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1 Introduction

Mean-variance analysis is widely regarded as the cornerstone of modern investment

theory. Despite its simplicity, and the fact that more than five and a half decades have

elapsed since Markowitz published his seminal work on the theory of portfolio allocation

under uncertainty (Markowitz (1952)), it remains the most widely used asset allocation

method. There are several reasons for its popularity. First, it provides a very intuitive

assessment of the relative merits of alternative portfolios, as their risk and expected re-

turn characteristics can be compared in a two-dimensional graph. Second, mean-variance

frontiers are spanned by only two funds, a property that simplifies their calculation and

interpretation, and that also led to the derivation of the Capital Asset Pricing Model

(CAPM) by Sharpe (1964), Lintner (1965) and Mossin (1966). Finally, mean-variance

analysis becomes the natural approach if we assume Gaussian or elliptical distributions

for asset returns, because in that case it is fully compatible with expected utility max-

imisation regardless of investor preferences (see e.g. Chamberlain (1983), Owen and

Rabinovitch (1983) and Berk (1997); see also Ross (1978) for a related discussion).

A portfolio with excess returns r1t is mean-variance efficient with respect to a given

set of N2 assets with excess returns r2t if it is not possible to form another portfolio

of those assets and r1t with the same expected return as r1t but a lower variance, or

more appropriately, with the same variance but a higher expected return. Despite the

simplicity of the definition, testing for mean-variance efficiency is of paramount impor-

tance in many practical situations, such as mutual fund performance evaluation (see De

Roon and Nijman (2001) for a recent survey), gains from portfolio diversification (Er-

runza, Hogan and Hung (1999)), or tests of linear factor asset pricing models, including

the CAPM and APT, which imply that certain portfolio must be mean-variance efficient

(see e.g. Campbell, Lo and MacKinlay (1996) or Cochrane (2001) for advanced textbook

treatments).

If the first two moments of returns were known, then it would be straightforward

to confirm or disprove the mean-variance efficiency of r1t by simply checking whether

they lied on the portfolio frontier spanned by rt = (r1t, r
′
2t)
′. In practice, of course, the

mean and variance of portfolio returns are unknown, and the sample mean and standard

deviation of r1t will lie inside the estimated mean-variance frontier with probability one.
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Therefore, a statistical hypothesis test provides a rather natural decision method in this

context because it explicitly takes into account the sampling variability in the estimation

of the first two moments of returns. Otherwise, such a variability would be misleading

because the inclusion of additional assets systematically leads to the expansion of the

sample frontiers irrespective of whether the theoretical frontier is affected, in the same

way as the inclusion of additional regressors systematically leads to increments in sample

R2′s regardless of whether their theoretical regression coefficients are 0.

To emphasise the importance of sampling uncertainty in this context, I have con-

ducted the following simulation experiment. I have assumed that investors have access

to a reference asset with excess returns r1t and three additional assets, whose excess

returns rit, rjt and rkt are i.i.d. with an annual mean of 0%, uncorrelated among them-

selves and with the original asset, so that the true maximum Sharpe ratio (i.e. the

ratio of the expected excess return on a portfolio to its standard deviation) does not

increase. Then I simulate two years of daily data many times, and compute the original

and augmented mean-variance frontiers, as well as the incremental one, which is based

on the differences between rit, rjt and rkt and their best tracking portfolios based on r1t.

Figure 1 presents part of the ensemble of incremental frontiers, while Figure 2 contains

the sampling distribution of the GMM estimator of the incremental Sharpe ratio. As

can be seen from both pictures, if one did not take into account sampling uncertainty

then one would always conclude that there are clear gains from also investing in rit, rjt

and rkt when in reality there are none.

In fact, the sampling uncertainty surrounding expected returns is so large that several

authors have forcefully raised some doubts about the usual practice of applying mean-

variance investment rules replacing expected returns, variances and covariances by their

sampling counterparts. In this sense, there are several solutions that explicitly take into

account sampling uncertainty in making portfolio decisions in practice. These include

not only Bayesian approaches but also classical ones. For instance, the modifications of

the plug-in rule suggested by ter Horst, de Roon and Werker (2006) or Antoine (2008)

from a classical perspective, as well as the Bayesian solution proposed by Bawa, Brown

and Klein (1979) and others amount to levering up or more likely down the usual mean-

variance portfolio rule by effectively changing the risk aversion parameter of the investor.

However, the maximum Sharpe ratio attainable remains the same. Hence, an investor
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who currently applies one of those alternative rules to a vector of N1 excess returns r1t,

say, but who is considering whether or not to diversify her investments into r2t, should

still be interested in conducting a mean-variance efficiency test.

The purpose of this paper is to survey mean-variance efficiency tests, with an empha-

sis on methodology rather than empirical findings, and paying more attention to some

recent contributions and their econometric subtleties. In this sense, it complements pre-

vious surveys by Shanken (1996), Campbell, Lo and MacKinlay (1997) and Cochrane

(2001). In order to accommodate most of the literature, in what follows I shall often

work with the vector r1t, so that the null hypothesis should be understood as saying that

some portfolio of the N1 elements in r1t lies on the efficient part of the mean-variance

frontier spanned by r1t and r2t.
1

The rest of the paper is organised as follows. I introduce the theoretical set up in

section 2, review the original tests in section 3, and analyse the effects of the number of

assets and portfolio composition on test power in section 4. Then I discuss asymptotically

equivalent tests based on portfolio weights in section 5, and study the trade-offs between

efficiency and robustness of using parametric and semiparametric likelihood procedures

that assume either elliptical innovations or elliptical returns in section 6. After reviewing

finite sample tests in section 7, I conclude with a discussion of mean-variance-skewness

efficiency and spanning tests in section 8. Finally, I mention some related topics and

suggestions for future work in section 9. Proofs of the few formal results that I present

can be found in the original references.

2 Mean-Variance Portfolio Frontiers

Consider a world with one riskless asset, and a finite number N of risky assets. Let

R0 denote the gross return on the safe asset (that is, the total payoff per unit invested,

which includes capital gains plus any cash flows received), R = (R1, R2, . . . , RN)′ the

vector of gross returns on the N remaining assets, with vector of means and matrix

of variances and covariances ν and Σ respectively, which I assume bounded. Let p =

w0R0 +w1R1 + . . .+wNRN denote the payoffs to a portfolio of the N+1 primitive assets

with weights given by w0 and the vector w = (w1, w2, . . . , wN)′. Importantly, I assume

1In this sense, it is important to note that in the case in which r1t contains single asset, the null hy-
pothesis only says that r1t spans the mean-variance frontier, so in principle it could lie on its innefficient
part (see GRS).
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that there are no transaction costs or other impediments to trade, and in particular, that

short-sales are allowed. I also assume that the wealth of any particular investor is such

that her individual behaviour does not alter the distribution of returns.

