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1 Introduction

Over the last thirty years the majority of studies have rejected the hypothesis of uncov-

ered interest parity, which in its basic form implies that the (nominal) expected return to

speculation in the forward foreign exchange market conditioned on available information

should be zero. Many of these studies have regressed ex post rates of depreciation on a

constant and the forward premium, rejecting the null hypothesis that the slope coe¢ cient

is one. In fact, a robust result is that the slope is negative. This phenomenon, known as

the �forward premium puzzle�, implies that, contrary to the theory, high domestic inter-

est rates relative to those in the foreign country predict a future appreciation of the home

currency. In fact, the so-called �carry trade�, which involves borrowing low-interest-rate

currencies and investing in high-interest-rate ones, constitutes a very popular currency

speculation strategy developed by �nancial market practitioners to exploit this �anom-

aly�(see Burnside et al. 2006). However, this is not by any means a risk-free strategy:

Julian Robertson�s Tiger Fund lost $2 billion in 1998 on the unraveling of US$/Yen carry

trade positions that followed the Russian default and the subsequent LTCM crisis.

While some authors have argued that the empirical rejections found could be due

to the existence of a rational risk premium in the foreign exchange rate market, �peso

problems�, or even violations of the rational expectations assumption, the focus of our

paper is di¤erent.1 We are interested in assessing whether existing tests of uncovered

interest parity provide reliable inferences. In this sense, it is interesting to emphasize that

the empirical evidence against uncovered interest parity has been lessened in more recent

studies. In particular, Flood and Rose (2002) �nd that this hypothesis works better in

the 1990�s, Bekaert and Hodrick (2001) �nd that the evidence against uncovered interest

parity is much less strong under �nite sample inference than under standard asymptotic

theory, while Baillie and Bollerslev (2000) and Maynard and Phillips (2001) cast some

doubt on the econometric validity of the forward premium puzzle on account of the highly

persistent behaviour of the forward premium.

In this paper, we focus instead on the impact of temporal aggregation on the statistical

properties of traditional tests of uncovered interest parity, where by temporal aggregation

we mean the fact that exchange rates evolve on a much �ner time-scale than the frequency

of observations typically employed by empirical researchers. While in many areas of

1See Lewis (1989) for details of the �peso problem approach�, and Mark and Wu (1998) for a model
that adapts the overlapping-generation noise-trader model of De Long et al. (1990) to a foreign exchange
context.
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economics the sampling frequency is given because collecting data is very expensive in

terms of time and money (e.g. output or labor force statistics), this is not the case for

�nancial prices any more. For exchange rates and interest rates in particular, nowadays

the sampling frequency is to a large extent chosen by the researcher.

Two important problems arise when we consider the impact of the choice of sampling

frequency on traditional uncovered interest parity tests. The �rst one a¤ects the usual

regression approach in which one estimates a single equation that linearly relates the

increment of the spot exchange rate over the contract period to the forward premia at

the beginning of the period. As is well known, if the period of the forward contract

is longer than the sampling interval, then there will be overlapping observations and,

thereby, serially correlated regression errors. For that reason, Hansen and Hodrick (1980)

use Hansen�s (1982) Generalized Method of Moments (GMM) to obtain standard errors

that are robust to autocorrelation. Unfortunately, if the degree of overlap (number of

observations per contract period) is large relative to the sample size (which in terms of

test power should be a good thing), standard GMM asymptotic theory no longer provides

a good approximation to the �nite sample distribution of overlapping regression tests (see

e.g. Richardson and Stock, 1989 or Valkanov, 2003). For example, imagine that we are

interested in testing a long-horizon version of uncovered interest parity using yearly data

on �ve-year interest rates, as in one of the robustness tests in Chinn and Meredith (2004).

Since the degree of overlap is only 5 periods, we may expect the usual asymptotic results

to be reliable if the number of years in the sample is reasonably large. But if we decide

to use monthly (weekly) data instead, then we will have an overlap of 60 (260) periods,

which is likely to render standard GMM asymptotics useless. Therefore, by choosing

the sampling frequency, we are in e¤ect taking a stand on the degree of overlap and,

inadvertently, on the �nite-sample size and power properties of the test.

The second problem a¤ects the alternative approach that �rst speci�es the joint sto-

chastic process driving the forward premia and the increment on the spot exchange rate

over the sampling interval, and then tests the constraints that uncovered interest parity

implies on the dynamic evolution of both variables. In this second approach, one usually

speci�es a vector autoregressive (VAR) model in which the variation of the spot exchange

rate is measured over the sampling interval in order to avoid serially correlated residuals.

However, the election of the sampling frequency also has implications in this context be-

cause VARmodels are not usually invariant to temporal aggregation. For instance, if daily

observations of the forward premia and the rate of depreciation follow a VAR model, then
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monthly observations of the same variables will typically satisfy a more complex vector

autoregressive moving average (VARMA) model (see e.g. McCrorie and Chambers, 2006).

Therefore, having a model that is invariant to temporal aggregation or, in other words,

a model that is �sampling-frequency-proof�, will eliminate the misspeci�cation problems

that may arise from mechanically equating the data generating interval to the sampling

interval when the former is in fact �ner. This is important because testing uncovered

interest parity in a multivariate framework is a joint test of the uncovered interest parity

hypothesis and the dynamic speci�cation of the model and, like in many other contexts,

having a misspeci�ed model will often result in misleading tests.

Motivated by these two problems, we use a continuous-time approach to derive a new

test of uncovered interest parity. In the spirit of Renault et al. (1998), who consider

a multivariate continuous-time VAR process to address temporal aggregation problems

that arise in testing for causality between exchange rates, we assume that there is an

underlying joint continuous-time process for exchange rates and interest rate di¤erentials

and then derive UIP conditions that are valid for any observation frequency. We then

estimate the parameters of the underlying continuous process on the basis of discretely

sampled data, and test the implied uncovered interest parity restrictions. In this way, we

can accommodate situations with a large ratio of observations per contract period, with

the corresponding gains in asymptotic power. At the same time, though, the model that

we estimate is the same irrespective of the sampling frequency.

An alternative approach would be to assume that the data is generated at some spe-

ci�c discrete-time frequency (e.g. daily), which is �ner than the sampling interval (e.g.

weekly). Then, one could use the results in Marcellino (1999) to obtain the model that

the observed data follows. However, such an approach requires knowledge of the data gen-

erating frequency, which seems arbitrary. In this paper, we e¤ectively take this approach

to its logical limit by assuming that exchange rate and interest rate data are generated

on a continuous-time basis.

Previous papers that jointly model exchange and interest rates in continuous-time

include Kyu Moh (2006) and Mark and Kyu Moh (2007), who propose non-Gaussian

continuous-time uncovered interest parity models, as well as Brandt and Santa-Clara

(2002), Brennan and Xia (2006), and Diez de los Rios (2009), who propose continuous-

time arbitrage-free models of the international term structure. However, these studies

do not test the validity of the uncovered interest parity hypothesis, which is the main

objective of our paper.
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We begin our analysis by deriving the conditions that uncovered interest parity imposes

on the Wold decomposition of continuous-time processes. However, given that working di-

rectly with this decomposition is di¢ cult in practice, we follow the discrete-time literature

on uncovered interest parity tests and translate these restrictions into testable hypothe-

ses on the continuous-time analogue of a state-space model.2 Then, we explain how to

evaluate the Gaussian pseudo-likelihood function of data observed at arbitrary discrete

intervals via the prediction error decomposition using Kalman �ltering techniques, which,

under certain assumptions, allow us to obtain asymptotically e¢ cient estimators of the

parameters characterizing the continuous-time speci�cation. We also assess the usefulness

of our proposed methodology by comparing it to existing methods. In particular, we pro-

vide a detailed Monte Carlo study which suggests that: (i) in situations where traditional

tests of the uncovered interest parity hypothesis have size distortions, the test based on

our continuous-time approach has the right size, and (ii) in situations where existing tests

have the right size, our proposed test is more powerful.

Importantly, we also propose a speci�cation test that exploits the fact that discrete-

time observations generated by a correctly speci�ed continuous-time model will satisfy

a valid discrete-time representation regardless of the sampling frequency. The idea is

the following: if the model is well-speci�ed, then the estimators of the model parame-

ters obtained at di¤erent frequencies converge to their common true values. However, if

the model is misspeci�ed then the probability limit of the coe¢ cients estimated at dif-

ferent frequencies will diverge. Although we concentrate on continuous-time models for

the exchange rate and interest rate di¤erentials, our testing principle has much wider

applicability.

Finally, we apply our continuous time approach to test uncovered interest parity at

both short and long horizons on the basis of weekly data on U.S. dollar bilateral exchange

rates against the British pound, the German DM-Euro and the Canadian dollar. We

use Eurocurrency interest rates of maturities one, three, six-months and one-year to test

uncovered interest parity at short horizons, while we use zero-coupon bond yields of

maturities one, two and �ve-years to test it at long horizons. Note that our methodology

is especially useful to handle the large degree of overlap (relative to the sample size) that

characterizes uncovered interest parity at long-horizons. Importantly, we also use our

proposed speci�cation test to check the validity of the continuous-time processes that we

estimate. The results that we obtain with correctly speci�ed models continue to reject the

2See chapter 9 in Harvey (1989) for a discussion of state-space models with a transition equation in
continuous time.
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uncovered interest parity hypothesis at short horizons even after taking care of temporal

aggregation problems. We also �nd little support for uncovered interest parity at long

horizons. This is in line with Bekaert et al. (2007), and in contrast to Chinn and Meredith

(2004) who cannot reject the validity of uncovered interest parity at long horizons on the

basis of quarterly data.

The paper is organized as follows. Section 2 details our dynamic framework, the

testable restrictions that uncovered interest parity imposes on continuous-time models,

our estimation method, and the Monte Carlo evidence on size and power. In Section 3,

we introduce our speci�cation test, while Section 4 contains our empirical results. Finally,

we provide some concluding remarks and future lines of research in Section 5. Auxiliary

results are gathered in an appendix.

2 A continuous-time framework

2.1 Conditions for uncovered interest parity

The most common version of uncovered interest parity (UIP) states that the (nominal)

expected return to speculation in the forward foreign exchange market conditioned on

available information is zero. Typically, this hypothesis is formally written as:

Et (st+� � st) = pt;� ; (1)

where Et(�) denotes expectations conditional on the information available up to time t, st
is the logarithm of the spot exchange rate St (e.g. dollar per euro), pt;� = ft;� � st is the

� -period forward premium,3 and ft;� is the logarithm of the forward rate Ft;� contracted

at t that matures at t+ � . As a consequence, if (1) holds then the (log) forward exchange

rate will be an unbiased predictor of the � -period ahead (log) spot exchange rate. For

this reason, UIP is also known as the �Unbiasedness Hypothesis�. A frequent criticism of

this version of UIP is that it pays no attention to issues of risk aversion and intertemporal

allocation of wealth. However, Hansen and Hodrick (1983) show that with an additional

constant term, equation (1) is consistent with a model of rational maximizing behaviour

in which assets are priced by a no-arbitrage restriction. In what follows, we shall refer

to this �Modi�ed Unbiasedness Hypothesis� as UIP. To simplify our notation, we will

3Most often, UIP is stated in terms of the interest rate di¤erential between two countries. In particular,
the covered interest parity hypothesis states that the forward premium is equal to the interest rate di¤er-
ential between two countries: ft;��st = rt;��r�t;� , where rt;� and r�t;� are the (continuously-compounded)
� -period interest rates on a deposit denominated in domestic and foreign currency, respectively.
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also understand pt;� and �st as the demeaned values of forward premium and the �rst

di¤erence of the spot exchange rate, respectively.

As mentioned before, we could simply specify a joint covariance stationary process for

�st and pt;� in discrete-time, and test the constraints that UIP implies on the dynamic

evolution of both variables. In typical discrete-time models, both the � -period forward

and spot exchange rates have a unit root and, in addition, there is a (1;�1) cointegration
relationship between both variables. In this paper, we specify instead a continuous-time

model for the in�nitesimal increment of the exchange rate and the forward premium. In

particular, we follow Phillips (1991) and Chambers (2003) and directly build a continuous-

time model in which the (1;�1) cointegration relationship is satis�ed:4

p� (t) = u
(�)
1 (t); (2)

ds(t) = u
(�)
2 (t)dt+ �s�s(dt); (3)

where u(�)(t) =
h
u
(�)
1 (t); u

(�)
2 (t)

i0
is a covariance-stationary continuous-time process,5 and

�s(dt) is a continuous-time white-noise with meanE [�s(dt)] = 0 and varianceE [�s(dt)
2] =

dt.6

In this context, we can express condition (1) as:

Et [s(t+ �)� s(t)] = Et

�Z �

0

ds(t+ h)

�
= p� (t); (4)

which by the law of iterated projections (see Hansen and Sargent, 1991a) we can in turn

write as:

E�t [s(t+ �)� s(t)] = p� (t); (5)

where E�t (�) denotes projections onto the linear span of any variables known at time t that
includes p� (t). Thus, UIP imposes a set of conditions on the temporal evolution of the

� -period forward premia and the exchange rate. As a limiting example, let the forward

4See also Comte (1999) for a discussion on the relationship between discrete and continuous-time
cointegration, and an error correction model in continuous-time that we could alternatively use to test
the UIP hypothesis in a continuous-time framework.

