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Abstract

We propose GMM procedures that consistently estimate the mean-variance fron-

tiers for returns and SDFs and the weights of the portfolios that belong to them,

and derive analytically and computationally simple joint con�dence regions. We

discuss e¢ ciency gains obtained by exploiting asset pricing, tangency or spanning

restrictions, and study the associated overidenti�cation tests. We systematically

exploit the duality of return and SDF frontiers so that our estimators, con�dence

regions and tests apply to both of them. We also analyse in detail the situation in

which a researcher only has data on excess returns.
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1 Introduction

Mean-variance portfolio analysis is widely regarded as the cornerstone of modern in-

vestment theory. Despite its simplicity, and the fact that almost six decades have elapsed

since Markowitz published his seminal work on the theory of portfolio allocation under

uncertainty (Markowitz (1952)), it remains the most widely used asset allocation method.

There are several reasons for its popularity. First, it provides a very intuitive assessment of

the relative merits of alternative portfolios, as their risk and expected return characteris-

tics can be compared in a two-dimensional graph. Second, return mean-variance frontiers

(RMVF) are spanned by only two funds, a property that simpli�es their calculation and

interpretation. Finally, mean-variance analysis is fully compatible with expected utility

maximisation if we assume Gaussian or elliptical distributions for asset returns (see e.g.

Chamberlain (1983a), Owen and Rabinovitch (1983) and Berk (1997)), or if the mutual

fund separation conditions hold (see Ross (1978)).

In turn, the stochastic discount factor mean-variance frontier (SMVF) introduced by

Hansen and Jagannathan (1991) represented a major breakthrough in the way �nancial

economists look at data on asset returns to discern which asset pricing theories are not

empirically falsi�ed. One of the main advantages of this frontier, though, is that one can

compute it without a speci�cation of the preferences of the representative agent because

its focus are the mean-variance constraints that �nancial markets data imposes on asset

pricing models (see e.g. Campbell, Lo and MacKinlay (1997) or Cochrane (2001) for

advanced textbook treatments). Somewhat remarkably, it turns out that both frontiers

are intimately related, as they e¤ectively summarise the information contained in the �rst

and second moments of asset payo¤s 1

However, those moments are unknown, and there is a substantial body of literature

proposing di¤erent ways of reducing the sampling uncertainty involved in the estimation

of mean variance frontiers, or at least bringing it to the forefront. In fact, the sampling

uncertainty in estimated expected returns is so large that several authors have forcefully

raised some doubts about the usual practice of computing mean-variance frontiers by sim-

ply replacing expected returns, variances and covariances by their sampling counterparts.

Simultaneously, there is also a large literature which focuses on statistical tests of

the restrictions on mean-variance frontiers implied by various plausible assumptions, such

as asset pricing models, or the tangency and spanning constraints that arise in mutual

1In line with most of the literature, in this paper we do not consider SDF frontiers that impose
positivity of the SDF. See Hansen and Jagannathan (1991) for details.
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fund performance evaluation (see De Roon and Nijman (2001) for a recent survey) or

the assessment of portfolio diversi�cation gains. Despite the fact that originally these

two literatures were intertwined (see for example Jobson and Korkie (1980, 1982)), more

recently the testing and estimation literatures have often been disconnected.

In this context, the contribution of this paper is threefold:

1. We propose GMM-based procedures that allow us to consistently estimate the fron-

tiers and the weights of the portfolios that belong to them, as well as to derive joint

con�dence regions that provide analytically tractable and computationally simple

alternatives to the Monte Carlo methods considered by Jorion (1992) and Michaud

(1998) among others.

2. We explain how to achieve e¢ ciency gains in estimating those frontiers by exploiting

theoretically motivated restrictions, such as those derived from asset pricing models

or other commonly used assumptions like tangency or spanning.

3. We exploit the integration of estimation and testing implicit in GMM, and study the

associated overidenti�cation tests, which can be formally understood as parametric

tests of the null hypothesis that the additional restrictions are satis�ed.

In addition, we follow Peñaranda and Sentana (2010a,b) in providing a uni�ying ap-

proach that applies at three di¤erent levels:

a. We exploit the duality of the RMVF and SMVF so that our estimators, con�dence

regions and tests are not necessarily tied down to the speci�c properties of either

frontier.

b. We compare our proposed tests to the extant tests, and show that they are all

asymptotically equivalent under the null and compatible Pitman sequences of local

alternatives, despite the fact that in some cases the number of parameters and

moment conditions can be di¤erent.

c. We show that by using single-step GMM procedures such as the Continuously Up-

dated (CU) version in Hansen, Heaton and Yaron (1996), we can make all the

di¤erent overidenti�cation tests numerically identical.

It is important to emphasise that all our results are obtained under fairly weak assump-

tions on the distribution of asset returns. In particular, in no way do they require that
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asset returns are independent or identically distributed as Gaussian or elliptical random

vectors.

We complete our theoretical analysis by considering three special cases in which the

RMVF and/or the SMVF take special forms. In particular, we analyse in detail the

situation in which a researcher only has data on excess returns. We also discuss brie�y in

the appendix the less realistic contexts in which a constant payo¤ is included among the

original vector of asset returns, or the expected returns of all the assets are identical.

The rest of the paper is organised as follows. In section 2 we derive the necessary

theoretical background. Then, we consider frontiers for zero-cost portfolios in section 3,

and devote section 4 to the case of gross returns. Finally, we summarise our conclusions

in section 5. Proofs of propositions and auxiliary results are gathered in the appendix.

2 Theoretical background

In this section, we �rst describe the representing portfolios introduced by Chamberlain

and Rothschild (1983), which we then use to characterise the RMVF and SMVF. We

focus most of our discussion on the case of gross returns in the absence of a safe asset,

although at the end we brie�y consider the special situation in which all available assets

are arbitrage (zero-cost) portfolios, which is often encountered in practice in working with

excess returns.

2.1 Cost and Mean Representing Portfolios

Consider an economy with a �nite number N of risky assets whose random payo¤s

x = (x1; : : : ; xN) are de�ned on an underlying probability space. Importantly, these assets

can be either primitive, like stocks and bonds, or mutual funds managed according to some

speci�c active portfolio strategy (see the discussion in chapter 8 of Cochrane (2001)). Let

E(x) and E(xx0) denote the �rst and second uncentred moments of those payo¤s, which

we assume are bounded. Thus, xi 2 L2 (i = 1; : : : ; N), which is the collection of all random
variables de�ned on the underlying probability space with bounded second moments. We

also assume that the covariance matrix of the N asset payo¤s, V (x), has full rank, which

implies that none of the original assets is either riskless or redundant, and that it is not

possible to generate a riskless portfolio from x other than the trivial one. Finally, we

assume that the cost of the assets, C(x), is not proportional to the vector of expected
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payo¤s E(x).2

Let p = w1x1+ : : :+wNxN = w0x denote the payo¤s to a portfolio of the N primitive

assets with weights given by the vector w = (w1; w2; : : : ; wN)
0. There are at least three

characteristics of portfolios in which investors are interested: their cost, the expected value

of their payo¤s, and their variance, which will be given by C(p) = w0C(x), E(p) = w0E(x)

and V (p) = w0V (x)w, respectively. Let P be the set of the payo¤s from all possible

portfolios of the N original assets, which is given by the linear span of x, hxi. Within this
set, two subsets deserve special attention: the set of all unit cost portfolios P (1) = fp 2
P : C(p) = 1g, whose payo¤s can be directly understood as returns per unit invested; and
also the set of all zero cost, or arbitrage portfolios P (0) = fp 2 P : C(p) = 0g. In this
sense, note that any non-arbitrage portfolio can be transformed into a unit-cost portfolio

by simply scaling its weights by its cost. For example, we can de�ne R1 = x1=C(x1) as

the gross return on the �rst asset provided that C(x1) 6= 0. Similarly, if we partition x as
(x1;x�1), where x�1 is of dimension n = N � 1, it is clear that P (0) coincides with the
linear span of r, hri, where r = x�1�R1C(x�1) can be understood as the vector of payo¤s
on the last n risky assets in excess of the �rst one. In empirical work, excess returns are

often computed by subtracting from gross returns a purportedly riskless asset, but the

representation of P (0) as the linear span of r remains valid irrespective of the ordering
of the original assets as long as C(x1) 6= 0. More generally, we can express any arbitrary
p = w0x as

p = w1R1 +w
0
rr; (1)

which means that we can e¤ectively assume that x is given by (R1; r) without loss of

generality. Thus, we can equate the weight on R1, w1, with the portfolio cost, C (p),

because C(x) will coincide with the �rst column of the identity matrix of order N , e1.

