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1 Introduction

As is well known, the Gaussian pseudo-maximum likelihood (PML) estimators advocated by

Bollerslev and Wooldridge (1992) among many others remain root-T consistent for the condi-

tional mean and variance parameters irrespective of the degree of asymmetry and kurtosis of the

conditional distribution of the observed variables, so long as the first two moments are correctly

specified and the fourth moments are bounded. Nevertheless, many empirical researchers prefer

to specify a non-Gaussian parametric distribution for the standardised innovations, which they

use to estimate the conditional mean and variance parameters jointly with the parameters char-

acterising the shape of the assumed distribution by maximum likelihood (ML). However, while

ML will often yield more efficient estimators of the conditional mean and variance parameters

than Gaussian PML if the assumed conditional distribution is correct, it may end up sacrificing

consistency when it is not, as shown by Newey and Steigerwald (1997).

If one is mostly interested in the first two conditional moments, the semiparametric (SP)

estimators of Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost (1999) offer an

attractive solution because they are sometimes both consistent and partially efficient, as proved

by Linton (1993), Drost and Klaassen (1997), Drost, Klaassen and Werker (1997), or Sun and

Stengos (2006). However, they suffer from the curse of dimensionality, which severely limits their

use in multivariate models. To avoid this problem, Hodgson and Vorkink (2003) and Hafner and

Rombouts (2007) have considered elliptically symmetric semiparametric (SSP) estimators, which

retain univariate rates for their nonparametric part regardless of the cross-sectional dimension

of the data, but which are unfortunately less robust.

The main objective of our paper is to study in detail the trade-offs between efficiency and

consistency of the conditional mean and variance parameters that arise in this context. While

many of the aforementioned papers provide detailed analyses of one of these issues, especially in

univariate models, or in models with no mean, to our knowledge we are the first to simultaneously

analyse all the hard choices than an empirical researcher faces in practice. Furthermore, we

do so in a multivariate framework with non-zero means, in which some of the earlier results

seem misleadingly simple. The inclusion of means in multivariate models not only provides

a unified perspective in an otherwise fragmented literature, but more importantly, it allows

us to cover many empirically relevant applications beyond Arch models, which have been the

motivating example for most of the existing work. In particular, our results apply to conditionally

homoskedastic, dynamic linear models such as Vars or multivariate regressions, which remain

the workhorse in empirical macroeconomics and asset pricing contexts.

Another important differentiating feature of our analysis is that we explicitly look at the
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efficiency ranking of the feasible ML procedure that jointly estimates the shape parameters, as

well as the Gaussian PML, SP, SSP and infeasible ML estimators considered in the existing

literature.

In addition, we provide consistency conditions for distributionally misspecified maximum

likelihood estimators, and show that they coincide with the partial adaptivity conditions of

semiparametric procedures. Specifically, we find that the parameters that are efficiently esti-

mated by the semiparametric procedures, and therefore by the feasible parametric estimators

under correct specification, will continue to be consistently estimated by the latter under dis-

tributional misspecification. In contrast, all the other parameters, which the semiparametric

procedures can only estimate with the efficiency of the Gaussian PML estimator, will be incon-

sistently estimated by distributionally misspecified parametric procedures. For that reason, we

propose closed-form consistent estimators for those parameters.

Finally, we propose simple Hausman tests that compare the feasible ML and SSP estimators

to the Gaussian PML ones to assess the validity of the distributional assumptions.

The rest of the paper is organised as follows. In section 2, we present closed-form expressions

for the score vector, Hessian and conditional information matrices of log-likelihood functions

with and without the assumption of elliptical symmetry, and derive the efficiency bounds of

the Gaussian PML estimator and both SP estimators. Then, in section 3 we compare the

efficiency of the different estimators of the conditional mean and variance parameters, and

obtain some general results on partial adaptivity. In section 4, we first study the consistency of

the conditional mean and variance parameters when the conditional distribution is misspecified,

and then introduce the Hausman tests. A Monte Carlo evaluation of the different parameter

estimators and testing procedures can be found in section 5. Finally, we present our conclusions

in section 6. Proofs and auxiliary results are gathered in appendices.

2 Theoretical background

2.1 The model

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N dependent variables, yt, is typically assumed to be generated as:

yt = μt(θ0) +Σ
1/2
t (θ0)ε

∗
t ,

μt(θ) = μ(zt, It−1;θ),
Σt(θ) = Σ(zt, It−1;θ),

where μ() and vech [Σ()] are N × 1 and N(N + 1)/2 × 1 vector functions known up to the

p× 1 vector of true parameter values θ0, zt are k contemporaneous conditioning variables, It−1
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denotes the information set available at t−1, which contains past values of yt and zt, Σ1/2t (θ) is

some particular “square root” matrix such that Σ1/2t (θ)Σ
1/20
t (θ) = Σt(θ), and ε∗t is a martingale

difference sequence satisfying E(ε∗t |zt, It−1;θ0) = 0 and V (ε∗t |zt, It−1;θ0) = IN . Hence,

E(yt|zt, It−1;θ0) = μt(θ0)
V (yt|zt, It−1;θ0) = Σt(θ0)

¾
. (1)

To complete the model, we need to specify the conditional distribution of ε∗t . Following

most of the literature, we shall assume that, conditional on zt and It−1, ε∗t is independent

and identically distributed, or ε∗t |zt, It−1;θ0,%0 ∼ i.i.d. D(0, IN ,%0) for short, where % are

some q additional parameters that determine the shape of the distribution. Importantly, this

distribution could substantially depart from a multivariate normal both in terms of skewness

and kurtosis.

2.2 Maximum likelihood estimators

Let f(ε∗;%) denote the conditional density of ε∗t given zt, It−1 and the shape parameters,

which we assume is well defined. Let also φ = (θ0,%)0 denote the p + q parameters of interest,

which we assume variation free. Ignoring initial conditions, the log-likelihood function of a

sample of size T for those values of θ for which Σt(θ) has full rank will take the form LT (φ) =PT
t=1 lt(φ), where lt(φ) = dt(θ) + ln f [ε

∗
t (θ),%], dt(θ) = ln |Σ

−1/2
t (θ)|, ε∗t (θ) = Σ

−1/2
t (θ)εt(θ),

and εt(θ) = yt −μt(θ).

The most common choices of square root matrices are the Cholesky decomposition, which

leads to a lower triangular matrix for a given ordering of yt, or the spectral decomposition, which

yields a symmetric matrix.1 In what follows, we shall use the former because it is much faster to

compute than the latter, especially when Σt(θ) is time-varying. Nevertheless, we discuss some

modifications required for the spectral decomposition in Appendix B.4.

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

s(t(φ), whose dimensions conform to those of θ and %, respectively. If μt(θ), Σ
1/2
t (θ) and

ln f(ε∗,%) are differentiable, then we show in Appendix B.1 that

sθt(φ) = [Zlt(θ),Zst(θ)]

∙
elt(φ)
est(φ)

¸
= Zdt(θ)edt(φ), (2)

s(t(φ) = ∂ ln f [ε∗t (θ) ;%]/∂% = ert(φ),

1The choice of square root matrix is non-trivial because lt(φ) may depend on it. In fact, it might even be
possible to identify Σ

1/2
t (θ) without imposing any restrictions such as lower triangularity or symmetry. One

such instance would be a constant mean and covariance matrix model whose innovations follow a multivariate
location-scale mixture of normals (see Mencía and Sentana (2009)), under the additional assumption that the
vector of asymmetry parameters is known. Even if this vector is unknown, time-variation in Σ1/2

t (θ) may suffice
to identify this matrix unrestrictedly (see Mencía and Sentana (2010) for further details).
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where
Zlt(θ) = ∂μ0t(θ)/∂θ ·Σ

−1/20
t (θ)

Zst(θ) = ∂vec0[Σ1/2t (θ)]/∂θ · [IN ⊗Σ−1/20t (θ)]

)
, (3)

and

edt(φ) =

∙
elt(φ)
est(φ)

¸
=

∙
−∂ ln f [ε∗t (θ);%]/∂ε∗,
−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε

∗ · ε∗0t (θ)}

¸
. (4)

Similarly, let ht(φ) denote the Hessian function ∂st(φ)/∂φ
0 = ∂2lt(φ)/∂φ∂φ

0. Assuming

twice differentiability of the different functions involved, we also show in Appendix B.1 that

hθθt(φ) = Zlt(θ)
∂elt(φ)

∂θ0
+ Zst(θ)

∂est(φ)

∂θ0

+
£
e0lt(φ)⊗ Ip

¤ ∂vec[Zlt(θ)]
∂θ0

+
£
e0st(φ)⊗ Ip

¤ ∂vec[Zst(θ)]
∂θ0

, (5)

hθ(t(φ) = Zlt(θ)∂elt(φ)/∂%
0 + Zst(θ)∂est(φ)/∂%

0, (6)

h((t(φ) = ∂2 ln f [ε∗t (θ) ;%]/∂%∂%
0,

where
∂elt(φ)

∂θ0
=

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
{Z0lt(θ) + [ε∗0t (θ)⊗ IN ]Z0st(θ)} (7)

and

∂est(φ)

∂θ0
=

½
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
+

∙
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

¸¾
×{Z0lt(θ) + [ε∗0t (θ)⊗ IN ]Z0st(θ)}. (8)

Importantly, while Zlt(θ), Zst(θ), ∂vec[Zlt(θ)]/∂θ0 and ∂vec[Zst(θ)]/∂θ
0 depend on the dy-

namic model specification, the first and second derivatives of ln f(ε∗;%) depend on the specific

distribution assumed for estimation purposes.

Given correct specification, the results in Crowder (1976) imply that the score vector st(φ) at

φ0 follows a vector martingale difference. His results also imply that, under suitable regularity

conditions,2 the asymptotic distribution of the feasible ML estimator will be
√
T (φ̂T − φ0) →

N
£
0,I−1(φ0)

¤
, where I(φ0) = E[It(φ0)|φ0], and

It(φ) = V [st(φ)|zt, It−1;φ] = −E [ht(φ)|zt, It−1;φ] .

In this context, we can prove the following result:

Proposition 1 If ε∗t |zt, It−1;φ is i.i.d. D(0, IN ,%) with density f(ε∗,%), then

It(φ) = Zt(θ)M(%)Z0t(θ),

Zt(θ) =

µ
Zdt(θ) 0
0 Iq

¶
=

µ
Zlt(θ) Zst(θ) 0
0 0 Iq

¶
,

2 In particular, Crowder (1976) requires: (i) φ0 is locally identified and belongs to the interior of the admissi-
ble parameter space, which is a compact subset of Rp+q; (ii) the Hessian matrix is non-singular and continuous
throughout some neighbourhood of φ0; (iii) there is uniform convergence to the integrals involved in the computa-
tion of the mean vector and covariance matrix of st(φ); and (iv) −E−1 −T−1 t ht(φ) T−1 t ht(φ)

p→ Ip+q,
where E−1 −T−1 t ht(φ) is positive definite on a neighbourhood of φ0.
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and

M(%) =

∙
Mdd(%) Mdr(%)
M0

dr(%) Mrr(%)

¸
=

⎡⎣ Mll(%) Mls(%) Mlr(%)
M0

ls(%) Mss(%) Msr(%)
M0

lr(%) M0
sr(%) Mrr(%)

⎤⎦ ,
with

Mll(%) = V [elt(φ)|φ] = E
£
∂2 ln f(ε∗t ;%)/∂ε

∗∂ε∗0
¯̄
%
¤
,

Mls(%) = E[elt(φ)est(φ)
0|φ] = E

£
∂2 ln f(ε∗t ;%)/∂ε

∗∂ε∗0 · (ε0∗t ⊗ IN)
¯̄
%
¤
,

Mss(%) = V [est(φ)|φ] = E
£
(ε∗t ⊗ IN) · ∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗0 · (ε∗0t ⊗ IN )|%

¤
−KNN ,

Mlr(%) = E[elt(φ)e
0
rt(φ)|φ] = −E

£
∂2 ln f(ε∗t ;%)/∂ε

∗∂%0|%
¤
,

Msr(%) = E[est(φ)e
0
rt(φ)|φ] = −E

£
(ε∗t ⊗ IN )∂2 ln f(ε∗t ;%)/∂ε∗∂%0|%

¤
,

and
Mrr(%) = V [ert(φ)|φ] = −E

£
∂2 ln f(ε∗t ;%)/∂%∂%

0|φ
¤
,

where Kmn is the commutation matrix of orders m and n.

2.3 Elliptically symmetric maximum likelihood estimators

The multivariate Gaussian and Student t have been by far the two most popular choices made

by empirical researchers to model the distribution of standardised innovations. For that reason,

we specialise our previous results to those cases in which we make the additional assumption that

D(0, IN ,%0) is some member of the spherical family with a well defined density (see Appendix

A), or ε∗t |zt, It−1;θ0,η0 ∼ i.i.d. s(0, IN ,η0) for short. Elliptical distributions are attractive in

our context because they remain tractable irrespective of the cross-sectional dimension N . In

order to highlight the change in distributional assumption, we shall use η instead of % to denote

the parameters that determine the shape of the density of ςt = ε∗0t ε
∗
t . The most prominent

elliptically symmetric example is the normal distribution, which we denote by η0 = 0. As we

mentioned before, another prominent example is a standardised multivariate t with ν0 degrees of

freedom, or i.i.d. t(0, IN , ν0) for short. As is well known, the multivariate Student t approaches

the multivariate normal as ν0 →∞, but has generally fatter tails. For that reason, we define η

as 1/ν, which will always remain in the finite range [0, 1/2) under our assumptions.

Let exp[c(η) + g(ςt,η)] denote the conditional density for ε∗t given zt, It−1 and the q shape

parameters, where c(η) corresponds to the constant of integration, and g(ςt,η) to its kernel.3

Let φ = (θ0,η)0 denote the p+ q parameters of interest, which once again we assume variation

free. Ignoring initial conditions, the log-likelihood function of a sample of size T for those

values of θ for which Σt(θ) has full rank will take the form LT (φ) =
PT

t=1 lt(φ), where lt(φ) =

dt(θ) + c(η) + g [ςt(θ),η] and ςt(θ) = ε∗0t (θ)ε
∗
t (θ).

3Fiorentini, Sentana and Calzolari (2003) (FSC) provide expressions for c(η) and g(ςt, η) in the multivariate
Student t case, which are obviously such that c(0) = − 1

2
π and g(ςt, 0) = − 1

2
ςt.
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Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. We show in Appendix B.2

that if μt(θ), Σt(θ), c(η) and g [ςt(θ),η] are differentiable, then

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ), (9)

while we can write sθt(φ) in (2) using4

Zst(θ) =
1

2
∂vec0 [Σt(θ)] /∂θ·[Σ−1/20t (θ)⊗Σ−1/20t (θ)],

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ), (10)

est(θ,η) = vec
©
δ[ςt(θ),η] · ε∗t (θ)ε∗0t (θ)− IN

ª
, (11)

where

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς (12)

is a damping factor that reflects the tail-thickness of the distribution assumed for estimation

purposes. Given that this factor is equal to 1 under Gaussianity, it is straightforward to check

that sθt(θ,0) reduces to the multivariate normal expression in Bollerslev and Wooldridge (1992),

in which case:

edt(θ,0) =

∙
elt(θ,0)
est(θ,0)

¸
=

½
ε∗t (θ)

vec [ε∗t (θ)ε
∗0
t (θ)− IN ]

¾
.

Assuming twice differentiability of the different functions involved, we also show in Appendix

B.2 that we can write

hθθt(φ) =
∂2dt(θ)

∂θ∂θ0
+

∂2g [ςt(θ), η]

(∂ς)2
∂ςt(θ)

∂θ

∂ςt(θ)

∂θ0
+

∂g [ςt(θ), η]

∂ς

∂2ςt(θ)

∂θ∂θ0
(13)

hθηt(φ) = ∂ςt(θ)/∂θ · ∂2g [ςt(θ),η] /∂ς∂η0, (14)

hηηt(φ) = ∂2c(η)/∂η∂η0 + ∂2g [ςt(θ),η] /∂η∂η
0,

where ∂ςt(θ)/∂θ, ∂2dt(θ)/∂θ∂θ0 and ∂2ςt(θ)/∂θ∂θ
0 depend on the dynamic model specifica-

tion, while ∂2g(ς, η)/(∂ς)2, ∂2g(ς, η)/∂ς∂η0 and ∂g(ς, η)/∂η∂η0 depend on the specific elliptical

distribution assumed for estimation purposes (see FSC for the multivariate Student t).

The expressions in Proposition 1 simplify considerably in the elliptically symmetric case.

The following result generalises Propositions 3 in Lange, Little and Taylor (1989), 1 in FSC and

5.2 in Hafner and Rombouts (2007):

4Note that while both Zt(θ) and edt(φ) depend on the specific choice of square root matrix Σ
1/2
t (θ), sθt(φ)

does not, a property that inherits from lt(φ). This result is not generally true for non-elliptical distributions.
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Proposition 2 If ε∗t |zt, It−1;φ is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)], then

M(η) =

⎛⎝ Mll(η) 0 0
0 Mss(η) Msr(η)
0 M0

sr(η) Mrr(η)

⎞⎠ , (15)

Mll(η) = mll(η)IN , (16)

Mss(η) = mss(η) (IN2 +KNN ) + [mss(η)− 1]vec(IN )vec0(IN ), (17)

Msr(η) = vec(IN)msr(η), (18)

mll(η) = E
h
δ2(ςt,η)

ςt
N

¯̄̄
η
i
= E

∙
2∂δ(ςt,η)

∂ς

ςt
N
+ δ(ςt,η)

¯̄̄̄
η

¸
,

mss(η) =
N

N + 2

n
1 + V

h
δ(ςt,η)

ςt
N

¯̄̄
η
io
= E

∙
2∂δ(ςt,η)

∂ς

ς2t
N(N + 2)

¯̄̄̄
η

¸
+ 1,

msr(η) = E
nh

δ(ςt,η)
ςt
N
− 1
i
e0rt(φ)

¯̄̄
φ
o
= −E

∙
ςt
N

∂δ(ςt,η)

∂η0

¯̄̄̄
η

¸
.

FSC provide analytical expressions for mll, mss and msr in the multivariate Student t case,

while Amengual and Sentana (2010a) do the same for the Kotz distribution (see Kotz (1975))

and discrete scale mixtures of normals. In this sense, an important point to note in relation to

the Student t is that mll(η) increases without bound as ν → 2+ while mss(η) remains bounded.

This differential behaviour is also characteristic of other leptokurtic elliptical distributions, such

as the normal-gamma mixture, the Kotz distribution, or the Pearson type II.

2.4 Gaussian pseudo maximum likelihood estimators

If the interest of the researcher lies exclusively in θ, which are the parameters character-

ising the conditional mean and variance functions, then one attractive possibility is to esti-

mate an equality restricted version of the spherical model in which η is set to zero. Let

θ̃T = argmaxθ LT (θ,0) denote such a PML estimator of θ. As we mentioned in the intro-

duction, θ̃T remains root-T consistent for θ0 under correct specification of μt(θ) and Σt(θ)

even though the true conditional distribution of ε∗t |zt, It−1;φ0 is neither Gaussian nor spherical,

provided that it has bounded fourth moments. The proof is based on the fact that in those

circumstances, the pseudo log-likelihood score, sθt(θ,0), is also a vector martingale difference

sequence when evaluated at θ0, a property that inherits from edt(θ,0). Importantly, this prop-

erty is preserved even when the standardised innovations, ε∗t , are not stochastically independent

of zt and It−1. The asymptotic distribution of the PML estimator of θ is stated in the following

result:5

Proposition 3 Assume that the regularity conditions A.1 in Bollerslev and Wooldridge (1992)
are satisfied.

5Throughout this paper, we use the high level regularity conditions in Bollerslev and Wooldridge (1992) because
we want to leave unspecified the conditional mean vector and covariance matrix in order to maintain full generality.
Primitive conditions for specific multivariate models can be found for example in Ling and McAleer (2003).
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1. If ε∗t |zt, It−1;φ is i.i.d. D(0, IN ,%) with tr[K(%)] <∞, then
√
T (θ̃T − θ0)→ N [0, C(φ0)],

with

C(φ) = A−1(φ)B(φ)A−1(φ),
A(φ) = −E [hθθt(θ,0)|φ] = E [At(φ)|φ] ,

At(φ) = −E[hθθt(θ;0)| zt, It−1;φ] = Zdt(θ)K(0)Z0dt(θ),
B(φ) = V [sθt(θ,0)|φ] = E [Bt(φ)|φ] ,

Bt(φ) = V [sθt(θ;0)| zt, It−1;φ] = Zdt(θ)K(%)Z0dt(θ),

K(%)=V [edt(θ,0)| zt, It−1;φ]=
∙
IN Φ(%)
Φ(%) Υ(%)

¸
, (19)

where
Φ(%) = E[ε∗t vec

0(ε∗tε
∗0
t )|φ]

Υ(%) = E[vec(ε∗tε
∗0
t − IN)vec0(ε∗tε∗0t − IN )|φ]

depend on the multivariate third and fourth order cumulants of ε∗t , so that Φ(0) = 0 and
Υ(0) = (IN2 +KNN ) if we use % = 0 to denote normality.

2. If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 <∞, then (19) reduces to

K (κ) =
∙
IN 0
0 (κ+1) (IN2+KNN )+κvec(IN )vec

0(IN )

¸
, (20)

which only depends on η through the population coefficient of multivariate excess kurtosis

κ = E(ς2t |η)/[N(N + 2)]− 1. (21)

But if tr[K(%)] is infinite then B(φ0) will be unbounded, and the asymptotic distribution of

some or all the elements of θ̃T will be non-standard, unlike that of θ̂T (see Hall and Yao (2003)).