5Note that if we drop the �(dt) term from (3), then we obtain Phillips (1991)�s continuous-time
cointegrated system in triangular form representation. In that case, (3) could be expressed as Ds(t) =
u2(t) where D � d=dt is the mean square di¤erential operator. This implies that the sample paths for
the spot exchange rate s(t) would be di¤erentiable and, therefore, that the in�nitesimal change in s(t)
would be smooth. However, the assumption of di¤erentiable exchange rate paths does not seem to be
supported by data.

6In particular, a continuous-time white-noise process � = (�1; : : : �n)
0 is a vector of random measures,

de�ned on all subsets of the line -1 < t < 1 with �nite Lebesgue measure, such that E [�(dt)] = 0;
E [�(dt)�(dt)0] = �dt, where � is a positive de�nite matrix and E

�
�i(�)�j(�

0)
�
= 0 for any disjoint

sets � and �0 on the line -1 < t <1 (see Assumption 1 in Bergstrom, 1983).
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contract period � go to zero, as in the model of Mark and Kyu Moh (2007). Then, the

restriction E�t [ds(t)] = p0(t) will be satis�ed if and only if u
(0)
1 (t) = u

(0)
2 (t) 8t, which

forces the movements of the forward premia and the exchange rate drift to be exactly

the same. The case of � = 0, though, is not empirically relevant because instantaneous

forward contracts do not exist. For the general case of � > 0, the following proposition

summarizes the conditions which guarantee that UIP holds at that horizon:

Proposition 1 Assume that the temporal evolution of the � -period forward premium and

the spot exchange rate is given by (2) and (3), where u(�)(t) =
h
u
(�)
1 (t); u

(�)
2 (t)

i0
is a

covariance stationary continuous-time process whose Wold decomposition is given by:

u(�)(t) =

Z 1

0

�(�)(h)�(�)u (t� dh); (6)

where �(�)u (t) is a two-dimensional white noise process with mean zero and instantaneous

covariance matrix given by E
h
�(�)u (dt)�

(�)
u (dt)

0
i
= �

(�)
u dt, and �(�)(h) is a 2 � 2 matrix

of square integrable functions such that tr
hR1
0
�(�)(h)�

(�)
u �

(�)(h)0dh
i
< 1. Then, the

uncovered interest parity condition in terms of linear projections (5) holds if and only if:

�
(�)
11 (h) =

Z �

0

�
(�)
21 (h+ r)dr 8h; (7)

�
(�)
12 (h) =

Z �

0

�
(�)
22 (h+ r)dr 8h; (8)

where �(�)ij (h) is the ij-element of �
(�)(h).

Proof. First note that the LHS of the UIP condition in continuous time (5) can be

written as:

E�t

�Z �

0

ds(t+ r)

�
= E�t

�Z �

0

u
(�)
2 (t+ r)dr +

Z �

0

�s(t+ dr)

�
= E�t

�Z �

0

u
(�)
2 (t+ r)dr

�
;

while the Wold decomposition (6) implies that:

u
(�)
2 (t+ r) =

Z 1

�r
�
(�)
21 (h+ r)�

(�)
u1 (t� dh) +

Z 1

�r
�
(�)
22 (h+ r)�

(�)
u2 (t� dh):

Thus to obtain the required projection conditioned on information available at time t we

simply need to apply an annihilation operator that zeros out �(�)21 (h + r) and �(�)22 (h + r)

for t 2 [�r; 0] (see Hansen and Sargent, 1991b), which simply re�ects the fact that future
increments of �(�)u (t) are linearly unpredictable while past changes are known. In this way,

we obtain

E�t

h
u
(�)
2 (t+ r)

i
=

Z 1

0

�
(�)
21 (h+ r)�

(�)
u1 (t� dh) +

Z 1

0

�
(�)
22 (h+ r)�

(�)
u2 (t� dh);
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which in turn yields:

E�t [s(t+ �)� s(t)] =

Z �

0

Z 1

0

�
(�)
21 (h+ r)�

(�)
u1 (t�dh)dr+

Z �

0

Z 1

0

�
(�)
22 (h+ r)�

(�)
u2 (t�dh)dr:

(9)

On the other hand, (6) also implies that:

p� (t) =

Z 1

0

�
(�)
11 (h)�

(�)
u1 (t� dh) +

Z 1

0

�
(�)
12 (h)�

(�)
u2 (t� dh): (10)

Given that the integrals in (9) are de�ned in the wide sense with respect to time, we can

�rst change the order of integration, and then equate the right hand sides of (9) and (10).

On this basis, it is straightforward to see that UIP is equivalent to the conditions (7) and

(8).

This proposition is the continuous-time analogue to the results in the appendix of

Hansen and Hodrick (1980), who derived the restrictions that UIP implies on the Wold

decomposition of discrete-time processes. However, a direct test of (7) and (8) is di¢ cult

in practice because it requires the estimation of the bivariate (continuous-time) Wold

decomposition in (6). To avoid such a di¢ culty, we follow the literature on UIP testing in

discrete-time (see e.g. Baillie et al. 1984 and Hakkio 1981) and translate those restrictions

into testable hypothesis on the continuous-time analogue of a state-space model. Given

that we concentrate on a single forward contract at a time, hereinafter we will drop the

superscript � on u(t), �(h) and �u(t) to simplify the notation.

2.2 A continuous-time state-space approach

The following proposition provides the continuous-time analogue to the rational expec-

tations cross-equation restrictions in Campbell and Shiller (1987) (cf. 35) by translating

the UIP restrictions (5) into testable hypotheses on the continuous-time analogue of a

state-space model:

Proposition 2 Assume that the temporal evolution of the � -period forward premium and

the spot exchange rate is given by (2) and (3), where u(t) = [u1(t); u2(t)]
0 are the �rst

two elements of a n � 1 vector x(t) that follows a multivariate Orstein-Uhlenbeck (OU)
process characterized by the following system of linear stochastic di¤erential equations with

constant coe¢ cients:

dx(t) = Ax(t)dt+R1=2�x(dt); (11)

where �x(t) is a continuous-time white-noise process with mean E [�x(dt)] = 0 and covari-

ance matrix E [�x(dt)�x(dt)
0] = Idt, I being the identity matrix; and all the eigenvalues of
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A are negative to guarantee the stationarity of the process. Then, the uncovered interest

parity condition in terms of linear projections (5) holds if and only if:

e02A
�1(eA� � I) = e01; (12)

where ej is a n� 1 vector with a one in the jth position and zeroes in the others.

Proof. By combining equations (3) and (11), we can conveniently write our continuous-

time model as the following augmented OU process:

d

�
x(t)
s(t)

�
=

�
A 0
e02 0

��
x(t)
s(t)

�
dt+

�
R1=2 0
�0xs �s

��
�x(dt)
�s(dt)

�
; (13)

d�(t) = B�(t)dt+ S1=2�(dt);

where E [�x(dt)�s(dt)] = 0 without loss of generality.

Under some regularity conditions (see e.g. Bergstrom, 1984), the OU process (13)

generates discrete observations that regardless of the discretization interval h will exactly

satisfy the following VAR(1) model:

�t = F
(h)�t�h + �

(h)
t ; (14)

whereF(h) = exp(Bh) = I+
P1

j=1(Bh)
j=j!, and the error term �(h)t =

R t
t�h e

B(t�r)S1=2�(dr)

satis�es E
h
�
(h)
t

i
= 0, E

h
�
(h)
t �

(h)0

t

i
= 
(h)=

R h
0
eBrSeB

0rdr, and E
h
�
(h)
t �

(h)0
t�s

i
= 0 for

s � h. We can then exploit this VAR structure to generate the corresponding forecasts

of �t+h given the information at time t as:

E�t �t+h = F
(h)�t: (15)

Hence, by setting the discretization frequency, h, equal to the maturity of the contract,

� , and exploiting that exp(Bh) =
P1

k=0
1
k!
(Bh)k, we �nally arrive at:

E�t

�
xt+�
st+�

�
=

�
eA� 0

e02A
�1(eA� � I) 1

��
xt
st

�
:

Given that the forward premium pt;� is the �rst element of xt (and therefore of ut),

it is straightforward to prove that the UIP condition in terms of linear projections

E�t (st+� � st) = pt;� , is equivalent to equation (12).

Many models of empirical interest can be cast in terms of (11) in Proposition 2. For

example, the continuous-time VAR(p) model:

d
�
Dp�1u(t)

�
=
�
�0u(t) +�1Du(t) + : : :+�p�1D

p�1u(t)
�
dt+�1=2�(dt);
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which allows for rich dynamics, can be written in companion form as:

d

2666664
u(t)
Du(t)
...

Dp�2u(t)
Dp�1u(t)

3777775 =
0BBBBB@

0 I 0 : : : 0
0 0 I : : : 0
...

...
...

. . .
...

0 0 0 : : : I
�0 �1 �2 : : : �p�1

1CCCCCA

2666664
u(t)
Du(t)
...

Dp�2u(t)
Dp�1u(t)

3777775 dt+
2666664

0
0
...
0
�1=2

3777775 �(dt);

where D � d=dt is the mean square di¤erential operator (see Bergstrom, 1984, for de-

tails). Similarly, continuous-time VARMA models can be cast in terms of (11) using the

companion form VAR representation provided in Chambers and Thornton (2009).

Alternatively, we could consider the continuous-time analogue to the discrete-time

VAR approach in Bekaert and Hodrick (1992), and augment x(t) with dividend yields or

other forecasting instruments that may be useful in predicting exchange rates.

Further, we can also focus on models where some of the elements in x(t) are un-

observed. For example, the following model where u(t) is jointly determined with the

unobservable variable  (t):

d

24 u1(t)
u2(t)
 (t)

35 =
0@ '11 0 �

'21 '22 0
�� 0 '11

1A24 u1(t)
u2(t)
 (t)

35 dt+
0@ 
11 0 0


21 
22 0
0 0 
11

1A24 �u1(dt)
�u2(dt)
� (dt)

35 ;
delivers an AR(1) process in discrete time with negative autocorrelation for u1(t) (see

Harvey, 1989).

Notice that our general framework also nests the case of Gaussian continuous-time

processes where �(dt) = dW(t) and W(t) is a standard Wiener process, as in Renault

et al. (1998). An important advantage of such models is that conditional expectations

are easy to compute as they coincide with linear projections. Yet, our modeling frame-

work also allows for volatility clustering and/or the presence of jumps in exchange rates

because, as noted by Berstrom (1984), the discrete-time representation of the model in

continuous-time in equation (14) remains valid even when the continuous-time white-

noise process, �(t), is not Gaussian. For example, equation (13) may correspond to the

vector Lévy-driven OU process in Barndor¤-Nielsen and Shephard (2001), in which �(dt)

are instantaneous time-homogeneous independent increments that include Gaussian, com-

pensated Poisson, Gamma and inverse Gaussian processes among others, as well as linear

combinations of these.

We could also assume that �(t) follows the multivariate a¢ ne di¤usion:

d�(t) = B�(t)dt+ S1=2C1=2(t)dW(t); (16)
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where the matrix C(t) is diagonal with elements cii(t) = �i + �
0
i�(t). This would allow

us to consider not only square root type processeses, but also stochastic volatility models

in which volatility follows a mean reverting OU process itself. Note that in this case

vec
�
vart

�
�t+h

��
= v0+v1�t (see Fisher and Gilles, 1996, Meddahi and Renault, 1996, or

Du¤ee, 2002). Similarly, we could allow for conditional volatility in exchange rates and

forward premia if we assume that �(t) follows a multivariate version of the continuous-

time square-root stochastic autoregressive volatility (SR-ARV) process of Meddahi and

Renault (2004) with a linear drift.

As in the Gaussian case, discrete observations from vector Lévy-driven OU processes,

multivariate a¢ ne di¤usions and multivariate SR-ARV models will also satisfy equation

(15) in terms of conditional expectations despite the presence of jumps or conditional

heteroskedastity. Consequently, one can readily obtain the relevant UIP restrictions (12)

for these models in terms of conditional expectations also using the results in Proposition

2 by simply replacing E�t (�) by Et(�).
To illustrate our methods, it is pedagogically convenient to study in detail the case in

which u(t) follows a continuous-time VAR(1) process.

Example 1. Suppose that the temporal evolution of the � -period forward premium

and the spot exchange rate is given by:

p� (t) = u1(t);

ds(t) = u2(t)dt+�
0�u(dt);

with u(t) following a continuous-time VAR(1) model.

d

�
u1(t)
u2(t)

�
=

�
�11 �12
�21 �22

��
u1(t)
u2(t)

�
dt+

�
�11 0
�21 �22

��
�u1(dt)
�u2(dt)

�
; (17)

du(t) = �u(t)dt+�1=2�u(dt);

where � has two negative eigenvalues to guarantee the stationarity of the process, and

E[�u(dt)�u(dt)
0] = Idt. Note also that we have assumed that �s(dt) is an exact linear

combination of the fundamental shocks driving u(t).