Since P is a closed linear subspace of L2, it is also a Hilbert space under the mean

square inner product, E(xy), and the associated mean square norm
p
E(x2), where x; y 2

L2. Such a topology allows us to de�ne the least squares projection of any y 2 L2 onto P
as:

E(yx0)E�1(xx0)x; (2)

which is the element of P that is closest to y in the mean square norm. In this context,
we can formally understand C(:) and E(:) as linear functionals that map the elements of

P onto the real line. The expected value functional is always continuous on L2, while our
2Given their limited empirical relevance, we postpone to the appendix the discussion of the special

cases in which either there is a constant payo¤ or expected payo¤s and costs are proportional.
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full rank assumption on V (x) implies that E(xx0) has full rank too, which is tantamount

to the law of one price, and consequently that the cost functional is also continuous on

P. The Riesz representation theorem then implies that there exist two unique elements

of P that represent these functionals over P (see Chamberlain and Rothschild (1983)). In
particular, the uncentred cost and mean representing portfolios, p� and p�, respectively,

will be such that:

C(p) = E(p�p) and E(p) = E(p�p) 8p 2 P :

It is then straightforward to show that

p� = C(x0)[E(xx0)]�1x;

p� = E(x0)[E(xx0)]�1x:
(3)

If P included a constant unit payo¤, then p� would coincide with it. But even though it
does not, it follows from (2) and (3) that p0 is the projection of 1 onto P, which in �nancial
markets parlance simply means that the mean representing portfolio is the portfolio that

�mimics�the safe asset with the minimum �tracking error�. To give a similar economic

interpretation to p�, it is convenient to recall that a stochastic discount factor, m say, is

any scalar random variable de�ned on the same underlying probability space which prices

assets in terms of their expected cross product with it. We can again use (2) to interpret

p� as the projection of any m onto P, i.e. as the portfolio that best mimics stochastic
discount factors. In addition, since C(1) = E(1 � m) = c say, the expected value of m

de�nes the shadow price of a unit payo¤.

Chamberlain and Rothschild (1983) show that an alternative valid topology on P can
be de�ned with covariance as inner product and standard deviation as norm when there

is not a constant payo¤ in P. Consequently, we could also represent the two functionals
by means of two alternative centred representing portfolios, þ� and þ� in P, such that

C(p) = Cov(þ�; p) and E(p) = Cov(þ�; p) 8p 2 P :

Not surprisingly,

þ� = C(x0)[V (x)]�1x = p� + [1� E(p�)]�1C(p�)p�;

þ� = E(x0)[V (x)]�1x = [1� E(p�)]�1p�:
(4)

2.2 SDF and Portfolio Mean-Variance Frontiers for Gross Re-
turns

The elements of the SMVF, or Hansen and Jagannathan (1991) frontier, are those

admissible SDF�s with the lowest variance for a given mean. Therefore, they formally
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solve the programme

min
m2L2

V (m) s:t: E(m) = c 2 R+; E(mx) = C(x): (5)

If there were a constant payo¤ then the reciprocal of its gross return will pin down

the single element of the SMVF frontier. But even though no safe asset exists, we can

�nd the elements of the SMVF by solving the above programme for any notional safe

return c�1 � 0. As shown by Hansen and Jagannathan (1991), the solution to (5) can be
expressed as

mMV
1 (c) = p� + �(c)(1� p�) = �(c) + þ� � cþ�; (6)

where

�(c) =
c� E (p�)
1� E(p�) = c [1 + E(þ

�)]� E(þ�); (7)

which shows that they are all shifted portfolios spanned by p� and 1 � p� (or þ� and
(1�þ�)) alone.
It is then easy to show that

V ar[mMV
1 (c)] = E(p�2) +

[c� E(p�p�)]2
1� E(p�2) � c2 = V (þ�)� 2cov(þ�; þ�)c+ V (þ�)c2: (8)

Hereinafter, we shall usually refer to the function fc; V ar[mMV
1 (c)]g as the SMVF for

gross returns, which is a parabola in mean-variance space, although sometimes we will

consider instead the function fc;
p
V ar[mMV

1 (c)]g, which is a hyperbola in mean-standard
deviation space.

As we mentioned in the introduction, in this paper we are interested in estimating these

curves, and in making inferences about them. Importantly, note that the coe¢ cients of

the parabola (8) depend exclusively on the uncentred second moments of the uncentred

representing portfolios, or on the variances and covariances of the centred representing

porto�os. In fact, the frontier is linear in those parameters, which will simplify inferences.

In addition, we are also interested in making inferences about the weights of the di¤erent

assets inmMV
1 (c), which are also simple a¢ ne functions of their weights on the representing

portfolios in view of (6).

In turn, the elements of the RMVF, or Markowitz (1952) frontier, are those unit-cost

portfolios that have the lowest variance for a given mean. Therefore, they formally solve

the programme

min
p2P(1)

V (p) s:t: E(p) = � 2 R: (9)
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As shown by Chamberlain and Rothschild (1983), the solution to (9) can be written

as

RMV (�) =

�
E(p�2)� E(p�p�)�

E(p�2)E(p�2)� E2(p�p�)

�
p� +

�
E(p�2)� � E(p�p�)

E(p�2)E(p�2)� E2(p�p�)

�
p�

=

�
V (þ�)� cov(þ�; þ�)�

V (þ�)V (þ�)� cov2(þ�; þ�)

�
þ� +

�
V (þ�)� � cov(þ�; þ�)

V (þ�)V (þ�)� cov2(þ�; þ�)

�
þ�: (10)

which is also spanned by p� and p�, or þ� and þ�.

Hence, we will have that

V ar[RMV (�)] =
1

E(p�2)E(p�2)� E2(p�p�)
�
E(p�2)�2 � 2E(p�p�)� + E(p�2)

�
� �2

=
1

V (þ�)V (þ�)� cov2(þ�; þ�)
�
V (þ�)�2 � 2cov(þ�; þ�)� + V (þ�)

�
: (11)

We shall refer to the function f�; V ar[RMV (�)]g as the RMVF, which is another
parabola in mean-variance space, although sometimes will consider the related function

f�;
p
V ar[RMV (�)]g, which is a hyperbola in mean-standard devation space.

Importantly, note once again that the coe¢ cients of the parabola (11) depend exclu-

sively on the uncentred second moments of the uncentred representing portfolios, or on

the variances and covariances of the centred representing portfo�os. Similarly, the weights

of the di¤erent assets in RMV (�) are also simple linear functions of their weights on the

representing portfolios in view of (10).

Finally, it is worth mentioning that those linear combinations of the centred repre-

senting portfolios � �þ� + � �þ� such that � � = 1 re�ect the risky component of some

mMV
1 (c), whereas those others in which � �V (þ�) + � �cov(þ�;þ�) = 1 correspond to some

RMV (�). This fact corroborates the well-known duality between the RMVF and SMVF

highlighted by Hansen and Jagannathan (1991). Speci�cally, any mMV
1 (c) such that

V (þ�) � cov(þ�;þ�)c 6= 0 can be translated into a RMV (�), and any RMV (�) such that

V (�)� cov(�; �)� 6= 0 can be translated into a mMV
1 (c) (see Appendix C of Peñaranda and

Sentana (2011) for further details on those exceptions).

2.3 SDF and Portfolio Mean-Variance Frontiers for excess re-
turns

Let us now study the special situation in which all primitive assets are arbitrage

portfolios, so that the relevant payo¤ space is P (0), a closed linear subspace of P that

inherits its Hilbert space structure. Although the centred and uncentred cost representing
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portfolios in P (0) are both 0, the respective mean representing portfolios will be

a� = E(r0)[E(rr0)]�1r;

ð� = E(r0)[V (r)]�1r = [1� E(a�)]�1a�:

Interestingly, a� coincides with the residual from the projection of p� onto p�, which is

not surprising given that P (0) is the orthogonal complement of hp�i on P. Note also that
the weights of the centred mean representing portfolio coincide with the most frequent

textbook presentation of the weights of the tangency portfolio.