There are at least three characteristics of portfolios in which investors are usually

interested: their cost, the expected value of their payoffs, and their variance, given by

C(p) = w0 + w′ιN , E(p) = w0R0 + w′ν and V (p) = w′Σw respectively, where ιN is a

vector of N ones. Let P be the set of payoffs from all possible portfolios of the N + 1

original assets, i.e. the linear span of (R0,R
′), 〈R0,R

′〉. Within this set, several subsets

deserve special attention. For instance, it is worth considering all unit cost portfolios

R = {p ∈ P : C(p) = 1}, whose payoffs can be directly understood as returns per unit

invested; and also all zero cost, or arbitrage portfolios A = {p ∈ P : C(p) = 0}. In this

sense, note that any non-arbitrage portfolio can be transformed into a unit-cost portfolio

by simply scaling its weights by its cost. Similarly, if r = R−R0ιN denotes the vector

of returns on the N primitive risky assets in excess of the riskless asset, it is clear that

A coincides with the linear span of r, 〈r〉. The main advantage of working with excess

returns is that their expected values µ = ν−R0ιN directly give us the risk premia of

R, without altering their covariance structure. On the other hand, one must distinguish

between riskless portfolios, S = {p ∈ P : V (p) = 0} and the rest. In what follows, I

shall impose restrictions on the elements of S so that there are no riskless “arbitrage”

opportunities. In particular, I shall assume that Σ is regular, so that S is limited to the

linear span of R0, and the law of one price holds (i.e. portfolios with the same payoffs

have the same cost). I shall also assume that R0 is strictly positive (in practice, R0 ≥ 1

for nominal returns).

A simple, yet generally incomplete method of describing the choice set of an agent

is in terms of the mean and variance of all the portfolios that she can afford. Let us

consider initially the case of an agent who has no wealth whatsoever, which means that

she can only choose portfolios in A. In this context, frontier arbitrage portfolios, in the

usual mean-variance sense, will be those that solve the program minV (p) subject to the

restrictions C(p) = 0 and E(p) = µ̄, with µ̄ real. Given that C(p) = 0 is equivalent to

p = w′r, I can re-write this problem as minw w′Σw subject to w′ µ = µ̄. There are two

possibilities: (i) µ = 0, when the frontier can only be defined for µ̄ = 0; or (ii) µ 6= 0,
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in which case the solution for each µ̄ is

w∗(µ̄) =µ̄(µ′Σ−1µ)−1Σ−1µ

As a consequence, the arbitrage portfolio rp = (µ′Σ−1µ)−1µ′Σ−1r generates the whole

zero-cost frontier, in what can be called one-fund spanning. Moreover, given that the

variance of the frontier portfolios with mean µ̄ will be µ̄2(µ′Σ−1µ)−1, in mean-standard

deviation space the frontier is a straight line reflected in the origin whose efficient section

has slope
√
µ′Σ−1µ. Therefore, this slope fully characterises in mean-variance terms the

investment opportunity set of an investor with no wealth, as it implicitly measures the

trade-off between risk and return that the available assets allow at the aggregate level.

Traditionally, however, the frontier is usually obtained for unit-cost portfolios, and

not for arbitrage portfolios. Nevertheless, given that the payoffs of any portfolio inR can

be replicated by means of a unit of the safe asset and a portfolio in A, in mean-standard

deviation space, the frontier for R is simply the frontier for A shifted upwards in parallel

by the amount R0. And although now we will have two-fund spanning, for a given safe

rate, the slope
√
µ′Σ−1µ continues to fully characterise the investment opportunity set

of an agent with positive wealth.

An alternative graphical interpretation of the same result would be as follows. The

trade-off between risk and return of any unit-cost portfolio in R is usually measured as

the ratio of its risk premium to its standard deviation. More formally, if Ru ∈ R, then

s(ru) = µu/σu, where µu = E(ru), σ
2
u = V (ru), and ru = Ru − R0. This expression,

known as the Sharpe ratio of the portfolio after Sharpe (1966, 1994), remains constant

for any portfolio whose mean excess return and standard deviation lie along the ray

which, starting at the origin, passes through the point (µu, σu) because the Sharpe ratio

coincides with the slope of this ray. As a result, the steeper (flatter) a ray is (i.e. the

closer to the y (x) axis), the higher (lower) the corresponding Sharpe ratio.

Then, since µp = 1 and σ2
p = (µ′Σ−1µ)−1, the slope s(rp) = µp/σp =

√
µ′Σ−1µ will

give us the Sharpe ratio of

Rp(wrp) = R0 + wrprp

for any wrp > 0, which is the highest attainable. Therefore, in mean excess return-

standard deviation space, all Rp(wrp) lie on a positively sloped straight line that starts

from the origin. Assuming that ι′NΣ−1µ > 0, as the investor moves away from the origin,
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where she is holding all her wealth in the safe asset, the net total position invested in the

riskless asset is steadily decreasing, and eventually becomes zero. Beyond that point, she

begins to borrow in the money market to lever up her position in the financial markets.2

The main point to remember, though, is that a portfolio will span the mean-variance

frontier if and only if its square Sharpe ratio is maximum. As we shall see below, this

equivalence relationship underlies most mean-variance efficiency tests.

For our purposes, it is useful to relate the maximum Sharpe ratio to the Sharpe

ratio of the N underlying assets. Proposition 3 in Sentana (2005) gives the required

expression:

Proposition 1 The Sharpe ratio of the optimal portfolio (in the unconditional mean-

variance sense), s(rp), only depends on the vector of Sharpe ratios of the N underlying

assets, s(r), and their correlation matrix, ρrr = dg−1/2(Σ)Σdg−1/2(Σ) through the fol-

lowing quadratic form:

s2(rp) = s(r)′ρ−1
rr s(r), (1)

where dg(Σ) is a matrix containing the diagonal elements of Σ and zeros elsewhere.

The above expression, which for the case of N = 2 adopts the particularly simple

form:

s2(rp) =
1

1− ρ2
r1r2

[
s2(r1) + s2(r2)− 2ρr1r2s(r1)s(r2)

]
, (2)

where ρr1r2 = cor(r1, r2), turns out to be remarkably similar to the formula that relates

the R2 of the multiple regression of r on (a constant and) x with the correlations of the

simple regressions. Specifically,

R2 = ρ′xrρ
−1
xxρxr. (3)

The similarity is not merely coincidental. From the mathematics of the mean-

variance frontier, we know that E(rj) = cov(rj, rp)E(rp)/V (rp), and therefore, that

2The portfolio at which the net position in the riskless asset is exactly 0 is known as the “tangency”
portfolio, because when ι′NΣ−1µ 6= 0, there is tangency at that particular point between the mean-
variance frontier without a riskless asset and the analogous frontier with a riskless asset in expected
return - standard deviation space. The exact expression for its weights is:

w∗(µ′Σ−1µ/ι′NΣ−1µ) = (ι′NΣ−1µ)−1Σ−1µ.

If ι′NΣ−1µ < 0 (> 0), the expected excess return of this portfolio will be negative (positive), which
means that tangency will take place along the inneficient (efficient) section of the mean-variance frontier
for excess returns (see e.g. Maller and Turkington (2002)). If ι′NΣ−1µ = 0, though, the frontier with a
riskless asset coincides with the asymptotes of the frontier without a riskless asset, so strictly speaking
no tangency portfolio exists.
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s(rj) = cor(rj, rp)s(rp). In other words, the correlation coefficient between rj and rp is

s(rj)/s(rp), i.e. the ratio of their Sharpe ratios. Hence, the result in Proposition 1 follows

from (3) and the fact that the coefficient of determination in the multiple regression of

rp on r will be 1 because rp is a linear combination of this vector.