2.5 Semiparametric estimators

As is well known, a single scoring iteration without line searches that started from θ̃T and

some root-T consistent estimator of %, %̃T say, would suffice to yield an estimator of φ that would

be asymptotically equivalent to the full-information ML estimator φ̂T , at least up to terms of

order Op(T
−1/2). Specifically,µ

θ̈T − θ̃T
%̈T − %̃T

¶
=

∙
Iθθ(φ0) Iθ((φ0)
I 0θ((φ0) I(((φ0)

¸−1
1

T

TX
t=1

∙
sθt(θ̃T , %̃T )

s(t(θ̃T , %̃T )

¸
.

If we use the partitioned inverse formula, then it is easy to see that

θ̈T − θ̃T =
£
Iθθ(φ0)− Iθ((φ0)I−1(( (φ0)I 0θ((φ0)

¤−1
× 1
T

TX
t=1

h
sθt(θ̃T ,%T )− Iθ((φ0)I−1(( (φ0)sθt(θ̃T , %̃T )

i
= Iθθ(φ0)

1

T

TX
t=1

sθ|(t(θ̃T , %̃T ),

where

Iθθ(φ0) =
£
Iθθ(φ0)− Iθ((φ0)I−1(( (φ0)I 0θ((φ0)

¤−1
,
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and

sθ|(t(θ0,η0) = sθt(θ0,%0)− Iθ((φ0)I−1(( (φ0)s(t(θ0,%0) (22)

is the residual from the unconditional theoretical regression of the score corresponding to θ,

sθt(φ0), on the score corresponding to %, s(t(φ0). The residual score sθ|(t(θ0,%0) is sometimes

called the parametric efficient score of θ, and its variance,

P(φ0) = Iθθ(φ0)− Iθ((φ0)I−1(( (φ0)I 0θ((φ0), (23)

the marginal information matrix of θ, or the feasible parametric efficiency bound. In this respect,

note that Iθθ(φ0), which is the inverse of P(φ0), coincides with the first block of I−1(φ0), and

therefore it gives us the asymptotic variance of the feasible ML estimator, θ̂T . In contrast,

I−1θθ (φ0) would give us the asymptotic variance of an infeasible restricted ML estimator, which

we would obtain only if we could fix the shape parameters % to their true values. For that

reason, we shall refer to Iθθ(φ0) as the infeasible parametric efficiency bound.

In the elliptically symmetric case, we can easily prove that (22) and (23) reduce to

sθ|ηt(θ0,η0) = Zdt(θ0)edt(φ0)−Ws(φ0) ·
£
msr(η0)M−1

rr (η0)ert(φ0)
¤

and

P(φ0) = Iθθ(φ0)−Ws(φ0)W
0
s(φ0) ·

£
msr(η0)M−1

rr (η0)m
0
sr(η0)

¤
,

respectively, where

Ws(φ0) = Zd(φ0)[0
0, vec0(IN)]

0 = E[Zdt(θ0)|φ0][00, vec0(IN)]0

= E

½
1

2
∂vec0 [Σt(θ0)] /∂θ·vec[Σ−1t (θ0)]

¯̄̄̄
φ0

¾
= E[Wst(θ0)|φ0] = −E {∂dt(θ)/∂θ|φ0} . (24)

It is worth noting that the last summand of (22) coincides with Zd(φ0) times the theoretical

least squares projection of edt(φ0) on (the linear span of) ert(φ0), which is conditionally or-

thogonal to edt(θ0,0) from Lemma 2. Such an interpretation immediately suggests alternative

estimators of θ that replace a parametric assumption on the shape of the distribution of the

standardised innovations ε∗t by nonparametric or semiparametric alternatives. In this section,

we shall consider two such estimators.

The first one is fully nonparametric, and therefore replaces the linear span of ert(φ0) by the

so-called unrestricted tangent set, which is the Hilbert space generated by all the time-invariant

functions of ε∗t with bounded second moments that have zero conditional means and are con-

ditionally orthogonal to edt(θ0,0). The following proposition, which generalises the univariate

results of Gonzalez-Rivera and Drost (1999) and Propositions 3 and 4 in Hafner and Rom-

bouts (2007) to multivariate models in which the conditional mean vector is not identically zero,

describes the resulting semiparametric efficient score and the corresponding efficiency bound:

9



Proposition 4 If ε∗t |zt, It−1;θ0,%0 is i.i.d. D(0, IN ,%) with density function f(ε∗t ;%), where %
contains some shape parameters and % = 0 denotes normality, such that both its Fisher infor-
mation matrix for location and scale,Mdd (%), and the matrix of third and fourth order central
moments K (%) are bounded, then the semiparametric efficient score will be given by:

Zdt(θ0,%0)edt(θ0,%0)− Zd(θ0,%0)
£
edt(θ0,%0)−K (0)K+(%0)edt(θ0,0)

¤
, (25)

while the semiparametric efficiency bound is

S(φ0) = Iθθ(θ0,%0)− Zd(θ0,%0)
£
Mdd(%0)−K (0)K+(%0)K (0)

¤
Z0d(θ0,%0), (26)

where + denotes Moore-Penrose inverses.

In practice, however, f(ε∗t ;%) has to be replaced by a nonparametric estimator, which suffers

from the curse of dimensionality. For this reason, Hodgson and Vorkink (2001), Hafner and

Rombouts (2007) and other authors have suggested to limit the admissible distributions to the

class of spherically symmetric ones. As a consequence, the restricted tangent set in this case be-

comes the Hilbert space generated by all time-invariant functions of ςt(θ0) with bounded second

moments that have zero conditional means and are conditionally orthogonal to edt(θ0,0). The

following proposition, which amends and extends Proposition 9 in Hafner and Rombouts (2007),

provides the resulting elliptically symmetric semiparametric efficient score and the corresponding

efficiency bound:

Proposition 5 When ε∗t |zt, It−1,φ0 is i.i.d. s(0, IN ,η0) with −2/(N + 2) < κ0 < ∞, the
elliptically symmetric semiparametric efficient score is given by:

s̊θt(φ0)=Zdt(θ0)edt(φ0)−Ws(φ0)

½∙
δ[ςt(θ0),η0]

ςt(θ0)

N
− 1̧ − 2

(N+2)κ0+2

∙
ςt(θ0)

N
− 1̧

¾
, (27)

while the elliptically symmetric semiparametric efficiency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
0
s(φ0) ·

½∙
N + 2

N
mss(η0)− 1

¸
− 4

N [(N + 2)κ0 + 2]

¾
. (28)

Once again, edt(φ) has to be replaced in practice by a semiparametric estimate obtained

from the joint density of ε∗t . However, the elliptical symmetry assumption allows us to obtain

such an estimate from a nonparametric estimate of the univariate density of ςt, h (ςt;η), avoiding

in this way the curse of dimensionality.6

3 The relative efficiency of the different estimators

3.1 General ranking and full efficiency conditions

In the previous section we have effectively considered five different estimators of θ: (1) the

infeasible, restricted ML estimator, whose computation requires knowledge of %0; (2) the feasi-

ble, unrestricted ML estimator, which simultaneously estimates %; (3) the elliptically symmetric
6Hodgson, Linton and Vorkink (2002) also consider alternative estimators that iterate the semiparametric

adjustment until it becomes negligible. However, since they have the same first-order asymptotic distribution, we
shall not discuss them separately.
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semiparametric estimator, which restricts ε∗t to have an i.i.d. s(0, IN ,η) conditional distribution,

but does not impose any additional structure on the distribution of ςt; (4) the unrestricted semi-

parametric estimator, which only assumes that the conditional distribution of ε∗t is i.i.d.(0, IN );

and (5) the Gaussian PML estimator, which imposes η = 0 even though the true conditional

distribution of ε∗t could be neither normal nor spherical. The following proposition ranks (in the

usual positive semidefinite sense) the “information matrices” of those five estimators:

Proposition 6 1. If ε∗t |zt, It−1;φ0 is i.i.d. D(0, IN ,%0) with tr[K (%)] <∞, then

Iθθ(φ0) ≥ P(φ0) ≥ S(φ0) ≥ C−1(φ0).

2. If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 <∞, then

Iθθ(φ0) ≥ P(φ0) ≥ S̊(φ0) ≥ S(φ0) ≥ C−1(φ0).

In general, the above matrix inequalities are strict, at least in part. However, there is

one instance in which all the above inequalities become equalities: when the true conditional

distribution is Gaussian. In that case, the PML estimator is obviously fully efficient, which

implies that all the other estimators of θ must also be efficient. Moreover, normality is the only

such instance within the spherical family:

Proposition 7 1. If ε∗t |zt, It−1;φ0 is i.i.d. N(0, IN ), then

It(θ0,0) = V [st(θ0,0)|zt, It−1;θ0,0] =
∙
V [sθt(θ0,0)|zt, It−1;θ0,0] 0

00 Mrr(0)

¸
where

V [sθt(θ0,0)|zt, It−1;θ0,0] = −E [hθθt(θ0,0)|zt, It−1;θ0,0] = At(θ0,0) = Bt(θ0,0).

2. If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) with −2/(N + 2) < κ0 < ∞, and Ws(φ0) 6= 0,
then S̊(φ0) = Iθθ(φ0) only if ςt|zt, It−1;φ0 is i.i.d. Gamma with mean N and variance
N [(N + 2)κ0 + 2].

3. If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 <∞, and Zl(φ0) 6= 0, then S(φ0) = Iθθ(φ0)
only if η0 = 0.

The first part of this proposition, which generalises Proposition 2 in FSC, implies that as far

as θ is concerned, there is no asymptotic efficiency loss in estimating % when %0 = 0. The second

part, which generalises the results in Gonzalez-Rivera (1997), implies that the SSP estimator

can be fully efficient only if ε∗t has a conditional Kotz distribution, which is a sufficient but not

necessary condition for msr(η0) = 0, which in turn implies P(φ0) = Iθθ(φ0). Finally, the last

part of Proposition 7 generalises Result 2 in Drost and Gonzalez-Rivera (1999) and Proposition

6 in Hafner and Rombouts (2007).
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While it is relatively straightforward to obtain closed-form expressions for the different ef-

ficiency bounds in conditionally homoskedastic, dynamic linear models such as multivariate

regressions or Vars (see e.g. Amengual and Sentana (2010a)), it is virtually impossible to do

so in dynamic conditionally heteroskedastic models, as one has to resort to numerical or Monte

Carlo integration methods to compute the expected values of Zdt(θ) or Zdt(θ)K(%)Z0dt(θ) (see

e.g. Engle and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost (1999)).7

3.2 General results on partial adaptivity

There are situations in which some, but not all elements of θ can be estimated as efficiently

as if %0 were known (see also Lange, Little and Taylor (1989)), a fact that would be described in

the semiparametric literature as partial adaptivity. Effectively, this requires that some elements

of sθt(φ0) be orthogonal to the relevant tangent set after partialling out the effects of the

remaining elements of sθt(φ0) by regressing the former on the latter. Partial adaptivity, though,

often depends on the model parametrisation. The following reparametrisation provides a general

sufficient condition in multivariate dynamic models under ellipticity:

Reparametrisation 1 A homeomorphic transformation rs(.) = [r01s(.), r
0
2s(.)]

0 of the condi-
tional mean and variance parameters θ into an alternative set of parameters ϑ = (ϑ01, ϑ

0
2)
0,

where ϑ2 is a scalar, and rs(θ) is twice continuously differentiable with rank[∂r0s (θ0) /∂θ] = p,
such that

μt(θ) = μt(ϑ1)
Σt(θ) = ϑ2Σ

◦
t (ϑ1)

¾
∀t. (29)

Such a reparametrisation is not unique, since we can always multiply the overall scale para-

meter ϑ2 by some scalar positive smooth function of ϑ1, k(ϑ1) say, and divide Σ◦t (ϑ1) by the

same function without violating (29) or redefining ϑ1. As we shall see, a particularly convenient

function would be such that after re-scaling8

E[∂ ln |Σ◦t (ϑ1)|/∂ϑ1|φ] = 0. (30)

The following proposition generalises and extends earlier results by Bickel (1982), Linton

(1993), Drost, Klaassen and Werker (1997) and Hodgson and Vorkink (2003):

Proposition 8 1. If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) and (29) holds, then:

(a) the elliptically symmetric semiparametric estimator of ϑ1 is ϑ2-adaptive,

7But see Fiorentini and Sentana (2009, 2010) for closed-form expressions in the context of tests for univariate
or multivariate conditional homoskedasticity.

8Amengual and Sentana (2010a) provide an example of a reparametrisation that achieves (30) in an unrestricted
conditionally homoskedastic context. Specifically, they model Σ as ϑ2Σ◦(ϑ1), where ϑ1 are N(N + 1)/2 − 1
parameters that ensure that |Σ◦(ϑ1)| = 1 ∀ϑ1. In other words, their reparametrisation is such that ϑ2 = |Σ|

1/N

and Σ◦(ϑ1) = Σ/|Σ|1/N .
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(b) If ϑ̊T denotes the iterated elliptically symmetric semiparametric estimator of ϑ, then
ϑ̊2T = ϑ2T (̊ϑ1T ), where

ϑ2T (ϑ1) =
1

N

1

T

TX
t=1

ς◦t (ϑ1), (31)

ς◦t (ϑ1) = [yt − μt(ϑ1)]
0Σ◦−1t (ϑ1)[yt − μt(ϑ1)], (32)

(c) rank
h
S̊(φ0)− C−1(φ0)

i
≤ dim(ϑ1) = p− 1.

2. If in addition condition (30) holds at ϑ10, then:

(a) Iϑϑ(φ0),P(φ0), S̊(φ0),S(φ0) and C(φ0) are block-diagonal between ϑ1 and ϑ2.

(b)
√
T (̊ϑ2T − ϑ̃2T ) = op(1), where ϑ̃

0
T = (ϑ̃

0
1T , ϑ̃2T ) is the Gaussian PMLE of ϑ, with

ϑ̃2T = ϑ2T (ϑ̃1T ).

This proposition provides a saddle point characterisation of the asymptotic efficiency of the

elliptically symmetric semiparametric estimator of θ, in the sense that in principle it can estimate

p − 1 “parameters” as efficiently as if we fully knew the true conditional distribution of the

data, while for the remaining scalar “parameter” it only achieves the efficiency of the Gaussian

PMLE. Obviously, the feasible, unrestricted ML estimator of ϑ1 will also be ϑ2-adaptive when

the assumed parametric conditional distribution of ε∗t is correct in view of Proposition 6.

It is also possible to find an analogous result for the unrestricted semiparametric estimator,

but at the cost of restricting further the set of parameters that can be estimated in a partially

adaptive manner:

Reparametrisation 2 A homeomorphic transformation rg(.) = [r01g(.), r
0
2g(.), r

0
3g(.)]

0 of the
conditional mean and variance parameters θ into an alternative parameter set ψ=(ψ01,ψ

0
2,ψ

0
3)
0,

where ψ2 = vech(Ψ2), Ψ2 is an unrestricted positive (semi)definite matrix of order N , ψ3 is N×
1, and rg(θ) is twice continuously differentiable in a neighbourhood of θ0 with rank

£
∂r0g (θ0) /∂θ

¤
=

p, such that
μt(θ) = μ¦t (ψ1) +Σ

¦1/2
t (ψ1)ψ3

Σt(θ) = Σ
¦1/2
t (ψ1)Ψ2Σ

¦1/20
t (ψ1)

)
∀t. (33)

This parametrisations simply requires the pseudo-standardised residuals

ε¦t (ψ1) = Σ
¦−1/2
t (ψ1)[yt − μ¦t (ψ1)] (34)

to be i.i.d. (ψ3,Ψ2). Again, (33) is not unique, since it continues to hold with the same ψ1 if

we replace Ψ2 by K−1/2(ψ1)Ψ2K
−1/20(ψ1) and ψ3 by K

−1/2(ψ1)ψ3− l(ψ1), and adjust μ¦t (ψ1)

and Σ¦1/2t (ψ1) accordingly, where l(ψ1) and K(ψ1) are a N × 1 vector and a N × N positive

definite matrix of smooth functions of ψ1, respectively. As we shall see, particularly convenient

forms for these functions would be those which achieve that after re-centring and re-scaling

E
h
∂μ¦0t (ψ1)/∂ψ1 ·Σ

¦−1/2
t (ψ1)

¯̄̄
φ
i
= 0

E
n
∂vec[Σ

¦1/2
t (ψ1)]/∂ψ1 ·

h
IN ⊗Σ¦−1/20t (ψ1)

i¯̄̄
φ
o
= 0

⎫⎬⎭ . (35)
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The following proposition, which does not require sphericity, generalises and extends Theo-

rems 3.1 in Drost and Klaassen (1997) and 3.2 in Sun and Stengos (2006):

Proposition 9 1. If ε∗t |zt, It−1;φ0 is i.i.d. D(0, IN ,%0), and (33) holds, then

(a) the semiparametric estimator of ψ1, ψ̆1T , is (ψ2,ψ3)-adaptive,

(b) If ψ̆T denotes the iterated semiparametric estimator of ψ, then ψ̆2T = ψ2T (ψ̆1T ) and
ψ̆3T = ψ3T (ψ̆1T ), where

ψ2T (ψ1) = vech

(
1

T

TX
t=1

[ε¦t (ψ1)−ψ3T (ψ1)] [ε¦t (ψ1)−ψ3T (ψ1)]0
)
, (36)

ψ3T (ψ1) =
1

T

TX
t=1

ε¦t (ψ1) (37)

(c) rank
£
S(φ0)− C−1(φ0)

¤
≤ dim(ψ1) = p−N −N(N + 1)/2.

2. If in addition condition (35) holds at ψ10, then

(a) Iψψ(φ0),P(φ0),S(φ0) and C(φ0) are block diagonal between ψ1 and (ψ2,ψ3).

(b)
√
T [(ψ̆

0
2T−ψ̃

0
2T ), (ψ̆

0
3T−ψ̃

0
3T )]

0 = op(1), where ψ̃
0
T = (ψ̃

0
1T , ψ̃

0
2T , ψ̃

0
3T ) is the Gaussian

PMLE of ψ, with ψ̃2T = ψ2T (ψ̃
0
1T ) and ψ̃3T = ψ3T (ψ̃

0
1T ).

This proposition provides a saddle point characterisation of the asymptotic efficiency of the

semiparametric estimator of θ, in the sense that in principle it can estimate p − N(N + 3)/2

“parameters” as efficiently as if we fully knew the true conditional distribution of the data, while

for the remaining “parameters” it only achieves the efficiency of the Gaussian PMLE.

Many conditionally homokedastic multivariate regression models, including Vars, can be

written as in (33) by identifying ψ1 with the slope coefficients after suitably redefining the

intercepts. In contrast, the constant conditional correlation model of Bollerslev (1990), which

assumes thatΣt(θ1,θ2) = Dt(θ1)RDt(θ1), whereDt is a positive diagonal matrix, θ2 = vecl(R)

and R a correlation matrix, seems to be the only multivariate Garch specification proposed so

far that can be parametrised as (33) if we additionally assume that μt(θ) = 0 ∀t, in which case

ψ3 is unnecessary. And even in that case, we could only adaptively estimate the parameters

of Σ¦1/2t (ψ1) = Dt(θ1){E[Dt(θ1)]|φ0}−1, which will typically correspond to the relative scale

parameters of the N univariate Arch models for the elements of yt, although Ling and McAleer

(2003) consider a more general specification. In most other models, we may need to artificially

augment the original parametrisation with ψ2 and ψ3 even though we know that ψ20 = vech(IN)

and ψ30 = 0, which could be associated with a substantial efficiency cost. Furthermore, in doing

so, we must guarantee that the parameters ψ1 remain identified (see Newey and Steigerwald

(1997) for a detailed discussion of these issues in univariate models). In this sense, the main
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difference between Propositions 8 and 9 is that in the elliptically symmetric case we can restrict

Ψ2 to be a scalar matrix, and ψ3 to 0 regardless of the mean specification, which reduces the

number of parameters involved by a factor of N(N + 3)/2.

4 Distributional misspecification and parameter consistency

4.1 Parameter estimation

So far, we have maintained the assumption that the true conditional distribution of the

standardised innovations ε∗t is correctly specified. However, one of the most important reasons

for the popularity of the Gaussian pseudo-ML estimator of θ despite its inefficiency is that it

remains root-T consistent and asymptotically normally distributed under fairly weak distribu-

tional assumptions provided that (1) is true. In contrast, some of the elements of an efficient

ML estimator may become inconsistent if the true distribution of ε∗t given zt and It−1 does not

coincide with the assumed one, as forcefully argued by Newey and Steigerwald (1997) in the

univariate case. To focus our discussion on the effects of distributional misspecification, in the

remaining of this section we shall assume that (1) is true.

Let us first consider situations in which the true distribution is i.i.d. elliptical but differ-

ent from the parametric one assumed for estimation purposes, which will often be chosen for

convenience or familiarity. Note that this covers situations in which the conditionally elliptical

distribution is correctly specified, but we fix η to some a priori chosen value η̄ which does not

coincide with the true value η0.

For simplicity, we shall define the pseudo-true values of θ and η as consistent roots of the

expected elliptical pseudo log-likelihood score, which under appropriate regularity conditions

will maximise the expected value of the pseudo log-likelihood function. The first part of the

following proposition extends the first part of Theorem 1 in Newey and Steigerwald (1997) to

multivariate dynamic models, while the rest does the same thing for Proposition 5 in Amengual

and Sentana (2010a).

Proposition 10 If (29) holds, and ε∗t |zt, It−1;ϕ0, is i.i.d. s(0, IN), where ϕ includes ϑ and the
true shape parameters, but the spherical distribution assumed for estimation purposes does not
necessarily nest the true density, then:

1. The pseudo-true value of a feasible spherically-based ML estimator of φ = (ϑ01, ϑ2,η)
0,

φ∞, is such that ϑ1∞ is equal to the true value ϑ10.