In this context, we can show that the elements SMVF based on arbitrage portfolios

only will be given by

mMV
0 (c) =

c

1� E(a�)(1� a
�) = cf1� [g� � E(ð�)]g; (12)

so that they are spanned by a single �fund�. Not surprisingly, their variance will be

V ar[mMV
0 (c)] = �20(c) = c

2 E(a�)

1� E(a�) = c
2E(ð�); (13)

which is a perfect square in c that depends on a single parameter given by the second

moment of the uncentred mean representing portfolio, or the variance of the centred one.

In addition, the weights of the di¤erent assets in mMV
0 (c) are proportional to the weights

of the mean representing portfolios in view of (12).

We shall refer to the function [c; �20(c)] as the SMVF for arbitrage portfolios, which

is a parabola in mean-variance space, although sometimes we will consider instead the

function [c; �0(c)], which is a half line starting from the origin in mean-standard deviation

space.

On the other hand, although the RMVF cannot be de�ned over P (0), we can construct
the arbitrage (i.e. zero-cost) mean variance frontier (AMVF), whose elements will be of

the form

rMV (�) = �
1

E(a�)
a� = �

1

E(ð�)
ð�: (14)

Not surprisingly,

V [rMV (�)] =
1� E(a�)
E(a�)

�2 =
1

E(ð�)
�2; (15)

which con�rms the duality between the SDF and portfolio frontiers because the max-

imum (squared) Sharpe ratio in P (0), which is given by �2=V [rMV (�)] = E(ð�), is

equal to �20(c)=c
2 (see Hansen and Jagannathan (1991)). As is well known, the function

f�; V [rMV (�)]g will be a parabola tangent to the origin in mean-variance space, while
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the related function f�;
p
V [rMV (�)]g will be a re�ected straight line in mean-standard

deviation space. Finally, the weights of the di¤erent assets in rMV (�) are proportional to

their weights on the mean representing portfolios in view of (14).

3 Estimation of mean-variance frontiers with excess
returns

For pedagogical reasons, we �rst study the estimation of mean-variance frontiers for

SDF�s and portfolios when the only payo¤s available to the researcher are excess returns,

leaving the discussion of more general payo¤s for section 4. We initially consider the

situation in which there are no a priori restrictions on the frontiers, and then discuss how

to increase e¢ ciency by incorporating either spanning or asset pricing restrictions. To

avoid duplicities, most of our theoretical discussions will focus on SMVFs, but the graphs

will show AMVFs.

3.1 Unrestricted estimation

Expression (13) implies that the SMVF is linear in the single unknown parameter

� = E(ð�) = [1� E (a�)]�1E (a�) ;

which we interpreted before as the maximum (square) Sharpe ratio attainable, whereas

expression (15) implies that the AMVF frontier is linear in its reciprocal, � = ��1. There-

fore, given a vector of n excess returns r, we can estimate both frontiers from the following

exactly identi�ed system of n+ 1 moment conditions:

E

24 rr0�� � r
r0�� � ��

35 = 0; (16)

where �� = �=(1+ �) = 1=(1+ �) identi�es E (a�) = E (a�2), and �� the portfolio weights

of this uncentred mean representing portfolio. Alternatively, we could work with the

analogous n+ 1 moment conditions for the centred representing portfolios

E

24 r (r0'� � �)� r
r0'� � �

35 = 0; (17)

where � identi�es E (ð�) = V ar (ð�) and '� the corresponding portfolio weights.3 Sys-

tems (16) and (17) are equivalent in the sense that they provide the same numerical
3Alternatively, we could consider the 2n moment conditions

E

�
r (r� �)0'� � r

r� �

�
= 0;
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estimate of � and the same standard error through the Delta method.

Under standard regularity conditions (see e.g. Newey and McFadden (1994)), the re-

sulting GMM estimator of � will converge in probability to its true value, and the same

applies to the weights of the mean representing portfolios. Therefore, the GMM estima-

tors of V ar[mMV
0 (c)] and V [rMV (�)] will also converge in probability to their population

counterparts for �xed c and �. Further, we can easily show that GMM estimators of the

entire SMVF and AMVF will converge uniformly to their population analogues over any

�nite range. Speci�cally, in the case of the SMVF frontier we will have that

sup
c2[c
¯
;�c]

���c2�̂ � c2���� =  sup
c2[c
¯
;�c]

c2

!����̂ � ���� = op (1) :
Despite the uniform consistency, though, the SMVF and AMVF frontiers are subject

to substantial sample variability (see Jobson and Korkie (1980) for some early results

and references). To emphasise the importance of sampling uncertainty in this context, we

have conducted the following simulation experiment. We have assumed that investors have

access to six arbitrage portfolios, whose excess returns roughly replicate the distribution

of the 6 Fama and French portfolios formed on size and book-to-market (see Appendix

A for further details on the experimental design we have used). Then we simulate forty

years of monthly data many times, and compute the mean-variance frontiers. Figure

1a presents part of the ensemble of AMVFs thus obtained, while Figure 1b includes the

weights of the �rst asset on the estimated optimal portfolio.

<Figures 1a and 1b>

As can be seen from these pictures, if one did not take into account sampling uncer-

tainty, one would form very di¤erent optimal portfolios depending on the sample, and

would reach rather di¤erent conclusions about the available risk-return trade-o¤s. In this

respect, there is a clear tendency to reach overly optimistic conclusion about the mean-

variance trade-o¤s that investors really face. This result is con�rmed by Figure 2, which

presents a kernel density estimate of the sample maximum Sharpe ratio.

<Figure 2>

where � is the vector of risk premia. This system identi�es '� and � directly, but � indirectly as
�0'�. Although single-step GMM procedures will yield numerically identical results, we prefer to use
(17) because it involves fewer parameters for n > 1.
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Given the importance of sampling uncertainty, and its potentially misleading nature,

it is convenient to provide joint con�dence intervals for the di¤erent quantities involved.

Simultaneous con�dence intervals are important because investors or researchers will not

be necessarily concerned with just one point on the frontiers.

Let us start with �2 (c) forK values of c, (c1; c2; :::; cK) say. To obtain the relevant joint

con�dence region, we need the asymptotic distribution of the estimators of the variance

of the SMVF elements corresponding to those values (see Mittnik and Zadrozny (1993)

for a related approach in the context of impulse response functions). Given expression

(13), it is clear that

p
T

26664
�̂2 (c1)� �2 (c1)

...

�̂2 (cK)� �2 (cK)

37775 d! N

266640; �
0BBB@
c21
...

c2K

1CCCA� c21 : : : c2K

�37775 ;
where � denotes the asymptotic variance of

p
T (�̂ � �), which is the only parameter

estimator involved. The singularity of this asymptotic distribution implies that regardless

of how big K is, the joint con�dence region for [�2 (c1) ; �2 (c2) ; : : : �2 (cK)] will be the

unidimensional line segment"PK
k=1 c

2
j [�̂

2 (ck)� �2 (ck)]PK
k=1 c

4
j

#2
� �

T
Q (1� �; 1) ; (18)

where Q (1� �; 1) is the 1 � � quantile of a chi-square random variable with 1 degree

of freedom. Figure 3 presents this interval for two di¤erent values of c, (= :9; :95). As

expected, it is centred around the estimated values of �2 (:9) and �2 (:95) (in green), and

in this case it contains the corresponding true values (in black).

<Figure 3>

Given that we cannot represent this con�dence interval in more than three dimen-

sions, we �nd it convenient to map it onto the space [c; �2 (c)] by plotting in that space

all the points that belong to the joint con�dence interval (18) for a chosen value of �.

Nevertheless, it is important to remark that such a plot fails to capture the strong de-

pendence that exists between the di¤erent values of c. It turns out that it is rather easy

to characterise the envelope of this set, as the only operation required is the projection

11



of the joint interval (18) on to the �2 (c1) ; �2 (c2) ; : : : and �2 (cK) axes. Straightforward

algebra shows that the projection over �2 (c1) will be given by

[�̂2 (c1)� �2 (c1)]2 �
�c41
T
Q (1� �; 1)

irrespective of the values of (c2; :::; cK). Therefore, the limits of the mapping of the joint

interval (18) onto [c; �2 (c)] space will be

c2
�
�̂ �

r
�

T
Q (1� �; 1)

�
: (19)

Not surprisingly, the width of these limits increases with c, � and �, and decreases with

the sample size.

