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1 Introduction

The superposition of Arima time series models forms the basis of two dominant approaches

to the classical decomposition of a univariate time series into trend, cyclical, seasonal and irreg-

ular components: the reduced form �model-based�decomposition analysed by Box, Hillmer and

Tiao (1978) and Pierce (1978) and further extended by Agustín Maravall and his co-authors,

and the so-called �structural time series�models studied by Nerlove (1967), Engle (1978) and

Nerlove, Grether and Carvalho (1979) and subsequently developed by Andrew Harvey and his

co-authors.

In both cases, the model parameters are estimated by maximising the Gaussian log-likelihood

function of the observed data, which can be readily obtained either as a by-product of the Kalman

�lter prediction equations or from Whittle�s (1962) frequency domain asymptotic approxima-

tion. Once the parameters have been estimated, �ltered values of the unobserved components

can be extracted by means of the Kalman smoother or its Wiener-Kolmogorov counterpart.

These estimation and �ltering issues are well understood (see Harvey (1989) and Durbin and

Koopman (2012) for textbook treatments), and the same can be said of their e¢ cient numerical

implementation (see Commandeur, Koopman and Ooms (2011) and the references therein).

In contrast, speci�cation tests for these models are far less known. While sophisticated users

will often look at several diagnostics, such as the ones suggested by Maravall (1987, 1999, 2003),

or the ones computed by the Stamp software package following Harvey and Koopman (1992)

(see Koopman, Harvey, Doornik and Shephard (2009) for further details), formal tests are hardly

ever reported in empirical work. One particularly relevant issue is the correct speci�cation of

the parametric Arima models for the unobserved components, as the various outputs of the

model could be misleading under misspeci�ed dynamics.

The objective of our paper is precisely to derive tests for neglected serial correlation in the

underlying elements of univariate unobserved components (Ucarima) models. For computa-

tional reasons, we focus most of our discussion on score tests, which only require estimation

of the model under the null. As is well known, though, in standard situations likelihood ratio

(LR), Wald and Lagrange multiplier (LM) tests are asymptotically equivalent under the null and

sequences of local alternatives, and therefore they share their optimality properties. Another

important advantage of score tests is that they often coincide with tests of easy to interpret mo-

ment conditions (see Newey (1985) and Tauchen (1985)), which will continue to have non-trivial

power even in situations for which they are not optimal.

Earlier work on speci�cation testing in unobserved component models include Engle and

Watson (1980), who explained how to apply the LM testing principle in the time domain for
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dynamic factor models with static factor loadings, Harvey (1989), who provides a detailed dis-

cussion of time domain and frequency domain testing methods in the context of univariate

�structural time series� models, and Fernández (1990), who applied the LM principle in the

frequency domain to a multivariate structural time series model. More recently, in a companion

paper (Fiorentini and Sentana (2013)) we have derived tests for neglected serial correlation in

the latent variables of dynamic factor models using frequency domain techniques.

In the speci�c context of Ucarima models, the contribution of this paper is threefold.

First, we propose dynamic speci�cation test which are very simple to implement, and even

simpler to interpret. Once an model has been speci�ed and estimated, the tests that we propose

can be routinely computed from simple statistics of the smoothed values of the innovations of the

di¤erent components. And even though our theoretical derivations make extensive use of spectral

methods for time series, we provide both time domain and frequency domain interpretations of

the relevant scores, so researchers who strongly prefer one method over the other could apply

them without abandoning their favourite estimation techniques.

Second, we provide a thorough discussion of some common situations in which the standard

form of LM tests cannot be computed because the information matrix of the alternative model

is singular under the null. In those irregular cases, we derive versions of the score tests that

remain asymptotically equivalent to the LR tests, which become one-sided, and explain how

to compute asymptotically reliable Wald tests. We also explicitly relate the incidence of those

problems to the identi�cation conditions forUcarimamodels, and highlight that they contradict

the widely held view that increases in the Ma and Ar polynomials of the same order provide

locally equivalent alternatives in univariate tests for serial correlation (see e.g. Godfrey (1988)).

Third, we compare dynamic speci�cation tests for the underlying components with tests

based on the reduced form prediction errors. In this regard, we study their relative power and

discuss some cases in which they are numerical equivalent.

The rest of the paper is organised as follows. In section 2, we review the properties of

Ucarima models, their estimators and �lters. Then, in section 3 we derive our tests and discuss

their potential pitfalls, comparing them to reduced form tests in section 4. This is followed by

a Monte Carlo evaluation of their �nite sample behaviour in section 5. Finally, our conclusions

can be found in section 6. Auxiliary results are gathered in appendices.

2 Theoretical background

As we have just mentioned, in this section we formally introduce Ucarima models, obtain

their reduced form representation, review maximum likelihood estimation in the frequency do-
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main, apply Wiener-Kolmogorov �ltering theory to optimally extract the unoberved components

and derive the time series properties of the smoothed series.

2.1 UCARIMA models

To keep the notation to a minimum throughout the paper we focus on models for a univariate

observed series, yt that can be de�ned in the time domain by the equations:

yt = �+ xt + ut; (1)

�x(L)xt = �x(L)ft; (2)

�u(L)ut = �u(L)vt; (3)0@ ft

vt

1A jIt�1;�;� � N

240@ 0

0

1A ;

0@ �2f 0

0 �2v

1A35 ; (4)

where xt is the �signal� component, ut the orthogonal �non-signal� component, �x(L) and

�u(L) are one-sided polynomials of orders px and pu, respectively, while �x(L) and �u(L) are

one-sided polynomials of orders qx and qu coprime with �x(L) and �u(L), respectively, It�1 is

an information set that contains the values of yt and xt up to, and including time t� 1, � is the

unconditional mean and � refers to all the remaining model parameters.

Importantly, we maintain the assumption that the researcher makes sure that the parameters

� are identi�ed before estimating the model under the null.1 Hotta (1989) provides a systematic

way to check for identi�cation (see Maravall (1979) for closely related results). Speci�cally, let c

denote the degree of the polynomial greatest common divisor of �x(L) and �u(L), so that they

share c common roots. Then, the Ucarima model above will be identi�ed (except at a set of

parameter values of measure 0) when there are no restrictions on the Ar and Ma polynomials

if and only if either px � qx + c + 1 or pu � qu + c + 1, so that at least one of the components

must be a �top-heavy�Arma process in the terminology of Burman (1980) (i.e. a process in

which the Ar order exceeds the Ma one).2 Given the exchangeability of signal and non-signal

components in the formulation above, in what follows we assume without loss of generality that

this identi�cation condition is satis�ed by the signal component. In particular, we assume that

px � qx + c+ 1 and px � qx � pu � qu, and that in case of equality, px � pu.

In this paper we are interested in hypothesis tests for px = p0x vs px = p0x + kx or pu = p0u

vs pu = p0u + ku, or the analogous hypotheses for qx and qui . For simplicity, we focus most of
1But see section 6 for a brief discussion of models that are underidenti�ed under the null but identi�ed under

the alternative.
2Although strictly speaking Proposition 2 in Hotta (1989) applies to stationary models, the emphasis on

common roots is particularly important in the presence of integrated components, in which case px and pu would
represent the total number of Ar roots, including those on the unit circle (see Harvey (1989) for further details).
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the discussion in those cases in which kx and ku are in fact 1, which leads to the following four

hypothesis of interest:

1. Sar1: Arma(px + 1; qx)+Arma(pu; qu)

2. Sma1: Arma(px; qx + 1)+Arma(pu; qu)

3. Nar1: Arma(px; qx)+Arma(pu + 1; qu)

4. Nma1: Arma(px; qx)+Arma(pu; qu + 1)

Given that they raise no additional issues, extensions to higher kx and ku are only brie�y

discussed in section 3.1 below, as well as in our concluding remarks.

2.2 Reduced form representation of the model

Unobserved component models can readily handle integrated variables, but for simplicity of

exposition in what follows we maintain the assumption that yt is a covariance stationary process,

possibly after suitable di¤erencing, as in appendix A.

Under stationarity, the spectral density of the observed variable is proportional to

gyy(�) = gxx(�) + guu(�);

gxx(�) = �2f
�x(e

�i�t)�x(e
i�t)

�x(e�i�t)�x(ei�t)
;

guu(�) = �2v
�u(e

�i�)�u(e
i�t)

�u(e�i�t)�u(ei�t)
:

Given that

gyy(�) =
�2f�x(e

�i�t)�x(e
i�t)�u(e

�i�t)�u(ei�t) + �2v�u(e
�i�)�u(e

i�t)�x(e
�i�t)�x(ei�t)

�x(e�i�t)�x(ei�t)�u(e�i�t)�u(ei�t)

= �2a
�y(e

�i�t)�y(e
i�t)

�y(e�i�t)�y(ei�t)
;

it follows that the reduced form model will be an Arma process with maximum orders py =

px + pu for the Ar polynomial �y(:) = �x(:)�u(:) and qy = max(px + qu; qx + pu) for the Ma

polynomial �y(:). Cancellation will trivially occur when �x(:) and �u(:) share c common roots,

but there could also be other cases (see Granger and Morris (1976) for further details). The

coe¢ cients of �y(L), as well as �
2
a, which is the variance of the univariate Wold innovations, at,

are obtained by matching autocovariances (see Fiorentini and Planas (1998) for a comparison

of numerical methods). Assuming strict invertibility of the Ma part, we could then obtain the

reduced form innovations at from the observed process by means of the one-sided �lter

�y(e
�i�t)=�y(e

�i�t):
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But as is well known, these reduced form residuals can also be obtained from the prediction

equations of the Kalman �lter without making use of the expressions for �y(:) or �y(:).

2.3 Maximum likelihood estimation in the frequency domain

Let

Iyy(�) =
1

2�T

TX
t=1

TX
s=1

(yt � �)(ys � �)e�i(t�s)� (5)

denote the periodogram of yt and �j = 2�j=T (j = 0; : : : T � 1) the usual Fourier frequencies.

If we assume that gyy(�) is not zero at any of those frequencies, the so-called Whittle (discrete)

spectral approximation to the log-likelihood function is3

�NT
2
ln(2�)� 1

2

T�1X
j=0

ln jgyy(�j)j �
1

2

T�1X
j=0

2�Iyy(�j)

gyy(�j)
: (6)

The MLE of �, which only enters through Iyy(�), is the sample mean, so in what follows we

focus on demeaned variables. In turn, the score with respect to all the remaining parameters is

s�(�) =
1

2

T�1X
j=0

@gyy(�j)

@�
M(�j)m(�j); (7)

m(�) = 2�Iyy(�)� gyy(�);

M(�) = g�2yy (�):

The information matrix is block diagonal between � and the elements of �, with the (1,1)-

element being gyy(0) and the (2,2)-block

Q =
1

4�

Z �

��

@gyy(�j)

@�
M(�)

�
@gyy(�j)

@�

��
d�; (8)

where � denotes the conjugate transpose of a matrix. A consistent estimator will be provided

either by the outer product of the score or by

�(�) =
1

2

T�1X
j=0

@gyy(�j)

@�
M(�j)

�
@gyy(�j)

@�

��
: (9)

In fact, by selecting an arti�cially large value for T in (9), one can approximate (8) to any

desired degree of accuracy.

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators of dynamic latent variable models under suitable regularity conditions were provided

by Dunsmuir (1979), who generalised earlier results forVarmamodels by Dunsmuir and Hannan

(1976). These authors also show the asymptotic equivalence between time and frequency domain

ML estimators.4

3There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).
4This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see

Choudhuri, Ghosal and Roy (2004)).
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2.4 The (Kalman-)Wiener-Kolmogorov �lter

By working in the frequency domain we can easily obtain smoothed estimators of the latent

variables too. Speci�cally, let

yt � � =

Z �

��
ei�tdZy(�);

V [dZy(�)] = gyy(�)d�

denote the spectral decomposition of the observed process. The Wiener-Kolmogorov two-sided

�lter for the signal xt at each frequency is given by

gxx(�)g
�1
yy (�)dZy(�):

Hence, the spectral density of the smoother xKtjT as T !15 will be

gxKxK (�) =
g2xx(�)

gyy(�)
=

gxx(�)

gxx(�) + guu(�)
gxx(�) = R2xx(�)gxx(�); (10)

while the spectral density of the �nal estimation error xt � xKtj1 will be given by

gxx(�)� gxKxK (�) = [1�R2xx(�)]gxx(�) = !xx(�): (11)

It is easily seen that gxKxK (�) will approach gxx(�) at those frequencies for which gxx(�) is large

relatively to guu(�), i.e. frequencies with a high signal to noise ratio. In this regard, we can

view R2xx(�) as a frequency-by-frequency coe¢ cient of determination.

Having smoothed yt to estimate xt, we can easily obtain the smoother for ft, fKtj1, by applying

to xKtj1 the one-sided �lter

�x(e
�i�)=�x(e

�i�): (12)

Likewise, we can derive its spectral density, as well as the spectral density of its �nal estimation

error ft � fKtj1.

Entirely analogous derivations apply to the non-signal component ut, with the peculiarity

that

xKtj1 + u
K
tj1 = yt

so that

R2xx(�) +R
2
uu(�) = 1 8�:

5The main di¤erence between the Wiener-Kolmogorov �ltered values, xKtj1, and the Kalman �lter smoothed
values, xKtjT , results from the dependence of the former on a double in�nite sequence of observations (but see
Levinson (1947)). As shown by Fiorentini (1995) and Gómez (1999), though, they can be made numerically
identical by replacing both pre- and post- sample observations by their least squares projections onto the linear
span of the sample observations.
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Finally, we can obtain the autocovariances of xKtj1, f
K
tj1, u

K
tj1, v

K
tj1 and their �nal estimation

errors by applying the usual inverse Fourier transformation


zz(k) = cov(zt; zt�k) =

Z �

��
ei�kgzz(�)d�:

2.5 Autocorrelation structure of the smoothed variables

As we have seen in the previous section, smoothed values of the latent variables are the result

of optimal symmetric two-sided �lters. As a consequence, their serial correlation structure is

generally di¤erent from that of the unobserved state variables. To see the di¤erence between

the spectra of the signal and its estimators, recall that (10) implies that gxKxK (�) < gxx(�) for

any � 2 (��; �) for which guu(�) > 0. Therefore, the variance of the optimal estimator will

underestimate the variance of the unobserved signal, as expected.