2.

E[st(φ∞)|zt, It−1;ϕ0] = 0,
Ot(φ∞;ϕ0) = V [st(φ∞)|zt, It−1;ϕ0] = Zt(ϑ∞)MO(φ∞;ϕ0)Zt(ϑ∞),

Ht(φ∞;ϕ0) = −E[ht(φ∞)|zt, It−1;ϕ0] = Zt(ϑ∞)MH(φ∞;ϕ0)Zt(ϑ∞),
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where both MO(φ∞;ϕ0) and MH(φ∞;ϕ0) share the structure of (15), (16), (17) and
(18), with

mO
ll (φ;ϕ) = E

©
δ2[ςt(ϑ),η] · [ςt(ϑ)/N ]

¯̄
ϕ
ª

mO
ss(φ;ϕ) = N(N + 2)−1 [1 + V {δ[ςt(ϑ),η] · [ςt(ϑ)/N ]|ϕ}] ,
mO
sr(φ;ϕ) = E

£
{δ[ςt(ϑ),η] · [ςt(ϑ)/N ]− 1} e0rt(φ)

¯̄
ϕ
¤
,

MO
rr(φ;ϕ) = V [ ert(φ)|ϕ],

mH
ll (φ;ϕ) = E {2∂δ[ςt(ϑ),η]/∂ς · [ςt(ϑ)/N ] + δ[ςt(θ),η]|ϕ} ,
mH
ss(φ;ϕ) = E

©
2∂δ[ςt(ϑ),η]/∂ς · ς2t (ϑ)/[N(N + 2)]

¯̄
ϕ
ª
+ 1,

mH
sr(φ;ϕ) = −E {[ςt(ϑ)/N ] · ∂δ[ςt(ϑ),η]/∂η|ϕ} ,

MH
rr(φ;ϕ) = −E[ ∂ert(φ)/∂η0

¯̄
ϕ].

3. If in addition (30) holds at ϑ10, then E[Ot(φ∞;ϕ0)|ϕ0] and E[Ht(φ∞;ϕ0)|ϕ0] will be
block diagonal between ϑ1 and (ϑ2,η).

Part 1 says that a spherically-based, unrestricted PMLE can consistently estimate all the

parameters except the expected value of ς◦t (ϑ10) in (32), while Part 2 allows us to obtain the

asymptotic variance of the spherically-based PML estimators with the usual sandwich formula.

Importantly, the above results also apply suitably modified to restricted spherically-based ML

estimators of ϑ that fix η to some a priori chosen value η̄.

Remarkably, note that the transformed parameters that we can estimate in a partially adap-

tive manner by means of the SSP estimator, and therefore by the feasible parametric procedures

under correct specification, coincide with the parameters that we continue to estimate consis-

tently with a misspecified, spherically-based, pseudo-ML estimator. In contrast, the remaining

parameter, which the SSP procedure can only estimate with the efficiency of the Gaussian PML

estimator, will be inconsistently estimated by distributionally misspecified parametric proce-

dures. Nevertheless, it should be straightforward to consistently estimate the overall scale para-

meter ϑ2 by combining ϑ̂1T with the expression for the concentrated Gaussian PML and iterated

SSP estimators in (31).

If ε∗t |zt, It−1,ϕ0 is not spherical, then in general some elements of the feasible elliptically-

based PML estimator will be inconsistent, and the same applies to the SSP estimator. Indeed,

such inconsistencies will also affect a parametric non-elliptical estimator if the distribution used

for computing the log-likelihood function does not nest the true distribution, or even if it is

correctly specified but we fix % to some a priori chosen value %̄ which differs from the true value

%0. Once again, though, it may still be possible to estimate consistently some parameters:

Proposition 11 If (33) holds, and ε∗t |zt, It−1;ϕ0 is i.i.d. (0, IN), where ϕ includes ψ and the
true shape parameters, but the distribution assumed for estimation purposes does not necessarily
nest the true density, then:
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1. The pseudo-true value of the feasible parametric ML estimator of φ = (ψ01,ψ
0
2,ψ

0
3,%)

0,
φ∞, is such that ψ1∞ is equal to the true value ψ10.

2.

E[st(φ∞)|zt, It−1;ϕ0] = 0,
Ot(φ∞;ϕ0) = V [st(φ∞)|zt, It−1;ϕ0] = Zt(ψ∞)MO(φ∞;ϕ0)Zt(ψ∞),

Ht(φ∞;ϕ0) = −E[ht(φ∞)|zt, It−1;ϕ0] = Zt(ψ∞)MH(φ∞;ϕ0)Zt(ψ∞),

whereMO(φ;ϕ) = V [et(φ)|ϕ], while

MH
ll (φ;ϕ) = E

©
∂2 ln f [ε∗t (ψ);%]/∂ε

∗∂ε∗0
¯̄
ϕ
ª
,

MH
ls (φ;ϕ) = E

©
∂2 ln f [ε∗t (ψ);%]/∂ε

∗∂ε∗0 · [ε∗0t (ψ)⊗ IN ])
¯̄
ϕ
ª
,

MH
ss(φ;ϕ) = E

©
[ε∗t (ψ)⊗ IN ] · ∂2 ln f [ε∗t (ψ);%]/∂ε∗∂ε∗0 · [ε∗0t (ψ)⊗ IN ]|ϕ

ª
−KNN

MH
lr (φ;ϕ) = −E

£
∂2 ln f [ε∗t (ψ);%]/∂ε

∗∂%0|ϕ
¤
,

MH
sr(φ;ϕ) = −E

£
[ε∗t (ψ)⊗ IN ]∂2 ln f [ε∗t (ψ);%]/∂ε∗∂%0|ϕ

ª
,

and
MH

rr(φ;ϕ) = −E
©
∂2 ln f [ε∗t (ψ);%]/∂%∂%

0|ϕ
ª
.

3. If in addition (35) holds at ψ10, then E[Ot(φ∞;ϕ0)|ϕ0] and E[Ht(φ∞;ϕ0)|ϕ0] will be
block diagonal between ψ1 and (ψ2,ψ3,%).

The first part of this proposition is the multivariate generalisation of Theorem 2 in Newey and

Steigerwald (1997).9 Obviously, it also applies when the density assumed for estimation purposes

is elliptical, whether or not it is parametrically specified, although in that case the expressions

for Ot(φ∞;ϕ0) and Ht(φ∞;ϕ0) will simplify considerably along the lines of Proposition 10.

And as in the case of Proposition 10, the above results also apply to restricted ML estimators

of ψ that fix % to some a priori chosen value %̄. In simple terms, Proposition 11 says that in

general, a misspecified parametric ML estimator cannot consistently estimate either the mean

or the covariance matrix of the i.i.d. pseudo-standardised residuals ε¦t (ψ10) in (34), which is the

precise multivariate analogue to the Newey and Steigerwald (1997) univariate result, who only

needed ψ2 and ψ3 scalar.

Once again, note that the transformed parameters that we can estimate in a partially adap-

tive manner by means of the unrestricted semiparametric estimator, and therefore by the feasible

parametric procedures under correct specification, coincide with the parameters that we con-

tinue to estimate consistently with a misspecified parametric ML estimator. In contrast, all the

other parameters, which the semiparametric procedures can only estimate with the efficiency

9 It is also possible to generalise the second part of their Theorem 1, in the sense that if the true conditional
mean of yt is 0, and we impose this restriction in estimation, then ψ3 is unnecessary. Since a zero conditional
mean assumption is in principle as contentious as any other parametric specification for the first moment, we shall
not separately discuss this case any further.
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of the Gaussian PML estimator, will be inconsistently estimated by distributionally misspeci-

fied parametric procedures. However, it should be straightforward to consistently estimate ψ2

and ψ3 by combining ψ̆1T with the expressions for the concentrated Gaussian PML and SP

estimators in (36) and (37).10

Propositions 10 and 11 will trivially yield the expressions in Proposition 3 when the distrib-

ution used for estimation purposes is the multivariate normal. It turns out that there are other

cases in which the whole of θ will be consistently estimated despite distributional misspecifica-

tion. In particular, imagine that we decide to use a Student t (pseudo) log-likelihood function,

which requires us to impose the inequality constraint η ≥ 0:

Proposition 12 1. Let φ∞ denote the pseudo-true values of the parameters θ and η implied
by a multivariate Student t log-likelihood function. If the unconditional coefficient of mul-
tivariate excess kurtosis of ε∗t is not positive, where the expectation in (21) is taken with
respect to the true unconditional distribution of the data, then θ∞ = θ0 and η∞ = 0.

2. If the unconditional coefficient of multivariate excess kurtosis of ε∗t is strictly negative,
and the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satisfied, then√
T η̂T = op(1) and

√
T (θ̃T − θ̂T ) = op(1).

3. If the unconditional coefficient of multivariate excess kurtosis of ε∗t is exactly 0, and the
regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satisfied, then

√
T η̂T will

have an asymptotic normal distribution censored from below at 0, and θ̃T will be identical
to θ̂T with probability approaching 1/2. If in addition

Hθη(φ∞;ϕ0) = E[[N + 2− ςt(θ0)]{ε∗0t (θ0)|vec0[ε∗t (θ0)ε∗0t (θ0)]}Z0dt(θ0)|ϕ0] = 0, (38)

where ϕ0 = (θ0,%0), then
√
T (θ̃T − θ̂T ) = op(1) the rest of the time.

In fact, as far as θ̂T is concerned, this result is valid not only for the Student t, but also for

any pseudo ML estimator based on a symmetric generalised hyperbolic distribution (see Mencía

and Sentana (2010) for details). In addition, it is also true for ML estimators based on fourth

order elliptically symmetric expansions of the multivariate normal density, as well as on discrete

scale mixtures of normals in which the odds ratio of the components is given (see Amengual and

Sentana (2010b)). More generally, it will be true for any leptokurtic spherical distribution that

nests the normal as a limiting case, and which is such that the scores with respect to the shape

parameters evaluated under Gaussianity are proportional to the second generalised Laguerre

polynomial

ς2t (θ)/4− (N + 2)ςt(θ)/2 +N(N + 2)/4. (39)

In all those cases θ̂T = θ̃T whenever η̂T = 0, which will occur when the sample coefficient of

excess kurtosis is non-positive.
10See also Fan, Qi and Xiu (2010) for consistent estimators of univariate Garch models with zero conditional

mean.
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Finally, it is worth pointing out that the semiparametric estimator may also become incon-

sistent if the i.i.d. assumption does not hold.11 In this sense, one should bear in mind that in

non-elliptical models the conditional distribution of yt is not invariant to the specific choice of

Σ
1/2
t (θ) assumed to generate the data, a choice that could conceivably change over time.

4.2 Hausman tests

There are several ways in which we can test the validity of the parametric assumption made

for estimation purposes. One possibility is to nest that distribution within a more flexible

parametric family, which allows us to conduct an LM test of the nesting restrictions. This

is the approach in Mencía and Sentana (2010), who use the generalised hyperbolic family as

nesting distribution for the multivariate normal and Student t. An alternative procedure would

be an information matrix test that compares some or all the elements of MO(φ∞;ϕ0) and

MH(φ∞;ϕ0) in Propositions 10 or 11 by means of an unconditional moment test. But we can

also consider a Hausman specification test. The rationale is that the feasible parametric ML

estimator θ̂T is efficient under correct specification of the conditional distribution of yt. In

contrast, if the conditional mean and variance of yt are correctly specified, but the conditional

distribution of ε∗t is misspecified, then θ̃T will remain root-T consistent as long as the fourth

order moments are bounded, while θ̂T will probably not, as Propositions 10 and 11 illustrate.

More formally

Proposition 13 Let

HW
θ̂T
= T (θ̃T − θ̂T )0

h
C(φ0)− Iθθ(φ0)

i+
(θ̃T − θ̂T ),

and
Hs
θ̂T
= T s̄0θT (θ̂T ,0)

h
B(φ0)−A(φ0)Iθθ(φ0)A(φ0)

i+
s̄θT (θ̂T ,0),

where s̄θT (θ̂T ,0) is the sample average of the Gaussian PML score evaluated at the feasible
parametric ML estimator θ̂T . If the regularity conditions A.1 in Bollerslev and Wooldridge

(1992) are satisfied and tr[K(0)] < ∞, then HW
θ̂T

d→ χ2s and HW
θ̂T
−Hs

θ̂T
= op(1) under correct

specification of the conditional distribution of yt, where s = rank
£
C(φ0)− Iθθ(φ0)

¤
.

In practice, we must replace A(φ0), B(φ0) and I(φ0) by consistent estimators to make HW
θ̂T

and Hs
θ̂T
operational. In order to guarantee the positive semidefiniteness of their weighting

matrices, it is convenient to estimate all those matrices as sample averages of the corresponding

conditional expressions in Propositions 1 or 2 and Proposition 3 evaluated at a common estimator

of φ, such as the joint MLE φ̂T , or the Gaussian PML θ̃T coupled with sequential ML or method

11Hodgson (2000) shows that the consistency of the conditional mean parameters is preserved in non-linear
univariate regression models when the innovations are conditionally symmetric but not i.i.d. if certain conditions
are satisfied. See also Proposition 7 in Amengual and Sentana (2010a) for a multivariate example.
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of moments estimators of % (see Amengual, Fiorentini and Sentana (2010)), the latter often being

such that B(θ,%) remains bounded.

Unfortunately, these feasible versions of the Hausman tests will not work properly when

tr[K(0)] becomes unbounded, which violates one of the assumptions of Proposition 3. Similarly,

in view of Propositions 7 and 12, a feasible Hausman test for the Student t and related distribu-

tions will become numerically unstable when the true distribution is Gaussian but the estimator

of η is strictly positive because
£
C(φ0)− Iθθ(φ0)

¤
= 0 in that case.

Given that the power of these Hausman tests depends on the asymptotic biases of θ̂T under

misspecification of the conditional distribution of the standardised innovations, it may be con-

venient to concentrate on those parameters that may be more affected by such distributional

misspecification. For instance, in the situation discussed in Proposition 10 power would be max-

imised if we based our Hausman test on the overall scale parameter ϑ2 exclusively, and the same

will be true in the context of Proposition 11 if we look at ψ2 and ψ3, which contain the variance

and mean parameters of the pseudo standardised residuals ε¦t (ψ1) in (34), respectively.

Given that the SSP estimator is also efficient relative to the PML estimator under sphericity,

but it may lose its consistency otherwise, we can assess the elliptical assumption with the

following alternative specification tests:

Proposition 14 Let

HW
θ̊T
= T (θ̃T − θ̊T )0[C(φ0)− S̊−1(φ0)]+(θ̃T − θ̊T ),

and
Hs
θ̊T
= T s̄0θT (̊θT ,0)

h
B(φ0)−A(φ0)S̊−1(φ0)A(φ0)

i+
s̄θT (̊θT ,0),

where s̄θT (̊θT ,0) is the sample average of the Gaussian PML score evaluated at the SSP estimator
θ̊T . If the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satisfied, then

HW
θ̊T

d→ χ2s and HW
θ̊T
−Hs

θ̊T
= op(1) under correct specification of the conditional distribution of

yt, where s = rank[C(φ0)− S̊−1(φ0)] ≤ p− 1.

Once again, it may be convenient to concentrate on the parameters that are more likely to

reflect the distributional misspecification, such as ψ2 and ψ3.

5 Monte Carlo Evidence

5.1 Design and estimation details

In this section, we assess the finite sample performance of the different estimators and testing

procedures discussed above by means of an extensive Monte Carlo exercise, with an experimental

design that augments the single factor version of the conditionally heteroskedastic factor model
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in Sentana and Fiorentini (2001) with covariance stationary diagonal Var(1) dynamics for the

mean, and Garch dynamics for the variance of the common factor. Thus:

yt = μt(π0,ρ0) +Σ
1/2
t (θ0)ε

∗
t ,

μt(π,ρ) = [IN − diag(ρ)]π + diag(ρ)yt−1,
Σt(θ) = cc

0λt(θ) + Γ,
λt(θ)− λ = α[f2kt−1(θ) + ωt−1(θ)− λ] + β[λt−1(θ)− λ],

ε∗t |zt, It−1;θ0,η0 ∼ i.i.d. s(0, IN ,η0),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (40)

where fkt(θ) is the conditionally linear Kalman filter estimator of the underlying common factor,

ωt(θ) the corresponding conditional mean square error (see Sentana (2004) for details), θ =

(π0,ρ0, c0,γ0, α, β)0, π = (π1, . . . , πN )
0, ρ = (ρ1, . . . , ρN)

0, and γ = vecd(Γ). Specifically, we

simulate and estimate a model in which N = 6, π0 = .1 · ι6, ρ0 = .1 · ι6, c0 = ι6, γ0 = 2 · ι6,

ι6 = (1, 1, 1, 1, 1, 1)0, λ0 = 1, α0 = .1 and β0 = .85. As for ε∗t , we consider a Gaussian

distribution, and two multivariate Student t’s with 8 and 4 degrees of freedom respectively. In

order to assess the effects of distributional misspecification, we also consider an i.i.d. normal-

gamma mixture with the same coefficient of multivariate excess kurtosis as the t8, an i.i.d.

asymmetric Student t such that the marginal distribution of an equally-weighted average of the

six series has the maximum negative skewness possible for the kurtosis of the t8, and a symmetric

Student t distribution with time-varying kurtosis, in which the degrees of freedom parameter

evolves according to the following stochastic difference equation

νt = .8 + .8(f2kt−1 + ωt−1)λ
−1
t−1 + .8νt−1,

which can be regarded as a multivariate version of expression (7) in Demos and Sentana (1998).12

We exploit the results in Mencía and Sentana (2010) to simulate standardised versions of all these

distributions by appropriately mixing a 6-dimensional spherical normal vector with a univariate

gamma random variable, which we obtain from the NAG Fortran 77 Mark 19 library routines

G05DDF and G05FFF, respectively (see Numerical Algorithm Group (2001) for details). As

we mentioned in section 2.2, we systematically resort to Cholesky decompositions to factorise

Σt with the objective of speeding up the computations. This choice is inconsequential for all

simulated distributions except the asymmetric t, and all estimators except the SP one. Although

we have considered other sample sizes, for the sake of brevity we only report the results for T =

1, 000 observations (plus another 100 for initialisation) based on 10,000 Monte Carlo replications.

This sample size corresponds roughly to 20 years of weekly data, or 4 years of daily data.

Our ML estimation procedure employs the following numerical strategy. First, we estimate

the conditional mean and variance parameters θ under normality with a scoring algorithm that

12A direct application of the formulas in Demos and Sentana (1998, sect.3.1) yields inft νt = 4 and E(νt) = 8.
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combines the E04LBF routine with the analytical expressions for the score in Appendix B.3

and the A(φ0) matrix in Proposition 3. Then, we compute the sequential MM estimator η̆T

proposed by FSC, which is given by

η̆T =
max[0, κ̄T (θ̃T )]

4max[0, κ̄T (θ̃T )] + 2
, (41)

where

κ̄T (θ̃T ) =
T−1

PT
t=1 ς

2
t (θ̃T )

N(N + 2)
− 1

is Mardia’s (1970) sample coefficient of multivariate excess kurtosis of the estimated standardised

residuals. Then we use η̆T as initial value for a univariate optimisation procedure that obtains

the sequential ML estimator of η that maximises the Student t log-likelihood function with the

E04ABF routine keeping θ fixed at its Gaussian PMLE, θ̃T . This estimator, together with the

PML of θ, become the initial values for the t-based ML estimators, which are obtained with the

same scoring algorithm as the PML estimator, but this time using the analytical expressions for

the information matrix I(φ0) in Proposition 2. We rule out numerically problematic solutions

by imposing the inequality constraints |ρi| ≤ .999 and γi ≥ 10−10 for i = 1, . . . , N , α ≥ 10−4,

β ≥ 0, α + β ≤ .999 and 0 ≤ η ≤ .499.13 Given that the scale of the common factor is free,

we set λ = 1 in estimation for computational convenience but report results for the alternative

normalisation c1 = 1.

Computational details for the two semiparametric procedures can be found in Appendices

B.3 and B.4. Given that a proper cross-validation procedure is extremely costly to implement

in a Monte Carlo exercise with N = 6, we have done some experimentation to choose “optimal”

bandwidths by scaling up and down the automatic choices given in Silverman (1986).14

5.2 Sampling distributions of estimators

Figures 1A-1F display box-plots with the sampling distributions of the Gaussian- and t-based

ML estimators, and the two semiparametric ones. In the case of vector parameters, we report

the values corresponding to the third series. As usual, the central boxes describe the first and

third quartiles of the sampling distributions, as well as their median. The maximum length of

the whiskers is one interquartile range. Finally, we also report the fraction of estimates outside

those whiskers to complement the information on the tails of the distributions.
13We implicitly impose the restrictions on α and β by numerically maximising the Gaussian and t log-likelihood

functions with respect to θ∗I and θ∗II subject to the restrictions 10
−4 ≤ θ∗I ≤ .999 and 0 ≤ θ∗II ≤ .999, where

β = θ∗Iθ
∗
II and α = θ∗I(1 − θ∗II). Nevertheless, we always compute scores and information bounds in terms of α

and β, using the chain rule for derivatives whenever necessary.
14We considered .3, .5, .8, 1, 1.25, 1.5, 2, 2.5, 3 and 4 times the bandwidth [4/(N + 2)]1/(N+4) · s · T−1/(N+4)

recommended by Silverman (1986) for multivariate density estimation under normality, where s2 is the second
sample moment of ε∗it(θ̃T ) averaged across t and i in the case of the SP estimator, and the sample variance of
3 ςt(θ̃T ) in the case of the SSP estimator. The reported results use scaling factors of 1.25 (SSP) and 2.5 (SP).
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As expected from Proposition 7.1, the distribution of the four estimators is essentially iden-

tical under normality across all the parameters, with the only exception of the SP estimator of

γ3, which is not very surprising given that the ML and PML are numerically identical over half

the time. However, they progressively differ under correct Student t specification as the degrees

of freedom decrease.