We can use the partitioned inverse formula to alternatively write expression (1) in

the following convenient form

s2(rp) = s(r1)
′ρ−1
r1r1

s(r1) + s(z2)
′ρ−1
zz s(z2) = s2(rp1) + a′Ω−1a, (4)

where s(rp1) is the Sharpe ratio of the tangency portfolio obtained from r1 alone, rp1 =

µ′1Σ
−1
11 r1, the vector z2 = r2 − Σ21Σ

−1
11 r1 contains the components of r2 whose risk

has been fully hedged against the risk of r1, a = E(z2) = µ2 − Σ21Σ
−1
11 µ1, ρzz =

dg−1/2(Ω)Ωdg−1/2(Ω) and Ω = Σ22 − Σ21Σ
−1
11 Σ12. Given that we can interpret a as

the intercepts in the theoretical least squares projection of r2 on a constant and r1, it

trivially follows from (4) that r1 will be mean-variance efficient if and only if a = 0

(see Black, Jensen and Scholes (1972), Jobson and Korkie (1982, 1985), Huberman and

Kandel (1987) and Gibbons, Ross and Shanken (1989) (GRS)).

In the bivariate case, (4) reduces to:

s2(rp) = s2(r1) + s2(z2),

where

s(z2) =
µ2 − (σ12/σ

2
1)µ1√

σ2
2 − σ2

12/σ
2
1

=
a2

ω2

=
s(r2)− ρ12s(r1)√

1− ρ2
12

is the Sharpe ratio of z2 = r2−σ12/σ
2
1 r1. When r1 is regarded as a benchmark portfolio,

s(z2) is often known as the information (or appraisal) ratio of r2.

Corollary 1 in Shanken (1987a) provides the following alternative expression for the

maximum Sharpe ratio of z2 in terms of the Sharpe ratio of rp1 and the correlation

between this portfolio and rp:

s(z2)
′ρ−1
zz s(z2) = s2(rp1)

[
1

cor2(rp1 , rp)
− 1

]
.

This result exploits the previously mentioned fact that cor(rp1 , rp) = s(rp1)/s(rp) (see

also Kandel and Stambaugh (1987) and Meloso and Bossaerts (2006)). Intuitively, the

incremental Sharpe ratio will reach its minimum value of 0 when rp1 = rp but it will

increase as the correlation between those two portfolios decreases.
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3 The original tests

The framework described in the previous section has an implicit time dimension

that corresponds to the investment horizon of the agents. To make it econometrically

operational for a panel data of excess returns on N1 + N2 = N assets over T periods

whose length supposedly coincides with the relevant investment horizon, GRS considered

the following multivariate, conditionally homoskedastic, linear regression model

r2t = a + Br1t + ut = a + Br1t + Ω1/2ε∗t , (5)

where a is the N2×1 vector of intercepts, B is a N2×N1 matrix of regression coefficients,

Ω1/2 is an N2×N2 “square root” matrix such that Ω1/2Ω1/2 = Ω, ε∗t is a N2-dimensional

standardised vector martingale difference sequence satisfying E(ε∗t |r1t, It−1;γ0, ω0) = 0

and V (ε∗t |r1t, It−1;γ0, ω0) = IN2 , γ
′ = (a′,b′), b = vec(B), ω = vech(Ω), the subscript 0

refers to the true values of the parameters, and It−1 denotes the information set available

at t− 1, which contains at least past values of r1t and r2t. Crucially, GRS assumed that

conditional on r1t and It−1, ε
∗
t is independent and identically distributed as a spherical

Gaussian random vector, or ε∗t |r1t, It−1;γ0, ω0 ∼ i.i.d. N(0, IN2) for short.

Given the structure of the model, the unrestricted Gaussian ML estimators of a

and B coincide with the equation by equation OLS estimators in the regression of each

element of r2t on a constant and r1t. Consequently,

â = µ̂2 − B̂µ̂1, (6)

B̂ = Σ̂21Σ̂
−1
11 , (7)

Ω̂ = Σ̂22 − Σ̂21Σ̂
−1
11 Σ̂′21,

where

µ̂ =

(
µ̂1

µ̂2

)
=

1

T

T∑
t=1

(
r1t

r2t

)
,

Γ̂ =

(
Γ̂11 Γ̂′21

Γ̂21 Γ̂22

)
=

1

T

T∑
t=1

(
r1tr

′
1t r1tr

′
2t

r2tr
′
1t r2tr

′
2t

)
,

and Σ̂ = Γ̂− µ̂µ̂′.

In fact, â and B̂ would continue to be the Gaussian ML estimators if the matrix Ω0

were known. In those circumstances, the results in Breusch (1979) would imply that the
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Wald (WT ), LR (LRT ) and LM (LMT ) test statistics for the null hypothesis H0 : a = 0

would all be numerically identical to

T · â′Ω−1
0 â

1 + µ̂′1Σ̂
−1
11 µ̂1

,

whose finite sample distribution conditional on the sufficient statistics µ̂1 and Σ̂11 would

be that of a non-central χ2 with N2 degrees of freedom and non-centrality parameter

T · a′0Ω−1
0 a0/(1 + µ̂′1Σ̂

−1
11 µ̂1).

3 The reason is that the finite sample distribution of â,

conditional on µ̂1 and Σ̂11, is multivariate normal with mean a0 and covariance matrix

T−1(1 + µ̂′1Σ̂
−1
11 µ̂1)Ω0.

In practice, of course, Ω0 is unknown, and has to be estimated along the other

parameters. But then, the Wald, LM and LR tests no longer coincide. However, for

fixed N2 and large T all three tests will be asymptotically distributed as the same

non-central χ2 with N2 degrees of freedom and non-centrality parameter

ã′Ω−1ã

1 + µ′1Σ
−1
11 µ1

under the Pitman sequence of local alternatives HlT : a = ã/
√
T (see Newey and Mac-

Fadden (1994)). In contrast, they will separately diverge to infinity for fixed alternatives

of the form Hf : a = ȧ, which makes them consistent tests. In the case of the Wald test,

in particular, we can use Theorem 1 in Geweke (1981) to show that

p lim
1

T
WT =

ȧ′Ω−1ȧ

1 + µ′1Σ
−1
11 µ1

coincides with Bahadur’s (1960) definition of the approximate slope of the Wald test.4

In finite samples, though, the test statistics satisfy the following inequalities

WT ≥ LRT ≥ LMT ,

which may lead to the conflict among criteria for testing hypotheses pointed out by

Berndt and Savin (1977). In effect, the above inequalities reflect the fact that the

finite sample distribution of the three tests is not well approximated by their asymptotic

distribution, especially when N2 is moderately large. For that reason, Jobson and Korkie

3Consequently, the distribution under the null H0 : a = 0 is effectively unconditional. In contrast,
the unconditional distribution under the alternative is unknown.

4Although in general approximate slopes differ from non-centrality parameters for local alternatives,
in this case both expressions coincide because the asymptotic variance of â is the same under the null
and the alternative.
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(1982) proposed a Bartlett (1937) correction that scales the usual LRT statistic by

1−(N2+N1+3)/2T to improve the finite sample reliability of its asymptotic distribution.