As argued by Maravall (1987, 1999, 2003), the serial dependence structure of the estimators

of the unobserved components can be a useful tool for model diagnostic. Large discrepancies be-

tween theoretical and empirical autocovariance functions of those estimators can be interpreted

as indication of model misspeci�cation. On this basis, Maravall (1987) suggested a (Gaussian)

parametric bootstrap procedure to obtain con�dence intervals for the empirical autocovariances

of a single smoothed innovation. Similarly, Maravall (2003) derived expressions for the asymp-

totic variance of the sampling variances and autocorrelations of the smoothed components using

classic results for linear stationary Gaussian processes (see e.g. Lomnicki and Zaremba (1959)

or Anderson and Walker (1964)). However, in both instances his main objective was to pro-

pose useful model diagnostics rather than deriving the null distribution of a formal statistical

test. As we shall see in section 3.2, our LM tests carry out the comparison between theoretical

and empirical autocovariance functions of the smoothed components in a very precise statistical

sense, taking into account both the sampling variability of the estimators of the parameters of

the null model and the potential rank failure of the information matrix of the alternative model.

In this regard, an important advantage of our frequency domain approach is that we implicitly

compute the required autocovariances without explicitly obtaining the time processes for the

unobserved components. Nevertheless, for pedagogical purposes it is of interest to understand

those processes.

Given (10), we can write the spectral density of xK as

gxKxK (�) =
�4f�

2
x(e

�i�)�2x(e
i�)�u(e

�i�t)�u(ei�t)

�2a�x(e
�i�)�x(ei�)�y(e

�i�)�y(e
i�)

;

which corresponds to an Arma(px+ qy; pu+2qx) process in the absence of cancellation. Hence,
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the spectral density of the �nal estimation error xt � xKtj1 in (11) will be

!xx(�) =
�2f�

2
v�x(e

�i�)�x(e
i�)�u(e

�i�t)�u(e
i�t)

�2a�y(e
�i�)�y(e

i�)
;

which shares the structure of an Arma(qy; qx + qu) under the same circumstances.

In turn, the application of (12) to xKtj1 implies that the spectral density of fKtj1 will be

gfKfK (�) =
�4f�x(e

�i�)�x(e
i�)�u(e

�i�t)�u(ei�t)

�2a�y(e
�i�)�y(e

i�)
;

which suggests an Arma(qy; pu + qx) process, while

!ff (�) = �2f � gfKfK (�) =
�2f�

2
v�u(e

�i�)�u(e
i�)�x(e

�i�t)�x(ei�t)

�2a�y(e
�i�)�y(e

i�)

points out instead to an Arma(qy; px + qu) for the �nal estimation error ft � fKtj1.

There are special cases, however, in which the resulting models for the smoothed values of

the unobserved variables and their innovations are much simpler. For example, if the signal

follows a purely autoregressive process and the non-signal component is white noise, so that

�x(L) = �u(L) = �u(L) = 1, then

gxKxK (�) =
�2f�

2
v

�2a�x(e
�i�)�x(ei�)�y(e

�i�)�y(e
i�)
;

!xx(�) =
�2f�

2
v

�2a�y(e
�i�)�y(e

i�)
;

gfKfK (�) =
�4f

�2a�y(e
�i�)�y(e

i�)
;

and

!ff (�) =
�2f�

2
v�x(e

�i�t)�x(ei�t)

�2a�y(e
�i�)�y(e

i�)
;

with py = qy = px.

Once again, entirely analogous derivations apply to the non-signal component uKtj1.

3 Neglected serial correlation tests

In this section we begin by reviewing tests for neglected serial correlation in observable

processes. Then, we derive the analogous tests for unobserved components, taking into account

that the model parameters must be estimated under the null. Next, we investigate the non-

standard situations that arise in Ucarima models which become underidenti�ed under some of

the alternatives that we consider. We conclude by providing a step-by-step procedure for the

bene�t of practitioners. For simplicity, we maintain the assumption that there are no common

roots in the autoregressive polynomials of the signal and non-signal components.
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3.1 Testing for serial correlation in univariate observable processes

For pedagogical purposes, let us initially assume that xt is an observable univariate time

series that has been modelled as an Ar(2) process. A natural generalisation is

(1�  xL)(1� �x1L� �x2L2)xt = ft;

so that the null becomes H0 :  x = 0.
6 Under the alternative, the spectral density of xt is

gxx(�j�2f ; �x1; �x2;  x) =
1

1 +  2x � 2 x cos�
� gxx(�j�2f ; �x1; �x2; 0);

where

gxx(�j�2f ; �x1; �x2; 0) =
�2f

1 + �2x1 + �
2
x2 � 2�x1(1� �x2) cos�� 2�x2 cos 2�

:

Hence, the derivative of gxx(�) with respect to  x under the null is

@gxx(�j�2f ; �x1; �x2; 0)
@ x

= 2 cos� � gxx(�j�2f ; �x1; �x2; 0): (13)

As a result, the spectral version of the score with respect to  x under H0 is

T�1X
j=0

cos�jg
�1
xx (�j)[2�Ixx(�j)� gxx(�j)] =

T�1X
j=0

cos�j [2�Iff (�j)];

where we have exploited the fact that

T�1X
j=0

@gxx(�j)

@ x
g�1xx (�j) =

T�1X
j=0

cos�j = 0: (14)

Given that

Iff (�j) = 
̂ff (0) + 2

T�1X
k=1


̂ff (k) cos(k�j);

the spectral version of the score becomes

T�1X
j=0

cos�j [2�Iff (�j)] = T [
̂ff (1) + 
̂ff (T � 1)]: (15)

In turn, the time domain version of the score will be

X
t

(xt � �x1xt�1 � �x2xt�2)(xt�1 � �x1xt�2 � �x2xt�3) =
X
t

ftft�1;

6This is a multiplicative alternative. Instead, we could test H0 : �x3 = 0 in the additive alternative

(1� �x1L� �x2L
2 � �x3L

3)xt = ft:

In that case, it would be more convenient to reparametrise the model in terms of partial autocorrelations (see
Barndor¤-Nielsen and Schou (1973)). We stick to multiplicative alternatives, which are closer related to Ma
alternatives.
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which is essentially identical because 
̂ff (T �1) = T�1fT f1 = op(1). Therefore, the spectral LM

test of Ar(2) versus Ar(3) is simply checking that the �rst sample (circulant) autocovariance of

ft, which are the innovations in the observed process, coincides with its theoretical value under

H0, exactly like the usual Breusch (1978) - Godfrey (1978a) serial correlation LM test in the

time domain (see also Breusch and Pagan (1980) or Godfrey (1988)).

Let us now consider the following alternative generalisation of an Ar(2)

(1� �x1L� �x2L2)xt = (1�  fL)ft:

In this case, the null is H0 :  f = 0. In turn, the spectral density of xt under this alternative is

(1 +  2f � 2 f cos�) � gxx(�j�2f ; �x1; �x2; 0);

whose derivative with respect to  f under the null is

@gxx(�)

@ f
= �2 cos� � gxx(�): (16)

Therefore, the spectral LM test of Ar(2) versus Arma(2,1) will be numerically identical to the

corresponding test of Ar(2) versus Ar(3), which con�rms that these two alternative hypotheses

are locally equivalent for observable time series (see e.g. Godfrey (1988)).

Generalisations to test Arma(p,q) vs Arma(p+k,q) for k>1 are straightforward, since they

only involve higher order (circulant) autocovariances of ft, as in Godfrey (1978b). Similarly, it is

easy to show that Arma(p+k,q) and Arma(p,q+k) multiplicative alternatives are also locally

equivalent.7 Finally, we could also consider (multiplicative) seasonal alternatives.

3.2 Testing for neglected serial correlation in the unobserved components

Let us now consider univariate unobserved components models, which are the objective of

our study. Initially, we assume that the the �top heavy�signal process is such that px � qx+2,

so that the model is identi�ed under each of the four alternatives stated in section 2.1 in view

of Hotta�s (1989) results, and postpone the discussion of the other cases to sections 3.4 and 3.5.

Let us start by considering neglected serial correlation in the signal. Under alternative Sar1

the model will be
yt = �+ xt + ut;

(1�  xL)�x(L)xt = �x(L)ft;

�u(L)ut = �u(L)vt;

9>>>=>>>; (17)

7 It would also be possible to develop tests of Arma(p,q) against Arma(p+k,q+k) along the lines of Andrews
and Ploberger (1996). We leave those tests, which will also depend on the di¤erences between sample and
population autocovariances of ft, for future research.
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so that the null hypothesis is H0 :  x = 0, as in section 3.1. Given

@gyy(�)

@ x
=
@gxx(�)

@ x
(18)

and (13), after some straighforward manipulations we can prove that the score of the spectral

log-likelihood for the observed series yt under the null will be given by

2
XT�1

j=0
cos�jgxx(�j)g

�2
yy (�j)[2�Iyy(�j)� gyy(�j)]:

= 2
XT�1

j=0
cos�jg

�1
xx (�j)[2�IxKxK (�j)� gxKxK (�j)]

= 2
XT�1

j=0
cos�j [2�IfKfK (�j)� gfKfK (�j)]:

Once more, the time domain counterpart to the spectral score with respect to  x is (asymp-

totically) proportional to the di¤erence between the �rst sample autocovariance of fKtj1 and its

theoretical counterpart under H0. Therefore, the only di¤erence with the observable case is that

the autocovariance of fKtj1, which is a forward �lter of the Wold innovations of yt, is no longer

0 when  x = 0, although it approaches 0 as the signal to noise ratio increases. In that case,

our proposed tests would converge to the usual Breusch-Godfrey LM tests for neglected serial

correlation discussed in section 3.1.8

Let us illustrate our test by means of a simple example. Imagine that xt follows an Ar(2)

process while ut is white noise. The results in section 2.5 imply that when  x = 0, fKtj1 will

follow an Ar(2) with an autoregressive polynomial �y(L) that satis�es the condition

�2a�y(L)�y(L
�1) = �2f + �x(L)�x(L

�1)�2v;

so that the smaller is �2v, the closer f
K
tj1 will be to white noise. In any case, the LM test of

H0 :  x = 0 will simply compare the �rst sample autocovariance of fKtj1 with its theoretical

value. As we mentioned before, the advantage of our frequency domain approach is that we

obtain those autocovariances without explicitly computing �2a, �y(L) or indeed f
K
tj1.

In turn, under alternative Sma1 the equation for the signal in (17) is replaced by

�x(L)xt = (1�  fL)�x(L)ft;

so that the null hypothesis becomes H0 :  f = 0. Then, it is straightforward to prove that this

test will numerically coincide with the test of H0 :  x = 0 in view of (18), (13) and (16).

8Given that �2f = gfKfK (�) + !ff (�) for all �, we can also write the score as 2
PT�1

j=0 cos�j [2�IfKfK (�j) +
!ff (�j)] in view of (14). Therefore, the score with respect to  x also has the interpretation of the expected value
of (15), which is score when xt is observed, conditional on the past, present and future values of yt (see Fiorentini,
Galesi and Sentana (2014) for further details).
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On the other hand, under alternative Nar1 the model will be

yt = �+ xt + ut;

�x(L)xt = �x(L)ft;

(1�  uL)�u(L)ut = �u(L)vt;

9>>>=>>>; ; (19)

while the equation for the non-signal component in (19) will be replaced by

�u(L)ut = (1�  vL)�u(L)vt

under alternative Nma1. The exchangeability of signal and non-signal implies that mutatis

mutandis exactly the same derivations apply to tests of neglected serial correlation in ut.

Finally, joint tests that simultaneously look for neglected serial correlation in the signal and

non-signal components can be easily obtained by combining the two scores involved.

3.3 Parameter uncertainty

So far we have implicitly assumed known model parameters. In practice, some of them will

have to be estimated under the null. Maximum likelihood estimation of the state space model

parameters can be done either in the time domain using the Kalman �lter or in the frequency

domain.

As we mentioned before, the sampling uncertainty surrounding the sample mean � is as-

ymptotically inconsequential because the information matrix is block diagonal. The sampling

uncertainty surrounding the other parameters, say #, is not necessarily so.

The solution is the standard one: replace the inverse of I  , which is the ( ; ) block of

the information matrix by the ( ; ) block of the inverse information matrix I  = (I  �

I #I�1##I# )�1 in the quadratic form that de�nes the LM test. As usual, this is equivalent

to orthogonalising the spectral log-likelihood scores corresponding to the parameters in  with

respect to the scores corresponding to the parameters # estimated under the null. In this regard,

the analytical expressions that we provide for the di¤erent derivatives involved can be combined

with (9) to obtain computationally e¢ cient expressions for the entire information matrix.

3.4 Potential pitfalls

As we mentioned in section 2.1, we maintain the innocuous assumption that px > qx, so

that the signal component is a �top-heavy�model. However, by increasing the order of the

Ma polynomial of the signal, as the Sma1 alternative hypothesis does, the extended Ucarima

model may become underidenti�ed despite the original null model being identi�ed. This will

happen when px = qx + 1 but pu < qu + 1, in which case the null model will be just identi�ed.

12



An important example would be:

yt = xt + ut

(1� �L)xt = (1�  fL)ft

9=; (20)

with ft and ut bivariate white noise orthogonal at all leads and lags. The null hypothesis of

interest is H0 :  f = 0, so that the model under the null is a univariate Ar(1) + white noise

process, while the signal under the alternative is an Arma(1,1) instead with moving average

coe¢ cient  f . In this context, it is possible to formally prove that

Proposition 1 The score with respect to  f of model (20) reparametrised in terms of 
yy(0),

yy(1), � and  f is 0 when � 6= 0 regardless of the value of  f .