Interestingly, the region generated by (19) turns out to the right coverage in [c; �2 (c)]

space too because

lim
T!1

P

8<: c2
h
�̂ +

p
�
T
Q (1� �; 1)

i
� c2E(ð�) � c2

h
�̂ +

p
�
T
Q (1� �; 1)

i
8c 2 [c

¯
; �c]

9=; = 1� �:

This result trivially follows from the fact that the upper and lower bounds of (19) corre-

spond to the maximum and minimum values of �2 (c) = c2� that can be achieved within

the 100(1� �)% asymptotic con�dence interval for � 4

T
(�̂ � �)
v

2

� Q (1� �; 1) :

In fact, (19) also coincides with the pointwise con�dence bands for �2 (c) due to the

presence of a single estimated parameter.

We can repeat the same analysis in [c; � (c)] space by simply taking the square root of

the limits (19).5

4Not surprisingly, if we replace �̂2 (ck) and �2 (ck) by c2�̂ and c2�, respectively, then (18) collapses
to the con�dence interval for �̂. For that reason, asymptotically equivalent regions for �2 (c) could be
computed from con�dence intervals for � obtained by inverting either a distance metric test or a Lagrange
multiplier test of the null hypothesis H0 : � = ��. For example, in the former case we would rely on the
values of �� such that the GMM J statistic is below Q (1� �; 1). In fact, the results in Newey and West
(1987) imply that if we estimated (17) by two step GMM, then the con�dence regions for � obtained from
the trinity of classical tests will be numerically identical for a given estimator of the long-run covariance
matrix, and the same will be true for the resulting con�dence regions. In general, though, the Distance
metric-, Lagrange multiplier- and Wald-based con�dence intervals will be di¤erent in �nite samples.

5This method will break down in �nite samples if the lower bound of (19) is negative. In contrast, if
we use the Delta method, which implies that

p
T
�p

c2�̂ �
p
c2�
�

d! N

"
0;

�
1

2
p
c2�

�2
c4v

#
;
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Similarly, given that the variance of the elements of the AMVF frontier are linear in �,

which is the reciprocal of the maximum (square) Sharpe ratio attainable, we can repeat

the same exercise in terms of this parameter to study this other frontier instead. In this

sense, Figure 4a presents a graph of the relevant limits (in red) using the same design for

excess returns considered in the previous �gures, together with the estimated (in green)

and true (in black) AMVFs.

<Figures 4a and 4b>

Given that the weight of asset i on the SMVF is given by �c'�i = �c (1 + �)��i , where
'�i and �i are the i

th elements of '� and ��, respectively, while the corresponding weight

for the AMVF will be ��'�i = �� (1 + �)�1 ��i , it is also straightforward to derive joint

con�dence regions for those weights for (c1; c2; :::; cK) or (�1; �2; :::; �K). Moreover, we

can also map those joint con�dence intervals into the relevant space, as shown in Figure

4b for the optimal weight of the �rst asset in the AMVF.

Finally, it would be easy to consider joint con�dence intervals for the weights of two

or more assets.6

3.2 E¢ cient estimation imposing spanning restrictions: Mean-
variance e¢ ciency tests

Let us partition r into two sets of portfolios r1 and r2 of dimensions n1 and n2,

respectively, with n = n1 + n2, so that r0 = (r01; r
0
2). Sometimes theoretical or empirical

considerations may suggest that the addition of r2 should not improve the investment

opportunity set of investors. Equivalently, we may believe that the inclusion of r2 would

not tighten the bounds on admissible SDFs. In both cases cases, we say that r1 spans the

mean-variance frontiers generated from r1 and r2.

the con�dence bands for standard deviations will bep
c2�̂� 1

2
p
c2�̂

r
c4�

T
Q (1� �; 1):

We can interpret these bands as a �rst-order approximation tos
c2�̂ �

r
c4�

T
Q (1� �; 1);

which converge to the same limit as T !1.
6Con�dence intervals for relative weights are even simpler, as they do not depend on the value of the

indices c or � (see Jobson and Korkie (1980) and Britten-Jones (1999)).
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Under the null hypothesis that this is the indeed case, there will be only one pair of

mean-variance frontiers. Under the alternative, there will be two: the frontiers generated

from r1 alone, and the ones generated from r, which will only touch at the origin. The

procedures discussed in the previous subsection allow us to estimate those unrestricted

frontiers. The purpose of this section is to explain how we can e¢ ciently estimate the com-

mon frontiers under the null, which despite �rst appearances, will generally be di¤erent

from the unrestricted frontiers estimated on the basis of r1 alone.

E¢ cient estimation of curves is a somewhat unusual concept in econometrics. Given

two alternative estimators of a given curve, we could say that one is more e¢ cient than

the other if loosely speaking some e¢ ciency gains accrue in estimating any arbitrary

vector of points on the curve. Alternatively, we could say that one curve estimator is

more e¢ cient than another curve estimator if their e¢ ciency ranking is preserved for any

linear functional (see Arellano, Hansen and Sentana (2011) for further discussion of these

concepts). Since in our case the entire SMVF and AMVF depend exclusively on a single

parameter estimator, both concepts trivially imply that more e¢ cient �curve estimators�

of the frontiers will be obtained by using more e¢ cient estimators of �.

In the GMM context described at the beginning of the previous section, the imposition

of the null hypothesis of spanning on the weights of the uncentred moment conditions (16)

gives rise to the overidenti�ed system

E

26664
0BBB@
r1

r2

1

1CCCA r01��1 �
0BBB@
r1

r2

��

1CCCA
37775 = 0: (20)

The optimal GMM estimator of � = ��=(1� ��) obtained from (20) will generally be

more e¢ cient than the corresponding estimator obtain from the unrestricted system (16)

as long as the equality restriction ��2 = 0 holds (see Property 10.6 in Gourieroux and

Monfort (1995)). Moreover, the results in Breusch et al (1999) imply that this estimator

will also be generally more e¢ cient than the one obtained from the just identi�ed n1 + 1

moment conditions

E

240@ r1

1

1A r01��1 �
0@ r1

��

1A35 = 0: (21)

An exception arises in the following situation:

Proposition 1 If rt is an i.i.d. elliptical random vector with bounded fourth moments,
and the null hypothesis of spanning is true, then:
a) The asymptotic variance of the optimal GMM estimator of �� obtained from (20), which

14



imposes the spanning constraint ��2 = 0, will coincide with the asymptotic variances of
both the estimator obtained from (21), which will be given by

T�1

 
TX
t=1

r1t

!0 TX
t=1

r1tr
0
1t

!�1 TX
t=1

r1t

!
;

and the estimator obtained from (16), which will be given by

T�1

 
TX
t=1

rt

!0 TX
t=1

rtr
0
t

!�1 TX
t=1

rt

!
:

b) The asymptotic variance of the GMM estimator of ��1 obtained from (16) will be larger
(in the usual positive de�nite sense) than the asymptotic variance of the optimal GMM
estimator based on (20), which in turn coincides with the asymptotic variance of 

TX
t=1

r1tr
0
1t

!�1 TX
t=1

r1t

!
;

which is the GMM estimator obtained from (21).

This results extends Lemma 1 in Peñaranda and Sentana (2010b), who prove the

asymptotic equivalence mentioned in part b. Trivially, part b) extends to the �estimators�

of ��2.

In order to gauge the e¢ ciency gains in estimating the frontiers, we have repeated the

simulation exercise described in the previous section, which satis�es by construction that

the frontiers are a function of r1 only (see Appendix A for further details). The results

for a speci�c simulation are reported in Figure 5. As expected, the unrestricted empirical

frontier obtained from r (in blue) is always outside the frontier generated from r1 alone (in

green) even though both frontiers are identical in the population. The di¤erences between

the frontier generated from r1 alone and from r imposing the spanning restriction �
�
2 = 0

(in red) are relatively small. Given the tendency of unrestricted frontiers to overestimate

the true risk return trade-o¤, it is perhaps not surprising that the restricted frontiers are

closer to the truth (in black).