In this context, the novel contribution of GRS was to exploit results from classic

multivariate regression analysis to show that, conditional on the sufficient statistics µ̂1

and Σ̂11, the test statistic

FT =
T −N2 −N1

N2

â′Ω̂−1â

1 + µ̂′1Σ̂
−1
11 µ̂1

will be distributed in finite samples as a non-central F with N2 and T −N1−N2 degrees

of freedom and non-centrality parameter

T · a′0Ω−1
0 a0

1 + µ̂′1Σ̂
−1
11 µ̂1

.

Importantly, for N2 = 1 this F test coincides with the square of the t-test proposed by

Black, Jensen and Scholes (1972). The Wald, LM or LR statistics mentioned before can

be written as monotonic transformations of this F test. For instance,

FT =
T −N2 −N1

N2

[exp(LRT/T )− 1]

GRS also showed that

â′Ω̂−1â = µ̂′Σ̂−1µ̂− µ̂′1Σ̂−1
1 µ̂1 = ŝ2(r̂p)−ŝ2(r̂p1),

where ŝ2(r̂p) = µ̂′Σ̂−1µ̂ is the (square) sample Sharpe ratio of the ex-post tangency port-

folio that combines r1 and r2, while ŝ2(r̂p1) = µ̂′1Σ̂
−1
1 µ̂1 is the (square) sample Sharpe

ratio of the ex-post tangency portfolio that uses data on r1 only.5 In view of expression

(4), an alternative interpretation is that â′Ω̂−1â is the maximum ex-post square Sharpe

ratio obtained by combining ẑ2, which are the components of r2 that have been fully

hedged in sample relative to r1. The corresponding portfolio, â′Ω̂−1(r2−B̂r1) = â′Ω̂−1ẑ2,

is sometimes known as the (ex post) optimal orthogonal portfolio (see MacKinlay (1995)).

Strictly speaking, GRS considered an incomplete (conditional) model that left un-

specified the marginal distribution of r1t. But they would have obtained exactly the same

test had they considered the complete (joint) model rt|It−1;ρ ∼ i.i.d. N [µ(ρ),Σ(ρ)],

where

µ(ρ) =

(
µ1

a + Bµ1

)
, (8)

Σ(ρ) =

(
Σ11 Σ11B

′

BΩ11 BΣ11B
′ + Ω

)
, (9)

5Kandel and Stambaugh (1989) provide an alternative graphical interpretation of the GRS test in
sample mean-variance space.
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and ρ′ = (a′,b′,ω′,µ′1,σ
′
11), where σ11 = vech(Σ11). The reason is that under this

assumption the joint log-likelihood function of rt conditional on It−1 can be written as

the sum of the conditional log-likelihood function of r2t given r1t (and the past), which

depends on a, B and Ω only, plus the marginal log-likelihood function of r1t (conditional

on the past), which just depends on µ1 and Σ11. Given that θ = (a′,b′,ω′)′ and (µ1,σ11)

are variation free, we have thus performed a sequential cut of the joint log-likelihood

function that makes r1t weakly exogenous for (a,b,ω), which in turn guarantees the

efficiency of the GRS procedure (see Engle, Hendry and Richard 1983). In addition,

the i.i.d. assumption implies that r1t would in fact be strictly exogenous, which justifies

finite sample inferences.

Although the existence of finite sample results is very attractive, particularly when

N2 is moderately large, many empirical studies with financial time series data indicate

that the distribution of asset returns is usually rather leptokurtic. For that reason,

MacKinlay and Richardson (1991) developed a robust test of mean-variance efficiency

by using Hansen’s (1982) GMM methodology (see also Harvey and Zhou (1991)). The

orthogonality conditions that they considered are

E [mR (Rt;γ)] = 0,

mR (rt;γ) =

[(
1
r1t

)
⊗ εt(γ)

]
, (10)

εt(γ) = r2t − a−Br1t.

The advantage of working within a GMM framework is that under fairly weak reg-

ularity conditions inference can be made robust to departures from the assumption of

normality, conditional homoskedasticity, serial independence or identity of distribution.

But since the above moment conditions exactly identify γ, the unrestricted GMM esti-

mators coincide with the Gaussian pseudo6 ML estimators in (6) and (7).7 An alternative

way of reaching the same conclusion is by noticing that the influence function mR (Rt;γ)

is a full-rank linear transformation with time-invariant weights of the Gaussian pseudo-

score with respect to γ

sγt(θ,0) =

(
1
r1t

)
⊗Ω−1εt(γ). (11)

6In this paper I use “pseudo ML” estimator in the same way as Gourieroux, Monfort and Trognon
(1984). In contrast, White (1982) uses the term “quasi ML” for the same concept.

7The obvious GMM estimator of ω is given by Ω̂, which is the sample analogue to the residual
covariance matrix.
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Not surprisingly, GMM asymptotic theory yields the same answer as standard Gaussian

PML results for multivariate regression models:

Proposition 2 Under appropriate regularity conditions

√
T (γ̂GMM − γ0)→ N [0, Cγγ(φ0)] , (12)

where

Cγγ(φ) = A−1
γγ (φ)Bγγ(φ)A−1

γγ(φ),

Aγγ(φ) = −E [hγγt(θ,0)|φ] = E [Aγγt(φ)|φ] ,

Aγγt(φ) = −E[hγγt(θ; 0)| r1t, It−1;φ] =

(
1 r1t

r1t r1tr
′
1t

)
⊗Ω−1,

Bγγ(φ) = lim
T→∞

V

[√
T

T
s̄γT (θ,0)

∣∣∣∣∣φ
]
,

where hγγt(θ; 0) is the block of the component of the Gaussian Hessian matrix corre-

sponding to γ attributable to the tth observation, s̄γT (θ,0) is the sample mean of the

Gaussian scores, and φ = (θ′,η)′ the 2N2 +N2(N2 + 1)/2 + q parameters of the model,

which include some q additional parameters η that determine the shape of the distribution

of ε∗t conditional on r1t and It−1.

From here, it is straightforward to obtain robust, efficient versions of the Wald and

LM tests, which will continue to be asymptotically equivalent to each other under the null

and sequences of local alternatives (see Property 18.2 in Gouriéroux and Monfort (1995)).

However, the LR test will not be asymptotically valid unless εt(γ0) is i.i.d. conditional

on r1t and It−1. But it is possible to define a LR analogue as the difference in the

GMM criterion functions under the null and the alternative. This “distance metric” test

will have an asymptotic χ2 distribution only if the GMM weighting matrix is optimally

chosen, in which case it will be asymptotically equivalent to the optimal GMM versions

of the WT and LMT tests under the null and sequences of local alternatives (see e.g.

Theorem 9.2 in Newey and MacFadden (1994)).

Importantly, the optimal distance metric test will coincide with the usual overidenti-

fication test since the moment conditions (10) exactly identify γ under the alternative.

In addition, given that the influence functions (10) are linear in the parameters γ, the

results in Newey and West (1987) imply that regardless of whether we use the Wald,
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Lagrange multiplier or Distance Metric tests, there will be two numerical distinct test

statistics only: those that use the optimal GMM weighting matrix computed under the

null, and those based on the optimal weighting matrix computed under the alternative.