Intuitively, the problem is that  f cannot be identi�ed because the reduced form model for

the observed series is an Arma(1,1) fully characterised by its variance, its �rst autocovariance

and � under both the null and the alternative. As a result, the original and extended log-

likelihood functions would be identical at their respective optima, which in turn implies that

the LR and LM tests will be trivially 0.9

A more di¢ cult to detect problem arises when the original model is identi�ed under the

null hypothesis and the extended model is identi�ed under the alternative but the information

matrix of the extended model is singular under the null. Following Sargan (1983), we shall refer

to this situation as a �rst-order underidenti�ed case because in e¤ect the additional parameter

is locally identi�ed but the usual rank condition for identi�cation breaks down.

Although this may seem as a curiosity, it turns out that this problem necessarily occurs with

the Sar1 alternative hypothesis whenever alternative Sma1 leads to an underidenti�ed model.

Let us study in more detail the Ar(1) plus white noise example discussed in the previous

paragraphs, for which (17) reduces to

yt = xt + ut

(1�  xL)(1� �L)xt = ft

9=; (21)

with ft and ut being bivariate white noise orthogonal at all leads and lags. The null hypothesis

of interest is H0 :  x = 0, so that the model under the null is still an Ar(1) plus white noise,

while the signal under the alternative follows an Ar(2) process. We can then show that10

Proposition 2 The information matrix of model (21) is singular under the null hypothesis
H0 :  x = 0.

9The only possible exception arises when the model is exactly on the boundary of the admissibility region
under the null but not under the alternative. However, such anomalies tend to be associated to uninteresting
cases. For example, in the Ar(1) plus noise model the null parameter con�guration will be at the boundary of
the admissible parameter space if and only if the non-signal component is identically 0 (see Harvey (1989) and
Fiorentini and Planas (2001) for other examples of admissibility restrictions on the model parameters).
10Harvey (1989) proved the same result in the special case of � = 1, which we discuss in detail in appendix A.
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As we saw in section 3.1, the intuition is that under the null the score of an additional Ar

root is the opposite of the score of an additional Ma root, but the latter is identically 0 at the

parameter values estimated for the original Ar(1) plus white noise model in view of Proposition

1. Therefore, a standard LM test is infeasible. In contrast, there is no linear combination of the

�rst three scores that is equal to 0 under H0 when � 6= 0, so we can consistently estimate �,

�2f and �
2
u if we impose the null hypothesis when it is indeed true. Likewise, there is no linear

combination of the four scores that is equal to 0 when the true values of � and  x are both

di¤erent from 0, so again we can consistently estimate �2f , �
2
u, � and  x in those circumstances,

unlike what happened with model (20). For those reasons, it seems intuitive to report instead

either a Wald test or a LR one. However, intuitions sometimes prove misleading.

It turns out that one has to be very careful in computing the signi�cance level for the LR

test and especially the Wald test because, as we will discuss below, the asymptotic distribution

of the ML estimator of  x will be highly unusual under the null. In contrast, there is a readily

available LM-type test along the lines of Lee and Chesher (1986). Speci�cally, these authors

propose to replace the usual score test by what they call an �extremum test�. Given that the

�rst-order conditions are identically 0, their suggestion is to study the restrictions that the null

imposes on higher order conditions. An equivalent procedure to deal with the singularity of

the information matrix is to choose a suitable reparametrisation. We follow this second route

because it will allow us to obtain asymptotically valid LR and Wald tests too.

Our approach is as follows. First, we replace �2f and �
2
u by 
yy(0) and 
yy(1), as in Propo-

sition 1. As the following result shows, this change con�nes the singularity to the last element

of the score.

Proposition 3 The  x x element of the information matrix of model (21) reparametrised in
terms of 
yy(0); 
yy(1); � and  x is zero under the null hypothesis H0 :  x = 0.

Second, we replace  x by either
p
' (positive root) or �p' (negative root) and retain the

value of ' and the sign of the transformation which leads to the largest likelihood function under

the alternative. Using the results of Rothitzky et al (2000), we can show that under the null

the asymptotic distribution of the ML estimator of ' will be that of a normal variable censored

from below at 0. In contrast, the asymptotic distribution of the corresponding estimator of  x

will be non-standard, with a faster rate of convergence, half of its density at 0 and the other half

equally divided between the positive and negative sides. In this context, the LR test of the null

hypothesis H0 : ' = 0 will be a 50:50 mixture of a �20, which is 0 with probability 1, and �
2
1. As

for the Wald test, the square t-ratio associated to the ML estimator of ' will share the same

asymptotic distribution. In contrast, Wald tests based on  x will have a rather non-standard
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distribution which will render the t-ratio usually reported for this coe¢ cient very misleading.

The following result explains how to conduct the score-type test

Proposition 4 The extremum test of the null hypothesis H0 :  x = 0 is based on the in�uence
function

2[cos(2�)� � cos(�)]
�
1� �2

�

yy(1)

� (1 + �2 � 2� cos�) g2yy(�j
yy(0); 
yy(1);�; 0)
�
Iyy(�)� gyy(�j
yy(0); 
yy(1);�; 0)

�
; (22)

where

gyy(�j
yy(0); 
yy(1);�; 0) = 
yy(0) +
2(cos�� �)

(1 + �2 � 2� cos�)
yy(1):

Given the scores for 
yy(0), 
yy(1) and � under the null, this means that the extremum test

is e¤ectively comparing the second sample autocovariance of fKtj1 with its theoretical value after

taking into account the estimated nature of those model parameters. Nevertheless, the test must

be one-sided because (i) ' � 0 under the alternative regardless of whether we reparametrise  x
as �p' and (ii) the score under the null is the same in both cases, which implies that the

Kuhn-Tucker multiplier will also coincide.11

Finally, it is worth noting that although  x is not �rst-order identi�ed because the derivative

of the log-likelihood function with respect to this parameter is identically 0 and the expected

value of the second derivative under the null is also 0 from Proposition 4, it is locally identi�ed

through higher order derivatives.12

A somewhat surprising implication of our previous results is that in this instance the usual

local equivalence between Ar(1) and Ma(1) alternatives hypotheses for the signal breaks down.

In contrast, there are other seemingly locally equivalent alternatives. Speci�cally, consider the

following variation on model (21):

yt = xt + ut

(1� �xL2)(1� �L)xt = ft

9=; : (23)

In this case the null hypothesis of interest is H0 : �x = 0, so that the model under the null is still

an Ar(1) signal plus white noise, while the signal under the alternative is a �seasonal�Ar(3)

with restricted autoregressive polynomial 1��L��xL2+��xL3. The �top-heavy�nature of the

signal together with the restrictions on the coe¢ cients imply the model under the alternative

should remain identi�ed. We can then show that

Proposition 5 The LM test of the null hypothesis H0 : �x = 0 in model (23) will numerically
coincide with a two-sided version of the test discussed in Proposition 4 once we correct for the
sampling uncertainty in the estimation of the model parameters under the null.
11When � = 0 the test statistic in Proposition 4 breaks down. As Fiorentini and Paruolo (2009) show for the

case of observable processes, the distribution of the residual serial correlation in an Ar(1) model becomes highly
non-standard when the �rst autocorrelation is in fact 0.
12See the proof of Proposition 4 for details.
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Nevertheless, such a test is suboptimal for testing the null hypothesis H0 :  x = 0 because

it ignores the e¤ective one-sided nature of its alternative.

For reasons analogous to the ones explained in section (3.1), the test in Proposition 5 will

also coincide with the LM test of H0 : �f = 0 in the alternative �seasonal�model

yt = xt + ut

(1� �L)xt = (1� �fL2)ft

9=; ; (24)

which will again be two sided. This equivalence is less obvious than it may seem because the

signal follows a �bottom-heavy�process under the alternative. Nevertheless, the fact that the

�rst Ma coe¢ cient is 0 is su¢ cient to guarantee identi�ability in this case.

Another seemingly locally equivalent alternative to the neglected Ar(1) component in the

signal arises when we are interested in testing for �rst order serial correlation in the non-signal

component ut. In that case the model under the alternative becomes

yt = xt + ut

(1� �L)xt = ft

(1�  uL)ut = vt

9>>>=>>>; (25)

with ft and vt orthogonal at all leads and lags. The null hypothesis of interest is H0 :  u = 0.

Further, we do not expect any singularity to be present under the alternative, on the grounds

that the contemporaneous aggregation of Ar(1)+Ar(1) is an Arma(2,1). We can then show

that

Proposition 6 The LM test of the null hypothesis H0 :  u = 0 in model (25) will numerically
coincide with a two-sided version of the test discussed in Proposition 4 once we correct for the
sampling uncertainty in the estimation of the model parameters under the null.

As expected, the LM test of the null hypothesis H0 :  v = 0 in the model

yt = xt + ut

(1� �L)xt = ft

ut = (1�  vL)vt

9>>>=>>>; (26)

will also coincide because the derivatives of gyy(�) with respect to  v in model (26) and with

respect to  u in model (25) only di¤er in their signs.

3.5 An intermediate case

So far, we have dealt with regular models in which px � qx + 2 in section 3.2 and irregular

models in which px = qx + 1 but pu < qu + 1 in section 3.4. In this section, we study the

intermediate case of px = qx + 1 and pu = qu + 1, which shares some features of the other two.
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The results in section 2.2 imply that the reduced form of such a model would be Arma(px+

pu; px + pu � 1), whose 2px + 2pu parameters are generally su¢ cient to identify the structural

parameters of the signal and non-signal components. Similarly, the reduced form models would

be Arma(px+ pu+1; px+ pu) under alternatives Sar1 and Nar1, and Arma(px+ pu; px+ pu)

under alternatives Sma1 andNma1. Since all these reduced form models identify the parameters

of the associated structural models, the corresponding information matrices evaluated under the

null will generally have full rank. Therefore, tests for neglected �rst serial correlation in the

signal or the noise will usually be well behaved, as in section 3.2.

Nevertheless, it turns out that both tests are numerically identical. To understand the

reason, let us look at an Ar(1)+Ar(1) process, which is the simplest possible example. The

joint alternatives that we consider are of the following form:

yt = xt + ut

(1� �xL)(1�  x)xt = ft

(1� �uL)(1�  u)ut = vt

9>>>=>>>; : (27)

In this context, we can prove the following proposition:

Proposition 7 The nullity of the information matrix of model (27) is one under the joint null
hypothesis H0 :  x =  u = 0.

Not surprisingly, the same is true if we replace any of the Ar alternatives by its Ma coun-

terpart. Intuitively, the reason is the following. The reduced form model under the combination

of alternatives Sma1 and Nma1 is an Arma(px + pu; px + pu), which does not have enough

parameters to identify the structural parameters of the signal and non-signal components.

In principle, it might be possible to reparametrise model (27) in such a way that the single

singularity of the information matrix is due to the score of one of the new parameters becoming

identically 0. In that case, a square root transformation of this parameter should allow one to

derive a joint extremum test of H0 :  x =  u = 0 along the lines of section 3.4. In the interest

of space, we shall not explore this posibility.

3.6 The tests in practice

Taking into account the theoretical results obtained in the previous sections, the step by step

testing procedure for dynamic misspeci�cation of the unobserved components can be described

as follows:

1. Estimate the model under the null by maximum likelihood either in the time domain or

in the frequency domain, making sure that it satis�es the identi�cation conditions stated

in section 2.1.
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2. Compute the periodogram of the data with the FFT.

3. Compute the theoretical spectral density of the unobserved components and the observable

series at the estimated values of the parameters.

4. Identify the signal with the more �top-heavy�Arma component, so that px � qx � 1 and

px � qx � pu � qu, where qx; qu and px; pu are the orders of the Ma and Ar polynomials

(including roots on the unit circle). In case of equality, choose the signal so that px � pu.

5. If px � qx > 1, so that the model remains identi�ed under all four alternatives and their

combinations, then apply the following steps to both the signal and non-signal components:

(a) compute the scores under the alternative but evaluate them at the null.

(b) compute the information matrix under the alternative but evaluate it at the null.

(c) invert the information matrix and retain the elements corresponding to the scores of

the additional parameters.

(d) Compute the two quadratic forms de�ning the LM test statistics.

6. If px � qx = 1 and pu � qu = 1, so that the model becomes underidenti�ed under the

combination of alternatives Sma1 and Nma1, then proceed as in 5., but compute only one

of the tests since the other one is numerically identical.

7. If px� qx = 1 and pu� qu < 1, so that the model becomes underidenti�ed under the Sma1

alternative:

(a) reparametrise the model as explained in section 3.4.

(b) compute the scores under the alternative but evaluate them at the null.

(c) compute the information matrix under the alternative but evaluate it at the null.

(d) invert the information matrix and retain the element corresponding to the score of

the additional parameter.

(e) Compute the quadratic form de�ning the LM test statistic, and identify it with the

dynamic misspeci�cation test for the non-signal component.

(f) If the score associated to the new autoregressive signal parameter is negative, set the

dynamic misspeci�cation test for the signal component to 0.

(g) Otherwise, set it to the same value as the non-signal test, but use a one-sided critical

value.
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An example of a regular situation would be an Ar(2)+noise process, which is such that

px � qx = 2 and pu � qu = 0. In this case, the model is identi�ed under all possible alternative

hypotheses. In fact, it is overidenti�ed when testing dynamic misspeci�cation in the noise while

it is just identi�ed in the Sma1 case.

An example of the intermediate case would be an Ar(1)+Ar(1) process, for which px�qx =

pu � qu = 1.

An example of an irregular case would be an Ar(1)+noise plus noise model, including the

popular random walk plus noise process. In this instance, px � qx = 1 and pu � qu = 0. As we

mentioned at the beginning of section 3.4, this model becomes an Arma(1,1) plus noise model

under the Sma1 alternative, whose parameters are not identi�ed.

We will study the �nite sample behaviour of our tests for unit root versions of the �rst and

third examples in sections 5.1 and 5.2, respectively.