<Figures 5a and 5b>

Similarly, Figures 6a and 6b illustrate the asymptotic e¢ ciency gains obtained by

imposing the spanning restriction ��2 = 0, which turn out to be relatively minor for the

frontier itself, but rather large for the portfolio weights.
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<Figures 6a and 6b>

Unfortunately, these e¢ ciency gains come at a cost: if the spanning restrictions are

wrong, then the frontier based on (20) will be inconsistently estimated. There is a huge

literature on testing those restrictions, which usually comes under the heading of mean-

variance e¢ ciency test (see Sentana (2009) for a recent survey). The advantage of our

GMM set-up is that we can readily use the overidenti�cation test of the moment conditions

(20) to test for spanning, since it coincides with the distance metric test of the null

hypothesis H0 : �
�
2 = 0.7 As is well known, this test will have a limiting chi-square

distribution with n2 degrees of freedom under the null.

An analogous test could be based on the moment conditions that de�ne the cen-

tred mean representing portfolio. In this respect, note that since [E(rr0)]�1E(r) =

f1 + E(r0)[V (r)]�1E(r)g�1[V (r)]�1E(r) by virtue of the Woodbury formula, ��2 and '�2
will be proportional to each other, so that the null hypotheses are equivalent.

The most popular mean-variance e¢ ciency tests by far, though, are the regression-

based tests considered by Gibbons, Ross and Shanken (1989), and robusti�ed against non-

normality by MacKinlay and Richardson (1991). Speci�cally, their test would correspond

to the overidenti�cation test of the n2(n1 + 1) moment conditions

E

240@ 1

r1

1A
 (r2 �Br1)
35 = 0: (22)

Peñaranda and Sentana (2010b) show that all three approaches (namely, uncentred

and centred representing portfolios and regression) are numerically equivalent when im-

plemented by single-step methods such as CU-GMM. This fact also implies that the three

approaches will be asymptotically equivalent when implemented by two-stage or iterated

GMM, even though they will not be numerically equivalent in that case. For that rea-

son, we shall not discuss (22) further, especially taking into account that those moment

conditions cannot be used directly in the estimation of mean-variance frontiers.

7Alternatively, we could conduct a Wald test of the same null hypothesis from (17), or indeed a
Lagrange multiplier test, all of which are asymptotically equivalent under the null and sequences of local
alternatives. In this sense, it is interesting to note that the approach used by Britten-Jones (1999) to
test the mean-variance e¢ ciency of a given portfolio by looking at its weights can be easily cast in our
GMM framework too, because the regression of a vector of ones onto the vector of excess returns gives
the orthogonality conditions (20) that de�ne the mean representing portfolio (see also Jobson and Korkie
(1983) and Sentana (2009)).
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3.3 E¢ cient estimation imposing a linear factor pricing model:
Asset pricing tests

A closely related way to reduce the sampling uncertainty in the construction of mean-

variance frontiers is to use an asset pricing model, which will impose some discipline on

the estimators of expected returns (see Black and Litterman (1992), Pástor (2000), Pástor

and Stambaugh (2000) or Tu and Zhou (2004) for related approaches). Although noth-

ing prevents us from considering non-linear models, the standard approach in empirical

�nance is to model m as an a¢ ne transformation of some k � n observable risk factors
f , even though this ignores that m must be positive with probability 1 to avoid arbitrage

opportunities (see Hansen and Jagannathan (1991)). In this context, we can express the

pricing equation as

E [(�0 � �0f) r] = 0 (23)

for some real numbers (�0;�
0)
0. As argued by Cochrane (2001) among others, we can in

fact understand the spanning restrictions discussed in the previous section as imposing a

linear factor pricing model in which the pricing factors f coincide with some excess returns

r1, as in the CAPM or the Fama and French (1993) model. In general, though, f does

not have to be a subset of r.8

Although r only contains assets with 0 cost, which leaves the scale and sign of m

undetermined, we would like our candidate SDF to price other assets with positive prices.

Therefore, we require a scale normalisation to rule out the trivial solution (�0;�
0)
0
=

(0;00)0 (see Cochrane (2001, pp. 256-258)). For example, we could choose the popular

asymmetric normalisations �0 = 1 or E(m) = �0 � �0E(f) = 1.9 For simplicity, we will

follow the former normalisation in our exposition, although as shown by Kan and Robotti

(2008) and Peñaranda and Sentana (2010b), the normalisation is generally inconsequential

for single-step GMM methods. In this context, assuming that f and r do not share any

common elements, we can add the pricing conditions (23) to the exactly identi�ed moment

8In fact, it is possible to prove that the pricing constraint (23) can also be interpreted as spanning
constraints, but this time with respect to the mimicking portfolios of f , which are given by

r0�� = r0E�1 (rr0)E (r) =
�
r0E�1 (rr0)E

�
rf 0
��
�:

9Alternatively, we could choose the symmetric normalisation �20 + �
0� = 1, together with a sign

restriction on one of the nonzero coe¢ cients. See Peñaranda and Sentana (2010b) for further details.
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conditions (16), thereby obtaining.

E

26664
r (1� f 0�)

rr0�� � r

r0�� � ��

37775 = 0; (24)

where the unknown parameters are (�0;��0; ��). In this way, we obtain more e¢ cient

estimators of the mean-variance frontiers that exploit the pricing equations (23).

As expected, the overidenti�ying restriction test of the moment conditions (24) yields

a valid asset pricing test, whose asymptotic distribution will be a chi-square with n � k
degrees of freedom. Peñaranda and Sentana (2010b) show that the uncentred and centred

representing portfolios approaches are numerically equivalent to the corresponding regres-

sion approach when implemented by single-step methods such as CU-GMM. This fact also

implies that the three approaches will be asymptotically equivalent when implemented by

two-stage or iterated GMM, even though they will not be numerically equivalent in that

case.

4 Estimation of mean-variance frontiers with returns

4.1 Unrestricted estimation

Let us now consider the alternative situation in which an empirical researcher has at

her disposal at least one asset whose cost is di¤erent from 0. Expression (8) implies that

the variance of the elements of the SMVF for gross returns will be given by

�2(c) = V ar[mMV (c)] =
�
1 �2c c2

�0BBB@
V (þ�)

cov(þ�; þ�)

V (þ�)

1CCCA

=
�
1 �2c c2

�0BBB@
�1

�2

�3

1CCCA = k0 (c)�; (25)

where � represents the three unknown parameters that we need to estimate. It is in-

teresting to note that these parameters can be directly identi�ed with the three letters
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commonly used in textbook treatments of mean-variance frontiers, as

�1 = V (þ�) = C(þ�) = c;

�2 = cov(þ�; þ�) = C(þ�) = E(þ�) = a;

�3 = V (þ�) = E(þ�) = b:

Similarly, expression (11) shows that the variance of the elements of the RMVF are

linear in a new set of parameters that correspond to the elements of the inverse of the

second moment matrix of the uncentred representing portfolios, or the inverse of the

variance matrix of the centred representing portfolios. As a result, we can express the

RMVF as

V ar[RMV (�)] =
�
1 �2� �2

�0BBB@
�1

�2

�3

1CCCA = k0 (�)�; (26)

where � represents the three unknown parameters that we need to estimate. Once again,

these parameters are also related to the letters used in textbook treatments of mean-

variance frontiers because

�1 = b/d; �2 = a/d; �3 = c/d;

where d=bc-a2.10

Given that we saw in section 2 that we can assume without loss of generality that the

vector of available asset payo¤s is x = (R; r0)0, with cost e1 (see (1)), we can estimate all

the required parameters from the exactly identi�ed system of moment conditions

E

26664
xx0�� � e1
xx0�� � x

x0�� � ��

37775 = 0; (27)

where the parameters to estimate are (��0;��0; ��)0. The main advantage of decomposing x

into a single return and a vector of n excess returns is that the �rst entry of �� identi�es

C (p�) = E(p�2), while the �rst entry of �� identi�es C (p�) = E(p�p�). Finally, the

additional parameter �� identi�es E (p�) = E (p�2). On this basis, we can obtain � and �

10Therefore, it would be straightforward to compute from these parameters other objects such as the
mean and variance of the minimum variance portfolio (a/c and 1/c, respectively), or the curvature of
the frontier in mean-variance space (c/d), which is such that the reciprocal of its square root yields the
slope of the asymptotes in mean-standard deviation space.
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from the one-to-one mappings

� =
�
1� E

�
p�2
���1

0BBB@
E(p�2) [1� E (p�2)] + E2(p�p�)

E(p�p�)

E (p�2)

1CCCA ;

� =
�
E(p�2)E

�
p�2
�
� E2(p�p�)

��1
0BBB@
E(p�2) [1� E (p�2)] + E2(p�p�)

E(p�p�)

E (p�2)

1CCCA :
Alternatively, we could start from the exactly identi�ed set of moment conditions that

de�nes the centred representing portfolios:

E

26664
x(x0'� � �3)� e1
x(x0'� � �1)� x

x0'� � �1

37775 = 0; (28)

and then obtain �̂ and �̂ from the estimators of ('�;'�;�1). In particular, �3 = V (þ�) =

C(þ�) is identi�ed by the �rst entry of '�; which is associated to the only nonzero cost

payo¤, and �2 = cov(þ�;þ�) = C(þ�) is identi�ed by the �rst entry of '� for the same

reason. Finally, we estimate �1 = V (þ�) = E(þ�) directly.