If we choose x(t) = u(t), A = �, and R = �, this model coincides with the one in

equation (11). Thus, we can specialize the conditions in equation (12) to obtain that UIP

will hold if and only if:

e02�
�1(e�� � I) = e01: (18)

Not surprisingly, we can arrive to the same condition by exploiting the results in our

Proposition 1. To this end, note model (17) implies that the matrix �(h) in the Wold

11



decomposition in equation (6) is given by �(h) = e�h. On this basis, we can jointly

express conditions (7) and (8) as

e01�(h) = e
0
2

Z �

0

�(h+ r)dr: (19)

Substituting �(h) by e�h into (19) and solving the integral delivers the restrictions derived

in equation (18) by exploiting the discrete-time representation of a continuous-time VAR

model.

Example 2. Suppose that the temporal evolution of the � -period forward premium

and the spot exchange rate is given by:

d

�
p� (t)
s(t)

�
=

�
'11 0
'21 0

��
p� (t)
s(t)

�
dt+

�

11 0

21 
22

��
�v1(dt)
�v2(dt)

�
; (20)

with '11 < 0 and E[�(dt)�(dt)
0] = Idt. A direct application of (14) gives us the following

restricted discrete-time VAR(1):�
pt;�
�hst

�
=

�
e'11h 0

'21
'11
(e'11h � 1) 0

��
pt�h;�
�hst�h

�
+

 
�
(h)
1t

�
(h)
2t

!
:

Hence, the forward premia at the h interval is a stationary AR(1) process with autocor-

relation coe¢ cient e'11h, while the spot exchange rate has a unit root. Moreover, there is

no feedback from the exchange rate, s(t), to the forward premium, p� (t).

By setting the discretization period h equal to the contract period � , we obtain that

the least squares projection coe¢ cient of ��st+� on pt;� is equal to '21(e
'11h � 1)='11.

Thus, the UIP condition, E�t (��st+� ) = pt;� , holds if and only if:

'21 =
'11

e'11� � 1 ; (21)

This model is a special case of Example 1 because the condition E�t [ds(t)] = u2(t) =

'21p� (t) implies that:

du2(t) = '21dp� (t) = '21'11p� (t)dt+ '21
11�1(dt);

and thus we can write (20) as

d

24 p� (t)
u2(t)
s(t)

35 =
0@ '11 0 0

'21'11 0 0
0 1 0

1A24 p� (t)
u2(t)
s(t)

35 dt+
0@ 
11 0

'21
11 0

21 
22

1A� �1(dt)
�2(dt)

�
; (22)

which has the form of the model in equation (17). Moreover, given that in this represen-

tation the corresponding matrix � has a zero eigenvalue, we can exploit the discretization

in equation (15) to show that:

E�t (st+� � st) =

�
'21
'11
(e'11h � 1)� '21

�
pt;� + u2t:

12



Substituting u2t = '21pt;� we obtain again that the least squares projection coe¢ cient of

��st+� on pt;� is equal to '21(e
'11h�1)='11. Therefore UIP holds when '21 = '11=(e

'11��
1), which is the same condition derived in (21). Alternatively, we could exploit the Wold

decomposition of (20) to arrive to the same expression.

Note, however, that equation (22) is not the only representation of the model in

Example 2 in terms of the model in Example 1. In particular, we can also use the fact

that u2(t) = '21p� (t) to write

du2(t) = '11u2(t)dt+ '21
11�1(dt);

which delivers the following alternative expression:

d

24 p� (t)
u2(t)
s(t)

35 =
0@ '11 0 0

0 '11 0
0 1 0

1A24 p� (t)
u2(t)
s(t)

35 dt+
0@ 
11 0

'21
11 0

21 
22

1A� �1(dt)
�2(dt)

�
: (23)

Not surprisingly, this representation yields the same UIP condition (21).7

2.3 Estimation

We estimate the structural parameters of the continuous-time model (13) by Gaussian

pseudo maximum likelihood (PML) estimation using Kalman �ltering techniques.8 To do

so, we set h to the sampling frequency, which for simplicity we normalize to 1, so equation

(14) becomes

�t = F
(1)�t�1 + �

(1)
t : (24)

In addition, if we further assume for estimation purposes that �(t) in equation (13) is a

continuous-time white-noise process with a Gaussian distribution (i.e. a Wiener process),

then the error term in equation (24), �(1)t , will be an i.i.d. sequence of Gaussian random

vectors with meanE
h
�
(1)
t

i
= 0, and covariance matrixE

h
�
(1)
t �

(1)
t

i
=
(1)=

R 1
0
eBrSeB

0rdr.

Equation (24) can then be understood as the discrete-time transition equation of the

7Given that the model in Example 2 can be nested within the model in Example 1 in several ways,
some of the parameters appearing in (17) will not be identi�ed when the true model is given by (20). To
avoid this problem, we would recommend estimating the model in Example 2 directly from (20).

8As we discuss in Appendix A, we could alternatively eliminate any unobservable variable from the
system by substitution. Following such an approach in the case of the model in Example 1, we would
end up with a bivariate VARMA(2,1) system in the vector (pt;� ;�hst)0, which could be then estimated
by (pseudo) maximum likelihood. Bergstrom and Chambers (1990) estimate a model of durable goods
by elimination of the unobservable stock of durable goods.
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following model in state-space form:

yt = d+H�t + "t;

�t = T�t�1 + ut;�
"t
ut

����� � yt�1
�t�1

�
;

�
yt�2
�t�2

�
; : : : � N

��
0
0

�
;

�
Z 0
0 Q

��
;

where yt = (pt;� ;�st)
0 when there are no extra predictors in the model, and the matrices

d; H; T; Z and Q are di¤erent depending on the model estimated. In the case of example

1, these matrices are

d =

�
0
0

�
; H =

�
1 0 0
0 0 1

�
; Z =

�
0 0
0 0

�
;

T =

�
e� 0

e02�
�1(e� � I) 0

�
; Q = 
(1)=

Z 1

0

eBrSeB
0rdr;

where B and S1=2 are de�ned in equation (13) with A = �, R = �, �xs = �; �s = 0:

We evaluate the exact Gaussian pseudo log-likelihood via the usual prediction error

decomposition:

lnL(�) =
TX
t=1

lt;

with

lt = �
N

2
ln(2�)� 1

2
ln jOtj �

1

2
v0tO

�1
t vt; (25)

where � is the vector of parameters of the continuous-time model, vt is the vector of

one-step-ahead prediction errors produced by the Kalman �lter, and Ot their conditional

variance.

The usual Kalman �lter recursions are given by

�tjt�1 = T�t�1jt�1
Ptjt�1 = TPt�1jt�1T

0 +Q
vt = yt � d�H�tjt�1
Ot = HPtjt�1H

0 + Z
�tjt = �tjt�1 +Ptjt�1H

0O�1
t vt

Ptjt = Ptjt�1 �Ptjt�1H
0O�1

t HPtjt�1

9>>>>>>=>>>>>>;
(26)

where �tjt�1 = Et�1(�t) and Ptjt�1 = E
�
(�t ��tjt�1)(�t ��tjt�1)0

�
are the expectation

and covariance matrix of �t conditional on information up to time t � 1, while �tjt =
Et(�t) and Ptjt = E

�
(�t ��tjt)(�t ��tjt)0

�
are the expectation and covariance matrix

of �t conditional on information up to time t (see Harvey, 1989). Given that we are

assuming that the state variables are covariance stationary, we can initialize the �lter

using �0 = E(�t) = 0 and vec(P0) = (I�T
T)�1 vec(Q).
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Finally, we can exploit again the prediction error decomposition in (25) to obtain �rst

and second derivatives of the log likelihood function (see Harvey, 1989), which we need

to estimate the variance of the score and the expected value of the Hessian that appears

in the asymptotic distribution of Gaussian PML estimators of �. In particular, the score

vector takes the following form:

@lt(�)

@�i
= st(�) = �

1

2
tr

��
O�1
t

@Ot

@�i

��
I�O�1

t vtv
0
t

��
� @v0t
@�i
O�1
t vt; (27)

while the ij-th element of the conditionally expected Hessian matrix satis�es:

�Et�1
�

@2lt
@�i@�j

�
= �Et�1

�
@sit
@�j

�
=
1

2
tr

�
O�1
t

@Ot

@�i
O�1
t

@Ot

@�j

�
+
@v0t
@�i
O�1
t

@vt
@�j

: (28)

In turn, these two expressions require the �rst derivatives of Ot and vt, which we can

evaluate analytically by an extra set of recursions that run in parallel with the Kalman

�lter. As Harvey (1989, pp. 140-3) shows, the extra recursions are obtained by di¤erenti-

ating the Kalman �lter prediction and updating equations (26).9 In particular, we make

use of these formulae in a scoring algorithm to maximize the exact log-likelihood function

with analytical expressions for the score vector and information matrix.10

We also use those expressions to obtain heteroskedasticity-robust standard errors and

Wald tests. In particular, under standard regularity conditions, it can be shown that b�,
the PML estimator of the model parameters, has the following asymptotic distribution:

p
T (b� � �) d!N

�
0; (D0

�S
�1
� D�)

�1� ;
where D� = E [@st(�)=@�

0] = E [@2lt(�)=@�@�
0] ; S� = E [st(�)st(�)

0] and the relevant

elements of these matrices can be obtained from (27) and (28). On this basis, we can test

the null hypothesis H0 : r(�) = 0 using the following Wald test:

T � r(b�)0 "@r(b�)
@�0

(bD0
�
bS�1� bD�)�1@r(b�)0@�

#
r(b�); (29)

where bD� and bS� are consistent estimates of D� and S�, respectively. In the context of
model (17), for example, we have that the UIP restrictions to test are

r(�) = e02�
�1(e�� � I)� e01:

9In our continuous-time models the analytical derivatives of the Kalman �lter equations with respect
to the structural parameters require the derivatives of the exponential of a matrix, which we obtain using
the results in Chen and Zadrozny (2001)
10Details on how to obtain initial values for the optimization algorithm are provided in Appendix B.
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When the continuous-time process, �(t), is not Gaussian, the previous procedure still

yields Gaussian PML estimators of �, which are consistent albeit less e¢ cient. In addi-

tion, the Kalman recursions yield minimum mean-squared error predictors based on the

�tted model (see Brockwell, 2001). Alternatively, one could estimate by maximum likeli-

hood the parameters of fully speci�ed continuous-time data generating processes that can

capture some important high frequency features of exchange rates, such as non-normality

or volatility clustering. As we mentioned before, the UIP restrictions in Proposition 2

remain valid in those contexts too. Nonetheless, given that the e¢ cient estimation of

multivariate Lévy-driven OU processes or conditionally heteroskedastic a¢ ne di¤usions

is not a trivial task, we only consider Gaussian PML estimators in this paper.

2.4 Monte Carlo simulations of UIP tests

In this section, we carry out an extensive Monte Carlo study to assess the ability of our

proposed methodology to test UIP. In addition, we also compare our proposed continuous-

time-based test to the two main approaches to test UIP in the existing literature: OLS-

and VAR-based tests.

2.4.1 Design

We initially simulate 10,000 samples of 30 years of weekly data (T = 1; 560) from the

continuous-time model (17) under the assumption that the continuous-time white-noise

process is Gaussian (i.e. a Wiener process). We �x the contract period � to 52 (one year).

To make them more realistic, we include unconditional means for the observed variables.

Therefore, the model that we simulate is given by:

� ept;�
�~st

�
=

�
�p
��s

�
+

�
1 0 0
0 0 1

�0@ u1t
u2t
�st

1A ; (30)

�
ut
�st

�
=

�
e� 0

e02�
�1(e� � I) 0

��
ut�1
�st�1

�
+ �

(1)
t ; (31)

where ept;� = �p + pt;� , �~st = ��s + �st, �
(1)
t =

R t
t�1 e

B(t�r)S1=2dW(r); B and S1=2 are

de�ned in equation (13) with A = �, R = �, �xs = �; �s = 0; �11 = :3; �21 = �:2;
�22 = :1; �1 = �:1; �2 = 1:5; �p = 2; and ��s = 0. In order to impose the null

hypothesis of UIP, we �rst decompose � as PDP�1, where D is a diagonal matrix with

elements d1 = �:025 and d2 = �:25, and then choose P so that � satis�es (18). Such

parameter values are chosen in order to match the empirical characteristics of our dataset.
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In particular, our choice of d1 and d2 imply that the forward premium is stationary but

very persistent.