4 Comparison with tests based on the reduced form residuals

In the context of univariate time series models written in state space form, Harvey (1989),

Harvey and Koopman (1992) and Durbin and Koopman (2012) suggest the calculation of ne-

glected serial correlations tests for the reduced form residuals, at, which should be white noise

under the null of correct dynamic speci�cation. For that reason, it is of some interest to compare

such tests to the tests that we have derived in the previous sections. To do so, let us introduce

the following two alternative hypothesis of interest:

5. Rar1: Arma(px + 1; qx)+Arma(pu + 1; qu) with a common Ar root.

6. Rma1: Arma(px; qx + 1)+Arma(pu; qu + 1) with a common Ma root.

In this context, we can prove the following result:

Proposition 8 Testing for Rar1 in the Ucarima model (1)-(4) is equivalent to testing for
Ar(1)-type neglected serial correlation in the reduced form innovations, while testing for Rma1
in the structural form is the same as testing for Ma(1)-type neglected serial correlation in at.

This means that when we test for �rst order neglected serial correlation in the reduced form

residuals the model under the alternative hypothesis is in e¤ect:

yt = �+ xt + ut;

�x(L)(1�  aL)xt = �x(L)ft;

�u(L)(1�  aL)ut = �u(L)vt;

9>>>=>>>; : (28)

In contrast, a test for neglected serial correlation in the signal makes use of the alternative

model (17), while a test for neglected serial correlation in the non-signal component relies on (19).
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Therefore, while it is indeed true that misspeci�cation of the dynamics of any of the components

will generally result in the reduced form residuals of the null model being serially correlated

under the alternative, as argued by Harvey and Koopman (1992), it does not necessarily follow

that tests for neglected serial correlation in those residuals are asymptotically equivalent to our

neglected serial correlation tests in the unobserved components.

In fact, the relative power of those three tests when px � qx > 1 will depend on the nature

of the true model under the alternative. Speci�cally, if we represent  x on the horizontal axis

and  u on the vertical axis, the reduced form test of the null hypothesis H0 :  a = 0 will have

maximum power for alternatives along the 45� degree line  u =  x since it is locally the best

test of neglected serial correlation in that direction in view of Proposition 8. In contrast, the

structural form tests of the null hypotheses H0 :  x = 0 and H0 :  u = 0 will have maximum

power along their respective axis (see Demos and Sentana (1998) for a related discussion in the

context of Arch tests). For the intermediate parameter combinations, we could use local power

calculations along the lines of appendix B in Fiorentini and Sentana (2015) to compare our LM

tests, which are based on the smoothed innovations of the state variables (the so-called auxiliary

residuals), to the LM tests based on the reduced form innovations.13 Speci�cally, we could

obtain two isopower lines, de�ned as the locus of points in  x;  u space for which for which

the non-centrality parameter of the reduced form test is exactly the same as the non-centrality

parameter of the structural tests for H0 :  x = 0 and H0 :  u = 0.

In principle, we could consider the joint test of the compound null hypothesis H0 :  x =

 u = 0 mentioned at the end of section 3.2, which will generally have two degrees of freedom

instead. For comparing the joint test against the simple tests, though, we would have to equate

their local power directly since the number of degrees of freedom would be di¤erent.

In view of the discussion in sections 3.4 and 3.5, though, the reduced form test and the two

sided versions of the structural tests will be identical when px � qx = 1.
13Unlike in Fiorentini and Sentana (2015), though, the scores with respect to  x and  u will not be orthogonal

to the scores with respect to the remaining structural parameters, #. For that reason, we should conduct the
local power calculations with the orthogonalised scores, which are the residuals in the regression of the scores
for  x and  u on the scores that de�ne the estimated parameters, with the covariance matrices computed under
the null. This procedure would not only re�ect the fact that the quadratic form that de�nes the non-centrality
parameter requires the relevant block of the inverse, as opposed to the inverse of the relevant block, but it would
also take into account that the expected Jacobian of the other scores with respect to  x and  u will not be 0.
Exploiting the information matrix equality, this e¤ectively implies that the non-centrality parameter will be a
quadratic form in the direction of departure from the null with a weighting matrix equal to I  �I #I�1##I# .
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5 Monte Carlo simulation

5.1 A regular case

We �rst report the results of some simulation experiments based on a special case of the

example discussed at the end of section 3.2, in which the autoregressive polynomial of the signal

contains a unit root. In this way, we can assess the �nite sample reliability of the size of our

proposed tests and their power relative to the reduced form test in a realistic situation in which

the model remains identi�ed under each of the four alternatives stated in section 2.1.

5.1.1 Size experiment

To evaluate possible �nite sample size distortions, we generate 10,000 samples of length 200

(equivalent to 50 years of quarterly data) of the following model

yt = �+ xt + ut;

(1� L)(1� �L)xt = ft;

9=; (29)

with ft and ut being contemporaneously uncorrelated bivariate Gaussian white noise. Thus, the

signal component follows an Ari(1,1) under the null, while the non-signal component is white

noise. Given that � is inconsequential, we �x its true value to 0. We also �x the variance of ut

to 1 without loss of generality. As for the remaining parameters, we choose �2f = 1 and � = :7

to clearly di¤erentiate this design from the model in section 5.2.

For each simulated sample, we use the �rst di¤erences of the data to compute the following

LM tests:

1. �rst-order neglected serial correlation in the signal (�21)

2. �rst-order neglected serial correlation in the non-signal (�21)

3. �rst-order neglected serial correlation in the reduced form residuals (�21)

4. Joint test of 1. and 2. (�22)

The �nite sample sizes for the four tests are displayed in the �rst panel of Table 1. As can be

seen, the actual rejection rates at the 10, 5 and 1% of all four tests fall within the corresponding

asymptotic con�dence intervals of (9.41,10.59), (4.57,5.43) and (.80,1.20), so one can reliably

use them.
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5.1.2 Power experiments

Next, we simulate and estimate 5,000 samples of length 200 of DGPs in which either the signal

or the noise may have an additional autoregressive root, with everything else being unchanged.

In particular, we consider the following four alternatives:

a. neglected serial correlation in the signal ( x = :5; u = 0), for which the LM test in 1.

should be optimal

b. neglected serial correlation in the noise ( x = 0; u = :5), for which the LM test in 2.

should be optimal

c. symmetric neglected serial correlation in signal and noise ( x = :5; u = :5), for which the

residual LM test in 3. should be optimal

d. asymmetric neglected serial correlation in signal and noise ( x = :6; u = :3) for which the

joint LM test in 4. should be optimal.

The raw rejection rates are reported in the last four panels of Table 1. For alternative a.,

the ranking of the tests is as expected. However, for alternative b. the LM test for signal is

able to match the power of the LM test for noise, closely followed by the residual and joint LM

tests. Therefore, misspeci�cation in the serial correlation of the non-signal component seems to

substantially alter the serial correlation pattern of the �ltered values of the correctly speci�ed

signal component because the parameter estimators at which the �lter is evaluated are biased

and the �lter weights would be the wrong ones even if we knew the true values of the estimated

parameters.

The most surprising result corresponds to alternative c., in that the joint LM test has more

power than the asymptotically optimal reduced form test. In contrast, the rejection rates for

alternative d. conform to the theoretical predictions.

In summary, our results show that the tests that look for neglected serial correlation in

the signal and the noise, either separately or jointly, tend to dominate in terms of power the

traditional tests based on the reduced form innovations.

5.2 Local level model

Next we analyze the local level model in appendix A, which is a rather important practical

example of the situation discussed in section 3.4.

22



5.2.1 Size experiment

To evaluate possible �nite sample size distortions, we generate 10,000 samples of length 200

of the following model

yt = �+ xt + ut;

(1� L)xt = ft;

9=;
with ft and ut being contemporaneously uncorrelated bivariate Gaussian white noise. As before,

we �x the true value of � to 0 and the variance of ut to 1 without loss of generality. Therefore,

the design depends on a single parameter: the noise to signal ratio �2f , which we choose to be

1. This choice implies a Mean Square Error of the �nal estimation error of ft relative to �2f of

55.28% according to expression (A4), which is neither too low nor too high.

For each simulated sample, we use the �rst di¤erences of the data to compute the following

statistics:

1. one-sided versions of the extremum test for �rst-order neglected serial correlation in the

signal

2. two-sided version of the same test

3. likelihood ratio version

4. Wald test based on '

5. Wald test based on  x

6. second-order neglected serial correlation in the signal

7. �rst-order neglected serial correlation in the non-signal

8. �rst-order neglected serial correlation in the reduced form residuals

As expected from the theoretical results in section 3.4, the test statistics for 2., 6., 7. and 8.

are numerically identical, so we only report one of them under the label LM2S.

It is also important to emphasise that the statistics 3., 4. and 5. require the estimation of

model (29). For the reasons described in section 3.4, this is a non-trivial numerical task because

when its true value is 0 (i) approximately half of the ML estimators of  x are identically 0; (ii)

the log-likelihood function is extremely �at in a neighbourhood of 0, especially if we parametrise

it in terms of  x; and (iii) when the maximum is not 0 it tends to have two commensurate

maxima for positive and negative values of  x. To make sure we have obtained the proper

ML estimate, we maximise the spectral log-likelihood of model (29) four times: for positive
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and negative values of  x and with this parameter replaced by �
p
', retaining the maximum

maximorum. A kernel density estimate of the mixed-type discrete-continuous distribution of the

ML estimators is displayed in Figure 1, with its continuous part scaled so that it integrates to

.48, which is the fraction of non-zero estimates of  x. In addition to bimodality, the sampling

distribution shows positive skewness, which nevertheless tends to disappear in non-reported

experiments with T = 10; 000. The remaining 52% of the estimates of  x are 0, in which case

the test statistics 1., 3., 4. and 5. will all be 0 too.

The rejection rates under the null for the tests at the 10, 5 and 1% are displayed in Table 2.

The only procedure which seems to have a reliable size is the two-sided LM test. In contrast,

its one-sided version is somewhat conservative, while the LR and especially the two Wald tests

are liberal. Reassuringly, though, the size distortions of the one-sided LM test disappear fairly

quickly in non-reported experiments with larger sample sizes, while the distortions of the LR

and Wald tests for ' go down more slowly and are still noticeable even in samples as big as

T = 50; 000 despite the fact that the fraction of 0 estimates converges very quickly to 1/2. As

expected, though, the distortions of the Wald test based on  x persist no matter how big the

sample size is because the information matrix for this parametrisation is singular.

5.2.2 Power experiments

Next, we simulate and estimate 5,000 samples of length 200 of four alternative DGPs analo-

gous to the ones described in a.-d. of the previous section. However, since our focus is on tests

of the null hypothesis H0 :  x = 0, we only estimate the model under the null and under the a.

alternative. In this regard, an additional issue that we encounter in some desgins is that from

time to time the estimated value of �2u is 0. In those �pile-up�cases we compute the LM and

Wald tests excluding the corresponding row and column of the information matrix.

Given the substantial size distortions, we report not only raw rejection rates based on as-

ymptotic critical values in Table 3a but also size-adjusted ones in Table 3b, which exploit the

Monte Carlo critical values obtained in the simuation described in the previous subsection. If

we focus on this second table, we can conclude that the tests that explicitly acknowledge the

implicit one-sided nature of the alternative to H0 :  x = 0 dominate the two-sided test, except

when  x = 0 but  u =.5, when they tend to be equally powerful. In particular, the one-sided

tests for H0 :  x = 0 dominate the residual correlation tests even when  x =  u = :5.

We can also conclude that the relative ranking of the extremum, LR and Wald tests for

H0 : ' = 0 depends on the DGP, although when it coincides with the alternative for which they

are asymptotically optimal, the extremum test dominates the LR test, which in turn dominates

the Wald test.
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6 Conclusions and extensions

We have derived computationally simple and intuitive expressions for score tests of neglected

serial correlation in unobserved component univariate models using frequency domain methods.

Our tests can focus on the state variables individually or jointly. The implicit orthogonality

conditions are analogous to the conditions obtained by treating the Wiener-Kolmogorov-Kalman

smoothed estimators of the innovations in the latent variables as if they were observed, but they

account for their �nal estimation errors.

In some common situations in which the information matrix of the alternative model is

singular under the null we show that contrary to popular belief it is possible to derive extremum

tests that are asymptotically equivalent to likelihood ratio tests, which become one-sided. We

also explain how to compute asymptotically reliable Wald tests. As a result, from now on

empirical researchers would be able to report test statistics in those irregular situations too.

Further, we explicitly relate the incidence of those problems to the model identi�cation conditions

and compare our tests with tests based on the reduced form prediction errors.

We conduct Monte Carlo exercises to study the �nite sample reliability and power of our

proposed tests. In the regular case of a latent Ari(1,1) process cloaked in white noise, our results

show that the �nite sample size of the di¤erent tests is reliable. They also imply that the tests

that look for neglected serial correlation in the signal and the noise, either separately or jointly,

dominate in terms of power the traditional tests based on the reduced form innovations.

When we look at neglected serial correlation tests in the irregular local level model, our sim-

ulation results con�rm that the �nite sample distribution of the ML estimator of the additional

autoregressive root in the signal is highly unusual under the null of correct speci�cation, with

almost half its mass at 0 and two modes, one positive and one negative. Not suprisingly, a Wald

test based on this parameter is highly unreliable, even asymptotically. We also �nd some size

distortions for the asymptotically valid one-sided tests of H0 :  x = 0 (but not for the two-

sided LM test), which nevertheless progressively disappear as the sample size increases. After

correcting for those distortions, though, we �nd that the one-sided tests dominate the residual

correlation tests even when  x =  u = :5, but the relative ranking of the extremum test, the

likelihood ratio test and the Wald test depends on the DGP under the alternative.

Although we have considered reasonable Monte Carlo designs, a more throrough analysis

of the determinants of the size and power properties of the di¤erent tests would constitute a

valuable addition.

The testing procedures we have developed can be extended in several interesting directions.

First, it would be tedious but straightforward to consider models with more than two components
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after dealing with identi�cation issues. More interestingly, we could also consider models with

purely seasonal components (see Harvey (1989) for some examples). Tests of higher order serial

correlation also deserve further consideration since they might involve singularity problems too.

For example, theAri(1,1) plus white noise process discussed in section 5.1, which yields standard

test statistics for neglected �rst order serial correlation, gives rise to a singular information

matrix when we consider tests against �rst and second order serial correlation simultaneously

because those tests are numerically equivalent to tests against the underidenti�ed alternative of

Arima(1,1,2) plus white noise.