Under standard regularity conditions (see e.g. Newey and McFadden (1994)), the

resulting GMM estimator of � will converge in probability to its true value, and the same

applies to the weights of the mean representing portfolios �� and ��. Therefore, the

GMM estimators of V ar[mMV
1 (c)] and V [RMV (�)] will also converge in probability to

their population counterparts for �xed c and �. Further, we can use the Cauchy-Schwarz

inequality to show that the GMM estimators of the entire SMVF and RMVF will converge

uniformly to their population analogues over any �nite range. Speci�cally,

sup
c2[c
¯
;�c]

���k0 (c) �̂ � k0 (c)���� = sup
c2[c
¯
;�c]

���k0 (c) (�̂ � �)���
�
(
sup
c2[c
¯
;�c]

[k0 (c)k (c)]
1=2

)h
(�̂ � �)0(�̂ � �)

i1=2
= op (1) :

As in the case of arbitrage portfolios, though, the SMVF and RMVF are subject to

substantial sampling variability despite their uniform convergence. To emphasise yet again

the importance of sampling uncertainty in this context, we have conducted a simulation

experiment similar to the one reported in section 3, but this time assuming that investors

also have access to US Tbills, whose gross returns are measured in real terms. The
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results are reported in Figure 7. Once again, if one did not take into account sampling

uncertainty, one would form very di¤erent optimal portfolios depending on the sample,

and would reach rather di¤erent conclusions about the mean-variance trade-o¤s.

<Figures 7a, 7b and 7c>

For that reason, we should again construct joint con�dence regions. Let us start with

K values of �2 (c). The main di¤erence between gross and excess returns is that there

are 3 unknown parameters as opposed to only 1. As a result, the asymptotic covariance

matrix of the corresponding point estimators will be singular whenever we jointly consider

more than 3 points. In particular, given that the SMVF is linear in � in view of (25), the

asymptotic joint distribution will be

p
T

26664
�̂2 (c1)� �2 (c1)

...

�̂2 (cK)�
2 (cK)

37775 d! N

8>>><>>>:0;
26664
k0 (c1)
...

k0 (cK)

37775� h k (c1) : : : k (cK)
i9>>>=>>>; ;

where
p
T (�̂ � �) d! N (0;�) ;

with � obtained by applying the Delta method to the GMM estimators of (��0;��0; ��)0

from (27). As a result, the joint con�dence region in [�2 (c1) ; : : : �2 (cK)] space for any

K � 3 will be the three dimensional ellipsoid:

h
�̂2 (c1) -�2 (c1) : : : �̂2 (cK) -�2 (cK)

i
K0 (c)��1K (c)

26664
�̂2 (c1) -�2 (c1)

...

�̂2 (cK) -�2 (cK)

37775 � Q (1-�; 3)
T

;

(29)

where

K (c) =

8>>><>>>:
h
k (c1) : : : k (cK)

i26664
k0 (c1)
...

k0 (cK)

37775
9>>>=>>>;
�1 h

k (c1) : : : k (cK)
i

and c = (c1; : : : ; cK).

Figure 8 presents this ellipsoid for three di¤erent values of c, (= :9; :95; 1). As expected,

it is centred around the estimated values of �2 (:9), �2 (:95) and �2 (1) (marked by a �+�),

and in this case it contains the corresponding true values (market by a �*�).
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<Figure 8>

Given that we cannot represent this con�dence region in more than three dimensions,

once again we �nd it convenient to map it onto the space [c; �2 (c)] by plotting in that

space all the points that belong to the joint con�dence interval (29) for a chosen value

of �. Nevertheless, it is important to remark that such a plot fails to capture the strong

dependence that exists between the di¤erent values of c. It turns out that it is rather easy

to characterise the envelope of this set, as the only operation required is the projection of

the joint interval (29) on to the �2 (c1) ; �2 (c2) ; : : : and �2 (cK) axes.

Lemma 1 The projection of the ellipsoid (29) onto the �2 (c1) axis is

[�̂2 (c1)� �2 (c1)]2 �
k0 (c1)�k (c1)

T
Q (1� �; 3) (30)

irrespective of the chosen values of (c2; :::; cK).

Therefore, the limits of the mapping of the joint interval (29) onto [c; �2 (c)] space will

be

k0 (c) �̂ �
r
k0 (c)�k (c)

T
Q (1� �; 3):

Not surprisingly, the width of these limits increases with � and �, and decreases with

the sample size. Given the singular nature of (29), in e¤ect the resulting plot simply

depicts the set of SMVF that correspond to the 100(1� �)% con�dence interval for �̂,11

which is given by12

T (�̂ � �)0��1(�̂ � �) � Q (1� �; 3) :

Importantly, these limits no longer coincide with the point by point con�dence inter-

vals. The reason is that for a �xed c, the asymptotic marginal distribution of the estimator

of �2(c) will be
p
Tk0 (c) (�̂ � �) d! N [0;k0 (c)�k (c)]:

11Speci�cally, it is easy to show that the upper limit of (30) is the solution to the programme

max
�
k0 (c)� s:t: T (�̂ � �)0��1(�̂ � �) � Q (1� �; 3) ;

while the lower limit coincides with the corresponding minimisation.
12Not surprisingly, if we replace �̂2 (ck) and �2 (ck) by k0 (ck) �̂ and k0 (ck)�, respectively, then (29)

collapses to the con�dence interval for �̂. In this regard, note that the determinant of�
k (c1) k (c2) k (c3)

�
is 2 (c1 � c2) (c1 � c3) (c2 � c3). Therefore, we can invert this matrix to get the implied � using three
di¤erent variance values.
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Hence, the pointwise con�dence interval will look like (30), but with Q (1� �; 1) instead
of Q (1� �; 3), so they will be narrower (see Bansal, Dahlquist and Harvey (2004) and
Abhyankar, Basu and Stremme (2007)).

Similarly, given that the variance of the elements of the RMVF frontier are linear in �,

we can repeat the same exercise in terms of these parameters to study this other frontier

instead. In this sense, Figures 9a and 9b present a graph of the limits (in red) and the

pointwise con�dence bands (in blue) using the same design for gross returns considered

in the previous �gures.

<Figures 9a, 9b and 9c>

Given that the weights of the traded part of the SMVF is given by '� � c'� in view
of (6), it is also straightforward to derive joint con�dence regions for those weights for

(c1; c2; :::; cK). The same applies to the weights of the RMVF for (�1; �2; :::; �K), which

can obtained from the textbook formula

(�1'
� � �2'�) + (�3'� � �2'�) �

in view of (10). Therefore, regardless of the frontier the weights for a particular asset, i say,

depend on two parameters only: ('�i ; '
�
i ) in the SDF case, and (�1'

�
i � �2'�i ; �3'�i � �2'�i )

in the portfolio case. Therefore, the joint con�dence regions for the weights of the ith asset

will be two-dimensional ellipses for any K � 2. As before, we can also map those joint

con�dence regions into the relevant space, as shown in Figure 9c for the weight of the

second asset in the RMVF, which corresponds to the �rst excess return.

Finally, it would be straightforward to consider joint con�dence intervals for the

weights of two or more assets.