2.4.2 Traditional UIP tests

Ordinary least squares. The �rst approach is an OLS-based test motivated by the

following regression equation:

st+� � st = �+ �(ft;� � st) + wt+� (32)

where the �Unbiasedness Proposition� implies that � = 0 and � = 1, while we just

need � = 1 to satisfy the �Modi�ed Unbiasedness Proposition�. In addition, rational

expectations imply that wt+� is serially correlated when the sampling interval is shorter

than � because we will have overlapping observations. In particular, Hansen and Hodrick

(1980) show how to use overlapping data in order to increase the sample size, which should

result in gains in the asymptotic power of UIP tests, using Hansen�s (1982) GMM. Yet,

sample estimates of heteroskedasticity and autocorrelation consistent (HAC) covariance

matrices are very sensitive to the election of bandwidth and kernel, which often results in

inferences that are severely distorted (see den Haan and Levin, 1996, and Ligeralde, 1997).

To illustrate this point, we compute several OLS-based UIP tests in which asymptotically

valid standard errors are estimated using the following di¤erent methods:

1. Newey-West (1987) approach (NW), which is the most popular method to construct

asymptotic standard errors when testing UIP in a regression setup (see e.g. Bansal

and Dahlquist, 2000, and Flood and Rose, 2002). As in the recent literature, we use

the optimal data-driven bandwidth selection rule in Andrews (1991).

2. Eichenbaum, Hansen and Singleton (1988) approach (EHS), which exploits that,

under the null hypothesis, the error term in the OLS estimation of (32) follows a

moving-average (MA) process of �nite known order but with unknown coe¢ cients

to construct the asymptotic covariance matrix. We follow Eichenbaum, Hansen and

Singleton (1988) in using Durbin (1960)�s method to estimate the MA structure.

3. Den Haan and Levin (1996) approach with a VAR order automatically selected using

either the Akaike Information Criteria (VARHAC-AIC) or the Bayesian Informa-

tion Criteria (VARHAC-BIC). Den Haan and Levin (1996) data-driven approach

assumes that the moment conditions implicit in the normal equations of (32) have

a �nite VAR representation, which they exploit to construct their estimated covari-

ance matrix.
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4. Non-overlapping observations (NO), which we compute by sampling exchange and

interest rates every � = 52 periods. This approach entails a considerable waste of

sample information.

Vector autoregressions in discrete time. We also compare our continuous-time

approach with those results that we would have obtained using a VAR-based test. This

second approach estimates a joint covariance stationary process for the �rst di¤erence

of the spot exchange rate �st and the forward premia pt;� by Gaussian PML. Unlike in

an OLS-based test, the di¤erence operator on the spot exchange rate is taken over the

sampling interval in order to avoid overlapping residuals. Consequently, the UIP condition

(in terms of linear projections) becomes:

E�t (st+� � st) = E�t

 
�X
i=1

�st+i

!
= pt;� : (33)

In this context, Baillie et al. (1984) and Hakkio (1981) show how to obtain testable

restrictions on the companion matrix of a VAR. The rationale for looking at vector au-

toregressions is that we can always approximate any strictly invertible and covariance

stationary discrete-time process by a VAR model with a su¢ cient number of lags. More-

over, the VAR assumption allows us to use the Campbell and Shiller (1987) methodology

for testing present value models. Speci�cally, we can use the VAR model to produce

optimal forecasts of the increment of the spot exchange rate in (33), from which we can

obtain the appropriate UIP conditions. As an illustration, assume that yt = (pt;� ;�st)
0

follows the VAR(1) model

yt = Byt�1 + "t; (34)

where "t is a two-dimensional vector of white noise disturbances with contemporaneous

covariance matrix E ("t"0t) = �. Then, the optimal linear forecast of yt+i (i = 1; :::; �)

based on the information set de�ned by yt and its lagged values is given by E�t yt+i = B
iyt.

Consequently, the projection of �st+i will be given by e02B
iyt, where ej is a vector with

a one in the jth position and zeroes in the others. Therefore, the testable restrictions on

the VAR parameters that UIP implies for a � -period forward contract are:11

e02B(I�B)
�1(I�B� ) = e01; (35)

11Note that the left hand side (LHS) of (33) can be expressed as:

E�t

 
�X
i=1

�st+i

!
= e02

 
�X
i=1

Biyt

!
= e02B(I�B)

�1
(I�B� )yt;

while the right hand side (RHS) is pt;� = e01yt:

18



which are the discrete-time analogue to (12).

Although we can always consider (34) as the �rst order companion form of a higher

order VAR, if our estimated model does not provide a good representation of the joint

Wold decomposition of �st and pt;� because we have selected an insu¢ cient number of

lags, say, then we may end up rejecting the UIP hypothesis when in fact it is true. To

illustrate this point, we compute VAR-based tests for two lag choices: p = 1 and 4.

2.4.3 A fair comparison of UIP tests.

In total, we compare the performance of a test based on the continuous-time speci�-

cation in equations (30) and (31) to seven other di¤erent UIP tests (�ve OLS- and two

VAR-based tests). Nonetheless, one has to be careful in comparing all these di¤erent tests

of the UIP hypothesis because each of them has a di¤erent alternative hypothesis in mind.

As a con�rmation, note that OLS-based tests have one degree of freedom, VAR(p)-based

tests have 2p degrees of freedom, while tests based on the continuous-time model (17)

have two degrees of freedom. In order to make a fair comparison across models, we follow

Hodrick (1992) and Bekaert (1995) and obtain an implied beta from the VAR and the

continuous-time approach that is analogous to the regression slope tested in the simple

regression approach. Given that the regression coe¢ cient is simply the ratio of the co-

variance between the expected future rate of depreciation and the forward premium to

the variance of the forward premium, the implied slope in the VAR(1) in equation (34)

is:

�V AR(1) =
e02B(I�B)

�1(I�B� )	e1
e01	e1

; (36)

where	 is the unconditional covariance matrix of yt = (pt;� ;�st)
0, which can be obtained

from the equation vec(	) = (I�B
B)�1vec(�). On the other hand, the implied slope
for the continuous time model (17) is given by:

�OU =
e02�

�1(e�� � I)�e1
e01�e1

; (37)

where vec(�) = � (�
 I+ I
�)�1 vec(�) is the unconditional variance of ut. There-
fore, we will concentrate on the null hypotheses H0 : �

V AR(p) = 1 for p = 1 and 4, as

well as H0 : �
OU = 1. For this reason, we modify the Wald test statistic in (29) using

r(�) =
�
e02�

�1(e�� � I)�e1
�
= (e01�e1) � 1 as the restriction on the parameters to be

tested:

T �

h
r(b�)i2h

@r(b�)
@�0 (

bD� 0bS�1� bD�)�1 @r(b�)@�)

i :
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2.4.4 Results: Size

Figure 1 summarises the �nite sample size properties of each of the aforementioned

UIP tests by means of Davidson and MacKinnon�s (1998) p-value discrepancy plots, which

show the di¤erence between actual and nominal test sizes for every possible nominal

size. As expected, given the large degree of overlap, the tests based on OLS regressions

with standard errors that rely on the usual GMM asymptotic results su¤er considerable

size distortions. For example, the test that uses the Newey-West estimator of the long-

run covariance matrix of the OLS moment conditions massively over-rejects the UIP

hypothesis. In contrast, the actual size of tests based on the EHS and VARHAC-BIC

methods are well below their nominal sizes. The size distortions for the EHS method

probably re�ect the di¢ culties in estimating a MA(51) structure using Durbin�s method,

while those in the VARHAC-BIC approach might be caused by the apparent tendency of

the BIC lag selection procedure to choose an insu¢ cient number of lags. Although the

best OLS-based method for overlapping observations is the VARHAC-AIC approach, it

still over-rejects in �nite samples. Similarly to the results in Richardson and Stock (1989)

and Valkanov (2003), these results suggest that when the degree of overlap becomes non-

trivial relative to the sample size, standard GMM asymptotics no longer provides a good

approximation to the �nite sample distribution of the tests. Finally, tests based on non-

overlapping regressions also over-reject the UIP hypothesis due to the small number of

observations included in the estimation (T = 30).

As for VAR-based tests, we �nd that we approximate better the autocorrelation struc-

ture of yt = (pt;� ;�st)
0 as we increase the order of the VAR from p = 1 to p = 4. A

simple explanation for this phenomenon can be obtained from an inspection of the pop-

ulation values of the implicit beta obtained by estimating a misspeci�ed VAR(p) when

the true model is in fact given by the continuous-time process (17). Without loss of

generality, assume that p = 1 (otherwise, simply write a higher order VAR as an aug-

mented VAR(1)). The companion matrix of a VAR(1) model is de�ned by the relationship

B � E
�
yty

0
t�1
�
[E (yty

0
t)]
�1, while the variance-covariance matrix of the residuals is given

by � � E
�
yty

0
t�1
�
� E

�
yty

0
t�1
�
[E (yty

0
t)]
�1E

�
yty

0
t�1
�0
. If we then plug in the expres-

sions for E (yty0t) and E
�
yty

0
t�1
�
implied by the continuous-time model (17), we will

obtain analytical expressions for the population value of B(�) and �(�) as a function

of the parameters of the continuous-time model, �. Then, we can use equation (36) to

compute the population value of �V AR(1)(�), which we can understand as the implicit beta

obtained by postulating a VAR(1) model when in fact the true model is the continuous
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time process (17). In this way, we obtain �V AR(1)(�) = 0:6952 and �V AR(4)(�) = 0:9802

for the value of � in our experimental design. These values indicate that the implicit beta

approaches 1 as we increase p, which explains why the test based on a VAR(1) process

largely over-rejects in �nite samples, while the actual and nominal sizes of the test based

on the VAR(4) process are quite close for standard nominal levels.12 Our results also

con�rm that testing UIP in such a full-information setup should be considered as a joint

test of the UIP hypothesis and the dynamic speci�cation of the model. Consequently, the

application of speci�cation tests is especially relevant in this context. We will return to

this issue in Section 3.

Finally, note that the test based on our correctly speci�ed continuous-time model

provides very reliable inferences.

2.4.5 Results: Power

We run a second Monte Carlo experiment with another 10,000 replications to assess

the �nite-sample power of the same seven tests. In this case, the design is essentially

identical to the previous one, including the eigenvalues of �. The only di¤erence is that

we now set �11 = �:025; �12 = 1; �21 = 0, and �22 = �:25 so that UIP is violated because
e02�

�1(e�� � I) = 4e02 6= e01. Figure 2 summarises the �nite sample power properties for
each of the UIP tests by means of Davidson and MacKinnon�s (1998) size-power curves,

which show power for every possible actual size. The most obvious result from this �gure

is that the test based on our continuous-time approach has the highest power for any

given size, followed by the test based on the VAR(4) model, the OLS-based tests that

use overlapping observations, the one that uses non-overlapping data, and �nally the

VAR(1) test. Intuitively, our continuous-time approach and, to a less extent the VAR(4),

have high power because they exploit the correct dynamic properties of the data (see

Hallwood and MacDonald, 1994).13 To interpret our results, it is useful to resort again

to the population values of the implicit beta for the VAR models. For this design, we

have that �V AR(1)(�) = 0:4795 and �V AR(4)(�) = 0:1966, while the population value of the

implicit beta for the continuous-time model (17) calculated according to equation (37) is

�OU(�) = 0:0879. Note that under the alternative hypothesis, the smaller the order of

the VAR(p) model, the closer the value of �V AR(p) is to one, which explains the relative

12Given that we can always approximate the autocorrelation structure of any strictly invertible covari-
ance stationary process observed in discrete-time by a VAR model with a su¢ cient number of lags, we
would expect the population value of the implied beta to approach 1 as the number of lags increases.
13Note that if the true distribution is Gaussian then our continuous-time approach delivers the maxi-

mum likelihood estimator, which is e¢ cient, and gives rise to optimal tests.

21



ranking of the two VAR-based tests.

In summary, our Monte Carlo results suggest that: (i) in situations where traditional

tests of the UIP hypothesis have size distortions, a test based on our continuous-time

approach has the right size, and (ii) in situations where existing tests have the right size,

our proposed test is more powerful.

2.4.6 A simpler Monte Carlo design

We now brie�y describe the results of a second Monte Carlo experiment based instead

on the model of example 2, which is such that a discrete time VAR(1) process captures the

autocorrelation structure of yt = (pt;� ;�st)
0. In particular, we simulate 10,000 samples

of 30 years of weekly data (T = 1; 560) from the continuous-time model (20) under the

assumption that the continuous-time white-noise process is Gaussian. As in the previous

exercise, we �x the contract period � to 52, and include unconditional means for the

observed variables. Thus, the model we simulate to assess the �nite-sample size of the

UIP tests is given by: � ept;�
�~st

�
=

�
�p
��s

�
+

�
1 0
0 1

��
pt;�
�st

�
;�

pt;�
�st

�
=

�
e'11 0

'21
'11
(e'11 � 1) 0

��
pt�1;�
�st�1

�
+

 
�
(1)
1t

�
(1)
2t

!
;

where '11 = �:025; '21 = '11= (e

11� � 1) to guarantee that UIP holds; 
11 = :3; 
21 =

�:1; 
22 = 1:5; �p = 2 and ��s = 0.
Once again, we �nd that tests based on OLS regressions and GMM asymptotics su¤er

substantial size distortions. In particular, both the test that uses Newey-West standard

errors and the one based on non-overlapping regressions present actual sizes well above

their nominal ones. Tests based on the EHS and VARHAC methods (both with AIC and

BIC lag selection criteria) are somewhat better behaved, yet they still over-reject in �nite

samples. Not surprisingly, in this case VAR-based tests provide inferences which are as

reliable as those obtained by estimating the continuous-time model given in equation (20).