4 The effects of the number of assets and portfolio

composition on test power

Although at first sight this section may only seem interesting for theoretically inclined

econometricians, arguably it is also relevant for applied researchers because in practice

the substantive conclusions about the mean-variance efficiency of a candidate portfolio

can be rather sensitive to the way in which tests are implemented. Let us start by

considering a very simple practical situation. As we mentioned in the previous section,

Black, Jensen and Scholes (1972) proposed the use of the t ratio of ai in the regression

of r2 on a constant and r1 to test the mean-variance efficiency of r1. However, when

r2 contains more than one element, it seems natural to follow GRS and conduct a joint

test of H0 : a = 0 in order to increase the probability of rejecting the null hypothesis

when r1 is not mean-variance efficient. Somewhat surprisingly, the answer is not so

straightforward. For simplicity, let us initially assume that there are only two assets in

r2, ri and rj, say. According to (4), the incremental Sharpe ratio that one can attain

by combining r1t, rit and rjt is given by a′Ω−1a, which is the maximum (square) Sharpe

ratio that one can achieve by combining the components of ri and rj that are fully hedged

with respect to r1, zi = ai + εi and zj = aj + εj. But if apply (4) to zi and zj we get

a′Ω−1a =
a2
i

ω2
i

+
[s(zj)− ρzizj

s(zi)]
2√

1− ρ2
zizj

where ρzizj
is the correlation between zi and zj. An alternative way to interpret this

expression is to think of the second summand as the (square) Sharpe ratio of uj =

zj−(ωij/ω
2
j )zi, which is the component of rj that is fully hedged with respect to both r1t

and rit.
8 Therefore, when we add rj to ri for the purpose of testing the mean-variance

efficiency of r1 we must consider three effects:

1) The increase in the so-called non-centrality parameter of the test statistic, which

is proportional to s2(uj) and ceteris paribus increases power.

8It is important to remember that as the correlation between zi and zj increases, the law of one price
guarantees that s2(uj) = 0 in the limit of ρ2

zizj
= 1.
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2) The increase in the number of degrees of freedom of the numerator, which ceteris

paribus decreases power.

3) The decrease in the number of degrees of freedom of the denominator resulting

from the fact that there are additional parameters to be estimated, which ceteris paribus

decreases power too, although not by much if T is reasonably large.

The net effect is studied in detail by Rada and Sentana (1997). For a given value of

ŝ2(r1) and different values of T , these authors obtain isopower lines, defined as the locus

of points in s2(zi), s
2(uj) space for which the power of the univariate test is exactly the

same as the power of the bivariate test. GRS also present some evidence on the effects

of increasing the number of assets on power under the assumption that the innovations

are cross-sectionally homoskedastic and equicorrelated, so that

Ω = ω[(1− ρ)IN2 + ριN2ι
′
N2

], (13)

where ω and ρ are two scalars. Given that the F test estimates a fully unrestricted Ω,

it is not surprising that their results suggest that one should not use a large N2 (see also

MacKinlay (1987)). In fact, the F test can no longer be computed if N2 ≥ T −N1.
9

The answer to the previous practical question leads to another practical question: If

we want to increase the chances of rejecting the null hypothesis when r1t is not mean-

variance efficient, should we group rit and rjt into a portfolio and carry out a single

individual t test, or should we consider them separately? Rada and Sentana (1997)

study this question in a multivariate context. For simplicity, I will only discuss the

situation in which Ω is assumed to be a known diagonal matrix, in which case one could

work with the vector of re-scaled excess returns r∗2 = dg−1/2(Ω)r2, which are such that

r∗2 = a∗ + B∗r1 + ε∗,

where a∗ = dg−1/2(Ω)a, B∗ = dg−1/2(Ω)B and V (ε∗|r1) = IN2 . Note that the ith element

of a∗, a∗i = ai/ωi, coincides with the “information ratio” of ri introduced at the end of

section 2, since it reflects the Sharpe ratio of zi = ri−σ′i1Σ−1
11 r1, which is the component

of ri that cannot be hedged against r1. In this simplified context, Rada and Sentana

9Affleck-Graves and McDonald (1990) proposed a maximum entropy statistic that ensures the non-
singularity of the estimated residual covariance matrix Ω even if N2 > T . Unfortunately, the finite
sample distribution of their test statistic is generally unknown even under normality, and can only be
assessed by simulation. In addition, it is not clear either what is limiting behaviour will be when both
N2 and T go to infinity at the same rate.
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(1997) express the non-centrality parameter of the joint Wald test of H0 : a∗ = 0 as the

sum of the non-centrality parameters of a Wald test whose null is that all information

ratios are equal ( H0 : a∗ = a∗ιN2) and a Wald test whose null is that the average

information ratio is 0 (H0 : a∗ = 0). Their result is based on a standard analysis of

variance argument applied to the ML estimator of a∗. Specifically, they exploit the fact

that
N2∑
i=1

â∗2i = N2(â
∗2 + δ̂), (14)

where

â∗ = N−1
2

N2∑
i=1

â∗i , δ̂ = N−1
2

N2∑
i=1

(â∗i − â∗)2.

It is then easy to see that under their maintained distributional assumptions, â∗2 is

proportional to a non-central chi-square with one degree of freedom, while δ̂ is pro-

portional to an independent non-central chi-square with N2 − 1 degrees of freedom.

Not surprisingly, Rada and Sentana (1997) show that the contribution of each of those

two components to the power of the test depend exclusively on the relative values of

the cross-sectional mean of the information ratios a∗ = N−1
2

∑N2

i=1 a
∗
i , and their cross-

sectional variance δ = N−1
2

∑N2

i=1(a
∗
i −a∗)2. In particular, if there were no cross-sectional

variability in the information ratios because δ = 0, then one should simply apply the

Black, Jensen and Scholes (1972) test to the equally weighted portfolio of r2. In contrast,

if a∗ were 0, such a test would have no power to reject the mean-variance efficiency of r1

regardless of how big δ could be.

Finally, Rada and Sentana (1997) extend their analysis to the case in which one

forms L equally weighted portfolios of M different assets from the N2 elements of r∗2,

where M = N2/L. In that case, an analysis of variance decomposes the test into three

components: a test that the overall mean of the information ratios is zero, as in the

previous case, a test that the between group variance in information ratios is 0, and

finally a test that their within groups variance is 0. More specifically, if we denote

by â∗l the average value of â∗i for those assets that belong to the lth group, so that

â∗ = L−1
∑L

l=1 â
∗
l , then we will have that

δ̂ =
1

L

L∑
l=1

(â∗l − â)2 +
1

L

L∑
l=1

L

N2

M∑
j=1

(â∗i − â∗l )2. (15)

Note that the first summand is proportional to a non-central chi-square with L − 1

degrees of freedom, while the second one is proportional to an independent non-central
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chi-square with N2 − L degrees of freedom. In this context, Rada and Sentana (1997)

provide isopower lines in the space of within group and between group variances. Their

analysis suggests that randomly chosen portfolios will have very little power over and

above a test that the overall mean is zero, since the between groups variance is likely

to be close to 0 for large M . In contrast, if we could form portfolios that reduce the

within group variance in information ratios but increase their between group variance

then we would have substantially more power in the portfolio tests than in the test that

considers the individual assets. The above results provide a formal justification for the

usual practice of grouping returns according to the ranked values of certain observable

characteristics that are likely to yield disperse information ratios, such as size or book

to value, as opposed to grouping them by industry, which is likely to produce very

similar information ratios. Nevertheless, it is important to realise that such procedures

may introduce some data snooping size distortions, as illustrated by Lo and MacKinlay

(1990).