4.2 E¢ cient estimation imposing a common point: Tangency
tests

Let us again partition the available assets into two sets of payo¤s x1 and x2 of dimen-

sions N1 and N2, respectively, with N = N1 + N2, so that x0 = (x01;x
0
2). We want to

compare the SMVF and RMVF frontiers generated by x1 alone with the ones generated

by the whole of x, where in line with the previous section, we assume that x1 contains

at least one asset of non-zero cost. In general, when we consider both x1 and x2, the

RMVF frontier will shift to the left because the available risk-return trade-o¤s improve,
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while the SMVF frontier will rise because there is more information in the data about

the underlying SDF. However, this is not always the case. In particular, we say that

x1 spans the SMVF and/or RMVF generated from x when the original and extended

frontiers coincide. We shall return to this case in section 4.4. Unlike in the case of ex-

cess returns, though, a third, and last, possibility arises, namely, that the original and

extended frontiers touch at a single point. Although it is common in the literature to

refer to this situation as �intersection�, we prefer to use the word �tangency� because

the frontiers are never secant to each other, as the word �intersection�may suggest. As

expected, the duality between the SMVF and RMVF means that tangency in one of them

implies tangency in the other.13

Given that the elements of the SMVF can be written as (a constant plus) a portfolio

of the cost and mean representing portfolios (see expression (6)), there will be tangency

on the SMVF if and only if there is a _c such that

�� �
�
_c� E (p�)
1� E(p�)

�
�� = '� � _c'� (31)

has zero weights on x2. Similarly, expression (10) implies there will be tangency on the

RMVF if and only if there is a _� such that�
E(p�2)� E(p�p�) _�

�
�� +

�
E(p�2) _� � E(p�p�)

�
��

= [V (þ�)� cov(þ�; þ�) _�]'� + [V (þ�) _� � cov(þ�; þ�)]'� (32)

has zero weights on x2. Therefore, if we want to estimate the SMVF and RMVF frontiers

exploiting tangency, then we simply have to impose these restrictions in the just identi�ed

moment conditions (27), or in the system (28) that identi�es the centred representing

portfolios. A particularly convenient way of doing so is by writting

�� =

0@ ��1

��2

1A =

0@ �0�
�
1 � �1
�0�

�
2

1A ;
where in view of (7) we can interpret

�0 =

�
_c� E (p�)
1� E(p�)

�
and

�1 = �0�
�
1 � ��1;

13Save in the two duality exceptions discussed in appendix C of Peñaranda and Sentana (2011), in
which tangency in one frontier implies common asymptotes for the other one.
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the restriction being

�2 = �0�
�
2 � ��2 = 0:

As a result, we can work with the overidenti�ed system:

E

26664
x (�0 � x01�1)� e1

xx0�� � x

x0�� � ��

37775 = 0; (33)

which is linear in the unknown parameters (�0;�
0
1;�

�0; ��)
0.14

We can also estimate the SMVF and RMVF frontiers corresponding to x1 subject to

the tangency restriction by using the overidenti�ed system of moment conditions

E

26664
x (�0 � x01�1)� e1
x1x

0
1�

�
1 � x1

x01�
�
1 � ��1

37775 = 0: (34)

Since we are using optimal GMM in all cases, the imposition of the equality restrictions

(31) or (32) should generally lead to e¢ ciency gains relative to the unrestricted estimation

of both frontiers. Figures 10a and 10b present the restricted and unrestricted frontiers

imposing the tangency constraint for a given simulation, as well as the corresponding

con�dence intervals. Finally, Figure 10c looks at portfolio weights.

<Figures 10a, 10b and 10c>

As in previous cases, we can test the tangency restrictions by means of the overiden-

ti�ed restriction test of (33), or its centred counterpart, both of which will have N2 � 1
degrees of freedom under the null. As expected, these tests coincide with the correspond-

ing distance metric tests of the null hypothesis H0 : �2 = 0.

Once again, though, the most popular tangency test in empirical �nance is the re-

gression test considered by Gibbons (1982), Kandel (1984) and Shanken (1985, 1986).

Although these authors discussed likelihood ratio and F -tests under the assumption that

the conditional distribution of x2 given x1 is multivariate normal with an a¢ ne mean and

14If N1 = 1 then there will be a singularity if dim (x1) = 1. To solve it, we can impose

�� = ��21 =�
�
1:

and skip the condition for �� (see Penaranda and Sentana (2010a) for a more formal treatment of optimal
GMM with this type of singularities).
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a constant covariance matrix, it is straightforward to obtain robust GMM versions (see

section 5.3.2 of Campbell, Lo and MacKinlay (1997)). Speci�cally, if we exploit the fact

that the �rst element of x1 is the only payo¤ with a non-zero cost, the distance metric

version of the regression-based tangency tests will be the overidenti�cation restriction test

of the N2(N1 + 1) normal equations

E

8<:
0@ 1

x1

1A
 [x2 � b1(R1 � _c�1)�Br1]

9=; = 0; (35)

where (b1;B) denotes the matrix of regression coe¢ cients of x2 onto x1, and _c�1 is the

unknown expected value of the zero-beta return corresponding to the tangency portfolio.

It is tedious but otherwise straightforward to show that this regression test is asymp-

totically equivalent under the null and compatible sequences of local alternatives to the

overidenti�cation restriction test of (33). In addition, it is also possible to prove that

they will be numerically identical for single-step GMM estimators such as Continuously

Updated GMM.

The main advantage of the test based on (33) relative to the tangency test based on

(35) is that the moment conditions under the null are linear in the parameters, which

simpli�es the computations considerably. In addition, given that (35) is not particularly

useful for the purposes of estimating mean-variance frontiers, we shall not discuss it any

further.15

Finally, in some important cases we could be interested in studying the tangency of

two frontiers at a pre-speci�ed point. For instance, Chen and Knez (1996) propose to test

the tangency of the two SMVF frontiers at p� in order to evaluate the performance of a

single investment fund with gross returns R2 with respect to the �benchmarks�included

in R1. Speci�cally, they test �
�
2 = 0 on the basis of

E(xx01�
�
1 � e1) = 0;

which are the moment conditions that implicitly de�ne the uncentred cost representing

portfolio (see also De Roon and Nijman (2001), who provide a survey of performance

evaluation, and its relationship to tangency tests).

More generally, if we want to test for tangency between SMVFs at a given value of _c,

we can either impose the linear restriction

'�2 = _c'�2
15See Beaulieu, Dufour and Khalaf (2007) for alternative tangency tests with exact �nite sample dis-

tributions.
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on the moment conditions (28), or else impose the non-linear restriction

��1 = _c+ �0(1� ��)

on the moment conditions (33), where ��1 denotes the �rst entry of �
�.

Testing for tangency between two nested RMVFs at a given value of _� is somewhat

more involved. One possibility would be to impose the non-linear restriction

(�1 � �2 _�)'�2 + (�3 _� � �2)'�2 = 0

on the moment conditions (28). Another possibility would be as follows. Let � � denote

the reciprocal of the �rst element of ��1. If we multiply the �rst block of the moment
conditions in (33) by this parameter, we end up with

E

24xx01
0@ 1

!1

1A� (� �e1 + � �x)
35 = 0; (36)

where we have called � � = �0� � and (1;!01)
0 = ��1� �. If we then impose the constraint

� � =

�
_� � � ���1
��

�
;

the moment conditions (36) will identify !1 as the weights on r1 of a tangency portfolio

in the RMVF with mean _� because �� = E(p�) and ��1 = E (p
�). Therefore, we can test

for tangency at _� by using the overidenti�cation test of the system

E

8>>><>>>:
x (R1 + r

0
1!1)� � �e1 � [( _� � � ���1)=��]x

xx0�� � x

x0�� � ��

9>>>=>>>; = 0: (37)

In fact, if we set _� = 0 in these moment conditions, the duality of the RMVF and

SMVF would imply that we would obtain the test for tangency at the minimum of the

SMVF considered by DeSantis (1995). Similarly, we could set _c = 0 to test for tangency

at the minimum variance portfolio in the RMVF.

Obviously, all these tests will have N2 degrees of freedom when the tangency point is

known, since there is one parameter less to estimate.