Another thing to note is that the sampling distributions of the Gaussian PML estimators

of π3 and ρ3 do not seem to be affected much by the true conditional distribution of the data,

which suggests that the different information bounds of the simulated model are almost block

diagonal between the conditional mean parameters (π,ρ) and the rest. The same seems to be

true for the SP estimator of π3, which essentially reflects the fact that there is no SP adjustment

for unconditional means. In contrast, the behaviour of the SP estimator of the autoregressive

coefficient ρ3 described in Figure 1B is very much at odds with the theoretical predictions,

probably as a result of the fact that the adjustment of this parameter described in (25) becomes

very noisy once we replace the unknown score by the one obtained with the multivariate kernel

estimator.

On the other hand, the sampling distributions of the SSP and t-based ML estimators of

π3 and ρ3 are quite sensitive to the nature of the underlying distribution. In particular, when

the true distribution is elliptical, the sampling distributions of those estimators are narrower

than the distributions of the PML and SP estimators. This is particularly noticeable in the t4

case, but also in the normal-gamma case, for which the ML estimator should lose its asymptotic

efficiency but not its consistency according to Proposition 10. At the same time, an asymmetric

distribution introduces substantial positive biases in the ML and SSP estimators of π3. Intu-

itively, since the true distribution of the standardised innovations is negatively skewed, those

estimators are re-centring their estimated distributions so as to make them more symmetric.

Somewhat surprisingly, though, the biases in the unconditional mean seem to go a long way in

mopping up the biases in the autocorrelation coefficients. As for time-varying kurtosis, it seems

to have little effect on the estimators of the two conditional mean parameters that we analyse,

with results that broadly resemble the ones obtained for the t8.

Unlike what happens with the conditional mean parameters, the sampling distributions of

the PML estimators of both the static variance parameters c3 and γ3, and the dynamic variance

parameters α and β are quite sensitive to the distribution of the innovations. In this sense,

the first thing to note is that those sampling distributions deteriorate as the distribution of

the standardised innovations becomes more leptokurtic. In fact, when ν0 = 4 the shape of the

distribution of the PML estimators of the Arch and Garch parameters is clearly non-standard,
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as discussed after Proposition 3. On the other hand, the PML estimators of α and β are the

least affected by the existence of time-varying higher order moments. The SP estimators of the

conditional variance parameters also suffer when κ0 increases, becoming substantially downward

biased in the case of γ3, as well as in the case of α when the innovations are t4.

In contrast, the ML estimators of the conditional variance parameters behave very much as

expected: there are substantial efficiency gains when the distribution of the innovations coincides

with the assumed one, and some noticeable biases when it does not. However, it is interesting

to note that those biases only affect γ3 and α in the normal-gamma case, and α and β in the

time-varying leptokurtic case. The unbiasedness results that we obtain with the asymmetric t

are somewhat remarkable, and suggest once again that the biases in the unconditional mean

that we observe in Figure 1A adequately re-centre the estimated distribution of the innovations.

The behaviour of the SSP estimators of the conditional variance parameters is mixed. When

the distribution is elliptical, this estimator does a reasonably good job, although by no means

does it achieve the efficiency of the ML estimator. This is especially true in the case of t4

innovations, when it also shares a downward bias for α with the SP estimator. Like the ML

estimators, though, the SSP estimators also seem somewhat resilient to misspecification, since

the only noticeable biases correspond to γ3 for the asymmetric Student t, and α and β for the

t distribution with time-varying degrees of freedom.

Model (40) can be easily reparametrised as in (29) if we ignore the small adjustment term

ωt−j(θ). For instance, we can choose ϑ2 to be the cross-sectional average of the idiosyncratic

variances (= γ0ιN/N), and then re-scale λ, α and the elements of γ accordingly. Figures 1G and

1H display box-plots of γ3/ϑ2 and α/ϑ2. As can be seen, the t-based ML estimators of these

two derived parameters become consistent when the true distribution is normal-gamma, which

confirms Proposition 10.a (see also Thm.1 in Newey and Steigerwald (1997)). But contrary

to the asymptotic results in Proposition 8.a, they seem to be at least as efficient as the SSP

estimator in that case. Similarly, the SSP estimators also seem to be consistent in the case

of the asymmetric Student t, but the downward bias that affects α when the distribution is t4

continues to contaminate α/ϑ2.

5.3 Finite sample performance of Hausman tests

Following our discussion on power in section 4.2, we focus our attention on two parameters

only: the cross-sectional mean of the unconditional mean parameters π0s and the cross-sectional

mean of the idiosyncratic variances γ0s. In the remaining of this section, we shall refer to those

two average parameters as π̄ and γ̄. The Wald version of single coefficient tests is straightforward.

The LM version is also easy to obtain if we use the results in the proofs of Propositions 13 and
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14 to show that

√
T (θ̃T − θ̂T )−A−1(φ0)

√
T s̄θT (θ̂T , 0) = op(1),

√
T (θ̃T − θ̊T )−A−1(φ0)

√
T s̄θT (̊θT , 0) = op(1).

To simplify the comparisons between parametric and semiparametric testing procedures, we

systematically use the PML estimator of θ in computing the different information bounds. We

also use the sequential MM estimator of η in (41), which amounts to replacing κ0 by its sample

analogue when it is positive.15 We provide further details on how we compute the SSP bound

S̊(φ0) in Appendix B.3.

The first two panels of Table 1 report the fraction of simulations in which the parametric

and SSP Hausman tests in Propositions 13 and 14, respectively, exceed the 1, 5 and 10% critical

values of a χ21 when the true distribution is a Student t8, while the last panel reports the

corresponding fractions for the SSP test in the normal-gamma case. All tests tend to overreject,

but the size distortions of the parametric tests are typically small, especially if compared to the

huge distortions shown by the SSP Hausman procedures based on γ̄. Although the estimators

of S̊(φ0) are noisier than the estimators of I(φ0) or C(φ0), the main problem with the SSP tests

is that the difference between the Monte Carlo variances of the PML estimators of π̄ and γ̄ and

its asymptotically efficient SSP counterparts is smaller than the Monte Carlo variance of the

difference between those two estimators, which violates the principle underlying Hausman tests.

In fact, the Monte Carlo variance of the SSP estimator of γ̄ turns out to be higher than that of

the PML estimator both in the case of the Student t8 and the normal-gamma mixture, despite

the fact that the Monte Carlo variances of the estimators of the individual γ0is are in the correct

order, which suggests that the SSP estimators of the γ0is have a more positive cross-sectional

correlation. Monte Carlo experiments with T = 10, 000 indicate, though, that those problems

are mitigated as the first-order asymptotic results become more representative.

Table 2 contains the fraction of simulations in which the parametric (upper panels) and SSP

(lower panels) Hausman tests exceed the 1, 5 and 10% empirical critical values obtained by

simulation when the true distribution is a Student t8 (see Table 1).

As expected, the parametric test based on π̄ has little power when the true distribution

is normal-gamma, which is not surprising given that in that case the ML estimators of the

conditional mean parameters are consistent, albeit no longer efficient. In contrast, the power is

essentially 1 if we base the test on the idiosyncratic variance parameter γ̄. In the case of the
15As we mentioned before, the feasible versions of the Hausman tests will not work properly when η ≥ 1/4

because in that case κ becomes unbounded in the population but not in the sample. Moreover, it may also have
poor finite sample properties for η0 ≥ 1/8 because the asymptotic distribution of η̆T will not be root-T consistent
in that case (see Amengual, Fiorentini and Sentana (2010) for further details).
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asymmetric t, though, the parametric Hausman tests based on the unconditional means have

substantially more power than the tests based on the unconditional idiosyncratic variances, which

is also in line with the Monte Carlo distributions presented in the previous section. Finally,

neither of those parameters is useful to detect a t distribution with time-varying degrees of

freedom.

In turn, the SSP Hausman test based on π̄ and γ̄ have a lot of power to detect departures

in the asymmetric direction, but again no power against time-varying kurtosis. The odd size-

adjusted power results observed at the 1% level simply reflect the imprecision of the estimated

Monte Carlo critical values.

6 Conclusions

In the context of general multivariate dynamic models with non-zero conditional means

and possibly time-varying variances and covariances, we compare the efficiency of the feasible

ML procedure that jointly estimates the shape parameters with the efficiency of the Gaussian

PML, SP, SSP and infeasible ML estimators of the conditional mean and variance parameters

considered in the existing literature. As one would expect, we show that if the standardised

innovations are strong white noise with a possibly asymmetric and leptokurtic distribution the

ranking is infeasible ML, feasible ML, SP and Gaussian PML. We then particularise our results

to elliptical distributions, and show that the efficiency bound of the SSP estimator lies between

those of the feasible ML and SP estimators, the second of which in turn is more efficient than

the Gaussian PMLE, with equality if and only if the spherical distribution is in fact Gaussian, in

which case there is no efficiency loss in simultaneously estimating the shape parameters. In this

respect, our results generalise earlier findings by Gonzalez-Rivera and Drost (1999) and Hafner

and Rombouts (2007), who look at univariate models and multivariate models with zero means,

respectively. By explicitly considering a multivariate framework with non-zero conditional means

we are able to cover many empirically relevant applications beyond Arch models, which have

been the motivating example for most of the existing work. In particular, our results apply to

conditionally homoskedastic, dynamic linear models such as Vars or multivariate regressions,

which remain the workhorse in empirical macroeconomics and asset pricing contexts.

More generally, we show that in the elliptical case the SSP estimator is adaptive for all but

one global scale parameter in an appropriate reparametrisation of the model. This result directly

generalises the one obtained for univariateGarchmodels by Linton (1993), as well as the results

in Hodgson and Vorkink (2003) for a specific multivariate Garch-M model. We also show that

when the conditional distribution is not only leptokurtic or platykurtic but also potentially
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asymmetric the general SP estimator is adaptive for a much more restricted set of parameters

in an alternative reparametrisation that in a conditionally heteroskedastic context only seems

to fit the constant conditional correlation model of Bollerslev (1987) when the conditional mean

is 0, but which covers the slope coefficients of many conditionally homokedastic multivariate

regression models, including Vars. This second result generalises the ones obtained for specific

univariateGarchmodels by Drost and Klaassen (1997) and Sun and Stengos (2006), which seem

overly simple from a multivariate perspective. Importantly, we prove that both semiparametric

estimators share a saddle point efficiency property, in that they are as inefficient as the Gaussian

PMLE for the parameters that they cannot estimate adaptively.

We also thoroughly analyse the effects of distributional misspecification on the consistency

of the conditional mean and variance parameter estimators. In particular, we show that when

the true conditional distribution is elliptical but different from the parametric one assumed for

estimation purposes, the feasible spherically-based ML estimator is consistent for exactly the

same parameters for which the SSP estimator is adaptive, and the same is true when we fix

the shape parameters to some a priori chosen value which does not coincide with the true one.

This result generalises Theorem 1 in Newey and Steigerwald (1997), which applies to univariate

models.

Furthermore, we show that when the conditional distribution is not necessarily spherical,

the feasible ML estimator based on a misspecified parametric distribution will be consistent for

exactly the same restricted subset of parameters for which the general SP estimator is adap-

tive, which excludes both the mean and the covariance matrix of the i.i.d. pseudo-standardised

innovations. This second result also directly generalises Theorem 2 in Newey and Steigerwald

(1997), which again looks misleadingly simple from a multivariate perspective.

In both cases, we also show that the remaining parameters, which the semiparametric proce-

dures can only estimate with the efficiency of the Gaussian PML estimator, will be inconsistently

estimated by distributionally misspecified parametric procedures. For that reason, we provide

closed-form expressions for consistent estimators of those parameters.

Intuitively, the reparametrisations that we consider are such that both the covariance of the

(pseudo) score and the expected Hessian are block diagonal between a subset of the conditional

mean and variance parameters and the rest, including those that characterise the shape of the

distribution. In turn, this block diagonality leads to full efficiency under correct specification,

while under misspecification it protects the estimators of those parameters from inconsistencies

in the remaining ones.

In addition, we show that when the conditional distribution is either platykurtic or mesokur-
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tic, so that the coefficient of multivariate excess kurtosis is non-negative, the feasible ML esti-

mators based on certain leptokurtic spherical distributions, including the multivariate Student t

and indeed any symmetric generalised hyperbolic distribution, as well some discrete scale mix-

tures and Laplace expansions of the multivariate normal, provide consistent estimators of all the

parameters irrespective of the ellipticity of the true distribution because they converge to the

Gaussian PML estimators.

In view of the importance of the distributional assumptions, we propose simple Hausman

specification tests that compare the feasible ML and SSP estimators to the Gaussian PML ones.

In a detailed Monte Carlo experiment we find that there is a substantial difference between

the estimation of the following four groups of parameters: (a) the unconditional mean parame-

ters, (b) the unconditional variance parameters, (c) the dynamic mean parameters, and (d) the

dynamic variance parameters. We also find that the finite sample performance of the semipara-

metric procedures is not well approximated by the first-order asymptotic theory that justifies

them. This is particularly true of the SP estimators of the dynamic mean and variance pa-

rameters, but also affects the SSP estimators of the latter. As for the feasible ML estimators

based on a Student t log-likelihood function, we find that they offer substantial efficiency gains

relative to the Gaussian PML estimators when the true distribution coincides with the one as-

sumed for estimation purposes, but they may be biased otherwise. Nevertheless, we find that

the biases seem to be limited to the unconditional mean parameters when the true distribution

is asymmetric, and the variance parameters when it is elliptical but not t. In this second case,

our simulation results also confirm that we can obtain consistent estimators of all parameters

but one by using one of the reparametrisations previously discussed.

As for the Hausman tests, we find that the one based on the feasible ML estimator works

quite well, both in terms of size and power, while the one based on the SSP estimator suffers

from substantial size distortions when we base it on the unconditional variance parameters. In

this sense, it would be useful to explore bootstrap procedures that exploit the fact that elliptical

distributions are parametric in N − 1 dimensions, and non-parametric in only one.

Further work is required in at least four other directions. First, from a modelling point

of view, the assumption of i.i.d. innovations in non-spherical multivariate models seems rather

strong, for it forces the conditional distribution of the observed variables to depend on the choice

of square root matrix used to obtain the underlying innovations. For that reason, Mencía and

Sentana (2009, 2010) model the asymmetry parameters as a function of the information set in

such a way that this dependence disappears. However, this implies that there is no longer a

clear separation between the parameters that enter in the first two moments, and those that
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determine higher order ones. The beta t Arch model of Harvey and Chakravarty (2008), or the

conditionally heteroskedastic factor model of Harvey, Ruiz and Sentana (1992) with elliptically

distributed factors are other examples in which this separation also breaks down.

Secondly, from an estimation point of view, the development of semiparametric estimators

that do not require the assumption of i.i.d. innovations remains an important unresolved issue

that merits further investigation. Thirdly, the availability of analytical finite sample results

would probably make the choice between bias and efficiency look more balanced than what

standard root-T asymptotics suggests.

Finally, empirical researchers are often interested in features of the distribution beyond the

first two conditional moments, which implies that one cannot simply treat the shape parameters

as if they were nuisance parameters. For that reason, Amengual, Fiorentini and Sentana (2010)

consider sequential estimators of the shape parameters, which can be easily obtained from the

standardised innovations evaluated at the Gaussian PML estimators. In particular, they consider

sequential ML estimators, as well as sequential GMM estimators. The main advantage of such

estimators is that they preserve the consistency of the conditional mean and variance functions,

but at the same time allow for a more realistic conditional distribution.

More generally, the existing literature, including our paper, places too much emphasis on

parameter estimation, while practitioners are often more interested in functionals of the con-

ditional distribution, such as its quantiles or the probability of the joint occurrence of several

events. An evaluation of the consequences that the different estimation procedures that we have

considered have for such objects constitutes a fruitful avenue for future research.
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Appendix

A Proofs and auxiliary results

Some useful distribution results

A spherically symmetric random vector of dimension N , ε◦t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε◦t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <∞,

we can standardise ε◦t by setting E(e
2
t ) = N , so that E(ε◦t ) = 0, V (ε

◦
t ) = IN . Specifically, if ε

◦
t

is distributed as a standardised multivariate Student t random vector of dimension N with ν0

degrees of freedom, then et =
p
(ν0 − 2)ζt/ξt, where ζt is a chi-square random variable with N

degrees of freedom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance

2ν0. If we further assume that E(e4t ) < ∞, then the coefficient of multivariate excess kurtosis

κ0, which is given by E(e4t )/[N(N +2)]− 1, will also be bounded. For instance, κ0 = 2/(ν0− 4)

in the Student t case with ν0 > 4, and κ0 = 0 under normality. In this respect, note that since

E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
√
N

so that ε◦t is proportional to ut, then κ0 ≥ −2/(N + 2), the minimum value being achieved in

the uniformly distributed case.

Then, it is easy to combine the representation of elliptical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V (ε◦t ) = IN are given by

E(ε◦tε
◦
t
0 ⊗ ε◦t ) = 0, (A1)

E(ε◦tε
◦
t
0⊗ε◦tε◦t 0)=E[vec(ε◦tε

◦
t
0)vec0(ε◦tε

◦
t )]=(κ0+1)[(IN2+KNN )+vec (IN) vec

0 (IN )]. (A2)

Lemmata

Lemma 1 Let ς denote a scalar random variable with continuously differentiable density func-
tion h(ς;η) over the possibly infinite domain [a, b], and let m(ς) denote a continuously differen-
tiable function over the same domain such that E [m(ς)|η] = k(η) <∞. Then

E [∂m(ς)/∂ς|η] = −E [m(ς)∂ lnh(ς;η)/∂ς|η] ,

as long as the required expectations are defined and bounded.

Proof. If we differentiate

k(η) =E [m(ς)|η] =
Z b

a
m(ς)h(ς;η)dς
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with respect to ς, we get

0=

Z b

a

∂m(ς)

∂ς
h(ς;η)dς+

Z b

a
m(ς)

∂h(ς;η)

∂ς
dς=

Z b

a

∂m(ς)

∂ς
h(ς;η)dς+

Z b

a
m(ς)h(ς;η)

∂ lnh(ς;η)

∂ς
dς,

as required. ¤

Lemma 2 If ε∗t |zt, It−1;θ0,%0 is i.i.d. D(0, IN ,%) with density function f(ε∗t ;%), where % = 0
denotes normality, then

E
©
edt(θ,0)

£
e0dt(θ,%), e

0
rt(θ,%)

¤¯̄
zt, It−1;θ,%

ª
= [K (0) |0]. (A3)

Proof. We can use the conditional analogue to the generalised information matrix equality (see

e.g. Newey and McFadden (1994)) to show that

E
©
sθt(θ,0)

£
s0θt(θ,%), s

0
(t(θ,%)

¤¯̄
zt, It−1;θ,%

ª
= −E

½∙
∂sθt(θ,0)

∂θ0

¯̄̄̄
∂sθt(θ,0)

∂%0

¸¯̄̄̄
zt, It−1;θ,%

¾
= −E { [hθθt(θ;0)|0]| zt, It−1;θ,%} = [At(φ)|0]

irrespective of the conditional distribution of ε∗t , where we have used the fact that sθt(θ,0) does

not vary with % when regarded as the influence function for θ̃T . Then, the required result follows

from the martingale difference nature of both edt(θ0,0) and et(θ0,%0). ¤

Proposition 1

Since the distribution of ε∗t given zt, It−1 is assumed to be i.i.d., then it is easy to see from

(2) that et(φ) = [e0dt(φ), e
0
rt(φ)]

0 will inherit the martingale difference property of the score

st(φ0). As a result, the conditional information matrix will be given by∙
Zlt(θ) Zst(θ) 0
0 0 Iq

¸⎡⎣ Mll(%) Mls(%) Mlr(%)
M0

ls(%) Mss(%) Msr(%)
M0

lr(%) M0
sr(%) Mrr(%)

⎤⎦⎡⎣ Z0lt(θ) 0
Z0st(θ) 0
0 Iq

⎤⎦
=

∙
Zlt(θ)Mll(%)Z

0
lt(θ) + Zst(θ)M0

ls(%)Z
0
lt(θ) + Zlt(θ)Mls(%)Z

0
st(θ) + Zst(θ)Mss(%)Z

0
st(θ)

M0
lr(%)Z

0
lt(θ) +M0

sr(%)Z
0
st(θ)

Zlt(θ)Mlr(%) + Zst(θ)Msr(%)
Mrr(%)

¸
,

where ⎡⎣ Mll(%) Mls(%) Mlr(%)
M0

ls(%) Mss(%) Msr(%)
M0

lr(%) M0
sr(%) Mrr(%)

⎤⎦ = V

⎡⎣ elt(θ,%)
est(θ,%)
ert(θ,%)

¯̄̄̄
¯̄θ,%

⎤⎦ ,
which confirms the variance of the score part of the proposition.

As for the expected value of the Hessian expressions, it is easy to see that

E[hθθt(φ)|zt, It−1;φ] = Zlt(θ)E
∙
∂elt(θ,%)

∂θ0

¯̄̄̄
zt, It−1;φ

¸
+ Zst(θ)E

∙
∂est(θ,%)

∂θ0

¯̄̄̄
zt, It−1;φ

¸
because

E [elt(θ,%)|zt, It−1;φ] = −E [∂ ln f [ε∗t (θ);%]/∂ε∗|zt, It−1;φ] = 0 (A4)
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and

E [est(θ,%)|zt, It−1;φ] = −E [vec{IN + ∂ ln f [ε∗t (θ);%]/∂ε
∗ · ε∗t (θ)}|zt, It−1;φ] = 0. (A5)

Expression (7) then leads to

E

∙
∂elt(θ,%)

∂θ0

¯̄̄̄
zt, It−1;φ

¸
= E

∙
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
{Z0lt(θ) + [ε0∗t (θ)⊗ IN ]Z0st(θ)}

¯̄̄̄
zt, It−1;φ

¸
= E

∙
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0

¯̄̄̄
φ

¸
Z0lt(θ) +E

∙
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
[ε0∗t (θ)⊗ IN ]

¯̄̄̄
φ

¸
Z0st(θ).