Another fact that is worth remembering in this context is that the maximum Sharpe

ratio attainable for any particular N2 will be bounded from above by the limiting max-

imum Sharpe ratio, s∞, which is also bounded if we rule out arbitrage opportunities as

N2 → ∞ (see Ross (1976) and Chamberlain (1983)). This is important because an in-

creasing number of assets cannot result in an unbounded Sharpe ratio, and consequently,

an unbounded non-centrality parameter, as explained by MacKinlay (1987, 1995). In

other words, N2(a
∗2 + δ) must remain bounded as N2 goes to infinity, which requires

that (a∗2 + δ) = O(N−1
2 ).

To see the effects of this restriction, let us obtain the asymptotic distribution of the

mean-variance efficiency test when N2 → ∞ in the case in which Ω is diagonal but

unknown and the distribution of returns is i.i.d. multivariate normal. Conditional on

ŝ2(r1), the squared t-ratio of the intercept of the ith asset

t̃∗2i =
T −N1 − 1

[1 + ŝ2(rp1)]
· â

2
i

ω̂ii

will be distributed independently of the t-ratios of the intercepts of the other assets as a

non-central F distribution with 1 and T −N1− 1 degrees of freedom and non-centrality

parameter Ta∗2i [1 + ŝ2(rp1)]
−1. Hence, its mean will be

πi =
T −N1 − 1

T −N1 − 3

[
1 +

T

[1 + ŝ2(rp1)]
a∗2i

]
(16)
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and its variance

λ2
i =

2(T −N1 − 1)2

(T −N1 − 3)2(T −N1 − 5)


[
1 + T

[1+ŝ2(rp1 )]
a∗2i

]2
+(T −N1 − 3)

[
1 + 2T

[1+ŝ2(rp1 )]
a∗2i

]
 .

Given that the mean-variance efficiency test that exploits the diagonality of Ω will be

proportional to
∑N2

i=1 t̃
∗2
i , we can use the Linderberg-Feller central limit theorem for in-

dependent but heterogeneously distributed random variables10 to obtain the asymptotic

distribution of the joint test for fixed T but large N2, which under the null will be given

by √
N2

N2

N2∑
i=1

(
t̃∗2i −

T −N1 − 1

T −N1 − 3

)
→ N(0, 2).

In contrast, the mean under the alternative will be proportional to a∗2+δ in view of (16).

But since we saw before that a∗2 + δ = O(N−1
2 ) in order to rule out limiting arbitrage

opportunities, one cannot even allow for local alternatives of the form (ā∗2 + δ̄)/
√
N2,

and therefore the mean-variance efficiency test is likely to have negligible asymptotic

power in those circumstances.11

Affleck-Graves and McDonald (1990) suggest to use the statistic
∑N2

i=1 t̃
∗2
i even when

Ω is not diagonal. Part of their motivation is that in this way there is no longer any

need to form portfolios for the purposes of avoiding a singular estimated covariance ma-

trix. The problem is that the distribution of such a statistic is non-standard if Ω is

not diagonal, although in samples in which N2 is small but T is large, we could use

Imhof’s (1961) results (see also Farebrother (1990)) to approximate the distribution of

the statistic
∑N2

i=1 t̃
∗2
i , replacing the matrix Ω by its unrestricted sample counterpart

Ω̂ in computing the weights of the associated quadratic form in normal variables. Al-

ternatively, we could impose structure on the cross-sectional distribution of the asset

returns. Bossaerts and Hillion (1995) take a first step in this direction and derive the

10As is well known, this central limit theorem says that∑N2
i=1 t̃

∗2
i −

∑N2
i=1 πi√∑N2

i=1 λ
2
i

→ N(0, 1)

as long as the Lindeberg condition is satisfied, which we are implicitly assuming. This condition guar-
antees that the individual variances λ2

i are small compared to their sum, in the sense that for given ε

and for all sufficiently large N2, λ2
i /
∑N2

j=1 λ
2
j < ε for i = 1, ...,N2 (see Feller 1971, p. 256).

11Rada and Sentana (1997) also combine the decompositions of
∑N

i=1 â
∗2
i in (14) and (15) with this

asymptotic approximation to obtain the asymptotic distribution of the components of the mean-variance
efficiency test attributable to the overall mean of the information ratios, their between groups variance
and the within groups one.
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asymptotic distribution of
∑N2

i=1(rit −
∑N1

j=1 b̃ijrjt) for large N2 but fixed T , where b̃ij is

the restricted OLS estimator of bij that imposes the null hypothesis ai = 0, under the

assumptions that (i) the conditional distribution of εt given r1t is exchangeable (see e.g.

Kingman (1978)), which among other things requires that Ω can be written as in (13),

and (ii) Ω has an approximate zero factor structure as N2 grows (see Chamberlain and

Rothschild (1983)), which requires that ρ = O(1/N) so that the largest eigenvalue of Ω

in (13) is bounded. Bossaerts and Hillion (1995) show that their test, which is effectively

focusing on H0 : a∗ = 0, is not consistent for fixed T if we rule out limiting arbitrage

opportunities, but at least has non-trivial power against admissible alternatives of the

form a = (ā∗/
√
N2)ιN2 . As expected, though, their test becomes consistent as T →∞.

However, the application of mean-variance efficiency tests in situations in which N2/T is

not negligible would require not only a different asymptotic theory in which the object

of interest is the cross-sectional limit of a′Ω−1a, but also the imposition of plausible

restrictions on the matrix Ω, with exact or approximate factor structures being the most

natural candidates.

5 Asymptotically equivalent tests

Both Jobson and Korkie (1983) and Britten-Jones (1999) suggested to test the mean-

variance efficiency of a given portfolio by regressing 1 on rt. The rationale is that the

coefficients of such a projection, Γ−1µ, are proportional to the weights of the tangency

portfolio, Σ−1µ, by virtue of the Woodbury formula. In a GMM framework, the moment

conditions and parametric restrictions of their proposed test are

E(rtr
′
tφ

+ − rt) = E[mU(rt;φ
+)] = 0, (17)

and H0 : φ+
2 = 0, respectively. This test is essentially identical to the GMM test of the

moment conditions

E[rt(κ + ψ′1r1t)] = 0

studied by Cochrane (2001) as a test of linear factor pricing models, since in the case of

excess returns the choice of κ is arbitrary. Intuitively, Cochrane’s moment conditions can

be understood as simply saying that under the null there is a stochastic discount factor

(SDF) generated from (1, r1t) alone that prices correctly all N assets under consideration.
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Peñaranda and Sentana (2004) provide a third interpretation of (17) by using the

fact that the arbitrage (i.e. zero-cost) mean variance frontier (AMVF) can be written as

rMV (µ) = µ

(
1 + µ′Σ−1µ

µ′Σ−1µ

)
p+,

where p+ is the (uncentred) mean representing portfolio for arbitrage portfolios, i.e. the

arbitrage portfolio that satisfies:

E(rp+) = µ. (18)

Specifically, they show that the test of H0 : φ+
2 = 0 based on (17) can be understood as

checking that AN1 = 〈r1〉 and AN = 〈r〉 share the same mean representing portfolio (see

also Sentana (2005)).