Second, we have assumed throughtout the paper that the model estimated under the null

is parametrically identi�ed. Nevertheless, Harvey (1989) discusses some examples in which

an Ucarima model is underidenti�ed under the null but identi�ed under the alternative. He

formally tackles the problem by using the procedure proposed by Aitchinson and Silvey (1960),

which e¤ectively adds a matrix to the information matrix to make sure that it has full rank (see

also Breusch (1986)).

We have also maintained the assumption of normality. To understand its implications, let

�tjt�1 and �
2
tjt�1 denote the conditional mean and variance of yt given its past alone, which can

be obtained from the prediction equations of the Kalman �lter. Given that the additional serial

correlation parameters e¤ectively enter through �tjt�1 only, we would expect the asymptotic

distribution of our proposed tests to remain valid in the presence of non-Gaussian innovations.

Dunsmuir (1979) provides a formal result which con�rms our conjecture for the important class

of Ar(p) plus noise processes.

Although we have only considered unobserved components with rational spectral densities,

in principle our methods could be applied to long memory processes too. In this regard, it

would be worth exploring the fractionally integrated alternatives considered by Robinson (1994).

More generally, it would also be interesting to consider non-parametric alternatives such as the

ones studied by Hong (1996), in which the lag length is implicitly determined by the choice

of bandwidth parameter in a kernel-based estimator of a spectral density matrix. Another

potential extension would directly deal with non-stationary models without transforming the

observed variables to achieve stationarity. All these topics constitute fruitful avenues for future

research.
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Appendices

A Local level model

A.1 Testing for neglected serial correlation in the trend

A.1.1 Against AR(1) alternatives

Consider the following modi�ed version of model (21)

yt = xt + ut

(1�  xL)(1� L)xt = ft

9=; ; (A1)

with ft and ut orthogonal at all leads and lags. The main di¤erence is that we have replaced

the covariance stationarity hypotheis for the signal xt by a unit root one. As before, the null

hypothesis of interest remains H0 :  x = 0, so that the model under the null is simply a

random walk signal plus white noise, while the signal under the alternative is an Ari(1,1) with

autoregressive coe¢ cient  x.

In order to use spectral methods we need to take �rst di¤erences of the observed variable to

make it stationary, which yields

�yt =
1

1�  xL
ft + (1� L)ut:

Hence, it is easy to see that

V (�yt) = 
�y�y(0) =
�2f

1�  2x
+ 2�2u; (A2)

cov(�yt;�yt�1) = 
�y�y(1) =  x
�2f

1�  2x
� �2u; (A3)

cov(�yt;�yt�j) = 
�y�y(j) =  jx
�2f

1�  2x
j � 2:

Similarly, the spectral density of �yt will be

g�y�y(�) =
�2f

(1�  xe�i�) (1�  xei�)
+ (1� e�i�)(1� ei�)�2u

=
�2f

1 +  2x � 2 x cos�
+ 2(1� cos�)�2u:

The reduced form of �yt is an Ima(1,1) process with Ma coe¢ cient �y given by

�y =
1

2

�p
q2 + 4q � 2� q

�
;

where q = �2f=�
2
u denotes the signal to noise ratio, and residual variance

�2a = ��2u=�y.
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As is well known (see e.g. Priestley (1981, section 10.3), the variance of the �nal estimation

error of ft will be given by

1

2�
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��

 
gff (�)�
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!
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d� = �2f

 
1� qp

q2 + 4q
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(A4)

because Z
q

q + 2(1� cos�)d� =
2
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Interestingly, we would obtain exactly the same expression by working with pseudo-spectral

densities in levels because
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The partial derivatives of this spectral density are

@g�y�y(�)

@�2f
=

1

1 +  2x � 2 x cos�
;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@ x
=

2�2f (cos��  x)
(1 +  2x � 2 x cos�)2

:

Under the the null of H0 :  x = 0 those derivatives become

@g�y�y(�)

@�2f
= 1;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@ x
= 2�2f cos�;

which implies that

�2f

"
@g�y�y(�)

@�2u
� 2@g�y�y(�)

@�2f

#
+
@g�y�y(�)

@ x
= 0 (A5)

32



for all �. Obviously, exactly the same linear combination of the elements of g�1yy (�)@gyy(�)=@�

will be singular too. Therefore, the information matrix of the model, which is given byZ �

��

@gyy(�)

@�

1

gyy(�)

1

gyy(�)

@gyy(�)

@�0
d�;

will only have rank 3 under the null. In view of this result, Harvey (1989) rightly concludes that

a standard LM test is infeasible.

In contrast, there is no linear combination of the �rst two derivatives that is equal to 0 under

H0, so we can consistently estimate �2f and �
2
u if we impose the null hypothesis when it is indeed

true. Likewise, there is no linear combination of the three derivatives that is equal to 0 under the

alternative either, so again we can consistently estimate �2f , �
2
u and  x in those circumstances.

For that reason, Harvey (1989) recommends reporting either a Wald test or a LR one, which for

reasons explained in section 3.4 turns out not to be sound advice.

Nevertheless, an LM-type test is readily available once more along the same lines as in section

3.4. Speci�cally, we can tackle the problem created by (A5) by reparametrisation. First, we are

going to replace �2f and �
2
u by 
�y�y(0) and 
�y�y(1). Thus, it is easy to see from (A2) and

(A3) that

�2u =
1

2 x + 1

�
 x
�y�y(0)� 
�y�y(1)

�
;

�2f =
1�  2x
2 x + 1

�

�y�y(0) + 2
�y�y(1)

�
;

which are well de�ned as long as  x 6= �1
2 (or if 
�y�y(0) + 2
�y�y(1) = 0 when  x 6= �

1
2).

With this notation, the spectral density becomes

g�y�y(�) =
1

1 +  2x � 2 x cos�
1�  2x
2 x + 1

�

�y�y(0) + 2
�y�y(1)

�
+2(1� cos�) 1

2 x + 1

�
 x
�y�y(0)� 
�y�y(1)

�
:

The derivatives with respect to these new parameters are

@g�y�y(�)

@
�y�y(0)
=

1

1 +  2x � 2 x cos�
1�  2x
2 x + 1

+ 2(1� cos�)  x
2 x + 1

@g�y�y(�)

@
�y�y(1)
=

2

1 +  2x � 2 x cos�
1�  2x
2 x + 1

� 2(1� cos�) 1

2 x + 1
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@ x
= �2 x

�

�y�y(0) + 2
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�
(2 x + 1)

2 �1 +  2x � 2 x cos��2
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Under the null of H0 :  x = 0, these scores reduce to

@g�y�y(�)

@
�y�y(0)
= 1

@g�y�y(�)

@
�y�y(1)
= 2 cos�

@g�y�y(�)

@ x
= 0:

Although we have not yet eliminated the singularity, we have at least con�ned it to the last

element of the score. If we further reparametrise  x as �
p
', the spectral density becomes

g�y�y(�) =
1

1 + '� 2p' cos�
1� '
2
p
'+ 1

�

�y�y(0) + 2
�y�y(1)

�
+2(1� cos�) 1

2
p
'+ 1

�p
'
�y�y(0)� 
�y�y(1)

�
:

Tedious algebra shows that the @g�y�y(�)=@' evaluated at ' = 0 will be equal to

2�2f cos 2�;

where we have used the fact that


�y�y(0) + 2
�y�y(1) = �2f

under the null. Hence, the extremum test for  x, which coincides with the LM test for ', is

going to be based on the second autocovariance of the smoothed estimates of ft. Importantly,

Lee and Chesher (1986) show that the one-sided version of this extremum test continues to be

asymptotically equivalent to both the LR and a one-sided version of the Wald test for '.

A.1.2 Against MA(1) alternatives

Consider now the following variation on model (A1):

yt = xt + ut

(1� L)xt = (1�  f )ft

9=; ; (A6)

with ft and ut orthogonal at all leads and lags. The null hypothesis of interest is H0 :  f = 0,

so that the model under the null is still a random walk signal plus white noise, while the signal

under the alternative is an Ima(1,1) with moving average coe¢ cient  f .

In this case, the stationary model is

�yt = (1�  fL)wt + (1� L)ut:
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Hence, it is easy to see that

V (�yt) = 
�y�y(0) = (1 +  
2
f )�

2
f + 2�

2
u; (A7)

cov(�yt;�yt�1) = 
�y�y(1) = � f�2f � �2u; (A8)

cov(�yt;�yt�j) = 
�y�y(j) = 0 j � 2:

Similarly, the spectral density of �yt will be

g�y�y(�) =
�
1�  fe�i�

��
1�  fei�

�
�2f + (1� e�i�)(1� ei�)�2u

= (1 +  2f � 2 f cos�)�2f + 2(1� cos�)�2u:

The partial derivatives of this spectral density are

@g�y�y(�)

@�2f
= 1 +  2f � 2 f cos�;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@ f
= 2�2f (cos��  f ):

Under the the null of H0 :  f = 0 those derivatives become

@g�y�y(�)

@�2f
= 1;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@ f
= 2�2f cos�;

which con�rms that (A5) also holds for this model.

Let us now try and isolate the singularity in a single parameter by using the same procedure

as in the previous section. First, we replace �2f and �
2
u by 
�y�y(0) and 
�y�y(1). Thus, it is

easy to see from (A7) and (A8) that

�2u =
1

(1�  f )2
�
� f
�y�y(0)� (1 +  2f )
�y�y(1)

�
;

�2f =
1

(1�  f )2
�

�y�y(0) + 2
�y�y(1)

�
;

which are well de�ned as long as  f 6= 1.

With this notation, the spectral density becomes

g�y�y(�) =
(1 +  2f � 2 f cos�)

(1�  f )2
�

�y�y(0) + 2
�y�y(1)

�
+2(1� cos�) 1

(1�  f )2
�
� f
�y�y(0)� (1 +  2f )
�y�y(1)

�
:
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The derivatives with respect to these new parameters are

@g�y�y(�)

@
�y�y(0)
=
(1 +  2f � 2 f cos�)

(1 +  f )
2

� 2(1� cos�)
 f

(1�  f )2

@g�y�y(�)

@
�y�y(1)
=
2(1 +  2f � 2 f cos�)

(1 +  f )
2

� 2(1� cos�)
(1 +  2f )

(1�  f )2

@g�y�y(�)

@ f
= 0:

Since this last derivative is 0 not only under the null but also under the alternative,  f cannot

be identi�ed. Intuitively, the reason is that the process for �yt is an unrestricted Ma(1) under

the alternative, which is fully characterised by 
�y�y(0) and 
�y�y(1).

Thus, the usual local equivalence between Ar(1) and Ma(1) alternatives hypothesis for the

signal breaks down once again.

A.1.3 Against restricted MA(2) alternatives

Consider this alternative variation on model (A1):

yt = xt + ut

(1� L)xt = (1� �fL2)ft

9=; ; (A9)

with ut and wt orthogonal at all leads and lags. The null hypothesis of interest is H0 : �f = 0,

so that the model under the null is still a random walk signal plus white noise, while the signal

under the alternative is an Ima(1,2) with second moving average coe¢ cient �f .

Therefore, the stationary model will be

�yt = (1� �fL2)wt + (1� L)ut;

whose spectral density is

g�y�y(�) =
�
1� �fe�i2�

��
1� �fei2�

�
�2f + (1� e�i�)(1� ei�)�2u

= (1 + �2f � 2�f cos 2�)�2f + 2(1� cos�)�2u:

The partial derivatives of this spectral density are

@g�y�y(�)

@�2f
= 1 + �2f � 2�f cos 2�;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@�f
= 2�2f (cos 2�� �f ):
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Under the the null of H0 : �f = 0 those derivatives become

@g�y�y(�)

@�2f
= 1;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@�f
= 2�2f cos 2�:

Given that the linear span of @g�y�y(�)=@�2f and @g�y�y(�)=@�
2
u is the same as the linear

span of @g�y�y(�)=@
�y�y(0) and @g�y�y(�)=@
�y�y(1), this test is going to coincide with the

two-sided version of the extremum test against an Ar(1) alternative.

A.1.4 Against restricted AR(2) alternatives

Consider yet another variation on model (A1):

yt = xt + ut

(1� �xL2)(1� L)xt = ft

9=; ; (A10)

with ft and ut orthogonal at all leads and lags. The null hypothesis of interest is H0 : �x = 0,

so that the model under the null is still a random walk signal plus white noise, while the signal

under the alternative is an Ari(2,1) with second autoregressive coe¢ cient �x.

In this case, the spectral density of �yt will be

g�y�y(�) =
�2f

(1� �xe�i2�) (1� �xei2�)
+ (1� e�i�)(1� ei�)�2u

=
�2f

1 + �2x � 2�x cos 2�
+ 2(1� cos�)�2u:

The partial derivatives of this spectral density are

@g�y�y(�)

@�2f
=

1

1 + �2x � 2�x cos 2�
;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@�x
=

2�2f (cos 2�� �x)
(1 + �2x � 2�x cos 2�)2

;

which under the the null of H0 : �x = 0 become

@g�y�y(�)

@�2f
= 1;

@g�y�y(�)

@�2u
= 2(1� cos�);

@g�y�y(�)

@�x
= 2�2f cos 2�:

As expected, this test is locally equivalent to a test against a restricted Ma(2), which is also

locally equivalent to the two-sided version of the test against an unrestricted Ar(1).
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A.2 Testing for neglected serial correlation in the noise

Let us know see what happens if we are interested in testing for �rst order serial correlation

in ut. The model under the alternative becomes

yt = xt + ut

(1� L)xt = ft

(1�  uL)ut = vt

9>>>=>>>;
with ut and ft orthogonal at all leads and lags. The null hypothesis of interest is H0 :  u = 0.