Likewise, equation (8) leads to

E

∙
∂est(θ,%)

∂θ0

¯̄̄̄
zt, It−1;φ

¸
= E

∙½
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
+

∙
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

¸¾
×{Z0lt(θ) + [ε0∗t (θ)⊗ IN ]Z0st(θ)}

¯̄
zt, It−1;φ

¤
= E

∙
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0

¯̄̄̄
φ

¸
Z0lt(θ)

+E

∙
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
[ε0∗t (θ)⊗ IN ]

¯̄̄̄
zt, It−1;φ

¸
Z0st(θ)−KNNZ

0
st(θ)

because of (A4) and (A5), which in turn implies

E

½∙
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

¸
[ε0∗t (θ)⊗ IN ]

¯̄̄̄
zt, It−1;φ

¾
= KNNE

½
KNN

∙
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

¸
[ε0∗t (θ)⊗ IN ]

¯̄̄̄
zt, It−1;φ

¾
= KNNE

½∙
∂ ln f [ε∗t (θ);%]

∂ε∗
⊗ IN

¸
[ε0∗t (θ)⊗ IN ]

¯̄̄̄
zt, It−1;φ

¾
= KNNE

½∙
∂ ln f [ε∗t (θ);%]

∂ε∗
ε0∗t (θ)⊗ IN

¸¯̄̄̄
zt, It−1;φ

¾
= −KNN

in view of Theorem 3.1 in Magnus (1988).

As a result, the information matrix equality implies that

Mll(%) = E
©
∂2 ln f [ε∗t (θ);%]/∂ε

∗∂ε∗0
¯̄
φ
ª

Mls(%) = E
©
∂2 ln f [ε∗t (θ);%]/∂ε

∗∂ε∗0 · [ε0∗t (θ)⊗ IN ]
¯̄
φ
ª

Mss(%) = E
©
[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂ε∗0 · [ε0∗t (θ)⊗ IN ]

¯̄
φ
ª
−KNN

Similarly, equation (6) implies that

E[hθ(t(φ)|zt, It−1;φ] = E[Zlt(θ)∂elt(θ,%)/∂%
0 + Zst(θ)∂est(θ,%)/∂%

0|zt, It−1;φ].

But then the information matrix equality together with equations (C37) and (C38) imply that

E[∂elt(θ,%)/∂%
0|zt, It−1;φ] = −E{∂2 ln f [ε∗t (θ);%]/∂ε∗∂%0|φ} =Mlr(%),

E[∂est(θ,%)/∂%
0|zt, It−1;φ] = −E{[ε∗t (θ)⊗ IN ]∂2 ln f [ε∗t (θ);%]/∂ε∗∂%0|φ} =Msr(%).

Finally, the information matrix equality also implies that

Mrr(%) = −E{∂2 ln f [ε∗t (θ);%]/∂%∂%0|φ},

as required. ¤

32



Proposition 2

For our purposes it is convenient to rewrite edt(φ0) as

elt(φ0) = δ[ςt(θ0),η0]ε
∗
t (θ0) = δ(ςt,η0)

√
ςtut,

est(φ0) = vec
©
δ[ςt(θ0),η0]ε

∗
t (θ0)ε

∗0
t (θ0)− IN

ª
= vec

£
δ(ςt,η0)ςtutu

0
t − IN

¤
,

where ςt and ut are mutually independent for any standardised spherical distribution, with

E(ut) = 0, E(utu0t) = N−1IN , E(ςt) = N and E(ς2t ) = N(N +2)(κ0+1). Importantly, we only

need to compute unconditional moments because ςt and ut are independent of zt and It−1 by

assumption. Then, it easy to see that

E[elt(φ)|φ] = E[δ(ςt,η)
√
ςt|η] ·E(ut) = 0,

and that

E[est(φ)|φ] = vec
©
E [δ(ςt,η0)ςt|η] ·E(utu0t)− IN

ª
= vec(IN) {E [δ(ςt,η0)(ςt/N)|η]− 1} .

In this context, we can use expression (2.21) in Fang, Kotz and Ng (1990) to write the density

function of ςt as

h(ςt;η) =
πN/2

Γ(N/2)
ς
N/2−1
t exp[c(η) + g(ςt,η)], (A6)

whence

[δ(ςt,η)(ςt/N)− 1] = −
2

N
[1 + ςt · ∂ lnh(ςt;η)/∂ς] . (A7)

On this basis, we can use Lemma 1 to show that E(ςt) = N <∞ implies

E [ςt · ∂ lnh(ςt;η)/∂ς|η] = −E [1] = −1,

which in turn implies that

E [δ(ςt,η)(ςt/N)− 1|η] = 0 (A8)

in view of (A7). Consequently, E[est(φ)|φ] = 0, as required.

Similarly, we can also show that

E[elt(φ)e
0
lt(φ)|φ] = E

©
δ2(ςt,η)ςtutu

0
t|η
ª
= IN ·E[δ2(ςt,η0)(ςt/N)|η],

E[elt(φ)e
0
st(φ)|φ] = E

©
δ(ςt,η)

√
ςtutvec

0 £δ(ςt,η)ςtutu0t − IN¤ |ηª = 0
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by virtue of (A1), and

E[est(φ0)e
0
st(φ0)|φ] = E

©
vec

£
δ(ςt,η0)ςtutu

0
t − IN

¤
vec0

£
δ(ςt,η0)ςtutu

0
t − IN

¤
|η
ª

= E [δ(ςt,η)ςt|η]2
1

N(N + 2)
[(IN2 +KNN) + vec (IN ) vec

0 (IN)]

−2E [δ(ςt,η)(ςt/N)|η] vec (IN) vec0 (IN) + vec (IN) vec
0 (IN)

=
N

(N + 2)
E [δ(ςt,η)(ςt/N)|η]2 (IN2 +KNN)

+

½
N

(N + 2)
E [δ(ςt,η)(ςt/N)|η]2 − 1

¾
vec (IN) vec

0 (IN)]

by virtue of (A2), (A7) and (A8).

Finally, it is clear from (9) that ert(φ0) will be a function of ςt but not of ut, which imme-

diately implies that E[elt(φ)e0rt(φ)|φ] = 0, and that

E[est(φ)e
0
rt(φ)|φ] = E

©
vec

£
δ(ςt,η)ςt · utu0t − IN

¤
e0rt(φ)

ª
= vec(IN)E

©
[δ(ςt,η)(ςt/N)− 1] e0rt(φ)

ª
.

To obtain the expected value of the Hessian, it is also convenient to write hθθt(φ0) in (13)

as

−4Zst(θ0)[IN ⊗ {δ[ςt(θ0), η0]ε∗t (θ0)ε∗0t (θ0)− IN}]Z0st(θ0)

+[e0lt(θ0,η0)Σ
−1/20
t (θ)⊗ Ip]

∂vec

∂θ0

∙
∂μ0t(θ)

∂θ

¸
+
1

2
{e0st(θ0,η0)[Σ

−1/2
t (θ0)⊗Σ−1/2t (θ0)]⊗ Ip}

∂vec

∂θ0

½
∂vec0[Σt(θ)]

∂θ

¾
−2Zlt(θ0)[e0lt(θ0,η0)⊗ IN ]Z0st(θ0)− 2Zst(θ0)[elt(θ0,η0)⊗ IN ]Z0lt(θ0)

−δ[ςt(θ0),η0]Zlt(θ0)Z0lt(θ0)−2Zst(θ0)Z0st(θ0)−
2∂δ [ςt(θ0),η0]

∂ς
{Zlt(θ0)ε∗t (θ0)ε∗0t (θ0)Z0lt(θ0)

+Zlt(θ0)ε
∗
t (θ0)vec

0[ε∗t (θ0)ε
∗0
t (θ0)]Z

0
st(θ0) + Zst(θ0)vec[ε

∗
t (θ0)ε

∗0
t (θ0)]ε

∗
t (θ0)Z

0
lt(θ0)

+ Zst(θ0)vec[ε
∗
t (θ0)ε

∗0
t (θ0)]vec

0[ε∗t (θ0)ε
∗0
t (θ0)]Z

0
st(θ0)

ª
.

Clearly, the first four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (A1). As for the remaining terms, we can write them as

−δ(ςt,η0)Zlt(θ0)Z0lt(θ0)− 2∂δ(ςt,η0)/∂ς · Zlt(θ0)ςtutu0tZ0lt(θ0)

−2Zst(θ0)Z0st(θ0)− 2∂δ(ςt,η0)/∂ς · ς2tZst(θ0)vec(utu0t)vec0(utu0t)Z0st(θ0),

whose conditional expectation will be

−Zlt(θ0)Z0lt(θ0)E[δ(ςt;η0) + 2(ςt/N) · ∂δ(ςt,η0)/∂ς|η0]− 2Zst(θ0)Z0st(θ0)

−Zst(θ0)
2E[ς2t · ∂δ(ςt,η0)/∂ς|η0]

N(N + 2)
[(IN2 ⊗KNN) + vec(IN )vec

0(IN )]Z
0
st(θ0).
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As for hθηt(φ0), it follows from (14) and (B33) that we can write it as

{Zlt(θ0)ε∗t (θ0) + Zst(θ0)vec
£
ε∗t (θ0)ε

∗0
t (θ0)

¤
} · ∂δ [ςt(θ0),η0] /∂η0

= [Zlt(θ)ut
√
ςt + Zst(θ)vec(utu

0
t)ςt] · ∂δ(ςt,η)/∂η0,

whose conditional expected value will be Zst(θ0)vec(IN)E[(ςt/N) · ∂δ(ςt,η0)/∂η0|η]. ¤

Proposition 3

The proof of the first part is based on a straightforward application of Proposition 1 in

Bollerslev and Wooldridge (1992) to the i.i.d. case. Since sθt(θ0,0) = Zdt(θ0)edt(θ0,0), and

edt(θ0,0) is a vector martingale difference sequence, then to obtain Bt(φ0) we only need to

compute V [edt(θ0,0)|zt, It−1;φ0], which justifies (19). Further, we will have that∙
elt(θ0,0)
est(θ0,0)

¸
=

µ
ε∗t (θ0)

vec [ε∗t (θ0)ε
∗0
t (θ0)− IN ]

¶
=

∙ √
ςtut

vec(ςtutu
0
t − IN )

¸
for any spherical distribution, with ςt and ut both mutually and serially independent. Then (20)

follows from (A1) and (A2). As for At(φ0), we know that its formula, which is valid regardless

of the exact nature of the true conditional distribution, coincides with the expression for Bt(φ0)

under multivariate normality (%0 = 0) by the (conditional) information matrix equality. ¤

Proposition 4

It trivially follows from (19) and (A3) that

E
©£
edt(θ,%)−K (0)K+ (%) edt(θ,0)

¤
e0dt(θ,0) |zt, It−1;θ,%

ª
= 0

for any distribution. In addition, we also know that

E
©£
edt(θ,%)−K (0)K+ (%) edt(θ,0)

¤
|zt, It−1;θ,%

ª
= 0.

Hence, the second summand of (25), which can be interpreted as Zd(φ0) times the residual from

the theoretical regression of edt(φ0) on a constant and edt(θ0,0), belongs to the unrestricted

tangent set, which is the Hilbert space spanned by all the time-invariant functions of ε∗t with zero

conditional means and bounded second moments that are conditionally orthogonal to edt(θ0,0).

Now, if we write (25) as

[Zdt(θ)− Zd(θ,%)] edt(θ,%) + Zd(θ,%)K (0)K+ (%) edt(θ,0),

then we can use the law of iterated expectations to show that the semiparametric efficient score

(25) evaluated at the true parameter values will be unconditionally orthogonal to the unrestricted

tangent set because so is edt(θ0,0), and E [Zdt(θ)− Zd(θ,%)|θ,%] = 0.
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Finally, the expression for the semiparametric efficiency bound will be

E

∙
{Zdt(θ)edt(θ,%)− Zd(θ,%) [edt(θ,%)−K (0)K+ (%) edt(θ,0)]}
×{edt(θ,%)0Z0dt(θ)− [e0dt(θ,%)− e0dt(θ, 0)K+ (%)K (0)]Z0d(θ,%)}

¯̄̄̄
θ,%

¸
= E

£
Zdt(θ)edt(θ,%)e

0
dt(θ,%)Zdt(θ)|θ,%

¤
−E

©
Zdt(θ)edt(θ,%)

£
e0dt(θ,%)− e0dt(θ,0)K+ (%)K (0)

¤
Z0d(θ,%)|θ,%

ª
−E

©
Zd(θ,%)

£
edt(θ,%)−K (0)K+ (%) edt(θ,0)

¤
edt(φ)

0Z0dt(θ)|θ,%
ª

+E
©
Zd(θ,%)

£
edt(θ,%)−K (0)K+ (%) edt(θ, 0)

¤ £
e0dt(θ,%)− e0dt(θ, 0)K+ (%)K (0)

¤
Z0d(θ,%)|θ,%

ª
= Iθθ(θ,%)− Zd(θ,%)

£
Mdd (%)−K (0)K+ (%)K (0)

¤
Z0d(θ,%)

by virtue of (19), (A3) and the law of iterated expectations. ¤

Proposition 5

First of all, it is easy to show that for any spherical distribution

e̊dt(θ0,0) = E

∙
elt(θ0,0)
est(θ0,0)

¯̄̄̄
ςt;φ0

¸
= E

½
ε∗t (θ0)

vec [ε∗t (θ0)ε
∗0
t (θ0)− IN ]

¯̄̄̄
ςt;φ0

¾
= E

∙ √
ςtut

vec(ςtutu
0
t−IN)

¯̄̄̄
ςt

¸
=
³ ςt
N
− 1
´∙ 0

vec(IN )

¸
, (A9)

and

e̊dt(φ0) = E

∙
elt(φ0)
est(φ0)

¯̄̄̄
ςt;φ0

¸
= E

½
δ[ςt(θ0),η0] · ε∗t (θ0)

vec [δ[ςt(θ0),η0] · ε∗t (θ0)ε∗0t (θ0)− IN ]

¯̄̄̄
ςt;φ0

¾
= E

½
δ(ςt,η0)

√
ςtut

vec[δ(ςt,η0)ςtutu
0
t − IN ]

¯̄̄̄
ςt

¾
=
h
δ(ςt,η0)

ςt
N
-1
i ∙ 0

vec(IN )

¸
, (A10)

where we have used again the fact that E(ut) = 0, E(utu0t) = N−1IN , and ςt and ut are

stochastically independent.

In addition, we can use the law of iterated expectations to show that

E
£̊
edt(φ)e

0
dt(θ,0)|φ

¤
= E

£
edt(φ)̊e

0
dt(θ,0)|φ

¤
= E

£̊
edt(φ)̊e

0
dt(θ,0)|φ

¤
and

E
£̊
edt(θ,0)e

0
dt(θ,0)|φ

¤
= E

£
edt(θ,0)̊e

0
dt(θ, 0)|φ

¤
= E

£̊
edt(θ,0)̊e

0
dt(θ,0)|φ

¤
.

Hence, to compute these matrices we simply need to obtain the scalar moments

E
n³ ςt

N
− 1
´ h

δ(ςt,η0)
ςt
N
− 1
i¯̄̄
η
o

and

E

∙³ ςt
N
− 1
´2 ¯̄̄̄

η

¸
.
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In this respect, we can use (21) to show that the latter is simply [(N + 2)κ+ 2]/N , so that

E
£̊
edt(θ,0)e

0
dt(θ,0)|φ

¤
=
(N + 2)κ+ 2

N

µ
0 0
0 vec(IN)vec

0(IN )

¶
= K̊ (κ) .

As for the former, we can use Lemma 1 to show that E(ς2t ) = N(N + 2)(κ+ 1) <∞ implies

E
£
ς2t · ∂ lnh(ςt;η)/∂ς

¯̄
η
¤
= −E [2ςt|η] = −2N.

If we then combine this result with (A7) and (A8), we will have that for any spherically symmetric

distribution

E
n³ ςt

N
− 1
´h

δ(ςt,η0)
ςt
N
− 1
i¯̄̄
η
o
=
2

N
,

so that

E
£̊
edt(φ)e

0
dt(θ,0)|φ

¤
= K̊ (0) ,

which coincides with the value of E [̊edt(θ,0)e0dt(θ,0)|φ] under normality.

Therefore, it trivially follows from the expressions for K̊ (0) and K̊ (κ0) above that

E
nh̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

i
e0dt(θ,0)

¯̄̄
zt, It−1;φ

o
= E

nh̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

i
e̊0dt(θ,0)

¯̄̄
zt, It−1;φ

o
= 0

for any spherically symmetric distribution. In addition, we also know that

E
nh̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

i¯̄̄
zt, It−1;φ

o
= 0.

Thus, even though
h̊
edt(φ0)− K̊ (0) K̊+ (κ0) e̊dt(θ0,0)

i
is the residual from the theoretical re-

gression of e̊dt(φ) on a constant and e̊dt(θ,0), it turns out that the second summand of (27)

belongs to the restricted tangent set, which is the Hilbert space spanned by all the time-invariant

functions of ςt(θ0) with bounded second moments that have zero conditional means and are con-

ditionally orthogonal to edt(θ0,0).

Now, if write (27) as

Zdt(θ)edt(φ)− Zd(φ)̊edt(φ) + Zd(φ)K̊ (0) K̊+ (κ) e̊dt(θ,0),

then we can use the law of iterated expectations to show that the elliptically symmetric semi-

parametric efficient score is indeed unconditionally orthogonal to the restricted tangent set.
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Finally, the expression for the semiparametric efficiency bound will be

E [̊sθt(φ)̊s
0
θt(φ)|φ] = E

⎡⎣ n
Zdt(θ)edt(φ)− Zd(φ)

h̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

io
×
n
edt(φ)

0Z0dt(θ)−
h̊
e0dt(φ)− e̊0dt(θ,0)K̊+ (κ) K̊ (0)

i
Z0d(φ)

o ¯̄̄̄¯̄φ
⎤⎦

= E
£
Zdt(θ)edt(φ)e

0
dt(φ)Zdt(θ)|φ

¤
−E

n
Zdt(θ)edt(φ)

h̊
e0dt(φ)− e̊0dt(θ,0)K̊+ (κ) K̊ (0)

i
Z0d(φ)|φ

o
−E

n
Zd(φ)

h̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

i
edt(φ)

0Z0d(φ)|φ
o

+E
n
Zd(φ)

h̊
edt(φ)− K̊ (0) K̊+ (κ) e̊dt(θ,0)

i h̊
e0dt(φ)− e̊0dt(θ,0)K̊+ (κ) K̊ (0)

i
Z0d(φ)|φ

o
= Iθθ(φ0)−Ws(φ0)W

0
s(φ0) ·

½∙
N + 2

N
mss(η)− 1

¸
− 4

N [(N + 2)κ+ 2]

¾
by virtue of the law of iterated expectations. ¤

Proposition 6

The proof that Iθθ(φ0) is at least as large as P(φ0) in the positive semidefinite matrix sense

follows trivially from the fact that the latter is the residual variance in the multivariate theoretical

regression of sθt(φ0) on s(t(φ0), while the former is the unconditional variance of sθt(φ0). The

fact that the residual variance of a multivariate regression cannot increase as we increase the

number of regressors also explains why P(φ0) is at least as large (in the positive semidefinite

matrix sense) as S̊(φ0), and why the latter is at least as large as S(φ0), reflecting the fact

that the relevant tangent sets become increasing larger. Finally, the positive semidefiniteness

of S(φ0)−A(θ)B−1(φ)A(θ) follows from the fact that it coincides with the residual covariance

matrix in the theoretical regression of the semiparametric efficient score on the Gaussian pseudo-

score since

E[{Zdt(θ)edt(θ,%)− Zd(θ,%)
£
edt(θ,%)−K (0)K+ (%) edt(θ,0)

¤
}e0dt(θ,0)Z0dt(θ)|φ] = A(θ)

because e0dt(θ,0) is conditionally orthogonal to [edt(θ,%)−K (0)K+ (%) edt(θ,0)] by construc-

tion. ¤

Proposition 7

The proof of the first part is trivial, except perhaps for the fact that Msr(0) = 0, which

follows from Lemma 2 because est(θ0,0) coincides with est(φ0) under normality.

To prove the second part, note that Iθθ(φ) − S̊(φ) is Wd(φ)W
0
d(φ) times the residual

variance in the theoretical regression of δ(ςt,η0)ςt/N−1 on (ςt/N)−1, which given thatWd(φ) 6=

0 can only be 0 if the regression residual is identically 0 for all t. The solution to the resulting

differential equation is

g(ςt,η) = −
N(N + 2)κ

2[(N + 2)κ+ 2]
ln ςt −

1

[(N + 2)κ+ 2]
ςt +C,
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which in view of (A6) implies that

h(ςt;η) ∝ς
N

(N+2)κ+2
−1

t exp

½
− 1

[(N + 2)κ+ 2]
ςt

¾
,

i.e. the density of Gamma random variable with mean N and variance N [(N +2)κ0+2]. In this

sense, it is worth recalling that κ ≥ −2/(N + 2) for all elliptical distributions, with the lower

limit corresponding to the uniform.