As for the �nite-sample power of UIP tests, we simulate another 10,000 replications of

the above model with '21 = 0 so that exchange rates follow a random-walk process. Our

results indicate that both the test based on our-continuous-time approach and the one

based on a VAR(1) model have the highest power for any given size because, e¤ectively,

the continuous time model in (20) implies a VAR(1) structure in discrete time. In terms

of power, these two tests are ranked above the tests based on the VAR(4) model and the

22



OLS-based tests. Our results indicate that, for the parameter con�guration and sample

size in this Monte Carlo design, the loss of power from estimating an unrestricted VAR(1)

is negligible, while the loss of power from estimating a VAR(4) is fairly small.

3 Speci�cation tests that combine di¤erent sampling
frequencies

3.1 Description

As illustrated in the previous section, misspeci�cation of the joint autocorrelation

structure of exchange rates and interest rate di¤erentials can lead to systematic rejections

of UIP when, in fact, it holds. For example, we have shown that if we choose an insu¢ cient

number of lags in a VAR model, then UIP tests based on this model will tend to over-

reject. To some extent, our continuous-time approach also su¤ers from the same problem,

and the power gains that we see in Figure 2 come at a cost: if the joint autocorrelation

structure implied by our continuous-time model is not valid, then our proposed UIP test

may also become misleading. Therefore, the calculation of dynamic speci�cation tests

becomes particularly relevant in our context. In this sense, one possiblity would be to

test for lack of serial correlation of the residuals using an LM test, as in Renault et al.

(1998).

In this paper, on the other hand, we introduce an alternative speci�cation test that

exploits the fact that the structure of a continuous time model is the same regardless

of the discretization frequency, h. Under the null hypothesis that our continuous time

speci�cation is valid, Gaussian pseudo maximum likelihood parameter estimators are

consistent irrespective of the sampling frequency. In contrast, if the dynamic speci�cation

is incorrect, then estimators based on di¤erent sampling frequencies will have di¤erent

probability limits.

In order to gain some extra intuition on the speci�cation approach, assume for sim-

plicity that the sampling frequency is weekly and that we want to compare weekly and

biweekly estimates of the parameter vector �.14 Our test is based on the following algo-

rithm.

1. Estimate � using the whole sample by Gaussian PML. Let E[s(1)t (�)] = 0 denote the

moment conditions that de�ne the pseudo maximum likelihood estimator (PMLE)

14In practice, we can modify steps 2 and 3 of our proposed algorithm to obtain estimators for any
aggregated frequency of choice.
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and call the solution to this equation �̂
(1)
.

2a. Arti�cially generate a new biweekly data set from the original data by discarding all

even observations. Then, write the moment conditions that de�ne the PMLE of �

which only uses odd observations as E[s(2o)t (�)] = 0. By convention, s(2o)t (�) = 0

when t is an even number.

2b. Similarly, discard all odd observations and write the moment conditions that de�ne

the PMLE which only uses even observations as E[s(2e)t (�)] = 0. Again, s(2e)t (�) =

0 when t is an odd number.

3. Obtain a new estimate of the vector parameter, �̂
(2)
from the sum of the moment

conditions that de�ne the PMLE for both odd and even observations: E[s(2o)t (�) +

s
(2e)
t (�)] = E[s

(2)
t (�)] = 0.

4. Finally, compare both estimators �̂
(1)
and �̂

(2)
using the following test statistic:�

�̂
(1) � �̂(2)

�0 h
V ar

�
�̂
(1) � �̂(2)

�i�1 �
�̂
(1) � �̂(2)

�
(38)

If this test indicates that both estimators are statistically close, accept the hypoth-

esis of correct speci�cation. Reject it otherwise.

As is well-known, if the estimation criterion is the true log-likelihood of the data

then the estimator that uses data at the highest frequency is e¢ cient, the variance of

the di¤erence of the estimators is the di¤erence of the respective variances, and our test

statistic can be viewed as an application of Hausman�s (1978) speci�cation test idea.

More generally, we explain in the next section how to obtain the relevant expression for

V ar(�̂
(1) � �̂(2)) from the joint asymptotic distribution of the pseudo scores of the model

at both frequencies, s(1)t (�) and s
(2)
t (�). This approach guarantees that the variance of

the di¤erence of the estimators is positive de�nite and that our speci�cation test remains

valid in pseudo log-likelihood contexts.

Our speci�cation test is related to Ryu (1994), who considered a continuous-time pro-

portional hazard duration model for grouped data with time-invariant categorical regres-

sors. To test the proportionality assumption on the hazard, Ryu (1994) uses a speci�cation

test that compares the estimates obtained from two time intervals with those obtained

with a single aggregated time interval. However, a direct translation of his approach to

our context would involve the use of non-overlapping data at the lower frequency, and
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thereby an information loss. In contrast, our approach e¢ ciently exploits all the infor-

mation available by combining the moment conditions that de�ne the lower frequency

estimators for both odd and even observations.

3.2 Implementation

In this section, we explain how to test the validity of the joint autocorrelation structure

implied by the continuous-time model in Example 2. In particular, imagine that we want

to compare the parameter estimates of the model obtained with weekly and biweekly data.

As we saw in section 2.2, observations of this model sampled at the weekly frequency

(h = 1) will satisfy a VAR(1) process which can be conveniently re-written in state-space

form as: �
pt;�
�st

�
=

�
1 0
0 1

��
�1t
�2t

�
; (39)�

�1t
�2t

�
=

�
e'11 0

'21
'11
(e'11 � 1) 0

��
�1t�1
�2t�1

�
+

 
�
(1)
1t

�
(1)
2t

!
: (40)

where �t = [�
(1)
1t ; �

(1)
2t ]

0 =
R t
t�1 e

�(t�r)�1=2�(dr). By assuming that the continuous-time

white-noise process is Gaussian, we can readily obtain PML estimators of the vector of

parameters of the continuous-time model in (20), �, as the solution to the sample versions

of the following moment conditions:

E

"
@l(1)(y

(1)
t ;�)

@�0

#
= E

h
s
(1)
t (�)

i
= 0; (41)

where y(1)t = [pt;� ;�st]
0, l(1)(y(1)t ;�) is the (pseudo) log-likelihood contribution of y

(1)
t , and

the superscript (1) indicates that y(1)t is an observation obtained at the highest available

frequency (weekly). Analogously, we denote by �(1) the value of � that solves (41).

Alternatively, we could generate a biweekly data set by discarding all even observa-

tions. By treating discarded observations as missing values and using the approach in

Mariano and Murasawa (2003) to write the likelihood of this sample, we construct a new

series

y
(2o+)
t = Dt � y(2)t + (1�Dt)z

e
t ;

where Dt is a dummy variable that takes the value of 1 when y
(2)
t = [pt;� ;�2st]

0 is

observed because t is an odd number, while zet is a bivariate random vector drawn

from an independent arbitrary distribution that does not depend on �. Let us de�ne

y
(2o)
T = (y

(2)
1 ;y

(2)
3 ; :::;y

(2)
T )

0 and y(2o+)T = (y
(2o+)
1 ;y

(2o+)
2 ; :::;y

(2o+)
T )0. Given that the zet�s are
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independent of y(2o)T by construction, we can write the joint probability distribution of

y
(2o+)
T as

f(y
(2o+)
T ;�) = f(y

(2o)
T ;�) �

Y
t:Dt=0

f(zet):

Thus, the log likelihood function of � given y(2o)T and the corresponding log likelihood

given y(2o+)T are identical up to scale, so they will be maximized by the same value. The

main advantage of working with the augmented data series y(2o+)T is that it no longer

contains missing observations and, therefore, it is easy to derive a state space model for

y
(2o)
t . In particular, the measurement equation is:

�
pt;�
�2st

�
=

�
Dt 0 0
0 Dt Dt

�0@ �1t
�2t
�2t�1

1A+ (1�Dt)z
e
t ; (42)

while the transition equation will be:0@ �1t
�2t
�2t�1

1A =

0@ e'11 0 0 0
'21
'11
(e'11 � 1) 0 0 0

0 1 0 0

1A0@ �1t�1
�2t�1
�2t�2

1A+
0@ �

(1)
1t

�
(1)
2t

0

1A ; (43)

which can be understood as an augmented version of (40).

Once again, we can use the Kalman �lter to compute the (exact) log-likelihood function

of this state space model. Similarly, Gaussian PML estimates of � based on the odd

observations will satisfy the sample analogues to the moment conditions:

E

"
@l(2o)(y

(2o+)
t ;�)

@�0

#
= E

h
s
(2o)
t (�)

i
= 0: (44)

As explained before, we overcome the waste of information resulting from discarding

one half of the sample by combining the moment conditions (44) with those that one

would obtain by discarding all odd observations instead, and then estimating � as the

solution to the sample analogue of the following set of moment conditions:

E
h
s
(2o)
t (�) + s

(2e)
t (�)

i
= E

h
s
(2)
t (�)

i
= 0; (45)

where s(2e)t (�) are the in�uence functions that de�ne the estimator that only uses even

observations. We denote the resulting estimator as �̂
(2)
.15

15To estimate the model at the lower frequency, we minimize the following quadratic form:"
1

T

TX
t=1

s
(2)
t (�(2))

#0
W�1

"
1

T

TX
t=1

s
(2)
t (�(2))

#
:
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In this context, our testing methodology simply assesses whether the probability limits

of �̂
(1)
and �̂

(2)
coincide. Speci�cally, de�ne  =

�
�(1)0;�(2)0

�0
, and think of  ̂ as solving

the sample versions of the following set of moment conditions:(
E[s

(1)
t (�

(1))]

E[s
(2)
t (�

(2))]

)
= E [st( )] = 0: (46)

Then, we can use standard GMM asymptotic theory to show that:
p
T ( ̂ � ) d!N

�
0; (D0

 S
�1
 D )

�1� ; (47)

where D = E [@st( )=@ 
0] and S =

P1
j=�1E [st( )st�j( )

0], whether or not yt really

follows a Gaussian process.

On this basis, we can test the restriction �(1) = �(2) by using the Wald test:

T �  ̂0R0
h
R(bD0

 
bS�1 bD )�1R0i�1

R ̂;

where R = (I;�I), and bD and bS are consistent estimates of D and S , respectively.
Nevertheless, it is important to remember that the comparison of estimators at di¤erent

frequencies induces an overlapping problem that in general makes E [st( )st�j( )0] 6= 0
for j � ��1, where � is the ratio of the sampling frequencies (=2 in this example). Thus,
we have to take into account this MA structure in computing a consistent estimate of S .

Given that we mostly care about the sampling interval in as much as a change in h

leads to di¤erent conclusions on the validity of the UIP, we simply test if the implied betas

remain the same when we vary the sampling frequency instead of testing whether the full

parameter vectors �(1) and �(2) coincide. In the context of model (20) in particular, we

would test if �(1) = �(2), with �(�) = �21
�
e�11� � 1

�
=�11, using the followingWald statistic

T � f( ̂)
"
@f( ̂)

@ 0
(bD0

 
bS�1 bD )�1@f( ̂)

@ 

#�1
f( ̂);

where f( ) = '
(1)
21

�
e'

(1)
11 � � 1

�
='

(1)
11 �'

(2)
21

�
e'

(2)
11 � � 1

�
='

(2)
11 . By focusing on this particu-

lar characteristic of the model we avoid the use of a large number of degrees of freedom,

which is likely to improve the �nite sample properties of our test.

Similarly, we test the speci�cation of the continuous time model (17) in Example 1 by

checking if r(1) = r(2), where r(j) = e02
�
�(j)

��1
(e�

(j)� � I) � e01 are the restrictions that
UIP implies on this model.

Since equation (45) exactly identi�es �(2), the above quadratic form will take the value of zero at the
optimum for any choice of the weighting matrixW for T su¢ ciently large. Still, to improve the covergence
properties of our numerical optimisation algorithm, we use the estimated values of �(1) as starting values,
and chooseW to be the Newey-West estimate of the long-run covariance matrix of the moment conditions

s
(2)
t (�) evaluated at �̂

(1)
.
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3.3 Monte Carlo simulations of speci�cation tests

3.3.1 Design

In this section, we investigate the performance of the speci�cation test discussed above

by means of two additional Monte Carlo studies. In order to assess its �nite-sample size

properties, we generate 10,000 simulations of 30 years of weekly data (T = 1; 560) from

the continuous-time model (20) in example 2, where once again we �x the contract period

to be equal to � = 52. Similar to what we did in Section 2.4, we add unconditional means

to yt = [pt;� ;�st]
0, so that the model we simulate is:� ept;�

�~st

�
=

�
�p
��s

�
+

�
1 0
0 1

��
pt;�
�st

�
;�

pt;�
�st

�
=

�
e'11 0

'21
'11
(e'11 � 1) 0

��
pt�1;�
�st�1

�
+

 
�
(1)
1t

�
(1)
2t

!
;

where '11 = �:025; '21 = '11= (e

11� � 1) ; 
11 = :3; 
21 = �:1; 
22 = 1:5; �p = 2 and

��s = 0. Importantly, note that we maintain the UIP restriction (21).