In this context, we can once more apply the trinity of asymptotic GMM tests, which

will again have a limiting chi-square distribution with N2 degrees of freedom under the

null. But since the moment conditions defining φ∗ and φ+ are exactly identified, the

distance metric test will coincide with the overidentifying restrictions test. In addition,

all the tests can be made numerically identical by using a common estimator of the

asymptotic covariance matrix of
√
Tm̄UT (φ0), because both the moment conditions and

the restrictions to test are linear in the parameters (see Newey and West (1987)).

Peñaranda and Sentana (2004) also consider an alternative approach based on the

centred mean representing portfolio, Cov(r, p++) = µ, which leads to the moment con-

ditions

E

[
rt − µ

(rt − µ) (rt − µ)′ϕ+ − rt

]
= E

[
mM(rt;µ)

mC(rt;ϕ
+,µ)

]
= E[mE(rt;ϕ

+,µ)] = 0, (19)

to test H0 : ϕ+
2 = 0. The advantage of working with centred moments is that ϕ+ =

Σ−1µ, which means that their test can also be regarded as a test based on the most

frequent presentation of the weights of the tangency portfolio. In this sense, ϕ+
2 = 0

means that the tangency portfolio does not involve any asset in r2t. In addition, their test

is entirely analogous to the one considered by De Santis (1995) and Bekaert and Urias

(1996). Although these authors were interested in assessing the gains to US investors

from internationally diversifying their portfolios, they exploited the duality between

return mean-variance frontiers and Hansen and Jagannathan (1991) frontiers by basing

their tests on the SDF moment conditions

E{rt[c+ (r1t − µ1)
′β1]} = 0,
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in which the choice of c is arbitrary. In this context, sequential GMM can be successfully

applied to (19), and it retains the computational advantage of linearity in ϕ+ (see Ogaki

(1993)). In addition, since E[mM(rt;µ)] = 0 exactly identifies the nuisance parameter

µ, Peñaranda and Sentana (2004) show that SGMM entails no asymptotic efficiency loss.

Therefore, we have three different ways to test for the mean variance efficiency of

r1t: centred and uncentred representing portfolios (or portfolio weights), and the GRS

regression version. The equivalence between their respective parametric restriction can

be easily proved by showing that a is a full-rank linear transformation of φ+
2 , which in

turn is proportional to ϕ+
2 . However, the fact that the restrictions to test are equivalent

does not necessarily imply that the corresponding GMM-based test statistics will be

equivalent too. This is particularly true in the case of the regression version of the

test, in which the number of moments and parameters involved is different, although the

number of degrees of freedom is the same.

It turns out, however, that those three families of mean-variance efficiency tests are

asymptotically equivalent under the null and sequences of local alternatives, as shown

by Peñaranda and Sentana (2004). Therefore, there is no basis to prefer one test to

the other from this perspective because all three statistics converge to exactly the same

random variable. In this respect, note that this equivalence result is valid as long as the

asymptotic distributions of the different tests are standard, which happens under fairly

weak assumptions on the distribution of asset returns.

However, such an equivalence is lost under fixed alternatives. But by strengthen-

ing the distributional assumptions, Peñaranda and Sentana (2004) prove that if rt are

independently and identically distributed as an elliptical random vector with mean µ,

covariance matrix Σ, and bounded fourth moments, then the approximate slope of the

Wald version of the regression test is at least as large as the approximate slope of the

Wald version of the centred RP test.

In contrast, it is fairly easy to find parametric configurations for which the approx-

imate slope of the uncentred RP test is either bigger or smaller than the approximate

slope of the GMM version of the GRS test. In particular, Peñaranda and Sentana (2004)

prove that the uncentred RP test is more powerful than the regression test under nor-

mality regardless of the parameter values. Although these results are fairly specific, they

can rationalise Monte Carlo results obtained under commonly made assumptions, since
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the elliptical distributions nest both the multivariate normal and Student t.

Finally, it is worth mentioning that the moment condition (17) and (19), as well the

ones used by MacKinlay and Richardson (1991) (see (10)) are exactly identified under

the alternative, so that weigthing matrix is asymptotically irrelevant for the unrestricted

estimators. Under the null, though, those systems of moment conditions are overiden-

tified, so we may need an initial estimate of the optimal weighting matrix based on

a consistent estimator of the parameters. Although the choice of preliminary estimator

does not affect the asymptotic distribution of two-step GMM estimators up to Op(T
−1/2)

terms, there is some Monte Carlo evidence suggesting that their finite sample properties

can be negatively affected by an arbitrary choice of initial weighting matrix such as the

identity (see e.g. Kan and Zhou (2001)).

For that reason, Peñaranda and Sentana (2004) provide the following useful expres-

sions for first-step, consistent restricted estimators, which are optimal under the as-

sumption that rt is independently and identically distributed as an elliptical random

vector with mean µ, covariance matrix Σ, and bounded coefficient of multivariate excess

kurtosis κ (see Mardia (1970)):12

Proposition 3 1. The linear combinations of the moment conditions in (17) that

provide the most efficient estimators of φ+
1 under H0 : φ+

2 = 0 will be given by

E(r1tr
′
1tφ

+
1 − r1t) = 0,

so that φ̄
+
1 = Γ̂−1

11 µ̂1.

2. The linear combinations of the moment conditions (19) that provide the most effi-

cient estimators of ϕ+
1 under H0 : ϕ+

2 = 0 will be given by

E

[
r1t − µ1

(r1t − µ1)(r1t − µ1)
′ϕ+

1 − r1t

]
= 0,

so that µ̄1T = µ̂1 and ϕ̄+
1 = Σ̂−1

11 µ̂1, and

3. The linear combinations of the moment conditions (10) that provide the most effi-

cient estimators of b under H0 : a = 0 will be given by

E[(r1t + κµ1)⊗ (r2t −Br1t)] = 0.

12See Renault (1997) for a result analogous to part 3 in the special case in which the payoffs of the
arbitrage portfolios are i.i.d. Gaussian.
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In this respect, note that since Γ−1µ = (1 + µ′Σ−1µ)−1Σ−1µ, φ̄
+
1 and ϕ̄+

1 will be

proportional to each other, and the same applies to φ̂
+

and ϕ̂+. However, since the factor

of proportionality depends on the data, the Wald tests of H0 : φ+
2 = 0 and H0 : ϕ+

2 = 0

cannot be made numerically identical.

6 More efficient tests

6.1 Tests based on the distribution of r2t conditional on r1t

The GMM tests discussed in previous sections provide asymptotically valid inferences

under fairly weak assumptions on the distribution of returns. However, this robustness

may come at the cost of a power loss. In this sense, Hodgson, Linton, and Vorkink (2002;

hereinafter HLV) developed a semiparametric estimation and testing methodology that

enabled them to obtain optimal mean-variance efficiency tests under the assumption

that the distribution of r2t conditional on r1t (and their past) is elliptically symmet-

ric. Specifically, HLV showed that their proposed estimators of a and b are adaptive

under the aforementioned assumptions of linear conditional mean and constant condi-

tional variance, which means that they are as efficient as infeasible maximum likelihood

estimators that use the correct parametric elliptical density with full knowledge of its

shape parameters. The main advantage of elliptical distributions in this context is that

they generalise the multivariate normal distribution, but at the same time they retain

its analytical tractability irrespective of the number of assets.