4.3 E¢ cient estimation imposing a linear factor pricing model:
Asset pricing tests

We can again consider using an asset pricing model in order to reduce the sampling

variability of estimated mean-variance frontiers. If we model the true SDF m as an a¢ ne
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transformation of some k � N observable risk factors f , then we can express the pricing

equation as

E[x (�0 � �0f)] = e1

for some real numbers (�0;�
0)0. In fact, we can understand the tangency restrictions

discussed in the previous section as imposing a linear factor pricing model in which the

pricing factors f coincide with some traded payo¤s x1. However, in general f does not

have to be a subset of x. Unlike in the case of arbitrage portfolios, though, the scaling of

m is no longer an issue in the presence of at least one asset whose cost is not zero, which

means that �0 and � can be separately identi�ed. Assuming that f and x do not share

any common elements, we get

E

26666664
x (�0 � �0f)� e1
xx0�� � e1
xx0�� � x

x0�� � ��

37777775 = 0; (38)

where the unknown parameters are (�0;�
0;��0;��0; ��)

0. In this way, we should generally

obtain more e¢ cient estimators of the mean-variance frontiers that exploit the pricing

equations.16

As before, we can use the overidentifying restriction test of system (38) to test the

asset pricing restrictions.

4.4 E¢ cient estimation imposing spanning restrictions: Span-
ning tests

As we mentioned before, we say that x1 spans the SMVF and/or RMVF generated

from x when the original and extended frontiers coincide. Given expression (10), this

will happen if and only if neither the cost nor the mean representing portfolios depend

on the vector of payo¤s x2. Under the null hypothesis, there will be one pair of MV

frontiers. Under the alternative, there will be two: those generated from x1 alone, and

those generated from x. We can estimate the pairs of unrestricted frontiers by using the

16Once again, the asset pricing constraint can still be interpreted as tangency, but with respect to the
factor mimicking portfolios. That is, there is a linear combination of the representing portfolios that
depends on the factor mimicking portfolios only

x0 (�� � �0��) = x0E�1 (xx0) [e1 � �0E (x)] =
�
x0E�1 (xx0)E

�
xf 0
��
�:
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procedures discussed at the beginning of section 4. On the other hand, we can estimate

the common mean-variance frontiers by imposing the restrictions H0 : �
�
2 = �

�
1 = 0 on the

set of moment conditions (27). The resulting system of overidenti�ed moment conditions

will be

E

26664
xx01�

�
1 � e1

xx01�
�
1 � x

x01�
�
1 � ��

37775 = 0: (39)

The optimal GMM estimator obtained from (39) will generally be more e¢ cient than

the corresponding estimator obtain from the unrestricted system (27) as long as the

spanning restrictions hold. Moreover, the results in Breusch et al (1999) imply that

this estimator will also be generally more e¢ cient than the one obtained from the just

identi�ed 2N1 + 1 moment conditions

E

26664
x1x

0
1�

�
1 � e1

x1x
0
1�

�
1 � x1

x01�
�
1 � ��

37775 = 0: (40)

As in the case of excess returns, though, an exception to this rule arises in the case of

i:i:d: elliptical returns.

Proposition 2 If xt is an i.i.d. elliptical random vector with bounded fourth moments,
and the null hypothesis of spanning is true, then:
a) The asymptotic variance of the optimal GMM estimator of �� obtained from (39),
which imposes the spanning constraints ��2 = ��1 = 0, will coincide with the asymptotic
variances of both the estimator obtained from (40), and the estimator obtained from (27).
b) The asymptotic variance of the GMM estimators of ��1 and �

�
1 obtained from (27) will

be larger (in the usual positive de�nite sense) than the asymptotic variance of the optimal
GMM estimators based on (39), which in turn coincides with the asymptotic variance of
the GMM estimator obtained from (40).

This results extends Lemma 1 in Peñaranda and Sentana (2010b), who prove the

asymptotic equivalence mentioned in part b. Trivially, part b) extends to the �estimators�

of ��2 and �
�
2.

As usual, the advantage of our GMM set-up is that we can readily use the overidenti�-

cation test of the moment conditions (39) to test for spanning, since it coincides with the

distance metric test of the null hypothesis H0 : �
�
2 = �

�
1 = 0. Such a spanning test was

proposed by Peñaranda and Sentana (2010a), who also considered a centred representing

portfolio counterpart.
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However, the most popular mean-variance spanning tests are the regression-based tests

considered by Huberman and Kandel (1987). Given that the �rst element of x1 is the

only asset with a non-zero cost, their test would correspond to the overidenti�cation test

of the N2(N1 + 1) moment conditions

E

240@ 1

x1

1A
 (x2 �Br1)
35 = 0; (41)

Peñaranda and Sentana (2010a) show that the overidenti�cation test based on the

moment conditions (39), their centred representing portfolios counterparts, and the re-

gression version obtained from (41) can be made numerically identical by using single step

methods such as CUE. More generally, these authors also show that all these tests are

asymptotically equivalent under the null and compatible sequences of alternatives when

implemented by two-stage or interated GMM, even though they will not be numerically

equivalent in that case.

5 Summary and directions for future research

The contribution of this paper is threefold:

1. We propose GMM-based procedures that allow us to consistently estimate mean-

variance frontiers for returns and stochastic discount factors and the weights of

the portfolios that belong to them, as well as to derive joint con�dence regions that

provide analytically tractable and computationally simple alternatives to the Monte

Carlo methods considered by Jorion (1992) and Michaud (1998) among others.

2. We explain how to achieve e¢ ciency gains in estimating those frontiers by exploiting

theoretically motivated restrictions, such as those derived from asset pricing models

or other commonly used assumptions like tangency or spanning.

3. We exploit the integration of estimation and testing implicit in GMM, and study the

associated overidenti�cation tests, which can be formally understood as parametric

tests of the null hypothesis that the additional restrictions are satis�ed.

In addition, we follow Peñaranda and Sentana (2010a,b) in providing a uni�ying ap-

proach that applies at three di¤erent levels:
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a. We exploit the duality of the RMVF and SMVF so that our estimators, con�dence

regions and tests are not necessarily tied down to the speci�c properties of either

frontier.

b. We compare our proposed tests to the extant tests, and show that they are all

asymptotically equivalent under the null and compatible Pitman sequences of local

alternatives, despite the fact that in some cases the number of parameters and

moment conditions can be di¤erent.

c. We show that by using single-step GMM procedures such as the Continuously Up-

dated (CU) version in Hansen, Heaton and Yaron (1996), we can make all the

di¤erent overidenti�cation tests numerically identical.

However, we have not explicitly considered the implications of mutual fund separation

for the estimation of mean-variance frontiers. In fact, the only additional restriction in a

RMVF context is that the residual of the theoretical regression of x2 on x1 must not only

be orthogonal to x1, but also mean independent (see e.g. Chamberlain (1983) or Ferson,

Foerster, and Keim (1993)).

We have not discussed either conditional versions of the RMVF or SMVF (see Hansen

and Richard (1987) and Gallant, Hansen and Tauchen (1990), respectively). Given that

Hansen and Richard (1987) derive conditional analogues to the centred and uncentred

representing portfolios, our unifying approach provides a rather natural starting point

to look at this problem. However, since the weights of the conditional mean and cost

RP portfolios will generally be functions of the relevant information set, we should again

consider conditional moment restrictions, as opposed to the unconditonal ones that we

have discussed. Given the practical relevance of all these issues, they constitute obvious

avenues for further research.
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Figures 1a and 1b: Ensemble of AMVFs and optimal weigths on the first asset
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Figure 2: Sampling distribution of maximum Sharpe ratio
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Figure 3: Joint confidence region for two points on the SMVF for excess returns
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Figures 4a and 4b: Confidence regions for AMVF and optimal weights on the first asset
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Figures 5a and 5b: Restricted and unrestricted AMVF and optimal weights on the first asset
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Figures 6a and 6b: Efficiency gains from imposing spanning restrictions on excess returns
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Figure 7: Ensemble of mean-variance frontiers for returns, and optimal weights on the second

asset
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Figure 8: Joint confidence region for three points on the SMVF for gross returns
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Figures 9a, 9b and 9c: Confidence limits for SMVF, RMVF and optimal weights on the

second asset
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Figure 10a, 10b and 10c: Restricted and unrestricted SMVF, RMVF and optimal weights on

the second asset
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