Since we compare the value of � that we obtain using the weekly sample, �(1), with

the one that we would obtain had we sampled the data every two weeks, �(2), and these

are functions of only '11 and '21, we exclude the scores corresponding to the remaining

parameters at the lowest frequency (h = 2).16

The comparison between these estimators creates an overlapping problem that intro-

duces an MA(1) structure in the error term, which is nevertheless much simpler than

the MA(51) structure in section 2.4. For that reason, we consider again the Newey-West

(1987) approach (NW) with the optimal data-driven bandwidth selection rule in Andrews

(1991), the Eichenbaum, Hansen and Singleton (1988) approach (EHS), as well as the

Den Haan and Levin (1996)�s VARHAC approaches with VAR order selected using either

the Akaike Information Criteria (VARHAC-AIC) or the Bayesian Information Criteria

(VARHAC-BIC). In this sense, the only change with respect to section 2.4 is that in the

EHS approach we explicitly impose that the (pseudo) scores of the model at the highest

frequency are serially uncorrelated.17

16In addition, by focusing on the scores corresponding to '11 and '21, we are also able to avoid some
singularities of the long-run covariance matrix of the scores, S =

P1
j=�1E [st( )st�j( )

0]. Speci�cally,
the in�uence functions of the moment conditions that de�ne �(2) are a dynamic linear combination of
the in�uence functions de�ning �̂(1). Similarly, under certain conditions, the in�uence functions of �(2)

are also a dynamic linear combination of in�uence functions at the highest frequency. Further details on
this issue are available upon request.
17Yet, we should bear in mind that such an assumption will only be valid under a correct speci�cation

of both the conditional mean and conditional variance of the process.
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Figure 3 summarises the �nite sample size properties of our proposed speci�cation test

for each of the HAC covariance estimation methods. As can be seen, all four approaches to

computing the covariance matrix of the estimates tend to under-reject the null hypothesis

of correct speci�cation, the VARHAC-AIC method being the one that under-rejects the

least.

We also generate another 10,000 simulations of 30 years of weekly data from the

continuous-time model (17) to assess the �nite-sample power of the speci�cation test

that takes as its null hypothesis that the correct model is given by (20). Speci�cally, we

simulate again from the model in equations (30) and (31) for � = 52, except that this

time we choose d2 = �1:00 because all four versions of our speci�cation test reject with
probability 1 when d2 = �7:5. Once again, we maintain the UIP restrictions in (21).
Figure 4 summarises the �nite sample power properties of each of the HAC covariance

estimation methods. The �rst thing to note is that our speci�cation test has non-trivial

power against dynamic misspeci�cation of the continuous-time process. We can also see

that the NW approach has the highest power, followed by the ones based on the EHS

approach, the VARHAC-BIC approach and �nally the VARHAC-AIC one.

4 Can we rescue UIP?

In this section, we apply our continuous-time approach to test the UIP hypothesis on

the U.S. dollar bilateral exchange rates against the British pound, the German DM-Euro

and the Canadian dollar. We use two di¤erent data sets for each country. We use the

appropriate Eurocurrency interest rates at maturities of one, three, six months, and one

year at a weekly frequency over the period January 1977 to December 2005. This allows

us to focus on the traditional UIP at short horizons. We also follow Chinn and Meredith

(2004) and Bekaert et al. (2007) and study UIP at long horizons. To this end, we use

zero-coupon bond yields at maturities one, two and �ve years at the weekly frequency over

the period June 1992 to December 2005. Data on exchange and Eurocurrency interest

rates are from Datastream while data on zero-coupon bond yields have been obtained

from the corresponding central banks (with the exception of the German data which was

obtained from the Bank of England). Finally, note that our choice of sample and countries

is restricted by data availability.18

18Although our data set does not incorporate either the transactions costs inherent in bid-ask spreads or
the delivery structure of the market, Bekaert and Hodrick (1993) show that these factors have a negligible
e¤ect on the empirical results.
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4.1 UIP at short horizons

Panel a of Table 1 reports the estimated coe¢ cients of the continuous-time model (20)

in Example 2, as well as the estimate of the implied beta and the Gaussian log-likelihood

of the sample, lnL(�). This reveals several interesting facts. First, the estimated '11
is close to zero, which con�rms that the forward premium is rather persistent (see e.g.

Baillie and Bollerslev, 2000, and Maynard and Phillips, 2001). For example, the monthly

autocorrelation coe¢ cient of the one-month forward premium is approximately :95 for

the U.K., :97 for Germany, and :90 for Canada. Second, the forward premium is much

less volatile than the rate of depreciation, which is consistent with previous studies (e.g.

Bekaert and Hodrick, 2001). Third, the correlation between the innovation to the forward

premium and the innovation to the rate of depreciation is negative for the U.K. and

Germany, and positive for Canada. Finally, the implied beta is always negative and

signi�cantly di¤erent from one. Therefore, UIP is rejected for all currency pairs and

maturities.

As argued before, however, it is important to check the validity of the continuous time

model that we estimate. For that reason, in Panel a of Table 2 we report the results of

our proposed speci�cation test applied to the estimates of � that we obtain using weekly

data with the one that we would obtain had we sampled the data every two weeks. Notice

that the di¤erence �̂
(1) � �̂(2) tends to be small and, in fact, is only signi�cantly di¤erent

from zero for the one-, and three-month Canadian dollar contracts.

For this reason, Table 3 reports the estimated coe¢ cients of the more �exible con-

tinuous time model (17) for the cases in which model (20) is rejected. Still, the forward

premium continues to be very persistent and less volatile than the rate of depreciation,

and the implicit beta remains negative and signi�cantly di¤erent from one. This time,

though, we cannot reject the dynamic speci�cation of model (17). In particular, the p-

values of the speci�cation test lie between :65 (AIC) and :99 (EHS), and :45 (AIC) and

:86 (EHS) for the one-, and three-month Canadian dollar contracts, respectively.

Therefore, we are unable to rescue the UIP hypothesis at short-horizons even though

we appropriately account for temporal aggregation.

Finally, we also implement the traditional UIP tests described in Section 2.4. Specif-

ically, we compute OLS-based UIP tests for both non-overlapping and overlapping data,

in which case the standard errors are obtained using the Newey-West (1987) with the

optimal data-driven bandwidth selection rule in Andrews (1991), Eichenbaum, Hansen

and Singleton (1988), and Den Haan and Levin (1996)�s VARHAC approaches with VAR

30



order selection computed using either the Akaike Information Criteria (VARHAC-AIC)

or the Bayesian Information Criteria (VARHAC-BIC). Similarly, we also compute VAR-

based tests for lags p = 1 and 4. Not surprisingly, the results reported in Panel a of Table

4 indicate that the estimate of the slope coe¢ cient � is negative. As expected from the

Monte Carlo experiment reported in Section 2.4, the results of the OLS-based UIP tests

with overlapping observations are somewhat sensitive to the covariance matrix estimator

employed (see also Ligeralde, 1997). For example, if we use the EHS or VARHAC-BIC

methods to test UIP at the one-year horizon with U.K. data, we �nd that we cannot

reject that H0 : � = 1; and the same is true if we use non-overlapping observations.

Similar results are obtained if we use the VARHAC-BIC approach to test the UIP hy-

pothesis with German data at the three-month horizon, or at the one-year horizon with

the EHS, VARHAC-AIC or VARHAC-BIC approaches. In contrast, tests based on the

NW covariance estimator always reject UIP, and the same is true of VAR-based tests.

4.2 UIP at long horizons

Chinn and Meredith (2004) argue that, in contrast to studies which have used short-

horizon data (up to one year), it is not possible to reject the UIP hypothesis once one

uses interest rates on longer-maturity bonds. Using OLS-based tests with quarterly data,

they �nd that the coe¢ cient on the interest rate di¤erential is positive and close to the

UIP value of unity. However, Bekaert et al. (2007) argue that it is unlikely that short-

term deviations from the UIP and long-term deviations from the expectations hypothesis

of the term structure would exactly o¤set each other so as to make UIP hold at long

horizons. Using a VAR approach and monthly data, Bekaert et al (2007) �nd that the

UIP hypothesis tends to be rejected at both short and long-horizons.

We try to shed some light on this empirical debate by re-examining long-horizon UIP

using our continuous-time approach. To do so, we focus on zero-coupon bond yields at

maturities one, two and �ve years at the weekly frequency over the period June 1992 to

December 2005.19 Note that our methodology is especially useful to handle the large de-

gree of overlap (relative to the sample size) that characterizes long-horizon UIP hypothesis

tests. As a result, we can use weekly data in contrast to Chinn and Meredith (2004), who

use quarterly data presumably to avoid an excessive degree of overlap in their regression

tests. Therefore, we expect to achieve power gains over their approach. Moreover, our

19When we explicitly compared the results obtained with one-year zero-coupon bond yields with those
obtained using one-year Eurocurrency interest rates over the common sample period, we found that the
results were qualitatively and quantitatively similar.
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test should be free from the potential temporal aggregation biases that might a¤ect the

VAR approach in Bekaert et al. (2007).

Panel b of Table 1 reports the estimated coe¢ cients of the continuous-time model (17)

in Example 2. Notice again that the estimated '11 is close to zero, and that the forward

premium is much less volatile than the rate of depreciation. Both results are consistent

with those reported in the previous subsection. We also �nd that the implied betas for

the U.K. at the one and two-year horizons are negative, while the implied beta at the �ve-

year horizon is positive. However, these betas are imprecisely estimated, which implies

that we cannot reject that they are di¤erent from one. When we look at Germany, we

�nd that the estimated betas are negative for all forecast horizons. However, we can only

reject that the one and two-year betas are di¤erent from one. The implied beta at the

�ve-year horizon is again very imprecisely estimated so we cannot reject that it is equal

to one despite being very negative. Finally, the implied betas for Canada are all negative

and statistically di¤erent from one.

Once again, we check the validity of the continuous-time model that we estimate by

comparing the estimates of � that we obtain using weekly data with the ones that we

would have obtained had we sampled the data every two weeks. As reported in Panel b of

Table 2, we do not �nd that the di¤erence between the estimators is signi�cantly di¤erent

from zero for any of the countries and maturities under consideration.

Given that the number of non-overlapping periods is only 14 for � = 52, 7 for � = 104,

and 3(!) for � = 260, we only compute UIP tests with overlapping data in which the

standard errors are obtained using the NW, and VARHAC approaches with VAR order

selection computed using either the Akaike Information Criteria (VARHAC-AIC) or the

Bayesian Information Criteria (VARHAC-BIC).20 Last, we compute VAR-based tests for

lags p = 1 and 4. We report these results in Panel b of Table 4. As in the case of short-

horizon UIP, we �nd that the results of the OLS-based UIP tests are somewhat sensitive

to the covariance matrix estimator employed. More interesting, the OLS estimate of � at

the �ve-year horizon is positive and larger than one for all countries under consideration,

which is consistent with the results in Chinn and Meredith (2007). However, once we

test the UIP using a discrete-time VAR approach, we �nd that the UIP slope is negative,

except for the U.K.

Overall, our results are closer to those in Bekaert et al. (2007) in that we �nd little

evidence in favour of UIP at long horizons in our weekly data set. This is in contrast to

20When � = 104 or 260 weeks, the large degree of overlap makes impossible to compute Eichenbaum,
Hansen and Singleton (1988) standard errors.

32



Chinn and Meredith (2004), who cannot reject the validity of the UIP hypothesis at long

horizons on the basis of quarterly data.

5 Final Remarks

In this paper we focus on the impact of temporal aggregation on the statistical prop-

erties of traditional tests of UIP, where by temporal aggregation we mean the fact that

exchange rates evolve on a much �ner time-scale than the frequency of observations typ-

ically employed by empirical researchers. While in many areas of economics collecting

data is very expensive, nowadays the sampling frequency of exchange rates and interest

rates is to a large extent chosen by the researcher.

Two main problems arise when we consider the impact of the choice of sampling fre-

quency on traditional UIP tests. In the regression approach, if the period of the forward

contract is longer than the sampling interval, the resulting overlapping observations will

produce serially correlated regression errors. This fact in turn leads to unreliable �nite

sample inferences to the extent that, if the degree of overlap becomes non-trivial relative

to the sample size, standard GMM asymptotic theory no longer applies. In the VAR

approach, in contrast, the problem is that if high frequency observations of the forward

premia and the rate of depreciation satisfy a VAR model, then low frequency observa-

tions of the same variables will typically satisfy a more complex VARMA model. But

since UIP tests in a multivariate framework are joint tests of the UIP hypothesis and

the speci�cation of the joint stochastic process for forward premia and exchange rates,

dynamic misspeci�cations will often result in misleading UIP tests.