Taking �rst di¤erences of the observed variables to make them stationary yields

�yt = ft +
1� L
1�  uL

vt:

Using the expressions for the autocovariances of an Arma(1,1) with a unit root in the Ma

part, it is easy to see that

V (�ut) = 
�u�u(0) =
2

1 +  u
�2v

cov(�ut;�ut�1) = 
�u�u(1) = �
(1�  u)
1 +  u

�2v

cov(�ut;�ut�j) = 
�u�u(j) =  u
�u�u(j � 1) j � 2;

As a result,

V (�yt) = 
�y�y(0) = �2f +
2

1 +  u
�2v;

cov(�yt;�yt�1) = 
�y�y(1) = �
(1�  u)
1 +  u

�2v;

cov(�yt;�yt�j) = 
�y�y(j) =  u
�y�y(j � 1) j � 2:

Similarly, the spectral density of �yt will be

g�y�y(�) = �2f +
(1� e�i�)(1� ei�)

(1�  ue�i�) (1�  uei�)
�2v

= �2f +
2(1� cos�)

1 +  2u � 2 u cos�
�2v;

and its partial derivatives

@g�y�y(�)

@�2f
= 1

@g�y�y(�)

@�2v
=

2(1� cos�)
1 +  2u � 2 u cos�

@g�y�y(�)

@�
=

4�2f (cos��  u)(1� cos�)
(1 +  2u � 2 u cos�)2
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Under the the null of H0 :  u = 0 those derivatives become

@g�y�y(�)

@�2f
= 1

@g�y�y(�)

@�2v
= 2(1� cos�)

@g�y�y(�)

@�
= 4�2f cos� (1� cos�)

Given that the spectral density under the null is

�2f + 2(1� cos�)�2v;

we can compute the information matrix by integrating the outerproduct of the following vector:

@g�y�y(�)

@�2f

1

g�y�y(�)
=

1

�2f + 2(1� cos�)�2v
;

@g�y�y(�)

@�2v

1

g�y�y(�)
=

2(1� cos�)
�2f + 2(1� cos�)�2v

;

@g�y�y(�)

@ u

1

g�y�y(�)
=

4�2f cos� (1� cos�)
�2f + 2(1� cos�)�2v

:

Unlike what happens in the test for  x = 0, the information matrix will be regular when

 u = 0. Given that the score with respect to  u involves a square cosine, which can always be

expanded in terms of cos 2� by using the trigronometric identity

cos 2� = 2 cos2 �� 1; (A11)

the test for neglected serial correlation in the noise will also coincide with the two-sided version

of the extremum test.

Finally, it is easy to see that apart from a sign change, one would get the same derivative

under the null if we were considering an Ma(1) alternative for ut.

B Proofs of propositions

Proposition 1

Given that  f 6= ��1 if we choose an invertible Ma polynomial, Lemma 1 allows us to

replace �2f and �
2
u by the theoretical variance and �rst autocovariance of the observed series as

follows:

�2f =

�
1� �2

�
(1� � f )(��  f )


yy(1);

�2u = 
yy(0)�
(1 +  2f � 2� f )
(1� � f )(��  f )


yy(1)
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under the assumption that  f 6= �, which is valid in a neighbourhood of  f = 0 since we

maintain the assumption that the true value of � is di¤erent from 0.

In this notation we can write the spectral density (C1) as

gyy(�) =
1 +  2f � 2 f cos�
1 + �2 � 2� cos�

�
1� �2

�
(1� � f )(��  f )


yy(1) + 
yy(0)�
(1 +  2f � 2� f )
(1� � f )(��  f )


yy(1)

= 
yy(0) +
2(cos�� �)

1 + �2 � 2� cos�
yy(1);

which does not depend on  f . �

Proposition 2

The partial derivatives of the spectral density (C5) are:

@gyy(�j�2f ; �2u; �;  x)
@�2f

=
1�

1 +  2x � 2 x cos�
�
(1 + �2 � 2� cos�)

;

@gyy(�j�2f ; �2u; �;  x)
@�2u

= 1;

@gyy(�j�2f ; �2u; �;  x)
@�

=
2�2f (cos�� �)

(1 + �2 � 2� cos�)2
�
1 +  2x � 2 x cos�

� ;
@gyy(�j�2f ; �2u; �;  x)

@ x
=

2�2f (cos��  x)
(1 +  2x � 2 x cos�)2 (1 + �2 � 2� cos�)

:

When  x = 0, these derivatives reduce to

@gyy(�j�2f ; �2u; �; 0)
@�2f

=
1

(1 + �2 � 2� cos�) ;

@gyy(�j�2f ; �2u; �; 0)
@�2u

= 1;

@gyy(�j�2f ; �2u; �; 0)
@�

=
2�2f (cos�� �)

(1 + �2 � 2� cos�)2
;

@gyy(�j�2f ; �2u; �; 0)
@ x

=
2�2f cos�

(1 + �2 � 2� cos�) :

Given that the spectral density under the the null is

gyy(�j�2f ; �2u; �; 0) =
�2f

(1 + �2 � 2� cos�) + �
2
u;

and its reciprocal

g�1yy (�j�2f ; �2u; �; 0) =
�
1 + �2 � 2� cos�

�
�2u (1 + �

2 � 2� cos�) + �2f
;
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we will have that for  x = 0

@gyy(�j�2f ; �2u; �; 0)
@�2f

1

gyy(�j�2f ; �2u; �; 0)
=

1

�2u (1 + �
2 � 2� cos�) + �2f

;

@gyy(�j�2f ; �2u; �; 0)
@�2u

1

gyy(�j�2f ; �2u; �; 0)
=

�
1 + �2 � 2� cos�

�
�2u (1 + �

2 � 2� cos�) + �2f
;

@gyy(�j�2f ; �2u; �; 0)
@�

1

gyy(�j�2f ; �2u; �; 0)
=

2�2f (cos�� �)
(1 + �2 � 2� cos�)

1

�2u (1 + �
2 � 2� cos�) + �2f

;

@gyy(�j�2f ; �2u; �; 0)
@ x

1

gyy(�j�2f ; �2u; �; 0)
=

2�2f cos�

�2u (1 + �
2 � 2� cos�) + �2f

:

It is then easy to see that

�2f

"
@gyy(�j�2f ; �2u; �; 0)

@�2u

1

gyy(�j�2f ; �2u; �; 0)
� (1 + �2)

@gyy(�j�2f ; �2u; �; 0)
@�2f

1

gyy(�j�2f ; �2u; �; 0)

#

+�
@gyy(�j�2f ; �2u; �; 0)

@ x

1

gyy(�j�2f ; �2u; �; 0)

=

�
1 + �2 � 2� cos�

�
�2f

�2u (1 + �
2 � 2� cos�) + �2f

�
(1 + �2)�2f

�2u (1 + �
2 � 2� cos�) + �2f

+
2�2f� cos�

�2u (1 + �
2 � 2� cos�) + �2f

= 0:

Given (8), this result implies that the information matrix of model (21) will only have rank 3

under the null when the true value of � is not zero. �

Proposition 3

Let us replace �2f and �
2
u by the variance and the �rst autocovariance of the observed series.

Asuming that � +  x 6= 0, which is valid in a neighbourhood of  x = 0 when the true value of

� is di¤erent from 0, the solution will be

�2f =

�
1� �2

� �
1�  2x

�
(1� � x)

�+  x

yy(1);

�2u = 
yy(0)�
(1 + � x)

�+  x

yy(1):

so that

@�2f
@
yy(0)

= 0;

@�2f
@
yy(1)

=

�
1� �2

� �
1�  2x

�
(1� � x)

�+  x
;

@�2f
@�

=

�
1�  2x

�
(�+  x)

2

�
2�3 x + �

2(3 2x � 1)� 2� x � (1 +  2x)
�

yy(1);

@�2f
@ x

=

�
1� �2

�
(�+  x)

2

�
2 3x�+  

2
x(3�

2 � 1)� 2� x � (1 + �2)
�

yy(1);
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and

@�2u
@
yy(0)

= 1;

@�2u
@
yy(1)

= �(1 + � x)
�+  x

;

@�2u
@�

=
1�  2x
(�+  x)

2 
yy(1);

@�2u
@ x

=
1� �2

(�+  x)
2 
yy(1):

Under the null of  x = 0 these derivatives simplify to

@�2f
@
yy(0)

= 0;

@�2f
@
yy(1)

=
1� �2
�

;

@�2f
@�

= �1 + �
2

�2

yy(1) = �

1 + �2

�

�2f
1� �2 ;

@�2f
@ x

= �(1� �
2)(1 + �2)

�2

yy(1) = �

(1 + �2)

�
�2f ;

and

@�2u
@
yy(0)

= 1;

@�2u
@
yy(1)

= � 1
�
;

@�2u
@�

=
1

�2

yy(1) =

1

�

�2f
1� �2 ;

@�2u
@ x

=
1� �2
�2


yy(1) =
1

�
�2f ;

where we have used the fact that when  x = 0


yy(0) = �2u +
�2f

1� �2 ;


yy(1) = �
�2f

1� �2 :

If we apply the chain rule to this reparametrisation, the new derivative wrt  x evaluated at
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 x = 0 will be

@gyy(�j�2f ; �2u; �; 0)
@�2f

1

gyy(�j�2f ; �2u; �; 0)
@�2f
@ x

+
@gyy(�j�2f ; �2u; �; 0)

@�2u

1

gyy(�j�2f ; �2u; �; 0)
@�2u
@ x

+
@gyy(�j�2f ; �2u; �; 0)

@ x

1

gyy(�j�2f ; �2u; �; 0)

= �(1 + �
2)

�
�2f

1

�2u (1 + �
2 � 2� cos�) + �2f

+
1

�
�2f

�
1 + �2 � 2� cos�

�
�2u (1 + �

2 � 2� cos�) + �2f
+

2�2f cos�

�2u (1 + �
2 � 2� cos�) + �2f

=
�2f

�2u (1 + �
2 � 2� cos�) + �2f

�
�(1 + �

2)

�
+
1

�

�
1 + �2 � 2� cos�

�
+ 2 cos�

�
= 0;

as desired. Obviously, we would obtain exactly the same result had we expressed the spectral

density of yt in terms of 
yy(0), 
yy(1), � and  x as

gyy(�j
yy(0); 
yy(1);�;  x) = 
yy(0)

+

�
1� �2

� �
1�  2x

�
(1� � x)� (1 + � x)

�
1 + �2 � 2� cos�

� �
1 +  2x � 2 x cos�

�
(�+  x) (1 + �

2 � 2� cos�)
�
1 +  2x � 2 x cos�

� 
yy(1);

(B1)

derived this expression with respect to  x obtaining

@gyy(�j
yy(0); 
yy(1);�;  x)
@ x

= �
2
�
�2 � 1

�
 x
yy(1)

(�+  x)
2 (1 + �2 � 2� cos(�))

�
1 +  2x � 2 x cos�

�2
�

0@  x
�
�2
�
 2x + 4

�
+ 4� x +  

2
x

�
� (2�+  x)

�
2� 2x + �+ 2 x

�
cos(�)

+(�( x(�+ 2 x) + 2) +  x) cos(2�)� � x cos(3�)

1A
and evaluated this derivative at  x = 0. �

Proposition 4

If we choose  x = +
p
', the spectral density of yt written in this form will be

g+yy(�j
yy(0); 
yy(1);�; ') = 
yy(0)

+

�
1� �2

�
(1� ')

�
1� �p'

�
�
�
1 + �

p
'
� �
1 + �2 � 2� cos�

� �
1 + '� 2p' cos�

��
�+

p
�
�
(1 + �2 � 2� cos�)

�
1 + '� 2p' cos�

� 
yy(1)

while if we choose  x = �
p
' it becomes

g�yy(�j
yy(0); 
yy(1);�; ') = 
yy(0)

+

�
1� �2

�
(1� ')

�
1 + �

p
'
�
�
�
1� �p'

� �
1 + �2 � 2� cos�

� �
1 + '+ 2

p
' cos�

��
��

p
�
�
(1 + �2 � 2� cos�)

�
1 + '� 2p' cos�

�
:


yy(1)
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Next we must obtain the derivative under the alternative, and then evaluate it under the

null. In this way we obtain

@g+yy(�j
yy(0); 
yy(1);�; ')
@'

=

�
�2 � 1

�

yy(1)�

�+
p
'
�2
(1 + �2 � 2� cos(�))

�
1 + '� 2p' cos�

�2
�

0@ �
��
�2 + 1

�p
'+ 2�'+ 2�

�
cos(2�)�p'

�
�2('+ 4)� � cos(3�) + 4�p'+ '

�
+
�
2�+

p
'
� �
2�'+ �+ 2

p
'
�
cos�

1A
so that

@g+yy(�j
yy(0); 
yy(1);�; 0)
@'

=
2
�
1� �2

�
(cos(2�)� � cos�)

� (1 + �2 � 2� cos(�)) 
yy(1): (B2)

Similarly,

@g�yy(�j
yy(0); 
yy(1);�; ')
@'

=

�
�2 � 1

�

yy(1)�

��p'
�2
(1 + �2 � 2� cos(�))

�
1 + '+ 2

p
' cos�

�2
�

0@ ��
�2 + 1

�p
'� 2�'� 2�

�
cos(2�) +

p
'
�
�2('+ 4)� � cos(3�)� 4�p'+ '

�
+
�
2��p'

� �
2�'+ �� 2p'

�
cos(�)

1A
so that

@g�yy(�j
yy(0); 
yy(1);�; 0)
@'

=
2
�
1� �2

�
(cos(2�)� � cos(�))

� (1 + �2 � 2� cos(�)) 
yy(1);

which coincides with (B2). Hence, the score test for the null hypothesis H0 : ' : 0 will indeed

be based on the �in�uence function�(22).