Finally, to prove the third part we use the fact that after some tedious algebraic manipula-

tions we can writeMdd (η)−K (0)K+ (κ)K(0) as(
[mll(η)-1]IN 0

0
h
mss(η)- 1

κ+1

i
(IN2+KNN)+

h
mss(η0)-1+

2κ
(κ+1)[(N+2)κ+2]

i
vec(IN )vec

0(IN )

)
.

Therefore, given that Zl(φ0) 6= 0, Iθθ(φ)− S(φ) will be zero only if mll(η) = 1, which in turn

requires that the residual variance in the multivariate regression of δ(ςt,η0)ε
∗
t on ε

∗
t is zero for

all t, or equivalently, that δ(ςt,η0) = 1. But since the solution to this differential equation is

g(ςt,η) = −.5ςt + C, then the result follows from (A6). ¤

Proposition 8

Given our assumptions on the mapping rs(.), we can directly work in terms of the ϑ para-

meters. In this sense, since the conditional covariance matrix of yt is of the form ϑ2Σ
◦
t (ϑ1), it

is straightforward to show that

Zdt(ϑ) =

(
ϑ
−1/2
2 [∂μ0t(ϑ1)/∂ϑ1]Σ

◦−1/20
t (ϑ1)

0

1
2{∂vec0[Σ◦t (ϑ1)]/∂ϑ1}[Σ

◦−1/20
t (ϑ1)⊗Σ◦−1/20t (ϑ1)]

1
2ϑ
−1
2 vec0(IN )

)
=

∙
Zϑ1lt(ϑ) Zϑ1st(ϑ)

0 Zϑ2st(ϑ)

¸
. (A11)

Thus, the score vector for ϑ will be∙
sϑ1t(ϑ,η)
sϑ2t(ϑ,η)

¸
=

∙
Zϑ1lt(ϑ)elt(ϑ,η) + Zϑ1st(ϑ)est(ϑ,η)

Zϑ2st(ϑ)est(ϑ,η)

¸
, (A12)

where elt(ϑ,η) and est(ϑ,η) are given in (10) and (11), respectively.

It is then easy to see that the unconditional covariance between sϑ1t(ϑ,η) and sϑ2t(ϑ,η) is

E

½£
Zϑ1lt(ϑ) Zϑ1st (ϑ)

¤ ∙ Mll(η) 0
0 Mss(η)

¸ ∙
0

Z0ϑ2st(ϑ)

¸¯̄̄̄
ϑ,η

¾
=

{2mss(η) +N [mss(η)− 1]}
2ϑ2

E

½
1

2

∂vec0[Σ◦t (ϑ1)]

∂ϑ1
[Σ
◦−1/20
t (ϑ1)⊗Σ◦−1/20t (ϑ1)]

¯̄̄̄
ϑ,η

¾
vec(IN )

=
{2mss(η) +N [mss(η)− 1]}

2ϑ2
Zϑ1s(ϑ,η)vec(IN),

with Zϑ1s(ϑ,η) = E[Zϑ1st(ϑ)|ϑ,η], where we have exploited the serial independence of ε∗t , as

well as the law of iterated expectations, together with the results in Proposition 2.
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We can use the same arguments to show that the unconditional variance of sϑ2t(ϑ,η) will

be given by

E

½£
0 Zϑ2st(ϑ)

¤ ∙ Mll(η) 0
0 Mss(η)

¸ ∙
0

Z0ϑ2st(ϑ)

¸¯̄̄̄
ϑ,η

¾
=

1

4ϑ22
vec0(IN )[mss(η) (IN2 +KNN ) + [mss(η)− 1])vec(IN )vec0(IN)]vec(IN)

=
{2mss(η) +N [mss(η)− 1]}N

4ϑ22
.

Hence, the residuals from the unconditional regression of sϑ1t(ϑ,η) on sϑ2t(ϑ,η) will be:

sϑ1|ϑ2t(ϑ,η) = Zϑ1lt(ϑ)elt(ϑ,η) + Zϑ1st(ϑ)est(ϑ,η)

− 4ϑ22
{2mss(η)+N [mss(η)-1]}N

{2mss(η)+N [mss(η)-1]}
2ϑ2

Zϑ1s(ϑ)vec(IN )
1

2ϑ2
vec0(IN )est(ϑ,η)

= Zϑ1lt(ϑ)elt(ϑ,η) + [Zϑ1st(ϑ)− Zϑ1s(ϑ,η)]est(ϑ,η).

The first term of sϑ1|ϑ2t(ϑ0,η0) is clearly conditionally orthogonal to any function of ςt(ϑ0).

In contrast, the second term is not conditionally orthogonal to functions of ςt(ϑ0), but since the

conditional covariance between any such function and est(ϑ0,η0) will be time-invariant, it will be

unconditionally orthogonal by the law of iterated expectations. As a result, sϑ1|ϑ2t(ϑ0,η0) will

be unconditionally orthogonal to the elliptically symmetric tangent set, which in turn implies

that the elliptically symmetric semiparametric estimator of ϑ1 will be ϑ2-adaptive.

To prove Part 1b, note that Proposition 5 and (A11) imply that the elliptically symmetric

semiparametric efficient score corresponding to ϑ2 will be given by

s̊ϑ2t(ϑ) = −
1

2ϑ2
vec0(IN)vec

©
δ[ςt(ϑ),η]ε

∗
t (ϑ)ε

∗0
t (ϑ)− IN

ª
− N

2ϑ2

½∙
δ[ςt(ϑ),η]

ςt(ϑ)

N
− 1
¸
− 2

(N + 2)κ+ 2

∙
ςt(ϑ)

N
− 1
¸¾

=
1

2ϑ2
{δ[ςt(ϑ),η]ςt(ϑ)−N}− N

2ϑ2

½∙
δ[ςt(ϑ),η]

ςt(ϑ)

N
− 1
¸
− 2

(N + 2)κ+ 2

∙
ςt(ϑ)

N
− 1
¸¾

=
N

ϑ2[(N + 2)κ+ 2]

∙
ςt(ϑ)

N
− 1
¸
.

But since the iterated elliptically symmetric semiparametric estimator of ϑmust set to 0 the sam-

ple average of this modified score, it must be the case that
PT

t=1 ςt(̊ϑT ) =
PT

t=1 ς
◦
t (̊ϑ1T )/̊ϑ2T =

NT , which is equivalent to (31).

To prove Part 1c note that

sϑ2t(ϑ,0) =
1

2ϑ2
[ςt(ϑ)−N ] (A13)

is proportional to the elliptically symmetric semiparametric efficient score s̊ϑ2t(ϑ), which means

that the residual covariance matrix in the theoretical regression of this efficient score on the
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Gaussian score will have rank p− 1 at most. But this residual covariance matrix coincides with

S̊ (φ)−A (φ)B−1 (φ)A (φ) since

E [̊sθt(φ)s
0
θt(θ,0)|φ] = E[Zdt(θ)edt(φ)e

0
dt(θ,0)Z

0
dt(θ)|φ] = A(θ) (A14)

because the regression residualh
δ(ςt,η)

ςt
N
− 1
i
− 2

(N + 2)κ0 + 2

³ ςt
N
− 1
´

is conditionally orthogonal to edt(θ0,0) by the law of iterated expectations, as shown in the

proof of proposition 5.

Tedious algebraic manipulations that exploit the block-triangularity of (A11) and the con-

stancy of Zϑ2st(ϑ) show that the different information matrices will be block diagonal when

Wϑ1s(φ0) is 0. Then, part 2a follows from the fact that Wϑ1s(φ0) = −E {∂dt(ϑ0)/∂ϑ1|φ0}

will trivially be 0 if (30) holds.

Finally, to prove Part 2b note that (A13) implies that the Gaussian PMLE will also satisfy

(31). But since the asymptotic covariance matrices in both cases will be block-diagonal between

ϑ1 and ϑ2 when (30) holds, the effect of estimating ϑ1 becomes irrelevant. ¤

Proposition 9

We can directly work in terms of the ψ parameters thanks to our assumptions on the mapping

rg(.). Given the specification for the conditional mean and variance in (33), and the fact that

ε∗t is assumed to be i.i.d. conditional on zt and It−1, it is tedious but otherwise straightforward

to show that the score vector will be⎡⎣ sψ1t(ψ,%)sψ2t(ψ,%)
sψ3t(ψ,%)

⎤⎦ =
⎡⎣ Zψ1lt(ψ)elt(ψ,%) + Zψ1st(ψ)est(ψ,%)Zψ2st(ψ)est(ψ,%)

Zψ3lt(ψ)elt(ψ,%)

⎤⎦ , (A15)

where

Zψ1lt(ψ)=
n
∂μ¦0t (ψ1)/∂ψ1+∂vec0[Σ¦1/2t (ψ1)]/∂ψ1 ·(ψ3 ⊗ IN)

o
Σ
¦−1/20
t (ψ1)Ψ

−1/20
2 ,

Zψ1st(ψ)=∂vec0[Σ¦1/2t (ψ1)]/∂ψ1 · [Ψ
1/2
2 ⊗Σ¦−1/20t (ψ1)Ψ

−1/20
2 ],

Zψ2st(ψ)=∂vec0(Ψ1/2)/∂ψ2 · (IN ⊗Ψ
−1/20
2 )=Zψ2s(ψ),

Zψ3lt(ψ)=Ψ
−1/20
2 =Zψ3l(ψ),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A16)

elt(ψ,%) and est(ψ,%) are given in (4), with

ε∗t (ψ) = Ψ
−1/2
2 Σ

¦−1/2
t (ψ1)[yt −μ¦t (ψ1)−Σ

¦1/2
t (ψ1)ψ3]. (A17)

It is then easy to see that the unconditional covariance between sψ1t(ψ,%) and the remaining

elements of the score will be given by

£
Zψ1l(ψ,%) Zψ1s(ψ,%)

¤ ∙ Mll(%) Mls(%)
M0

ls(%) Mss(%)

¸"
0 Z0ψ3l(ψ)

Z0ψ2s(ψ) 0

#
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with Zψ1l(ψ,%) = E[Zψ1lt(ψ)|ψ,%] and Zψ1s(ψ,%) = E[Zψ1st(ψ)|ψ,%], where we have ex-

ploited the serial independence of ε∗t and the constancy of Zψ2st(ψ) and Zψ3lt(ψ), together with

the law of iterated expectations and the definition∙
Mll(%) Mls(%)
M0

ls(%) Mss(%)

¸
= V

∙
elt(ψ,%)
est(ψ,%)

¯̄̄̄
ψ,%

¸
.

Similarly, the unconditional covariance matrix of sψ2t(ψ,%) and sψ3t(ψ,%) will be∙
0 Zψ2s(ψ)

Zψ3l(ψ) 0

¸ ∙
Mll(%) Mls(%)
M0

ls(%) Mss(%)

¸"
0 Z0ψ3l(ψ)

Z0ψ2s(ψ) 0

#
.

Hence, the residuals from the unconditional least squares projection of sψ1t(ψ,%) on sψ2t(ψ,%)

and sψ3t(ψ,%) will be:

sψ1|ψ2,ψ3t(ψ,%) = Zψ1lt(ψ)elt(ψ,%) + Zψ1st(ψ)est(ψ,%)

−
£
Zψ1l(ψ,%) Zψ1s(ψ,%)

¤ ∙ elt(ψ,%)
est(ψ,%)

¸
= [Zψ1lt(ψ)− Zψ1l(ψ,%)]elt(ψ,%) + [Zψ1st(ψ)− Zψ1s(ψ,%)]est(ψ,%),

because both Zψ2s(ψ) and Zψ3l(ψ) have full row rank when Ψ2 has full rank in view of the

discussion that follows expression (B36).

Although neither elt(ψ,%) nor est(ψ,%) will be conditionally orthogonal to arbitrary func-

tions of ε∗t , their conditional covariance with any such function will be time-invariant. Hence,

sψ1|ψ2,ψ3t(ψ,%) will be unconditionally orthogonal to ∂ ln f [ε
∗
t (ψ);%]/∂% by virtue of the law of

iterated expectations, which in turn implies that the unrestricted semiparametric estimator of

ψ1 will be (ψ2,ψ3)-adaptive.

To prove Part 1b note that the semiparametric efficient scores corresponding to ψ2 and ψ3

will be given by∙
0 Zψ2s(ψ)

Zψ3l(ψ) 0

¸
K (0)K+(%0)

½
ε∗t (ψ)

vec[ε∗t (ψ)ε
∗0
t (ψ)− IN ]

¾
because Zψ2st(ϑ) = Zψ2s(ϑ) and Zψ3lt(ϑ) = Zψ3l(ϑ) ∀t. But if (36) and (37) hold, then the

sample averages of elt[ψ1,ψ2T (ψ1),ψ3T (ψ1);0] and est[ψ1,ψ2T (ψ1),ψ3T (ψ1);0] will be 0, and

the same is true of the semiparametric efficient score.

To prove Part 1c note that∙
sψ2t(ψ,0)
sψ3t(ψ,0)

¸
=

∙
0 Zψ2s(ψ)

Zψ3l(ψ) 0

¸ ∙
ε∗t (ψ)

vec[ε∗t (ψ)ε
∗0
t (ψ)− IN ]

¸
, (A18)

which implies that the residual covariance matrix in the theoretical regression of the semipara-

metric efficient score on the Gaussian score will have rank p−N(N +3)/2 at most because both
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Zψ2s(ψ) and Zψ3l(ψ) have full row rank when Ψ2 has full rank. But as we saw in the proof of

Proposition 6, that residual covariance matrix coincides with S(φ0)−A(θ)B−1(φ)A(θ).

Tedious algebraic manipulations that exploit the block structure of (A16) and the constancy

of Zψ2st(ψ) and Zψ3lt(ψ) show that the different information matrices will be block diagonal

when Zψ1l(ψ,%) and Zψ1s(ψ,%) are both 0. But those are precisely the necessary and sufficient

conditions for sψ1t(ψ,%) to be equal to sψ1|ψ2,ψ3t(ψ,%), which is also guaranteed by (35). In

this sense, please note that the reparametrisation of ψ2 and ψ3 associated with (35) will be

such that the Jacobian matrix of vech[K−1/2(ψ1)Ψ2K
−1/20(ψ1)] andK

−1/2(ψ1)ψ3− l(ψ1) with

respect to ψ evaluated at the true values is equal to(
−V −1

∙
sψ2t(ψ0)
sψ3t(ψ0)

¯̄̄̄
φ0

¸
E

"
sψ2t(ψ0)s

0
ψ1t
(ψ0)

sψ3t(ψ0)s
0
ψ1t
(ψ0)

¯̄̄̄
¯φ0

# ¯̄̄̄
IN(N+1)/2

0

¯̄̄̄
0
IN

)
.

Finally, to prove Part 2b simply note that (A18) implies that the Gaussian PMLE will

also satisfy (36) and (37). But since the asymptotic covariance matrices in both cases will be

block-diagonal between ψ1 and (ψ2,ψ3) when (35) holds, the effect of estimating ψ1 becomes

irrelevant. ¤

Proposition 10

As in the proof of Proposition 8, we can directly work in terms of the ϑ parameters thanks

to our assumptions on the mapping rs(.). Let us initially keep η fixed to some admissible value.

The elliptically symmetric score vector for the remaining parameters will then be given by (A12).

But since

ε∗t (ϑ10, ϑ2) =
p
1/ϑ2Σ

◦−1/2
t (ϑ10)[yt − μt(ϑ10)] =

p
ϑ20/ϑ2ε

∗
t ,

so that

ςt(ϑ10, ϑ2∞) = (ϑ20/ϑ2)ςt,

we will have that

elt(ϑ10, ϑ2,η)=δ[(ϑ20/ϑ2)ςt, η]
p
ϑ20/ϑ2ε

∗
t=δ[(ϑ20/ϑ2)ςt,η]

p
ϑ20/ϑ2

√
ςtut,

est(ϑ10, ϑ2,η)=vec
£
δ[(ϑ20/ϑ2)ςt,η](ϑ20/ϑ2)ε

∗
tε
∗0
t −IN

¤
=vec

£
δ[(ϑ20/ϑ2)ςt,η](ϑ20/ϑ2)ςtutu

0
t−IN

¤
.

Then, it follows that E[elt(ϑ10, ϑ2,η)|zt, It−1;ϕ0] = 0 regardless of ϑ2 and η because of the

serial and mutual independence of ςt and ut, and the fact that E(ut) = 0. On the other hand,

E[est(ϑ10, ϑ2,η)|zt, It−1;ϕ0] = E {δ[(ϑ20/ϑ2)ςt, η](ϑ20/ϑ2)(ςt/N)− 1|ϕ0} vec(IN)

because of the serial and mutual independence of ςt and ut, and the fact that E(utu0t) = N−1IN .
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If we define ϑ2∞(η) as the value that solves the implicit equation

E [δ{[ϑ20/ϑ2(η)]ςt,η}[ϑ20/ϑ2(η)](ςt/N)− 1|ϕ0] = 0, (A19)

which we assume is positive, then it is straightforward to show that

E{sϑt[ϑ10, ϑ2∞(η),η]|zt, It−1;ϕ0} = 0, (A20)

which means that ϑ10 and ϑ2∞(η) will be the pseudo-true values of the parameters corresponding

to a restricted PML estimator that keeps η fixed.

If instead we choose η∞ as the solution to the implicit equation

E{sηt[ϑ10, ϑ2∞(η),η]|ϕ0} = 0,

which we assume lies in the interior of the admissible parameter space, then it is clear that

ϑ10, ϑ2∞(η∞) and η∞ will be the pseudo-true values of the parameters corresponding to an

unrestricted PMLE that also estimates η. In addition, since sηt[ϑ10, ϑ2∞(η),η] only depends

on ςt(ϑ10, ϑ2∞), which is i.i.d. over time, we will have that

E[sηt(ϑ10, ϑ2∞,η∞)|zt, It−1;ϕ0] = 0, (A21)

which confirms the martingale difference nature of the elliptical score evaluated at the pseudo-

true values.

To obtain the variance of the elliptically symmetric score under misspecification, we can

follow exactly the same steps as in the proof of Proposition 2 by exploiting the fact that (A20)

and (A21) hold at the pseudo-true parameter values φ∞.

These conditions also allow us to obtain the expected value of the Hessian along the lines of

Proposition 2.

As we mentioned in the proof of Proposition (8), we can tediously show that the condition

for block-diagonality of the expected value of the Hessian and the covariance matrix of the

score is E[Wϑ1st(ϑ10, ϑ2∞)|ϕ0] = 0. But this condition will be satisfied if (30) holds because

Wϑ1st(ϑ10, ϑ2∞) coincides withWϑ1st(ϑ10, ϑ20) in view of (A11). ¤

Proposition 11

As in the proof of Proposition 9, we can directly work in terms of the ψ parameters thanks

to our assumptions on the mapping rg(.). Let us initially keep % fixed to some admissible

value. The parametric score vector for the remaining parameters will then be given by (2), with

Zψ2lt(ψ) = 0, Zψ3st(ψ) = 0 and the remaining elements in (A16).
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Since we are systematically working with lower triangular square root decompositions, we

can write

Zψ1st(ψ) = ∂vech0[Σ¦1/2t (ψ1)]/∂ψ1 · LN [Ψ
1/2
2 ⊗Σ¦−1/20t (ψ1)Ψ

−1/20
2 ],

Zψ2s(ψ) = ∂vech0(Ψ1/22 )/∂ψ2 · LN [IN ⊗Ψ
−1/20
2 ],

where LN is the elimination matrix of order N (see Magnus (1988)), which is such that vec(A) =

L0Nvech(A) for any N ×N lower triangular matrix A.

Given thatΨ1/202 is upper triangular,Ψ−1/22 Σ
¦−1/2
t (ψ1) is lower triangular and IN is diagonal,

Theorem 5.7.i in Magnus (1988) implies that

[Ψ
1/20
2 ⊗Ψ−1/22 Σ

¦−1/2
t (ψ1)]L

0
N = L0NLN [Ψ

1/20
2 ⊗Ψ−1/22 Σ

¦−1/2
t (ψ1)]L

0
N ,

[IN ⊗Ψ−1/22 ]L0N = L0NLN [IN ⊗Ψ
−1/2
2 ]L0N ,

whence

Zψ1st(ψ) = ∂vech0[Σ¦1/2t (ψ1)]/∂ψ1 · LN [Ψ
1/2
2 ⊗Σ¦−1/20t (ψ1)Ψ

−1/20
2 ]L0NLN ,

Zψ2s(ψ) = ∂vech0(Ψ1/22 )/∂ψ2 · LN [IN ⊗Ψ
−1/20
2 ]L0NLN .

As a result,

sψ2t(ψ,%) = −∂vech0(Ψ1/22 )/∂ψ2 · LN [IN ⊗Ψ
−1/20
2 ]L0Nvech

½
IN +

∂ ln f [ε∗t (ψ);%]

∂ε∗
ε∗0t (ψ)

¾
sψ3t(ψ,%) = −Ψ−1/202

∂ ln f [ε∗t (ψ);%]

∂ε∗

and

sψ1t(ψ,%) =
n
∂μ¦0t (ψ1)/∂ψ1+∂vec0[Σ¦1/2t (ψ1)]/∂ψ1 ·(ψ3 ⊗ IN)

o
Σ
¦−1/20
t (ψ1)sψ3t(ψ,%)

−∂vech0[Σ¦1/2t (ψ1)]/∂ψ1 · LN [Ψ
1/2
2 ⊗Σ¦−1/20t (ψ1)Ψ

−1/20
2 ]L0Nvech

½
IN +

∂ ln f [ε∗t (ψ);%]

∂ε∗
ε∗0t (ψ)

¾
since vech(A) = LNvec(A) for any N ×N square matrix A regardless of its structure.