Motivated by these two problems, we assume that there is an underlying joint process

for exchange rates and interest rate di¤erentials that evolves in continuous time. We then

estimate the parameters of the underlying continuous process on the basis of discretely

sampled data, and test the implied UIP restrictions. Our approach has the advantage

that we can accommodate situations with a large ratio of observations per contract period,

with the corresponding gains in terms of asymptotic power. At the same time, though,

the model that we estimate is the same irrespective of the sampling frequency. Our Monte

Carlo results suggest that: (i) in situations where traditional tests of the UIP hypothesis

have size distortions, a test based on our continuous-time approach has the right size,

and (ii) in situations where existing tests have the right size, our proposed test is more

powerful.

However, if the joint autocorrelation structure implied by our continuous-time model
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is not valid, then our proposed UIP test may also become misleading. For this reason, we

introduce a speci�cation test that exploits the fact that the structure of a continuous-time

model is the same regardless of the discretization frequency. Speci�cally, we estimate the

model using the whole sample �rst, then using lower frequency observations only, and

decide if those two estimators are �statistically close�.

Finally, we apply our continuous-time approach to test UIP at both short and long-

horizons on the U.S. dollar bilateral exchange rates against the British pound, the German

DM-Euro and the Canadian dollar using weekly data. We use Eurocurrency interest

rates of maturities one, three, six-months and one-year to test UIP at short horizons,

while we use zero-coupon bond yields of maturities one, two and �ve years to test it

at long horizons. Note that our methodology is especially useful to handle the large

degree of overlap (relative to the sample size) that characterizes the UIP hypothesis at

long horizons. While Chinn and Meredith (2004) use quarterly data in their regression

tests, we use weekly data. Importantly, we also use our proposed speci�cation test to

check the validity of the continuous-time processes that we estimate. In this sense, the

empirical results obtained with our speci�cation test do not suggest a clear pattern for

the relationship between contract length and model speci�cation.

The results that we obtain with correctly speci�ed models continue to reject the UIP

hypothesis at short-horizons even after taking care of temporal aggregation problems.

Our �ndings also indicate little support for the UIP at long-horizons. This is in contrast

to Chinn and Meredith (2004), who cannot reject the validity of the UIP hypothesis at

long-horizons on the basis of quarterly data.

Our Monte Carlo experiments have also con�rmed that the UIP regression tests are

sensitive to the covariance matrix estimator employed, and that although some auto-

matic lag selection procedures provide more reliable inferences, they are far from perfect.

Thus, there is still scope for improvement in this respect. In particular, a fruitful avenue

for further research would be to consider bootstrap procedures to reduce size-distortions.

However, given that the regressor is not strictly exogenous, a feasible bootstrap procedure

may require an auxiliary ad-hoc speci�cation of the data generating process, which would

be subject to the same criticisms as the discrete-time VAR approach. In contrast, a para-

metric bootstrap procedure would be a rather natural choice for our dynamic speci�cation

test.

One open question is whether a well-speci�ed continuous-time model such as ours is

more apt to handle the persistence of the forward premium than the standard regression-
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based approach, as our Monte Carlo results seem to suggest. Again, we leave this issue

for further research.

Another area that deserves further investigation is the development of alternative

continuous time models for exchange rates and interest rate di¤erentials that can account

for the rejections of the UIP hypothesis that our empirical results have con�rmed. Some

progress along these lines can be found, for example, in Diez de los Rios (2009) who

proposes a two-country model to explain exchange rates and the term structure of forward

premia with two factors.

Similarly, our continuous-time approach can also be used to derive new tests involving

long-horizon regressions, such as tests for the validity of the expectation hypothesis of

the term structure of interest rates or the long-horizon predictability of excess stock

returns or exchange rates. For example, if we were interested in testing the hypothesis of

no-predictability of exchange rates, we could do so by replacing (12) by the alternative

condition:

e02A
�1(eA� � I) = 0:

Finally, it is worth mentioning that our speci�cation test can also be applied to check

the dynamic speci�cation of discrete time models such as (34), which have clear impli-

cations for the behaviour of exchange rates and interest rate di¤erentials observed at

lower frequencies. In fact, our test can in principle be applied to any continuous-time or

discrete-time process. This constitutes another interesting avenue for further research.
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Appendix

A Discrete-time VARMA(2,1) representation of the
continuous-time model in Example 1

In this appendix we derive an alternative discrete-time representation of the continuous-
time model in example 1 by eliminating the unobservable variable u2(t) from the system
by substitution (as in Bergstrom and Chambers, 1990). As noted in the main text of the
paper, we can express the model in equation (17) as the following augmented OU model:

d

�
u(t)
s(t)

�
=

�
� 0
e02 0

��
u(t)
s(t)

�
dt+

�
�1=2 0
�0 0

��
�u(dt)
�s(dt)

�
; (48)

d�(t) = B�(t)dt+ S1=2�(dt);

which generates discrete time observations that satisfy the following VAR(1) model:

�t = F�t�1 + �t; (49)

where F = exp(B); the error term satis�es E [�t] = 0; E [�t�
0
t] = 
 =

R 1
0
eBrSeB

0rdr, and
E
�
�t�

0
t�s
�
= 0 for s � 1; and where, without loss of generality, we have set h = 1 and

dropped superscripts (with respect to the notation used in the main text) for clarity of
exposition.
In particular, note that both the structure of B in (48), and the discrete-time VAR(1)

representation in (49) imply that:

pt;� = f11pt�1 + f12u2t�1 + �1t; (50)

u2t = f21pt�1 + f22u2t�1 + �2t; (51)

�st = f31pt�1 + f32u2t�1 + �3t; (52)

with where fij is the ij-th element of F:
Lagging (52) and solving for u2t�2; we obtain:

u2t�2 =
1

f32
�st�1 �

f31
f32

pt�2;� �
1

f32
�3t�1: (53)

Finally, substituting lagged (51) and (53) into (50) and (52), we obtain the following
VARMA(2,1) system for yt = (pt;� ;�st)

0:

yt = �1yt�1 +�2yt�2 + "t +�1"t�1;

where

�1 =

�
f11 f12f22f

�1
32

f31 f22

�
; �2 =

�
f12f21 � f12f22f31f

�1
32 0

f32f21 � f22f31 0

�
;
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and the error term "t satis�es E ["t] = 0; E ["t"0t] = �, and E
�
"t"

0
t�s
�
= 0 for s � 1; and

where � and �1 satisfy the equations:

�+�1��
0
1 = C0
C

0
0 +C1
C

0
1;

�1� = C1
C
0
0;

with

C0 =

�
1 0 0
0 0 1

�
; C1 =

�
0 f12 �f12f22f�132
0 f32 �f22

�
:

B Initial values for the optimization algorithm

Example 1. We obtain initial values for the scoring algorithm by exploiting the Euler
discretization of the model in equation (17), which is given by:0@ pt;�

u2t
�st

1A =

0@ 1 + �11 �12 0
�21 1 + �22 0
0 1 0

1A0@ pt�1;�
u2t�1
�st�1

1A+
0@ �euler1t

�euler2t

�euler3t

1A :

We proceed as follows:

1. We �rst compute the sample average of the forward premium and the rate of de-
preciation to estimate �p and ��s.

2. Then, we estimate the VAR(p) model

yt = A1yt�1 +A2yt�2 + : : :Apyt�p + et;

for yt = (pt;� ;�st)
0 where pt;� and �st are the demeaned forward premium and rate

of depreciation, respectively.

3. Given that Et�1�st is exactly equal to u2t in this discretization scheme, we use the
VAR coe¢ cient estimators to construct estimates û2t of the conditional mean of �st
using the fact that

Et�1�st = e
0
2 (A1yt�1 +A2yt�2 + : : :Apyt�p) :

As a by-product, we also obtain ê2t as an estimate of �euler3t .

4. Next, we estimate the VAR(1) model but = Fbut�1 + vt for ût = (pt;� ; û2t)
0. From

here, we can obtain an estimate of � as �̂ = F̂� I. In addition, we also obtain bvt
as an estimate of (�euler1t ; �euler2t )0:

5. Finally, we obtain estimates of �1=2 and � in the following way. We �rst estimate

, which is the covariance matrix of (�euler1t ; �euler3t ), with the sample covariance ofbzt = (b�euler1t ;b�euler3t )0. Next, we use bl11; bl21 and bl22 as estimates of �11; �1 and �2,
respectively, where LL0 is the Cholesky decomposition of 
. Finally, we estimate
�21 and �22 as the coe¢ cients in the regression of b�euler2t on bz�t , where z�t = L�1zt.
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Example 2. To obtain initial values for the scoring algorithm, we exploit the fact
that the discrete-time representation in equation (20) is a VAR(1) model with coe¢ cient
restrictions. We proceed as follows:

1. We �rst compute the sample average of the forward premium and the rate of de-
preciation to estimate �p and ��s.

2. Then, we estimate the VAR(1) model

yt = Ayt�1 + et E [ete
0
t] = 
:

for yt = (pt;� ;�st)
0 where pt;� and �st are the demeaned forward premium and rate

of depreciation, respectively; and subject to the restrictions that a21 = a22 = 0.

3. Finally, we recover the structural parameters in� and � from the restricted reduced
form parameters in the VAR(1) using the fact that:

'11 = log(a11);

'21 =
a21'11
e'11 � 1 ;

g11 =
2'11!11
e2'11 � 1 ;

g21 =
'11

e'11 � 1

�
!21 �

p
g11'21
2'211

(e'11 � 1)2
�
;

g22 = !22 �
p
g11'

2
21

2'311

�
2'11 + e2'11 � 4e'11 + 3

�
�
2
p
g11'21
'311

(e'11 � '11 � 1) ;

where !ij is the ijth element of 
 and gij is the ijth element of �:
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Table 1
Estimates of the Continuous-Time Model in Example 2

Panel a: Uncovered Interest Parity at Short Horizons
Contract '11 '21 
11 
21 
22 �p ��s � lnL(�)
U.K.
� = 4 weeks -0.015 -0.537 0.041 -0.110 1.367 -0.192 0.014 -2.084 76.11

(0.010) (0.199) (0.002) (0.038) (0.042) (0.086) (0.061) (0.780)
� = 13 weeks -0.010 -0.206 0.095 -0.049 1.371 -0.582 0.019 -2.519 -1203.59

(0.008) (0.070) (0.004) (0.041) (0.042) (0.336) (0.079) (0.886)
� = 26 weeks -0.009 -0.112 0.170 -0.054 1.370 -1.082 0.020 -2.605 -2087.63

(0.007) (0.037) (0.006) (0.054) (0.041) (0.648) (0.083) (0.934)
� = 52 weeks -0.008 -0.063 0.297 -0.094 1.368 -1.960 0.021 -2.652 -2924.44

(0.007) (0.021) (0.011) (0.056) (0.041) (1.236) (0.089) (1.063)
Germany
� = 4 weeks -0.008 -0.222 0.032 -0.168 1.466 0.130 0.025 -0.873 326.32

(0.005) (0.175) (0.002) (0.053) (0.033) (0.085) (0.044) (0.688)
� = 13 weeks -0.006 -0.075 0.075 -0.175 1.466 0.384 0.026 -0.934 -955.95

(0.004) (0.060) (0.004) (0.051) (0.033) (0.276) (0.045) (0.760)
� = 26 weeks -0.005 -0.039 0.141 -0.154 1.468 0.783 0.026 -0.957 -1903.93

(0.003) (0.031) (0.008) (0.048) (0.033) (0.536) (0.045) (0.766)
� = 52 weeks -0.005 -0.022 0.239 -0.184 1.465 1.595 0.026 -1.004 -2701.73

(0.002) (0.017) (0.013) (0.049) (0.032) (0.994) (0.046) (0.800)
Canada
� = 4 weeks -0.026 -0.362 0.032 0.048 0.724 -0.065 -0.010 -1.375 1401.08

(0.009) (0.139) (0.002) (0.022) (0.019) (0.031) (0.021) (0.529)
� = 13 weeks -0.018 -0.128 0.076 0.075 0.722 -0.197 -0.010 -1.480 112.22

(0.006) (0.047) (0.004) (0.025) (0.019) (0.107) (0.022) (0.547)
� = 26 weeks -0.015 -0.065 0.131 0.090 0.721 -0.375 -0.010 -1.384 -708.88

(0.005) (0.024) (0.005) (0.022) (0.019) (0.216) (0.022) (0.531)
� = 52 weeks -0.014 -0.037 0.221 0.087 0.721 -0.701 -0.011 -1.349 -1502.97

(0.004) (0.013) (0.008) (0.021) (0.019) (0.395) (0.022) (0.502)

Note: Robust standard errors in parenthesis. Sample Period: January 1977 to December 2005;
1,513 weekly observations.