We can also try the alternative route proposed by Lee and Chesher (1986). Given that

@2gyy(�j
yy(0); 
yy(1);�;  x)
@ x@ x

= �
4
�
�2 � 1

�

yy(1)

(�+  x)
3 (1 + �2 � 2� cos(�))

�
1 +  2x � 2� cos�

�3

�

0BBBBBB@

�
�3
�
�2 + 1

�
 4x + �

�
�2 � 10

�
 3x � 3�2 2x + �2 � 3��5

�
cos(2�)

+
�
��3

�
3�2 + 1

�
+ �2

�
6�4 + 8�2 � 3

�
 x + 2�

�
 2x + 6

�
 4x + 3�

5
�
cos(�)

� x
�
�3�3 + �2

�
 4x + 9�

2 � 3
�
 x + 6��

4 +  5x
�
� ��3 cos(4�)

+ 2x(�( x(�+ 3�) + 3) +  x) cos(3�)

1CCCCCCA
so that

@2gyy(�j
yy(0); 
yy(1);�; 0)
@ x@ x

=
4
�
1� �2

�
(cos(2�)� � cos(�))

� (1 + �2 � 2� cos(�)) 
yy(1):

Having obtained the derivative of the original spectral density, we can obtain the second

derivative of the spectral log-likelihood function with respect  x by taking �rst derivatives of

the score (7). But since we have seen that

@gyy(�j
yy(0); 
yy(1);�; 0)
@ x

= 0;

the second derivative of the log-likelihood function will be

T�1X
j=0


yy(1)
4
�
1� �2

�
(cos(2�j)� � cos(�j))

� (1 + �2 � 2� cos(�j))

�
Iyy(�j)� gyy(�j j
yy(0); 
yy(1);�; 0)

�
g2yy(�j j
yy(0); 
yy(1);�; 0)

44



so that the tests will be indeed identical.

Finally, we can tediously show that

@3gyy(�j
yy(0); 
yy(1);�;  x)
(@ x)

3
=

12
�
�2 � 1

�

yy(1)

(�+  x)
4 (�2 � 2� cos(�) + 1)

�
�2 x cos(�) +  2x + 1

�4

�

0BBBBBBBBBBBBBBB@

�
��3

�
 4x + 1

�
+ 4�2

�
 4x +  

2
x � 1

�
 x + �

�
6 2x + 17

�
 4x + 4 

5
x

�
cos(3�)

+

0@ �4
�
 4x + 1

�
+ 4�3

�
 4x +  

2
x + 2

�
 x + �

2
�
�6 6x � 15 4x + 16 2x + 1

�
�4�

�
 2x + 7

�
 5x � 6 6x

1A cos(2�)
�

0@ 4�4
�
 3x +  x

�
+ �3

�
17 4x + 28 

2
x + 1

�
+ 4�2

�
�2 6x � 5 4x + 7 2x + 1

�
 x

�2�
�
 2x + 11

�
 6x � 4 7x

1A cos(�)
+ x

�
6�4 x + 4�

3
�
7 2x + 1

�
� �2

�
 6x + 16 

4
x � 16 2x � 6

�
 x � 8� 6x �  7x

�
+ � 4x cos(5�)

� 3x(�( x(�+ 4 x) + 4) +  x) cos(4�)

1CCCCCCCCCCCCCCCA
;

so that
@3gyy(�j
yy(0); 
yy(1);�; 0)

(@ x)
3

=
12
�
�2 � 1

�
cos(2�)

�2

yy(1);

which in turn implies the local identi�ability of  x under the null. �

Proposition 5

The derivatives of the spectral density will be

@gyy(�j�2f ; �2u; �; �x)
@�2f

=
1

(1 + �2 � 2� cos�)
�
1 + �2x � 2�x cos(2�)

� ;
@gyy(�j�2f ; �2u; �; �x)

@�2u
= 1;

@gyy(�j�2f ; �2u; �; �x)
@�

=
2(cos�� �)

(1 + �2 � 2� cos�)2
�
1 + �2x � 2�x cos(2�)

��2f ;
@gyy(�j�2f ; �2u; �; �x)

@�x
=

2(cos(2�)� �)
(1 + �2 � 2� cos�)

�
1 + �2x � 2�x cos(2�)

�2�2f ;
which under the null reduce to

@gyy(�j�2f ; �2u; �; 0)
@�2f

=
1

(1 + �2 � 2� cos�) ;

@gyy(�j�2f ; �2u; �; 0)
@�2u

= 1;

@gyy(�j�2f ; �2u; �; 0)
@�

=
2(cos�� �)

(1 + �2 � 2� cos�)2
�2f ;

@gyy(�j�2f ; �2u; �; 0)
@�x

=
2 cos(2�)

(1 + �2 � 2� cos�)�
2
f :

Given that the spectral density under the the null is

gyy(�j�2f ; �2u; �; 0) =
�2f

(1 + �2 � 2� cos�) + �
2
u;
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and its reciprocal

g�1yy (�j�2f ; �2u; �; 0) =
�
1 + �2 � 2� cos�

�
�2u (1 + �

2 � 2� cos�) + �2f
;

we will have that the contribution of frequency � to the log-likelihood scores evaluated at �x = 0

will be

s�2f
(�j�2f ; �2u; �; 0) =

�
1 + �2 � 2� cos�

��
�2u (1 + �

2 � 2� cos�) + �2f
�2 �2�Iyy(�)� gyy(�j�2f ; �2u; �; 0)� ;

s�2u(�j�
2
f ; �

2
u; �; 0) =

�
1 + �2 � 2� cos�

�2�
�2u (1 + �

2 � 2� cos�) + �2f
�2 �2�Iyy(�)� gyy(�j�2f ; �2u; �; 0)� ;

s�(�j�2f ; �2u; �; 0) =
2(cos�� �)�2f�

�2u (1 + �
2 � 2� cos�) + �2f

�2 �2�Iyy(�)� gyy(�j�2f ; �2u; �; 0)� ;
s�x(�j�2f ; �2u; �; 0) =

2 cos(2�)
�
1 + �2 � 2� cos�

�
�2f�

�2u (1 + �
2 � 2� cos�) + �2f

�2 �2�Iyy(�)� gyy(�j�2f ; �2u; �; 0)� :
Given that these scores are not orthogonal under the null, we will have to orthogonalise

the last one with respect to the �rst three using the information matrix under the null, which

will be given by (8), with the spectral derivatives obtained above. But given that the linear

span of @gyy(�j�2f ; �2u; �; 0)=@�2f and @gyy(�j�2f ; �2u; �; 0)=@�2u is the same as the linear span of

@gyy(�j
yy(0); 
yy(1); �; 0)=@
yy(0) and @gyy(�j
yy(0); 
yy(1); �; 0)=@
yy(1) when they are both

evaluated under the null, the adjusted test is going to coincide with a two-sided version of the

extremum test against an Ar(1) alternative in Proposition 4. �

Proposition 6

As usual, it is convenient to reparametrise the model by replacing �2f and �
2
u by 
yy(0) and


yy(1) from (C10) as follows

�2f =
(1� �2)(
yy(1)�  u
yy(0))

��  u
(B3)

�2u =
(1�  2u)(
yy(1)� �
yy(0))

 u � �
(B4)

under the maintained assumption that � 6=  u. The spectral density then becomes

gyy(�j
yy(0); 
yy(1);�;  u) =
(1� �2)(
yy(1)�  u
yy(0))
(��  u) (1 + �2 � 2� cos�)

+
(1�  2u)(
yy(1)� �
yy(0))
( u � �)

�
1 +  2u � 2 u cos�

�
=

�
(1�  2u)�

1 +  2u � 2 u cos�
� (1� �2) u
1 + �2 � 2� cos�

�

yy(0)

��  u

+

 
(1�  2u)�

1 +  2u � 2 u cos�
� � (1� �2)

(1 + �2 � 2� cos�)

!

yy(1)

 u � �
:
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Hence, the derivatives will be

@gyy(�j
yy(0); 
yy(1);�;  u)
@
yy(0)

=

�
(1�  2u)�

1 +  2u � 2 u cos�
� (1� �2) u
1 + �2 � 2� cos�

�
1

��  u
;

@gyy(�j
yy(0); 
yy(1);�;  u)
@
yy(1)

=

 
(1�  2u)�

1 +  2u � 2 u cos�
� � (1� �2)

(1 + �2 � 2� cos�)

!
1

 u � �
;

@gyy(�j
yy(0); 
yy(1);�;  u)
@�

=

�
(�4 � 1� 4�(��  u))� 2((1 + �2) u � 2�) cos�

(1 + �2 � 2� cos�)2

+
1�  2u

1 +  2u � 2 u cos�

�
(
yy(1)�  u
yy(0))

( u � �)2

@gyy(�j
yy(0); 
yy(1);�;  u)
@ u

=

 
( 4u � 1� 4 u( u � �))� 2((1 +  2u)�� 2 u) cos��

1 +  2u � 2 u cos�
�2

+
1� �2

1 + �2 � 2� cos�

�
(
yy(1)� �
yy(0))

( u � �)2

Under the null hypothesis of H0 :  u = 0 the derivatives become

@gyy(�j
yy(0); 
yy(1);�; 0)
@
yy(0)

= 1;

@gyy(�j
yy(0); 
yy(1);�; 0)
@
yy(1)

=
2(cos�� �)

1 + �2 � 2� cos�;

@gyy(�j
yy(0); 
yy(1);�; 0)
@�

= 2

�
2 cos2 �� 2� cos�+ �2 � 1

�
(1 + �2 � 2� cos�)2


yy(1);

and
@gyy(�j
yy(0); 
yy(1);�; 0)

@ u
= 2

�
2 cos2 �� � cos�� 1

�
1 + �2 � 2� cos� (
yy(1)� �
yy(0))

Let us double check these expressions using the chain rule. The partial derivatives of the

spectral density (C9) with respect to the original parameters are:

@gyy(�j�2f ; �2u; �;  u)
@�2f

=
1

(1 + �2 � 2� cos�) ;

@gyy(�j�2f ; �2u; �;  u)
@�2u

=
1�

1 +  2u � 2 u cos�
� ;

@gyy(�j�2f ; �2u; �;  u)
@�

=
2�2f (cos�� �)

(1 + �2 � 2� cos�)2
;

@gyy(�j�2f ; �2u; �;  u)
@ x

=
2�2u(cos��  x)

(1 +  2x � 2 x cos�)2
:
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When  u = 0, these derivatives reduce to

@gyy(�j�2f ; �2u; �; 0)
@�2f

=
1

(1 + �2 � 2� cos�) ;

@gyy(�j�2f ; �2u; �; 0)
@�2u

= 1;

@gyy(�j�2f ; �2u; �; 0)
@�

=
2�2f (cos�� �)

(1 + �2 � 2� cos�)2
;

@gyy(�j�2f ; �2u; �; 0)
@ u

= 2�2u cos�:

In view of (B3) and (B4), the elements of the Jacobian matrix of the original parameters in

terms of the new parameters will be

@�2f
@
yy(0)

=
(1� �2) u
 u � �

@�2f
@
yy(1)

=
1� �2
��  u

@�2f
@�

=
2� u � 1� �2
(��  )2 (
yy(1)�  u
yy(0))

@�2f
@ u

=
(1� �2)
(��  u)2

(
yy(1)� �
yy(0))

and

@�2u
@
yy(0)

=
(1�  2u)�
��  u

@�2u
@
yy(1)

=
1�  2u
 u � �

@�2u
@�

=
(1�  2u)
(��  u)2

�

yy(1)�  u
yy(0)

�
@�2u
@ u

=
2� u � 1�  2u
(��  )2 (
yy(1)� �
yy(0))

which under the null become

@�2f
@
yy(0)

= 0

@�2f
@
yy(1)

=
1� �2
�

@�2f
@�

= �1 + �
2

�2

yy(1)

@�2f
@ u

=
(1� �2)
�2

(
yy(1)� �
yy(0))
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and

@�2u
@
yy(0)

= 1

@�2u
@
yy(1)

= � 1
�

@�2u
@�

=
1

�2

yy(1)

@�2u
@ u

= � 1

�2
(
yy(1)� �
yy(0))

The chain rule for derivatives then implies that

@gyy(�)

@�2f
=

1

(1 + �2 � 2� cos�) ;

@gyy(�)

@�2u
= 1;

@gyy(�)

@�
=

2�2f (cos�� �)
(1 + �2 � 2� cos�)2

;

@gyy(�)

@ u
= 2�2u cos�:

@gyy(�j
yy(0); 
yy(1);�; 0)
@
yy(0)

=
@gyy(�j�2f ; �2u; �; 0)

@�2f

@�2f
@
yy(0)

+
@gyy(�j�2f ; �2u; �; 0)

@�2u

@�2u
@
yy(0)

= 1;

@gyy(�j
yy(0); 
yy(1);�; 0)
@
yy(1)

=
@gyy(�j�2f ; �2u; �; 0)

@�2f

@�2f
@
yy(1)

+
@gyy(�j�2f ; �2u; �; 0)

@�2u

@�2u
@
yy(1)

=
2(cos�� �)

1 + �2 � 2� cos�;

@gyy(�j
yy(0); 
yy(1);�; 0)
@�

=
@gyy(�j�2f ; �2u; �; 0)

@�2f

@�2f
@�

+
@gyy(�j�2f ; �2u; �; 0)

@�2u

@�2u
@�

+
@gyy(�j�2f ; �2u; �; 0)

@�
= 2

�
2 cos2 �� 2� cos�+ �2 � 1

�
(1 + �2 � 2� cos�)2


yy(1);

and

@gyy(�j
yy(0); 
yy(1);�; 0)
@ u

=
@gyy(�j�2f ; �2u; �; 0)

@�2f

@�2f
@ u

+
@gyy(�j�2f ; �2u; �; 0)

@�2u

@�2u
@ u

+
@gyy(�j�2f ; �2u; �; 0)

@ u
= 2

�
2 cos2 �� � cos�� 1

�
1 + �2 � 2� cos� (
yy(1)� �
yy(0));

where we have used the fact that

�2f =
(1� �2)
yy(1)

�
;

�2u = �
(
yy(1)� �
yy(0))

�

under the null. Obviously, the �rst three derivatives are the same for all the models which reduce

to an Ar(1) plus white noise under the corresponding null.
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If we now scale them by the inverse spectral density under the null, we get

@gyy(�)

@�2v
g�1yy (�) =

1

�2u (1 + �
2 � 2� cos�) + �2f

;

@gyy(�)

@�2"
g�1yy (�) =

�
1 + �2 � 2� cos�

�
�2u (1 + �

2 � 2� cos�) + �2f
;

@gyy(�)

@�
g�1yy (�) =

2�2f (cos�� �)
(1 + �2 � 2� cos�)

