futures from Feb 06 until Dec 10.



(a) Differences between model-based and actual one-month futures prices
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(b) Differences between model-based and actual one-month futures prices for the two best
performing models
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Fig. 5. Historical evolution of futures pricing errors. “SQR” denotes square root model and “LOU”

refers to a log-normal Ornstein-Uhlenbeck process. “CTOU” adds central tendency to the LOU process.

“CTOUSV” introduces central tendency and stochastic volatility in the LOU model. “CSQR” is the

concatenated SQR model. One-month actual futures prices have been obtained by interpolation of the

prices of the adjacent maturities. Estimation by maximum likelihood for the SQR, LOU and CTOU

models, and by pseudo maximum likelihood in the remaining ones. The data employed in the estimation

includes the VIX index and its options and futures from Feb 06 until Dec 10.



(a) Filtered θ(t) for different log-OU

models with central tendency

Mar06 Oct06 Apr07 Nov07 Jun08 Dec08 Jul09 Jan10 Aug10
2

2.5

3

3.5

4

4.5

 

 

Log(VIX)
CTOU
CTOUJ
CTOUSV

(b) Filtered ω(t) for different log-OU

models with stochastic volatility
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(c) One-month volatilities of the VIX.
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(d) Logs of one-day-ahead standard

deviations of the VIX. Real measure
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Fig. 6. Historical evolution of central tendency and stochastic volatility. θ(t) denotes the time-varying

central tendency around which the VIX mean-reverts in central tendency models. ω(t) denotes the

instantaneous volatility of stochastic volatility models. Different vertical scales are used for the VIX

and the volatilities in Panel B. “SQR” denotes square root model and “LOU” refers to a log-normal

Ornstein-Uhlenbeck process. “LOUSV” denotes a LOU model with stochastic volatility modeled with

a Gamma OU Lévy process. “CTOUJ” adds central tendency and jumps to the LOU model, while

“CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is the concatenated SQR

model. One-month implied vols in Panel C have been obtained by interpolation of the implied vols of

options with moneyness | log(K/F (t, T ))| < 0.1, which in turn result from inverting the Black (1976)

call price formula. The black line in Panel D is the conditional standard deviation of the VIX, obtained

from an ARMA(2,1)-GARCH(1,1) model estimated for the daily data of the log VIX. Only Thursdays

are plotted on Panel D to avoid cluttering the picture. Estimation by maximum likelihood for the SQR,

LOU and CTOU models, and by pseudo maximum likelihood in the remaining ones. The data employed

in the estimation includes the VIX index and its options and futures from Feb 06 until Dec 10.



(a) 21-June-2007
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(b) 15-August-2008
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(c) 20-November-2008
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(d) 31-March-2010
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Fig. 7. Fit of the term structure of futures prices. “SQR” denotes square root model and “LOU” refers

to a log-normal Ornstein-Uhlenbeck process. “LOUJ” introduces jumps in the LOU model, whose size

follows an exponential distribution. “CTOU” adds central tendency to the LOU process. “LOUSV”

denotes a LOU model with stochastic volatility modeled with a Gamma OU Lévy process. “CTOUJ”

adds central tendency and jumps to the LOU model, while “CTOUSV” introduces central tendency

and stochastic volatility. “CSQR” is the concatenated SQR model. Estimation by maximum likelihood

for the SQR, LOU and CTOU models, and by pseudo maximum likelihood in the remaining ones. The

data employed in the estimation includes the VIX index and its options and futures from Feb 06 until

Dec 10.



(a) Low volatility. 15 ≤ τ < 45
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(b) High volatility. 15 ≤ τ < 45
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(c) Low volatility. 45 ≤ τ < 75
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(d) High volatility. 45 ≤ τ < 75
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Fig. 8.1. Fit of the implied volatility smirks. Short maturities. The lines show the average implied

volatility for a certain moneyness and time to maturity (denoted by τ) within a given interval. The

thick black lines correspond to the average implied volatilities of the actual call prices, while the thin

black lines show the 5% and 95% percentiles. Grey bars at the bottom of the plots show the histogram

of call prices across maturities. The interval of moneyness in each panel has been chosen to cover the

central 90% section of the data. “SQR” denotes square root model and “LOU” refers to a log-normal

Ornstein-Uhlenbeck process. “CTOUJ” adds central tendency and jumps to the LOU model, while

“CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is the concatenated SQR

model. Moneyness is defined as log(K/F (t, T ). Estimation by maximum likelihood for the SQR, and

LOU models, and by pseudo maximum likelihood in the remaining ones. The data employed in the

estimation includes the VIX index and its options and futures from Feb 06 until Dec 10.



(a) Low volatility. 75 ≤ τ < 105
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(b) High volatility. 75 ≤ τ < 105
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(c) Low volatility. 105 ≤ τ < 135
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(d) High volatility. 105 ≤ τ < 135
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Fig. 8.2. Fit of the implied volatility smirks. Long maturities. The lines show the average implied

volatility for a certain moneyness and time to maturity (denoted by τ) within a given interval. The

thick black lines correspond to the average implied volatilities of the actual call prices, while the thin

black lines show the 5% and 95% percentiles. Grey bars at the bottom of the plots show the histogram

of call prices across maturities. The interval of moneyness in each panel has been chosen to cover the

central 90% section of the data. “SQR” denotes square root model and “LOU” refers to a log-normal

Ornstein-Uhlenbeck process. “CTOUJ” adds central tendency and jumps to the LOU model, while

“CTOUSV” introduces central tendency and stochastic volatility. “CSQR” is the concatenated SQR

model. Moneyness is defined as log(K/F (t, T ). Estimation by maximum likelihood for the SQR, and

LOU models, and by pseudo maximum likelihood in the remaining ones. The data employed in the

estimation includes the VIX index and its options and futures from Feb 06 until Dec 10.