Let ψ2∞(%) and ψ3∞(%) denote the solution to the implicit system of N + N(N + 1)/2

equations
E{sψ2t[ψ10,ψ2∞(%),ψ3∞(%),%]|ϕ0} = 0
E{sψ3t[ψ10,ψ2∞(%),ψ3∞(%),%]|ϕ0} = 0

¾
, (A22)

which we assume is such that Ψ2∞(%) is p.d. Given that

ε∗t (ψ) = Ψ
−1/2
2 Σ

¦−1/2
t (ψ1)[yt − μ¦t (ψ1)−Σ

¦1/2
t ψ3],

so that

ε∗t (ψ10,ψ2,ψ3) = Ψ
−1/2
2 (ψ30 −ψ3) +Ψ

−1/2
2 Ψ

1/2
20 ε

∗
t ,
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we can immediately see that this variable will be i.i.d.[Ψ−1/22 (ψ30−ψ3),Ψ
−1/2
2 Ψ20Ψ

−1/20
2 ] con-

ditional on zt and It−1. This, together with the full rank of Ψ
−1/20
2 implies that

E

∙
∂ ln f [ε∗t [ψ10,ψ2∞(%),ψ3∞(%)];%]

∂ε∗

¯̄̄̄
zt, It−1,ϕ0

¸
= 0.

In addition, we know from Theorem 5.6 in Magnus (1988) that the matrix

LN [IN ⊗Ψ−1/202 ]L0N

will be upper triangular of full rank. Similarly, given that we have defined ψ2 = vech(Ψ2),

the matrix ∂vech0(Ψ1/22 )/∂ψ2 would also be of full rank in view of the discussion that follows

expression (B36).

As a result, we will also have that

vech

½
E

∙
IN +

∂ ln f [ε∗t [ψ10,ψ2∞(%),ψ3∞(%)];%]

∂ε∗
ε∗0t [ψ10,ψ2∞(%),ψ3∞(%)]

¯̄̄̄
zt, It−1,ϕ0

¸¾
= 0.

Consequently, we will have that

E{sψt[ψ10,ψ2∞(%),ψ3∞(%),%]|zt, It−1;ϕ0} = 0, (A23)

which confirms that ψ10, ψ2∞(%) and ψ3∞(%) will be the pseudo-true values corresponding to

a restricted PML estimator that keeps % fixed.

If instead we choose %∞ as the solution to the q equations

E{s(t[ψ10,ψ2∞(%),ψ3∞(%),%]|ϕ0} = 0

which we assume lies in the interior of the admissible parameter space, then it is clear that

ψ10, ψ2∞ = ψ2∞(%∞), ψ3∞ = ψ3∞(%∞) and %∞ will be the pseudo-true values of the pa-

rameters corresponding to an unrestricted PMLE that also estimates %. In addition, since

s(t[ψ10,ψ2∞(%),ψ3∞(%),%] only depends on ε
∗
t (ψ10,ψ2∞,ψ3∞), which is i.i.d. over time, we

will have that

E{s(t[ψ10,ψ2∞(%),ψ3∞(%),%]|zt, It−1;ϕ0} = 0, (A24)

which confirms that the score evaluated at the pseudo-true values will remain a martingale

difference sequence.

Therefore, in order to compute the variance of the average score we can follow exactly the

same steps as in the proof of Proposition 1 by exploiting the fact that (A23) and (A24) hold at

the pseudo-true parameter values φ∞. The martingale difference nature of the score also allows

us to obtain the expected value of the Hessian along the lines of Proposition 2.
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As we mentioned in the proof of Proposition (9), we can tediously show that the conditions

for block-diagonality of the expected value of the Hessian and the covariance matrix of the score

are that E[Zψ1lt(ψ∞)|ϕ0] and E[Zψ1st(ψ∞)|ϕ0] are both 0. But given that

Zψ1lt(ψ10,ψ2,ψ3) =
h
∂μ¦0t (ψ10)/∂ψ1 ·Σ

¦−1/20
t (ψ10)

i
Ψ
−1/20
2

+
n
∂vec0[Σ¦1/2t (ψ10)]/∂ψ1 · [IN ⊗Σ

¦−1/20
t (ψ10)]

o
(ψ3 ⊗Ψ

−1/20
2 ),

Zψ1st(ψ10,ψ2,ψ3) =
n
∂vec0[Σ¦1/2t (ψ10)]/∂ψ1 · [IN ⊗Σ

¦−1/20
t (ψ10)]

o
(Ψ

1/2
2 ⊗Ψ−1/202 ),

those condition will be satisfied if (35) holds in view of the full rank of Ψ2. .¤

Proposition 12

The consistency of the Gaussian PML derives from the fact thatE[sθt(θ0, 0)|zt, It−1;θ0,%0] =

0. Thus, if the pseudo-true value of η, η∞ say, is 0, then the Student t based pseudo-true values

of the conditional mean and variance parameters, θ∞ say, will coincide with their true values θ0

by the law of iterated expectations. But since η is estimated subject to the inequality constraint

η ≥ 0, the population KT conditions that define η∞ will be

E[sηt(θ∞, η∞)|θ0,%0] + λη∞ = 0; η∞ ≥ 0; λη∞ ≥ 0; η∞ · λη∞ = 0,

where λη∞ is the pseudo-true value of the KT multiplier, and the expectation is taken with

respect to the true unconditional distribution of the observations (see Calzolari, Fiorentini and

Sentana (2004)). Hence, η∞ = 0 if and only if E[sηt(θ0, 0)|θ0,%0] ≤ 0.

FSC show that in the multivariate Student t case sηt(θ0, 0) it is proportional to the second

generalised Laguerre polynomial (39). Given that ςt(θ0) = ε∗0t ε
∗
t , we can write

sηt(θ0, 0) =
N(N + 2)

4
− N + 2

2
ςt(θ0)+

1

4
ς2t (θ0)

=
N(N + 2)

4

∙
(ε∗0t ε

∗
t )
2

N(N + 2)
− 1
¸
+

N + 2

2
[(ε∗0t ε

∗
t )−N ].

But since we have normalised the innovations so that E(ε∗tε
∗0
t |zt, It−1;θ0,%0) = IN , then

N = tr(IN ) = tr[E(ε∗tε
∗0
t |zt, It−1;θ0,%0)] = E[tr(ε∗tε

∗0
t )|zt, It−1;θ0,%0] = E(ε∗0t ε

∗
t |zt, It−1;θ0,%0)

by the linearity of the expectation and trace operators. Therefore, it immediately follows that

λη∞ = min{0,−E[sηt(θ0, 0)|θ0,%0]} = min
½
0,−N(N + 2)

4
κ0

¾
in view of the definition of κ0. Therefore, η∞ = 0 if and only if κ0 ≤ 0.

To prove the second and third parts, we can use Propositions 1 and 2 in Calzolari, Fiorentini

and Sentana (2004) if we regard the Student t based estimator φ̂T as the “inequality restricted”
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PML estimator of φ, and the Gaussian-based estimator φ̃T = (θ̃T , 0) as its “equality restricted”

counterpart, both of which share not only the pseudo-true values (θ0, 0, λη∞) when κ0 ≤ 0,

but also the modified pseudo-score mt(θ0, 0, λη∞) = sφt(θ0, 0) + ep+1 · λη∞, where ep+1 is the

(p + 1)th column of Ip+1, as well as the expected value of the average Hessian H(φ∞;ϕ0) =

E[h̄T (φ0)|θ0,%0].

Specifically, Proposition 1 in Calzolari, Fiorentini and Sentana (2004) implies here that

λη∞ ·
√
T η̂T = op(1),

while their Proposition 2 implies that∙
Hθθ(φ∞;ϕ0) Hθη(φ∞;ϕ0)
H0θη(φ∞;ϕ0) Hηη(φ∞;ϕ0)

¸√
T

µ
θ̂T − θ0

η̂T

¶
+ep+1

√
T (λ̂ηT − λη∞)

−
√
Tm̄T (θ0, 0, λη∞)=op(1),∙

Hθθ(φ∞;ϕ0) Hθη(φ∞;ϕ0)
H0θη(φ∞;ϕ0) Hηη(φ∞;ϕ0)

¸√
T

µ
θ̃T − θ0
0

¶
+ep+1

√
T (λ̃ηT − λη∞)

−
√
Tm̄T (θ0, 0, λη∞)=op(1),

where λ̂ηT and λ̃ηT are the sample versions of the KT and Lagrange multipliers associated to

the constraint η = 0. As a consequence,∙
Hθθ(φ∞;ϕ0) Hθη(φ∞;ϕ0)
H0θη(φ∞;ϕ0) Hηη(φ∞;ϕ0)

¸√
T

µ
θ̂T − θ̃T

η̂T

¶
+ ep+1

√
T (λ̂ηT − λ̃ηT ) = op(1).

Part 2 immediately follows from the fact that λη∞ > 0 when κ0 < 0. Similarly, the first

statement of Part 3 follows from the fact that λη∞ = 0 when κ0 = 0. As for the condition (38),

which derives directly from the expression for hθη(φ) in FSC evaluated at (θ0, 0), its role is to

guarantee that Hθη(φ∞;ϕ0) = 0. In this sense, it is worth mentioning that condition (38) will

be satisfied for instance if ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 = 0 irrespective of whether

or not it is Gaussian because in that case

E{[N + 2− ςt(θ0)]ε
∗
t (θ0)|zt, It−1;θ0,η0] = E[(N + 2− ςt)

√
ςtut|η0] = 0

by the serial and mutual independence of ςt and ut, and the fact that E(ut) = 0, while

E{[N + 2− ςt(θ0)]ε
∗
t (θ0)ε

∗0
t (θ0)|zt, It−1,φ0} = E[(N + 2− ςt)ςtutu

0
t|η0]

= N−1E[(N + 2− ςt)ςt|η0]IN = 0

by the definition of κ0 and the fact that E(utu0t) = N−1IN . ¤
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Proposition 13

Let φ∞ denote the pseudo-true values of φ corresponding to the assumed log-likelihood

function. If we assume that they belong to the interior of the admissible parameter space, we

can be implicitly characterise φ∞ by the moment conditions

E[sθt(θ∞,%∞)|ϕ0] = 0,
E[s(t(θ∞,%∞)|ϕ0] = 0.

(A25)

The score version of the Hausman test can be regarded as an unconditional moment test of

E[sθt(θ∞,0)|ϕ0] = 0, (A26)

which will hold if the conditional distribution of ε∗t is i.i.d. D(0, I,%0) because θ∞ = θ0 in that

case. If we knew θ∞, it would be straightforward to test whether (A26) holds. But since we do

not know θ∞, we replace it by its consistent estimator θ̂T , where θ̂T and %̂T satisfy the sample

analogues of (A25). In order to account for the sampling variability that this introduces, we can

compute the limiting unconditional least squares regression of
√
T s̄θT (θ∞,0) on

√
T s̄θT (θ∞,%∞)

and
√
T s̄(0T (θ∞,%∞), and retain the residuals. But since sθt(θ0,0), sθt(θ0,%0) and s(t(θ0,%0)

are martingale difference sequences under the null, we can simply regress the first on the last

two. To do so, we need their joint asymptotic distribution, which in view of Propositions 1, 3

and Lemma 2 will be given by

√
T

⎡⎣ s̄θT (θ0,0)
s̄θT (θ0,%0)
s̄(T (θ0,%0)

⎤⎦ d→ N

⎧⎨⎩
⎛⎝ 0
0
0

⎞⎠ ,

⎡⎣ B(φ0) A(φ0) 0
A(φ0) Iθθ(φ0) Iθ((φ0)
00 I 0θ((φ0) I(((φ0)

⎤⎦⎫⎬⎭ .

Hence, we can use standard arguments to show that

√
T s̄θT (θ̂T ,0)

d→ N [0,B(φ0)−A(φ0)Iθθ(φ0)A(φ0)]

and
√
T

∙
θ̃T − θ0
θ̂T − θ0

¸
d→ N

½µ
0
0

¶
,

∙
C(φ0) −Iθθ(φ0)
−Iθθ(φ0) Iθθ(φ0)

¸¾
,

whence we can easily prove that

√
T s̄θT (θ̂T ,0)−A(φ0)

√
T (θ̃T − θ̂T ) = op(1),

√
T (θ̃T − θ̂T )→ N

h
0, C(φ0)− Iθθ(φ0)

i
,

as well as the asymptotic chi-square distribution of HW
θT . ¤
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Proposition 14

The proof proceeds along the same lines of the previous one once we show that

E [̊sθt(φ)s
0
θt(θ,0)|φ] = −∂E[sθt(θ,0)|φ]/∂θ (A27)

and

E [̊sθt(φ)̊s
0
θt(φ)|φ] = −∂E [̊sθt(φ)|φ]/∂θ. (A28)

Condition (A27) follows immediately from (A14) and the generalised information matrix equal-

ity. As for (A28), we can use the same equality together with some of the arguments in the

proof of Proposition 5 to show that

−∂E [̊sθt(φ0)|φ0]
∂θ

= E [̊sθt(φ0)s
0
θt(φ0)|φ] = E[Zdt(θ0)edt(φ0)e

0
dt(φ0)Z

0
dt(θ0)|φ0]

−E
½
Ws(φ0)

∙h
δ(ςt,η0)

ςt
N
− 1
i
− 2

(N + 2)κ0 + 2

³ ςt
N
− 1
´¸
e0dt(φ0)Z

0
dt(θ0)

¯̄̄̄
φ0

¾
= Iθθ(φ0)−Ws(φ0)E

½∙n
δ(ςt,η0)

ςt
N
− 1
o
− 2

(N + 2)κ0 + 2

³ ςt
N
− 1
´¸
e0dt(φ0)

¯̄̄̄
φ0

¾
Zd(θ0)

= Iθθ(φ0)-Ws(φ0)E

∙½h
δ(ςt,η0)

ςt
N
-1
i
-

2

(N + 2)κ0 + 2

³ ςt
N
-1
´¾h

δ(ςt,η0)
ςt
N
-1
i¯̄̄̄
φ0

¸
W0

s(φ0)

= Iθθ(φ0)−Ws(φ0)W
0
s(φ0) ·

½∙
N + 2

N
mss(η0)− 1

¸
− 4

N [(N + 2)κ0 + 2]

¾
= S̊(φ0).

¤

B Computational issues

B.1 Score and Hessian for non-elliptical distributions

Since lt(φ) = dt(θ) + ln f [ε
∗
t (θ),%], it trivially follows that

sθt(θ,%) =
∂dt(θ)

∂θ
+

∂ε0∗t (θ)

∂θ

∂ ln f [ε∗t (θ) ;%]

∂ε∗
.

To prove (2), we can then use the fact that

∂dt(θ)/∂θ = −
∂vec0[Σ1/2t (θ)]

∂θ
vec[Σ

−1/20
t (θ)] = −Zst(θ)vec(IN)

and

∂ε∗t (θ)

∂θ0
= −Σ−1/2t (θ)

∂μt(θ)

∂θ0
− [ε∗0t (θ)⊗Σ

−1/2
t (θ)]

∂vec[Σ
1/2
t (θ)]

∂θ0

= −{Z0lt(θ) + [ε∗0t (θ)⊗ IN ]Z0st(θ)}, (B29)

where Zdt(θ) = [Zlt(θ),Zst(θ)] are defined in (3).

As for the Hessian, given that

delt(θ,%) = −d{∂ ln f [ε∗t (θ);%]/∂ε∗}, (B30)
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expression (B29) implies that

∂elt(θ,%)

∂θ0
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
∂ε∗t (θ)

∂θ0
=

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
{Z0lt(θ) + [ε0∗t (θ)⊗ IN ]Z0st(θ)}.

In turn,

dest(θ,%) = −dvec
∙
∂ ln f [ε∗t (θ);%]

∂ε∗
· ε∗0t (θ)

¸
= −[ε∗t (θ)⊗ IN ]d

½
∂ ln f [ε∗t (θ);%]

∂ε∗

¾
−
½
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

¾
dε∗t (θ) (B31)

implies that

∂est(θ,%)

∂θ0
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
∂ε∗t (θ)

∂θ0
−
½
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

¾
∂ε∗t (θ)

∂θ0

=

½
[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗0
+

∙
IN ⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

¸¾
{Z0lt(θ) + [ε0∗t (θ)⊗ IN ]Z0st(θ)}.

Finally, (B30) and (B31) trivially imply that

∂2elt(θ,%)

∂θ∂%0
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂%0
,

∂2est(θ,%)

∂θ∂%0
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂%0
.

B.2 Score and Hessian for elliptically symmetric distributions

Since in this case lt(φ) = dt(θ) + c(η) + g [ςt(θ),η], it trivially follows that

sθt(φ) =
∂dt(θ)

∂θ
+

∂g [ςt(θ),η]

∂ς

∂ςt(θ)

∂θ
=[Zlt(θ),Zst(θ)]

∙
elt(φ)
est(φ)

¸
=Zdt(θ)edt(φ),(B32)

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η=ert(φ),

where

∂dt(θ)/∂θ = −Zst(θ)vec(IN)

∂ςt(θ)/∂θ = −2{Zlt(θ)ε∗t (θ) + Zst(θ)vec
£
ε∗t (θ)ε

∗0
t (θ)

¤
}, (B33)

Zlt(θ) = ∂μ0t(θ)/∂θ ·Σ
−1/20
t (θ),

Zst(θ) =
1

2
∂vec0 [Σt(θ)] /∂θ·[Σ−1/20t (θ)⊗Σ−1/20t (θ)],

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ),

est(θ,η) = vec
©
δ[ςt(θ),η] · ε∗t (θ)ε∗0t (θ)− IN

ª
,

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς.

As for the Hessian function ht(φ) = ∂st(φ)/∂φ
0 = ∂2lt(φ)/∂φ∂φ

0, we will have

hθθt(φ) =
∂2dt(θ)

∂θ∂θ0
+

∂2g [ςt(θ), η]

(∂ς)2
∂ςt(θ)

∂θ

∂ςt(θ)

∂θ0
+

∂g [ςt(θ), η]

∂ς

∂2ςt(θ)

∂θ∂θ0

hθηt(φ) = ∂ςt(θ)/∂θ · ∂2g [ςt(θ),η] /∂ς∂η0,

hηηt(φ) = ∂2c(η)/∂η∂η0 + ∂2g [ςt(θ), η] /∂η∂η
0,
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where

∂2dt(θ)/∂θ∂θ
0=2Zst(θ)Z0st(θ)-

1

2

©
vec0

£
Σ−1t (θ)

¤
⊗ Ip

ª
∂vec

©
∂vec0 [Σt(θ)] /∂θ

ª
/∂θ0, (B34)

∂2ςt(θ)/∂θ∂θ
0 = 2Zlt(θ)Z

0
lt(θ) + 8Zst(θ)[IN ⊗ ε∗t (θ)ε∗0t (θ)]Z0st(θ) + 4Zlt(θ)[ε∗0t (θ)⊗ IN ]Z0st(θ)

+4Zst(θ)[ε
∗
t (θ)⊗ IN ]Z0lt(θ)− 2[ε∗0t (θ)Σ

−1/20
t (θ)⊗ Ip]∂vec[∂μ0t(θ)/∂θ]∂θ0

−{vec0[Σ−1/2t (θ)ε∗t (θ)ε
∗0
t (θ)Σ

−1/20
t (θ)]⊗ Ip}∂vec{∂vec0[Σt(θ)]/∂θ}/∂θ0.

B.3 Elliptically symmetric efficient score and semiparametric efficiency bound
for model (40)

The vector of conditional mean and variance parameters corresponding to model (40) is given

by θ = (π0,ρ0, c0,γ0, α, β)0 after normalising the unconditional variance parameter λ to 1.

The Jacobian matrices of μt(θ) and Σt(θ) are:

∂μt(θ)

∂θ0
= [IN − diag(ρ)]

∂π

∂θ0
+ diag(yt−1 − π)

∂ρ

∂θ0

and

∂vec [Σt(θ)]

∂θ0
= (IN2 +KNN )[λt(θ)c⊗ IN ]

∂c

∂θ0
+EN

∂γ

∂θ0
+ (c⊗ c)∂λt(θ)

∂θ0
,

respectively, where E0N = (e1e
0
1| . . . |eNe0N), with (e1| . . . |eN) = IN , is the unique N2 × N

“diagonalisation” matrix that transforms vec(A) into vecd(A) as vecd(A) = E0Nvec(A) (see

Magnus (1988)).

After some straightforward algebraic manipulations, expressions (B32) and (11) lead to:

sθt(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[IN − diag(ρ)]Σ−1t (θ)εt(θ)δ[ςt(θ),η]
diag(yt−1 − π)Σ−1t (θ)εt(θ)δ[ςt(θ),η]

Σ−1t (θ)εt(θ)ε
0
t(θ)Σ

−1
t (θ)cλt(θ)δ[ςt(θ),η]−Σ−1t (θ)cλt(θ)

1
2vecd

h
Σ−1t (θ)εt(θ)ε

0
t(θ)Σ

−1
t (θ)δ[ςt(θ),η]−Σ−1t (θ)

i
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+
1

2

∂λ0t(θ)

∂θ

h
c0Σ−1t (θ)εt(θ)ε

0
t(θ)Σ

−1
t (θ)cδ[ςt(θ),η]− c0Σ−1t (θ)c

i
,

∂λt(θ)

∂θ
= α

∙
2fkt−1(θ)

∂fkt−1(θ)

∂θ
+

∂ωt−1(θ)

∂θ

¸
+ β

∂λt−1(θ)

∂θ

+[f2kt−1(θ) + ωt−1(θ)− 1]
∂α

∂θ
+ [λt−1(θ)− 1]

∂β

∂θ
.