Table 1
Estimates of the Continuous-Time Model in Example 2

Panel b: Uncovered Interest Parity at Long Horizons
Contract '11 '21 
11 
21 
22 �p ��s � lnL(�)
U.K.
� = 52 weeks -0.003 -0.003 0.132 -0.437 1.152 -1.667 0.018 -0.132 -645.90

(0.005) (0.064) (0.009) (0.101) (0.043) (1.870) (0.063) (3.092)
� = 104 weeks -0.008 -0.002 0.341 -0.331 1.187 -3.037 0.006 -0.176 -1338.65

(0.009) (0.036) (0.021) (0.081) (0.052) (2.046) (0.054) (2.548)
� = 260 weeks -0.012 0.005 0.510 -0.373 1.175 -3.404 0.001 0.437 -1614.91

(0.008) (0.023) (0.021) (0.074) (0.053) (1.722) (0.046) (1.793)
Germany
� = 52 weeks -0.001 -0.053 0.129 -0.191 1.391 -0.820 0.065 -2.686 -767.65

(0.001) (0.035) (0.007) (0.066) (0.042) (2.900) (0.177) (1.770)
� = 104 weeks -0.003 -0.035 0.326 -0.143 1.395 -1.033 0.045 -3.137 -1424.13

(0.004) (0.020) (0.019) (0.056) (0.042) (4.357) (0.173) (1.985)
� = 260 weeks -0.007 -0.033 0.479 -0.203 1.387 1.104 0.019 -3.893 -1690.00

(0.006) (0.018) (0.016) (0.063) (0.042) (2.871) (0.117) (3.382)
Canada
� = 52 weeks -0.009 -0.039 0.151 0.183 0.826 -0.427 0.000 -1.623 -504.97

(0.006) (0.025) (0.012) (0.032) (0.027) (0.622) (0.036) (1.029)
� = 104 weeks -0.013 -0.019 0.357 0.087 0.842 -1.430 0.002 -1.073 -1126.63

(0.007) (0.014) (0.021) (0.033) (0.027) (0.990) (0.035) (0.799)
� = 260 weeks -0.010 -0.014 0.425 0.148 0.833 -1.798 -0.001 -1.216 -1242.49

(0.006) (0.010) (0.017) (0.038) (0.027) (1.321) (0.034) (0.990)

Note: Robust standard errors in parenthesis. Sample Period: June 1992 to December 2005;
692 weekly observations.



Table 2
Speci�cation Tests

Panel a: Uncovered Interest Parity at Short Horizons
�(1) � �(2) NW EHS AIC BIC

U.K.
� = 4 weeks 0.036 [0.836] [0.688] [0.497] [0.727]
� = 13 weeks 0.010 [0.955] [0.931] [0.946] [0.829]
� = 26 weeks -0.025 [0.882] [0.798] [0.478] [0.825]
� = 52 weeks -0.061 [0.782] [0.588] [0.275] [0.729]
Germany
� = 4 weeks 0.026 [0.840] [0.675] [0.548] [0.989]
� = 13 weeks 0.025 [0.853] [0.639] [0.453] [0.435]
� = 26 weeks 0.021 [0.873] [0.716] [0.406] [0.735]
� = 52 weeks 0.021 [0.878] [0.704] [0.335] [0.743]
Canada
� = 4 weeks -0.084 [0.526] [0.369] [0.044] [0.405]
� = 13 weeks -0.110 [0.382] [0.137] [0.011] [0.193]
� = 26 weeks -0.075 [0.500] [0.251] [0.173] [0.379]
� = 52 weeks -0.084 [0.397] [0.131] [0.241] [0.151]

Note: p-values of the null hypothesis H0 : �(1) � �(2) = 0 are presented in square
brackets. Sample Period: January 1977 to December 2005; 1,513 weekly observations.

Panel b: Uncovered Interest Parity at Long Horizons
�(1) � �(2) NW EHS AIC BIC

U.K.
� = 52 weeks -0.034 [0.933] [0.944] [0.675] [0.734]
� = 104 weeks 0.195 [0.642] [0.701] [0.176] [0.218]
� = 260 weeks -0.059 [0.825] [0.860] [0.481] [0.722]
Germany
� = 52 weeks -0.043 [0.886] [0.929] [0.490] [0.394]
� = 104 weeks 0.086 [0.802] [0.862] [0.640] [0.239]
� = 260 weeks -0.027 [0.939] [0.958] [0.773] [0.896]
Canada
� = 52 weeks 0.075 [0.890] [0.922] [0.617] [0.534]
� = 104 weeks 0.258 [0.549] [0.677] [0.133] [0.062]
� = 260 weeks 0.018 [0.967] [0.979] [0.970] [0.865]

Note: p-values of the null hypothesis H0 : �(1) � �(2) = 0 are presented in square
brackets. Sample Period: June 1992 to December 2005; 692 weekly observations.



Table 3
Estimates of the Continuous-Time Model in Example 1

Uncovered Interest Parity at Short Horizons
Contract �11 �21 �12 �22 �11 �21 �22 �1 �2 �p ��s � lnL(�)
Canada
� = 4 weeks -0.034 -0.029 -0.021 -0.289 0.032 -0.057 -0.031 0.064 0.736 -0.065 -0.009 -1.094 1407.84

(0.012) (0.063) (0.024) (0.211) (0.002) (0.027) (0.025) (0.025) (0.023) (0.029) (0.017) (0.465)
� = 13 weeks -0.024 -0.012 -0.050 -0.280 0.075 -0.059 -0.032 0.094 0.734 -0.198 -0.009 -0.837 120.74

(0.008) (0.019) (0.053) (0.176) (0.004) (0.025) (0.024) (0.027) (0.023) (0.099) (0.017) (0.497)

Note: Robust standard errors in parenthesis. Sample Period: January 1977 to December 2005; 1,513 weekly observations.



Table 4
Comparison of Uncovered Interest Parity Tests: Implicit Betas

Panel a: Uncovered Interest Parity at Short Horizons
NW EHS AIC BIC NO VAR(1) VAR(4) OU(2) OU(1)

U.K.
� = 4 weeks -2.071 -2.071 -2.071 -2.071 -2.435 -2.002 -2.107 -2.084

(0.917) (0.714) (0.965) (1.031) (0.915) (0.790) (0.836) (0.780)
[0.001] [0.000] [0.001] [0.003] [0.000] [0.000] [0.000] [0.000]

� = 13 weeks -2.155 -2.155 -2.155 -2.155 -1.859 -2.401 -2.172 -2.519
(1.064) (1.336) (0.962) (1.575) (1.028) (0.873) (0.934) (0.886)
[0.003] [0.018] [0.001] [0.045] [0.005] [0.000] [0.001] [0.000]

� = 26 weeks -2.051 -2.051 -2.051 -2.051 -2.047 -2.407 -2.042 -2.605
(1.127) (1.420) (1.229) (1.446) (1.228) (0.884) (0.938) (0.934)
[0.007] [0.032] [0.013] [0.035] [0.005] [0.001] [0.001] [0.000]

� = 52 weeks -1.507 -1.507 -1.507 -1.507 -1.587 -2.257 -1.989 -2.652
(1.090) (1.448) (0.937) (1.595) (1.809) (0.894) (0.919) (1.063)
[0.022] [0.083] [0.007] [0.116] [0.153] [0.000] [0.001] [0.001]

Germany
� = 4 weeks -0.828 -0.828 -0.828 -0.828 -0.873 -0.881 -0.835 -0.873

(0.665) (0.828) (0.698) (0.778) (0.861) (0.703) (0.736) (0.689)
[0.006] [0.027] [0.009] [0.019] [0.030] [0.008] [0.013] [0.007]

� = 13 weeks -0.785 -0.785 -0.785 -0.785 -0.658 -0.946 -0.699 -0.934
(0.671) (0.896) (0.626) (1.109) (0.897) (0.780) (0.827) (0.760)
[0.008] [0.046] [0.004] [0.108] [0.028] [0.013] [0.040] [0.011]

� = 26 weeks -0.911 -0.911 -0.911 -0.911 -0.900 -0.971 -0.697 -0.957
(0.710) (0.888) (0.873) (0.964) (0.865) (0.790) (0.835) (0.766)
[0.007] [0.031] [0.029] [0.047] [0.028] [0.013] [0.042] [0.011]

� = 52 weeks -0.756 -0.756 -0.756 -0.756 -0.488 -1.029 -0.823 -1.004
(0.702) (1.492) (0.942) (1.039) (0.787) (0.834) (0.880) (0.800)
[0.012] [0.239] [0.062] [0.091] [0.059] [0.015] [0.038] [0.012]

Canada
� = 4 weeks -1.081 -1.081 -1.081 -1.081 -1.358 -1.364 -1.119 -1.375 -1.094

(0.352) (0.416) (0.320) (0.323) (0.484) (0.499) (0.508) (0.529) (0.465)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

� = 13 weeks -0.842 -0.842 -0.842 -0.842 -0.683 -1.460 -0.940 -1.480 -0.837
(0.417) (0.402) (0.395) (0.489) (0.534) (0.514) (0.546) (0.547) (0.497)
[0.000] [0.000] [0.000] [0.000] [0.002] [0.000] [0.000] [0.000] [0.000]

� = 26 weeks -0.746 -0.746 -0.746 -0.746 -0.516 -1.358 -0.983 -1.384
(0.473) (0.474) (0.582) (0.490) (0.511) (0.496) (0.527) (0.531)
[0.000] [0.000] [0.003] [0.000] [0.003] [0.000] [0.000] [0.000]

� = 52 weeks -0.976 -0.976 -0.976 -0.976 -0.919 -1.317 -1.072 -1.349
(0.628) (1.004) (0.632) (0.615) (0.750) (0.463) (0.518) (0.502)
[0.000] [0.049] [0.002] [0.001] [0.011] [0.000] [0.000] [0.000]

Note: Robust standard errors in parenthesis. p-values for the null hypothesis H0 : � = 1
are provided in square brackets. Sample Period: January 1977 to December 2005; 1,513 weekly
observations.



Table 4
Comparison of Uncovered Interest Parity Tests: Implicit Betas

Panel b: Uncovered Interest Parity at Long Horizons
NW AIC BIC VAR(1) VAR(4) OU(2)

U.K.
� = 52 weeks 0.147 0.147 0.147 1.039 2.424 -0.132

(2.393) (1.451) (1.868) (2.695) (2.114) (3.092)
[0.722] [0.648] [0.788] [0.988] [0.501] [0.714]

� = 104 weeks -0.827 -0.827 -0.827 0.290 1.266 -0.176
(1.622) (1.219) (1.912) (1.850) (1.620) (2.548)
[0.260] [0.134] [0.339] [0.701] [0.870] [0.644]

� = 260 weeks 1.611 1.611 1.611 0.516 1.009 0.437
(0.564) (0.889) (0.584) (1.411) (0.773) (1.793)
[0.279] [0.492] [0.296] [0.731] [0.991] [0.754]

Germany
� = 52 weeks -2.375 -2.375 -2.375 -2.028 -1.701 -2.686

(1.877) (1.310) (3.004) (1.663) (1.785) (1.770)
[0.072] [0.010] [0.261] [0.069] [0.130] [0.037]

� = 104 weeks -3.066 -3.066 -3.066 -2.206 -1.898 -3.137
(1.233) (0.972) (1.594) (1.548) (1.797) (1.985)
[0.001] [0.000] [0.011] [0.038] [0.107] [0.037]

� = 260 weeks 1.566 1.566 1.566 -2.559 -1.505 -3.893
(1.165) (3.246) (3.057) (2.209) (1.926) (3.382)
[0.627] [0.862] [0.853] [0.107] [0.193] [0.148]

Canada
� = 52 weeks -1.703 -1.703 -1.703 -1.583 -1.385 -1.623

(1.570) (2.211) (1.888) (0.952) (0.987) (1.029)
[0.085] [0.222] [0.152] [0.007] [0.016] [0.011]

� = 104 weeks -1.672 -1.672 -1.672 -1.018 -1.293 -1.073
(1.382) (1.818) (1.696) (0.715) (0.946) (0.799)
[0.052] [0.142] [0.115] [0.005] [0.015] [0.009]

� = 260 weeks 1.733 1.733 1.733 -1.218 -1.137 -1.216
(1.075) (6.517) (6.517) (1.025) (0.971) (0.990)
[0.495] [0.910] [0.910] [0.030] [0.028] [0.025]

Note: Robust standard errors in parenthesis. p-values for the null hypothesis H0 : � = 1 are
provided in square brackets. Sample Period: June 1992 to December 2005; 692 weekly observations.
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Figure 1: P-value discrepancy plot for UIP test β =1
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Figure 2: Size-adjusted power for UIP test β =1
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Figure 3: P-value discrepancy plot for specification test β
(1)=β
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Figure 4: Size-adjusted power for specification test β
(1)=β
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