1

�2u (1 + �
2 � 2� cos�) + �2f

;

@gyy(�)

@ x
g�1yy (�) = 2�2f cos�

�
1 + �2 � 2� cos�

�
�2u (1 + �

2 � 2� cos�) + �2f
:

If we take the factor [�2u
�
1 + �2 � 2� cos�

�
+ �2f ]

�1 out, we are left with

[�2u
�
1 + �2 � 2� cos�

�
+ �2f ]

@gyy(�)

@�2v
g�1yy (�) = 1;

[�2u
�
1 + �2 � 2� cos�

�
+ �2f ]

@gyy(�)

@�2"
g�1yy (�) =

�
1 + �2 � 2� cos�

�
;

[�2u
�
1 + �2 � 2� cos�

�
+ �2f ]

@gyy(�)

@�
g�1yy (�) =

2�2f (cos�� �)
(1 + �2 � 2� cos�) ;

[�2u
�
1 + �2 � 2� cos�

�
+ �2f ]

@gyy(�)

@ x
g�1yy (�) = 2�2f cos�

�
1 + �2 � 2� cos�

�
:

At �rst sight, it may seem that we no longer have an equivalent test. However, if we make

use of the trigonometric identity (A11), we can write the last derivative as

2�2f
�
1 + �2) cos�� �(1 + cos 2�

�
:

�

Proposition 7

The partial derivatives of the spectral density (C11) are:

@gyy(�j�2f ; �2u; �x; �u;  x;  u)
@�2f

=
1�

1 +  2x � 2 x cos�
�
(1 + �2x � 2�x cos�)

;

@gyy(�j�2f ; �2u; �x; �u;  x;  u)
@�2u

=
1�

1 +  2u � 2 u cos�
�
(1 + �2u � 2�u cos�)

;

@gyy(�j�2f ; �2u; �x; �u;  x;  u)
@�x

=
2�2f (cos�� �x)

(1 + �2x � 2�x cos�)
2 �1 +  2x � 2 x cos�� ;

@gyy(�j�2f ; �2u; �x; �u;  x;  u)
@�u

=
2�2v(cos�� �u)

(1 + �2u � 2�u cos�)
2 �1 +  2u � 2 u cos�� ;

@gyy(�j�2f ; �2u; �x; �u;  x;  u)
@ x

=
2�2f (cos��  x)

(1 +  2x � 2 x cos�)2 (1 + �2x � 2�x cos�)
;

@gyy(�j�2f ; �2u; �x; �u;  x;  u)
@ u

=
2�2v(cos��  u)

(1 +  2u � 2 u cos�)2 (1 + �2u � 2�u cos�)
:
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When  x = 0 and  u = 0, these derivatives reduce to

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�2f

=
1

(1 + �2x � 2�x cos�)
;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�2u

=
1

(1 + �2u � 2�u cos�)
;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�x

=
2�2f (cos�� �x)

(1 + �2x � 2�x cos�)
2 ;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�u

=
2�2u(cos�� �u)

(1 + �2u � 2�u cos�)
2 ;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@ x

=
2�2f cos�

(1 + �2x � 2�x cos�)
@gyy(�j�2f ; �2u; �x; �u; 0; 0)

@ u
=

2�2v cos�

(1 + �2v � 2�v cos�)
:

Given that the spectral density under the the null is

gyy(�j�2f ; �2u; �; 0) =
�2f

(1 + �2x � 2�x cos�)
+

�2v
(1 + �2u � 2�u cos�)

;

and its reciprocal

g�1yy (�j�2f ; �2u; �x; �u; 0; 0) =
�
1 + �2x � 2�x cos�

� �
1 + �2u � 2�u cos�

�
�2f (1 + �

2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

;

we will have that

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�2f

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

=

�
1 + �2u � 2�u cos�

�
�2f (1 + �

2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�2u

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

=

�
1 + �2x � 2�x cos�

�
�2f (1 + �

2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�x

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

=
2�2f (cos�� �x)

(1 + �2x � 2�x cos�)

�
1 + �2u � 2�u cos�

�
�2f (1 + �

2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@�x

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

=
2�2u(cos�� �u)

(1 + �2u � 2�u cos�)

�
1 + �2x � 2�x cos�

�
�2f (1 + �

2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

;
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@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@ x

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

=

�
1 + �2u � 2�u cos�

�
2�2f cos�

�2f (1 + �
2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

;

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@ u

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

=

�
1 + �2x � 2�x cos�

�
2�2v cos�

�2f (1 + �
2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

:

It is then easy to see that

(1 + �2x)
@gyy(�j�2f ; �2u; �x; �u; 0; 0)

@�2f

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

��x
�2f

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@ x

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

=

�
1 + �2u � 2�u cos�

�
(1 + �2x)

�2f (1 + �
2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

�
�
1 + �2u � 2�u cos�

�
2�x cos�

�2f (1 + �
2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

=

�
1 + �2u � 2�u cos�

� �
1 + �2x � 2�x cos�

�
�2f (1 + �

2
u � 2�u cos�) + �2u (1 + �2x � 2�x cos�)

= (1 + �2u)
@gyy(�j�2f ; �2u; �x; �u; 0; 0)

@�2v

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)

��u
�2v

@gyy(�j�2f ; �2u; �x; �u; 0; 0)
@ x

1

gyy(�j�2f ; �2u; �x; �u; 0; 0)
:

Given (8), this result implies that the information matrix of model (27) will only have rank

5 under the null when the true values of �x and �u are di¤erent from 0 and from each other

because the Ar(2)+Ar(1) model corresponding to both the Sar1 and Nar1 alternatives is

�rst-order identi�ed in those circumstances. �

Proposition 8

Consider model (28). The spectral score with respect to  a will be given by the sum of the

spectral scores with respect to  x and  u evaluated at  x =  u =  a. More speci�cally, given

that
@gyy(�)

@ x
=
@gxx(�)

@ x
;

@gyy(�)

@ u
=
@guu(�)

@ u

and that
@gxx(�)

@ x
= 2 cos�gxx(�);

@guu(�)

@ u
= 2 cos�guu(�)
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under the single null hypothesis H0 :  x =  u =  a = 0, the score of the spectral log-likelihood

for the observed series yt with respect to  a will be given by

2
XT�1

j=0
cos�j [gxx(�j) + guu(�j)]g

�2
yy (�j)[2�Iyy(�j)� gyy(�j)] = 2

XT�1

j=0
cos�j2�Iaa(�j);

which involves the �rst circulant autocorrelation of the reduced form residuals at. An analogous

proof applies to the Ma tests. �

C Auxiliary results

Lemma 1 The spectral density of the observed process generated according to (20) will be

gyy(�) =
1 +  2f � 2 f cos�
1 + �2 � 2� cos� �2f + �

2
u (C1)

and its autocovariances


yy(0) =
(1 +  2f � 2� f )

(1� �2) �2f + �
2
u; (C2)


yy(1) =
(1� � f )(��  f )

(1� �2) �2f ; (C3)


yy(j) = �
xx(j � 1); j � 2: (C4)

Proof. Since ft and ut are orthogonal at all leads and lags, the expression for the spectral

density follows directly from the expressions for the spectral density of an Arma(1,1) process.

The same is true for the autocovariances, where we simply have to add �2u up to the zero order

term. �

Lemma 2 The spectral density of the observed process generated according to (21) will be

gyy(�) =
�2f�

1 +  2x � 2 x cos�
�
(1 + �2 � 2� cos�)

+ �2u (C5)

and its autocovariances


yy(0) =
(� x + 1)�

2
f

(1� �2)
�
1�  2x

�
(1� � x)

+ �2u; (C6)


yy(1) =
(�+  x)�

2
f

(1� �2)
�
1�  2x

�
(1� � x)

; (C7)


yy(2) = (�+  x)
xx(j � 1)� � x
xx(j � 2); j � 2: (C8)

Proof. Given that the autoregressive polynomial is 1� (�+  x)L+ � xL
2, the �rst autocor-

relation of the signal can be obtained from the Yule-Walker equation

�xx(1) = (�+  x)� � x�xx(1);
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which yields

�xx(1) =
�+  x
� x + 1

;

while the remaining ones can be obtained from the recursion

�xx(j) = (�+  x)�xx(j � 1)� � x�xx(j � 2); j � 1:

As for the unconditional variance, we can use the fact that


xx(0)[1� (�+  x)�xx(1) + � x�xx(2)] = �2f ;

with

[1� (�+  x)�xx(1) + � x�xx(2) =
�
1� �2

� �
1�  2x

� 1� � x
� x + 1

to obtain


xx(0) =
(� x + 1)�

2
f

(1� �2)
�
1�  2x

�
(1� � x)

:

Similarly, the spectral density will be

gxx(�) =
�2f�

1 +  2x � 2 x cos�
�
(1 + �2 � 2� cos�)

:

Since xt and ut are orthogonal at all leads and lags, the result follows. �

Lemma 3 The spectral density of the observed process generated according to (23) will be

gyy(�) =
�2f

(1 + �2 � 2� cos�)
�
1 +  2x � 2 x cos 2�

� + �2u:
Proof. The proof is entirely analogous to the proof of Lemma 1. �

Lemma 4 The spectral density of the observed process generated according to (25) will be

gyy(�) =
�2f

(1 + �2 � 2� cos�) +
�2u�

1 +  2u � 2 u cos�
� ; (C9)

while the autocovariances become


yy(j) =
�j

1� �2�
2
f +

 ju
1�  2u

�2u; j � 2: (C10)

Proof. The autocovariances of the signal are


xx(j) = �j
�2f

1� �2 ; j � 0

while its spectral density is

gxx(�) =
�2f

(1 + �2 � 2� cos�) :
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Similarly, the autocovariances of the noise are


uu(j) =  ju
�2v

1�  2u
; j � 0

while its spectral density

guu(�) =
�2v�

1 +  2u � 2 u cos�
� :

Since we are assuming that ft and vt are uncorrelated at all leads and lags, the autocovari-

ances and the spectral density of yt will be the sum of those of their underlying components.

�

Lemma 5 The spectral density of the observed process generated according to (26) will be

gyy(�) =
�2f

(1 + �2 � 2� cos�) +
�
1 +  2u � 2 u cos�

�
�2v;

while the autocovariances become


yy(0) =
1

1� �2�
2
f + (1 +  

2
u)�

2
u


yy(1) =
�

1� �2�
2
f �  u�2u


yy(j) =
�j

1� �2�
2
f ; j � 2:

Proof. The proof is entirely analogous to the proof of Lemma 4. �

Lemma 6 The spectral density of the observed process generated according to (27) will be

gyy(�) =
�2f

(1 + �2x � 2�x cos�)
�
1 +  2x � 2 x cos 2�

�
+

�2v
(1 + �2u � 2�u cos�)

�
1 +  2u � 2 u cos 2�

� ; (C11)

while the autocovariances become


yy(0) =
(�x x + 1)�

2
f

(1� �2x)
�
1�  2x

�
(1� �x x)

+
(�u u + 1)�

2
v

(1� �2u)
�
1�  2u

�
(1� �u u)

;


yy(1) =
(�x +  x)�

2
f

(1� �2x)
�
1�  2x

�
(1� �x x)

+
(�u +  u)�

2
v

(1� �2u)
�
1�  2u

�
(1� �u u)

;


yy(j) = (�x +  x)
xx(j � 1)� �x x
xx(j � 2)
+ (�u +  u)
uu(j � 1)� �u u
uu(j � 2); j � 2:

Proof. The proof is entirely analogous to the proof of Lemma 2. �
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Table 1

Monte Carlo rejection rates (%) of LM tests at 10%, 5%, 1% signi�cance levels

 x  u LM signal LM noise joint LM LM resid

10.30 9.99 10.26 9.78

0 0 5.04 4.94 5.07 4.87

0.90 0.83 0.86 0.81

32.54 24.22 28.28 17.90

.5 0 22.22 14.80 17.72 10.44

7.56 4.46 5.38 2.88

13.44 13.44 12.58 12.50

0 .5 7.24 7.10 6.58 7.16

1.48 1.56 1.42 1.64

11.42 9.50 13.14 12.18

.5 .5 6.08 4.70 7.22 6.86

1.42 0.86 1.64 1.64

19.62 12.38 22.98 15.92

.6 .3 12.06 6.62 14.48 9.42

3.36 1.48 4.04 2.32
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Table 2

Monte Carlo rejection rates (%) of tests at 10%, 5%, 1% signi�cance levels

 x  u LM2S LM1S LR W Wnc % zeros

10.37 8.63 14.33 21.77 35.54

0 0 4.93 4.28 7.17 14.81 31.37 52.00

0.99 0.71 1.40 6.52 23.97
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Table 3a

Monte Carlo rejection rates (%) of tests at 10%, 5%, 1% signi�cance levels

 x  u LM2S LM1S LR W % zeros

41.20 55.12 62.96 58.20

.5 0 29.28 41.08 48.70 43.72 8.22

12.34 17.78 24.08 22.52

9.42 8.38 14.52 24.52

0 .5 4.80 4.00 7.00 19.16 53.60

1.14 0.82 1.38 10.40

19.54 29.60 41.62 50.00

.5 .5 11.94 18.72 28.14 39.66 22.16

3.66 5.76 9.10 23.00

49.42 64.00 76.14 77.02

.6 .3 37.14 49.32 63.68 64.78 5.54

17.76 24.28 37.24 41.54

Table 3b

Size-adjusted Monte Carlo rejection rates (%) of tests at 10%, 5%, 1%

 x  u LM2S LM1S LR W

40.38 58.32 54.82 31.32

.5 0 29.42 44.28 41.06 17.38

12.66 20.72 20.16 4.56

9.02 9.58 10.22 14.06

0 .5 4.90 4.80 4.72 8.36

1.16 1.04 0.90 3.12

18.92 32.52 34.08 30.64

.5 .5 12.00 20.84 21.70 18.02

3.72 7.14 6.84 4.94

48.56 66.52 69.74 52.16

.6 .3 37.40 52.92 55.40 34.32

18.10 27.54 32.54 13.48
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