Finally, if we take as initial conditions μ1(θ) = π and λ1(θ) = 1, then ∂μ1(θ)/∂θ
0 = ∂π/∂θ0

and ∂λ1(θ)/∂θ
0 = 0.
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If γ > 0, we can use the Woodbury formula to prove that

fkt(θ) = ωt(θ)c
0Γ−1εt(θ),

ωt(θ) = [λ−1t (θ) + c
0Γ−1c]−1,

ςt(θ) = ε0t(θ)Γ
−1εt(θ)− f2kt(θ)/ωt(θ),

Σ−1t (θ) = Γ−1 − ωt(θ)Γ
−1cc0Γ−1,

Σ−1t (θ)c = Γ
−1cωt(θ)/λt(θ),

c0Σ−1t (θ)c = cΓ
−1cωt(θ)/λt(θ)

Σ−1t (θ)εt(θ)ε
0
t(θ)Σ

−1
t (θ)cλt(θ)δ[ςt(θ),η]−Σ−1t (θ)cλt(θ)=Γ

−1[vt(θ)fkt(θ)δ[ςt(θ),η]−cωt(θ)],

Σ−1t (θ)εt(θ)ε
0
t(θ)Σ

−1
t (θ)δ[ςt(θ),η]−Σ−1t (θ) = Γ

−1[vt(θ)v
0
t(θ)δ[ςt(θ),η] + ωkt(θ)cc

0 − Γ]Γ−1

and

c0Σ−1t (θ)εt(θ)ε
0
t(θ)Σ

−1
t (θ)cδ[ςt(θ),η]− c0Σ−1t (θ)c =

f2kt(θ)

λ2t (θ)
δ[ςt(θ),η]−

ωt(θ)

λt(θ)
c0Γ−1c,

where vt(θ) = εt(θ)− cfkt(θ), which greatly simplifies the computations (see Sentana (2000)).

Specifically,

sθt(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[IN − diag(ρ)]Γ−1vt(θ)δ[ςt(θ),η]
diag(yt−1 − π)Γ−1vt(θ)δ[ςt(θ),η]
Γ−1[vt(θ)fkt(θ)δ[ςt(θ),η]− cωt(θ)]

1
2vecd

n
Γ−1[vt(θ)v

0
t(θ)δ[ςt(θ),η] + ωt(θ)cc

0 − Γ]Γ−1
o

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+
1

2

∂λ0t(θ)

∂θ

∙
f2kt(θ)δ[ςt(θ),η]

λ2t (θ)
− ωt(θ)c

0Γ−1c

λt(θ)

¸
.

The last two items that we require for the score are

∂fkt(θ)

∂θ
= c0Γ−1εt(θ)

∂ωt(θ)

∂θ
+

∂c0

∂θ
Γ−1εt(θ)ωt(θ)

−∂γ
0

∂θ
E0N [Γ

−1εt(θ)⊗ ωt(θ)Γ
−1c]− ∂μ0t(θ)

∂θ
c0Γ−1ωt(θ)

and
∂ωt(θ)

∂θ
= −2ω2t (θ)

∂c0

∂θ
Γ−1c+ ωt(θ)

∂γ0

∂θ
E0N(Γ

−1c⊗ Γ−1c) + ω2t (θ)

λ2t (θ)

∂λt(θ)

∂θ
.

To compute the elliptically symmetric semiparametric bound we need expressions for

∂μ0t(θ)

∂θ
Σ−1t (θ)

∂μt(θ)

∂θ0
,

∂vec0 [Σt(θ)]

∂θ
[Σ−1t (θ)⊗Σ

−1
t (θ)]

∂vec [Σt(θ)]

∂θ0
,
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and
∂vec0 [Σt(θ)]

∂θ
vec[Σ−1t (θ)]vec

0[Σ−1t (θ)]
∂vec [Σt(θ)]

∂θ0
.

The first term will be given by

∂μ0t(θ)

∂θ
Σ−1t (θ)

∂μt(θ)

∂θ0
=

∂π0

∂θ
[IN − diag(ρ)]Σ−1t (θ)[IN − diag(ρ)]

∂π

∂θ0

+
∂ρ0

∂θ
diag(yt−1 − π)Σ−1t (θ)diag(yt−1 − π)

∂ρ

∂θ0

+
∂ρ0

∂θ
diag(yt−1 − π)Σ−1t (θ)[IN − diag(ρ)]

∂π

∂θ0
+

∂π0

∂θ
[IN − diag(ρ)]Σ−1t (θ)diag(yt−1 − π)

∂ρ

∂θ0
,

which effectively has four non-zero blocks only, two of which are equal by symmetry.

The second term is also straightforward. Specifically:

∂vec0 [Σt(θ)]

∂θ
[Σ−1t (θ)⊗Σ

−1
t (θ)]

∂vec [Σt(θ)]

∂θ0

=
∂c0

∂θ
[λt(θ)c

0 ⊗ IN ](IN2 +KNN)[Σ
−1
t (θ)⊗Σ

−1
t (θ)](IN2 +KNN )[λt(θ)c⊗ IN ]

∂c

∂θ0

+
∂γ0

∂θ
E0N [Σ

−1
t (θ)⊗Σ

−1
t (θ)]EN

∂γ

∂θ0
+

∂λt(θ)

∂θ
(c0 ⊗ c0)[Σ−1t (θ)⊗Σ

−1
t (θ)](c⊗ c)

∂λt(θ)

∂θ0

+
∂c0

∂θ
[λt(θ)c

0 ⊗ IN ](IN2 +KNN)[Σ
−1
t (θ)⊗Σ

−1
t (θ)]EN

∂γ

∂θ0

+
∂γ0

∂θ
E0N [Σ

−1
t (θ)⊗Σ

−1
t (θ)](IN2 +KNN)[λt(θ)c⊗ IN ]

∂c

∂θ0

+
∂c0

∂θ
[λt(θ)c

0 ⊗ IN ](IN2 +KNN)[Σ
−1
t (θ)⊗Σ

−1
t (θ)](c⊗ c)

∂λt(θ)

∂θ0

+
∂λt(θ)

∂θ
(c0 ⊗ c0)[Σ−1t (θ)⊗Σ

−1
t (θ)](IN2 +KNN)[λt(θ)c⊗ IN ]

∂c

∂θ0

+
∂γ0

∂θ
E0N [Σ

−1
t (θ)⊗Σ

−1
t (θ)](c⊗ c)

∂λt(θ)

∂θ0
+

∂λt(θ)

∂θ
(c0 ⊗ c0)[Σ−1t (θ)⊗Σ

−1
t (θ)]EN

∂γ

∂θ0

= 2λ2t (θ)
∂c0

∂θ
{[c0Σ−1t (θ)c ·Σ−1t (θ) +Σ−1t (θ)cc0Σ−1t (θ)]

∂c

∂θ0

+
∂γ0

∂θ
[Σ−1t (θ)¯Σ−1t (θ)]

∂γ

∂θ0
+ [c0Σ−1t (θ)c]

2∂λt(θ)

∂θ

∂λt(θ)

∂θ0

+2λt(θ)
∂c0

∂θ
[c0Σ−1t (θ)⊗Σ−1t (θ)]EN

∂γ

∂θ0
+ 2λt(θ)

∂γ0

∂θ
E0N [Σ

−1
t (θ)c⊗Σ−1t (θ)]

∂c

∂θ0

+2λt(θ)[c
0Σ−1t (θ)c]

∂c0

∂θ
Σ−1t (θ)c

∂λt(θ)

∂θ0
+ 2λt(θ)[c

0Σ−1t (θ)c]
∂λt(θ)

∂θ
c0Σ−1t (θ)

∂c

∂θ0

+
∂γ0

∂θ
[Σ−1t (θ)c¯Σ−1t (θ)c]

∂λt(θ)

∂θ0
+

∂λt(θ)

∂θ
[c0Σ−1t (θ)¯ c0Σ−1t (θ)]

∂γ

∂θ0
,

where ¯ denotes Hadamard products.

But if we assume that γ > 0, we can use again the Woodbury formula to considerably

simplify the previous expressions. The only slightly complex term left is

[c0Σ−1t (θ)⊗Σ−1t (θ)]EN
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But if we exploit the explicit shape of EN , then we can show that the (i,j)th element of this

matrix takes the following form

ωt(θ)

λt(θ)

bj
γj

∙
I(i = j)

γi
− bibj

γiγj
ωt(θ)

¸
,

where I(.) is the usual indicator function.

Finally,

Wst(θ) =
1

2

∂vec0 [Σt(θ)]

∂θ
vec[Σ−1t (θ)] =

1

2

∂c0

∂θ
[λt(θ)c

0 ⊗ IN ](IN2 +KNN)vec[Σ
−1
t (θ)]

+
1

2

∂γ0

∂θ
E0Nvec[Σ

−1
t (θ)]+

1

2

∂λt(θ)

∂θ
(c0 ⊗ c0)vec[Σ−1t (θ)]

= λt(θ)
∂c0

∂θ
Σ−1t (θ)c+

1

2

∂γ0

∂θ
vecd[Σ−1t (θ)]+

1

2

∂λt(θ)

∂θ
c0Σ−1t (θ)c,

whose computation can also be greatly simplified by using the Woodbury formula.

To estimate δ[ςt(θ),η] non-parametrically, we can exploit expression (A7) to write

−2∂g[ςt(θ),η]
∂ς

= −2∂ lnh[ςt(θ),η]
∂ς

+
N − 2
2

1

ςt(θ)
.

Then, we can compute h[ςt(θ);η] either directly by using a kernel for positive random vari-

ables (see Chen (2000)), or indirectly by using a faster standard Gaussian kernel after exploiting

the Box-Cox-type transformation v = ςk (see Hodgson, Linton and Vorkink (2002)). In the

second case, the usual change of variable formula yields

p(v;η) =
πN/2

kΓ(N/2)
v−1+N/2k exp[c(η) + g(v1/k;η)],

whence

g(v1/k;η) = ln p(v;η) +

µ
1− N

2k

¶
ln v − N

2
ln 2π + ln k − lnΓ(N/2)− c(η)

and
∂g(v1/k;η)

∂v1/k
= k

∂ ln f(v;η)

∂v
v1−1/k +

k −N/2

v1/k
.

We use the second procedure in our Monte Carlo simulations because the distribution of

ςt(θ) becomes more normal-like as N increases, which reduces the advantages of using kernels

for positive variables. Still, we use a cubic root transformation to improve the approximation,

with a common bandwidth parameter for both the density and its first derivative.

The last thing we need is to estimate mll(η) and mss(η). In our experience, the sample

analogue of the OOS expression for mll(η) in Proposition 10 based on the nonparametric esti-

mators of δ[ςt(θ),η] tends to overestimate mll(η) even in fairly large samples because δ[ςt(θ),η]
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is imprecisely estimated when ςt is either very small or very large. For that reason, we have

considered an alternative estimator based on the following equivalent expression:

mll(η) = cov
n
δ[ςt(θ),η], δ[ςt(θ),η]

ςt
N

¯̄̄
η
o
+ (N − 2)E[ς−1(θ)|η],

where we have exploited (A8), as well as Lemma 1 applied to m(1) = 1, which yields

E[δ(ςt,η)] = −(N − 2)E[ς−1|η], (B35)

as long as E[ς−1|η] is bounded, which in the Gaussian case, for instance, requires N ≥ 3.

Importantly, note that (B35) does not depend at all on the semiparametric estimator. Still, its

sample analogue typically underestimates mll(η), for which reason in the end we average the

two estimators.

As for mss(η), our experience is that the sample analogue of the OOS expression for mss(η)

in Proposition 10 tends to underestimate it. For that reason, we divide it by the square of the

sample mean of δ[ςt(θ),η]ςt/N , which converges in probability to 1 asymptotically in view of

(A8).

In order to make sure that S̊(φ0)− S(φ0) is positive semidefinite, we also impose the theo-

retical restrictions mll(η0) ≥ 1 and

V

∙½
δ(ςt,η)ςt

N
−1
¾
− 2

(N + 2)κ0 + 2

³ ςt
N
− 1
´¸
=

∙
N + 2

N
mss(η0)−1

¸
− 4

N [(N + 2)κ0 + 2]
≥0,

after replacing κ0 by its sample analogue. These restrictions also guarantee that our estimates

of C(φ0) − S̊−1(φ0) will be positive semidefinite too as long as we evaluate these matrices at

the same parameter values using the analytical expressions in Propositions 3 and 5. Finally, we

deal with the fact that rank[C(φ0) − S̊−1(φ0)] ≤ p − 1 in view of Proposition 8.1.c by setting

to 0 those eigenvalues that are smaller than 10−7/T in computing the Moore-Penrose inverse of

the difference between those matrices.

B.4 The semiparametric efficient score of model (40)

As we mentioned in footnote 1, the first thing to note regarding a non-elliptical distribution

function for the innovations is that the choice of Σ1/2t (θ) affects the value of the log-likelihood

function and its score. For the standard (i.e. lower triangular) Cholesky decomposition of Σt(θ),

we will have that

dvec(Σt) = [(Σ
1/2
t ⊗ IN ) + (IN ⊗Σ1/2t )KNN ]dvec(Σ

1/2
t ).

Unfortunately, this transformation is singular, which means that we must find an analogous

transformation between the corresponding dvech0s. In this sense, we can write the previous
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expression as

dvech(Σt) = [LN (Σ
1/2
t ⊗ IN)L0N + LN (IN ⊗Σ

1/2
t )KNNL

0
N ]dvech(Σ

1/2
t ), (B36)

where LN is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long

as Σ1/2t has full rank, which means that we can readily obtain the Jacobian matrix of vech(Σ1/2t )

from the Jacobian matrix of vech(Σt).

In the case of the symmetric square root matrix, the analogous transformation would be

dvech(Σt) = [D
+
N(Σ

1/2
t ⊗ IN )DN +D

+
N (IN ⊗Σ

1/2
t )DN ]dvech(Σ

1/2
t ),

where DN is the duplication matrix and D+
N = (D0

NDN )
−1D0

N its Moore-Penrose inverse (see

Magnus and Neudecker, 1988).

From a numerical point of view, the calculation of both LN (Σ
1/2
t ⊗ IN )L0N and LN(IN ⊗

Σ
1/2
t )KNNL

0
N is straightforward. Specifically, given that LNvec(A) = vech(A) for any square

matrixA, the effect of premultiplying by the 12N(N+1)×N2 matrix LN is to eliminate rows N+1,

2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LNKNNvec(A) = vech(A0),

the effect of postmultiplying by KNNL
0
N is to delete all columns but those in positions 1, N+1,

2N+1,. . . ,N+2, 2N+2,. . . , N+3, 2N+3,. . . , N2.

Let Ft denote the transpose of the inverse of LN(Σ
1/2
t ⊗ IN)L0N + LN(IN ⊗Σ

1/2
t )KNNL

0
N ,

which will be upper triangular. The fastest way to compute

∂vec0[Σ1/2t (θ)]

∂θ
[IN ⊗Σ−1/2t (θ)] =

1

2

∂vech0 [Σt(θ)]

∂θ
FtLN(IN ⊗Σ−1/2t )

is as follows:

1. From the expression for ∂vec0 [Σt(θ)] /∂θ we can readily obtain ∂vech0 [Σt(θ)] /∂θ by

simply avoiding the computation of the duplicated columns

2. Then we postmultiply the resulting matrix by Ft

3. Next, we construct the matrix

LN(IN ⊗Σ1/2t ) = LN

⎛⎜⎜⎜⎜⎝
Σ
−1/2
t 0 · · · 0

0 Σ
−1/2
t · · · 0

...
...

. . .
...

0 0 · · · Σ−1/2t

⎞⎟⎟⎟⎟⎠
by eliminating the first row from the second block, the first two rows from the third block,

. . . , and all the rows but the last one from the last block
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4. Finally, we premultiply the resulting matrix by ∂vech0 [Σt(θ)] /∂θ · Ft.

The last task that we must perform is the computation of K(0)K+(%)edt(θ,0). The two

main problems here are the singular nature of K(%), and its positive semidefiniteness. The first

problem is easy to solve because

K(0)K+(%)edt(θ,0) = K. (0)K. −1(%)e.dt(θ,0),

where

K. (0) =
µ
IN 0
0 2D+0

N

¶
, K. (ρ) =

µ
IN Φ0

Φ Υ

¶
, e.dt(θ,0) =

½
ε∗t (θ)

vech [ε∗t (θ)ε
∗0
t (θ)− IN ]

¾
,

Φ = E{vech[ε∗t (θ)ε∗0t (θ)− IN ] · ε∗0t (θ)|θ,%}

and

Υ = E{vech[ε∗t (θ)ε∗0t (θ)− IN ] · vech0[ε∗t (θ)ε∗0t (θ)− IN ]|θ,%}.

As for the second problem, there are two alternative solutions:

1. Re-centre and orthogonalise ε∗t (θ) as ε
∗∗
t (θ) = P̄

−1/2
T [ε∗t (θ)− p̄T ], where p̄T is the sample

mean of ε∗t (θ) and P̄T its sample covariance. In this way, the sample covariance matrix of

the vector {ε∗∗0t (θ), vech
0[ε∗∗t (θ)ε

∗∗0
t (θ)]} will have exactly the same structure as K. (%).

2. Replace K. (%) by either the sample covariance matrix or the second moment matrix of the

vector e.dt(θ,0).

The advantage of the first procedure is that we can exploit the fact that the sample covariance

matrix of ε∗∗t (θ) will be the identity matrix in using the partitioned inverse formula for K. (%).

On the other hand, the advantage of the second procedure is that there is no need to standardise

again the standardised innovations ε∗t (θ), which in our experience makes it more attractive.

It is also worth mentioning that the most convenient way to compute K. (0)K.
−1(%)e.dt(θ,0) is

by first computing K.
−1(%)e.dt(θ,0), and then exploiting the shape of K. (0) as follows: (a) copy

the first N elements of K.
−1(%)e.dt(θ,0); and (b) duplicate the remaining

1
2N(N+1) elements, but

doubling the ones in the following positions: N+1, 2N+1, 3N, 4N-1, 5N-2,. . . ,N+N2. Intuitively,

in doing so we are simply using the fact that 2D+0
N vech(AL) = vec(AL + A

0
L) for any lower

triangular matrix AL.

Finally, we use a multivariate spherical Gaussian kernel to compute the density of ε∗t (θ) and

its derivatives with a common bandwidth parameter.
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Table 1

Size properties of Hausman tests in finite samples

Parametric

Student t8
Nominal π̄ γ̄
size (%) Wald LM Wald LM

1 1.68 1.77 2.35 1.33
5 6.28 6.67 6.69 5.23
10 11.2 11.7 11.1 10.2

Semiparametric

Student t8
Nominal π̄ γ̄
size (%) Wald LM Wald LM

1 2.68 4.75 36.1 23.1
5 8.95 11.4 52.5 36.9
10 15.2 17.5 61.9 45.7

normal-gamma
Nominal π̄ γ̄
size (%) Wald LM Wald LM

1 1.13 2.53 66.0 48.4
5 5.40 7.03 80.9 66.1
10 10.5 12.2 87.0 74.5
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Table 2

Size-adjusted power properties of Hausman tests in finite samples

Parametric

normal-gamma
Actual π̄ γ̄
size (%) Wald LM Wald LM

1 3.40 3.04 99.9 99.9
5 11.1 10.1 100. 100.
10 18.5 16.8 100. 100.

asymmetric t
Actual π̄ γ̄
size (%) Wald LM Wald LM

1 100. 100. 52.5 55.0
5 100. 100. 78.7 76.5
10 100. 100. 87.9 84.6

t with time-varying df
Actual π̄ γ̄
size (%) Wald LM Wald LM

1 1.03 1.09 0.59 0.65
5 4.90 5.08 4.10 4.25
10 10.3 10.3 9.55 9.83

Semiparametric

asymmetric t
Actual π̄ γ̄
size (%) Wald LM Wald LM

1 100. 50.8 99.9 0.37
5 100. 100. 100. 99.8
10 100. 100. 100. 99.9

t with time-varying df
Actual π̄ γ̄
size (%) Wald LM Wald LM

1 0.94 0.85 0.98 0.63
5 5.06 5.10 5.07 4.56
10 10.2 9.71 9.37 9.19
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Figure 1A: Monte Carlo distributions of estimators of unconditional mean

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1B: Monte Carlo distributions of estimators of autoregressive coefficient

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1C: Monte Carlo distributions of estimators of normalised factor loadings

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1D: Monte Carlo distributions of estimators of idyosincratic variances

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1E: Monte Carlo distributions of estimators of ARCH coefficent

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.

Normal

4.00.9

4.30.9

4.00.9

4.00.9

0 0.05 0.1 0.15 0.2 0.25

Normal−Gamma

4.90.5

4.40.6

4.00.7

3.90.9

 PML

 SP

 SSP

 ML

0 0.05 0.1 0.15 0.2 0.25

Student t
4

7.80.0

5.60.8

5.22.6

4.40.8

0 0.05 0.1 0.15 0.2 0.25

Student t with time varying df

4.60.3

4.10.8

3.90.8

3.90.9

 PML

 SP

 SSP

 ML

0 0.05 0.1 0.15 0.2 0.25

Asymmetric Student t

5.20.2

4.70.6

4.80.7

4.90.6

0 0.05 0.1 0.15 0.2 0.25

6



Student t
8

0.18.4

1.37.2

1.37.0

0.87.6

 PML

 SP

 SSP

 ML

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 1F: Monte Carlo distributions of estimators of GARCH coefficent

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1G: Monte Carlo distributions of estimators of re−scaled idyosincratic variances

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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Figure 1H: Monte Carlo distributions of estimators of re−scaled ARCH coefficent

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum
length of the whiskers is one interquartile range.  We also report the fraction of replications outside those whiskers.
PML means Gaussian−based maximum likelihood estimator, ML Student t−based maximum likelihood estimator,
SSP elliptically symmetric semiparametric estimator and SP unrestricted semiparametric estimator.
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