Before discussing their test, though, it is pedagogically convenient to introduce a

parametric version, which will be based on the assumption that conditional on r1t and

It−1, ε
∗
t is independent and identically distributed as a spherical random vector with a

well defined density, or ε∗t |rMt, It−1;γ0,ω0,η0 ∼ i.i.d. s(0, IN ,η0) for short, where η is

the q×1 vector of shape parameters that determine the distribution of ςt = ε∗′t ε
∗
t . Apart

from the normal distribution, another popular and more empirically realistic example is

a standardised multivariate t with ν0 degrees of freedom, or i.i.d. t(0, IN , ν0) for short.

As is well known, the multivariate Student t approaches the multivariate normal as

ν0 →∞, but has generally fatter tails. Zhou (1993) and Amengual and Sentana (2009)

consider two other illustrative examples: a Kotz distribution and a discrete scale mixture

of normals.

Let φ = (γ ′,ω′,η)′ ≡ (θ′,η)′ denote the 2N2+N2(N2+1)/2+q parameters of interest,
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which we assume variation free. The log-likelihood function of a sample of size T based

on a particular parametric spherical assumption will take the form LT (φ) =
∑T

t=1 lt(φ),

with lt(φ) = dt(θ) + c(η) + g [ςt(θ),η], where dt(θ) = −1
2

ln |Ω| corresponds to the

Jacobian, c(η) to the constant of integration of the assumed density, and g [ςt(θ),η] to

its kernel, where ςt(θ) = ε∗′t (θ)ε∗t (θ), ε∗t (θ) = Ω−1/2εt(θ) and εt(θ) = r2t−a−Br1t.
13

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into three blocks,

sγt(φ), sωt(φ), and sηt(φ), whose dimensions conform to those of γ, ω and η, respec-

tively. A straightforward application of expression (2) in Fiorentini and Sentana (2007)

implies that

sγt(φ) =

(
1
r1t

)
⊗ δ[ςt(θ),η]Ω−1εt(θ), (20)

where

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς,

which reduces to 1 under Gaussianity (cf. (11)).

Given correct specification, the results in Crowder (1976) imply that the score vector

st(φ) evaluated at the true parameter values has the martingale difference property.

His results also imply that, under suitable regularity conditions, which typically require

that both r1t and vech(r1tr
′
1t) are strictly stationary process with absolutely summable

autocovariances, the asymptotic distribution of the feasible ML estimator will be given

by the following expression

√
T
(
φ̂ML − φ0

)
−→ N

[
0, I−1(φ0)

]
where I(φ0) = E[It(φ0)|φ0],

It(φ) = V [st(φ)|rMt, It−1;φ] = −E [ht(φ)|rMt, It−1;φ] ,

and ht(φ) denotes the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. On this basis,

Amengual and Sentana (2009) prove the following result:

Proposition 4 If ε∗t |rMt, It−1;φ0 in (5) is i.i.d. s(0, IN2 ,η0) with density exp[c(η) +

g(ςt,η)] such that mll(η0) <∞, and both r1t and vech(r1tr
′
1t) are strictly stationary

processes with absolutely summable autocovariances, then

√
T (âML − a0)→ N [0,Iaa(φ0)], (21)

13Fiorentini, Sentana and Calzolari (2003) provide expressions for c(η) and gt [ςt(θ), η] in the multi-
variate t case, which under normality collapse to −(N2/2) log π and − 1

2 ςt(θ), respectively.
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where

Iaa(φ) = [Iaa(φ)− Iab(φ)I−1
bb(φ)I ′ab(φ)]−1 =

1

mll(η)
[1 + s2(rp1)]Ω,

mll(η) = E

{
δ2[ςt(θ),η]

ςt(θ)

N

∣∣∣∣φ} = E

{
2∂δ[ςt(θ),η]

∂ς

ςt(θ)

N
+ δ[ςt(θ),η]

∣∣∣∣φ} ,
µ1 = E(r1t|φ) and Σ11 = V (r1t|φ), so that s(rp1) =

√
µ′1Σ

−1
11 µ1 is the maximum Sharpe

ratio attainable with the reference portfolios.

Importantly, expression (21) is valid regardless of whether or not the shape param-

eters η are fixed to their true values η0, as in an infeasible ML estimator, âIML say, or

jointly estimated with θ, as in an unrestricted one, âUML say. The reason is that the

scores corresponding to the mean parameters, sγt(φ0), and the scores corresponding to

variance and shape parameters, sωt(φ0) and sηt(φ0), respectively, are asymptotically un-

correlated under the sphericity assumption. The usual asymptotic efficiency properties of

maximum likelihood estimators and associated test procedures imply that mean-variance

efficiency tests based on this elliptical assumption will be more efficient than those based

on the assumption of normality. Specifically, it is easy to see that

Cαα(φ0) = [1 + s2(rp1)]Ω0, (22)

which does not depend on the specific distribution for the innovations that we are con-

sidering, regardless of whether or not the conditional distribution of ε∗t is spherical, as

long as it is i.i.d. Since mll(η) ≥ 1, with equality if and only if ε∗t is normal, it is clear

that the parametric procedure is more efficient than the GMM one.

However, unless one is careful, the elliptically symmetric parametric approach may

provide misleading inference if the relevant conditional distribution does not coincide

with the assumed one, even if both are elliptical. Nevertheless, Amengual and Sentana

(2009) show that the parametric pseudo ML estimator of γ that makes the wrong distri-

butional assumption remains consistent in that case. In contrast, the ML estimator of

Ω is only consistent up to scale, in the sense that if reparametrise Ω as τΥ(υ), where υ

are N2(N2 + 1)/2− 1 parameters that ensure that |Υ(υ)| = 1 ∀υ, υ will be consistently

estimated but τ will not. They illustrate their results when the pseudo log-likelihood

function is based on the multivariate t, in which case the correct asymptotic distribution

for the pseudo t-based ML estimator of a is given by the following expression:
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Proposition 5 If ε∗t |rMt, It−1;ϕ0 is i.i.d. s(0, IN ,%0) but not t with κ0 > 0, where

ϕ0 = (γ0,υ0, τ0,%0), then:

√
T (âUML − a0)→ N

[
0,

mO
ll (φ∞;ϕ0)

λ∞ [mH
ll (φ∞;ϕ0)]

2 · Caa(ϕ0)

]
, (23)

where

mO
ll (φ;ϕ) = E

{
δ2[ςt(ϑ), η] · [ςt(ϑ)/N ]

∣∣ϕ} ,
mH
ll (φ;ϕ) = E {2∂δ[ςt(ϑ), η]/∂ς · [ςt(ϑ)/N ] + δ[ςt(θ), η]|ϕ} ,

λ∞ = τ0/τ∞, and τ∞ is the pseudo-true value of τ .

The analysis of a restricted t-based PML estimator which fixes η to some value η̄, is

entirely analogous, except for the fact that the pseudo-true value of τ becomes τ∞(η̄),

as opposed to τ∞ = τ∞(η∞).14

A natural question in this context is a comparison of the efficiency of the t-based

pseudo ML estimator and the GMM estimator when the distribution is elliptical but

not t. Amengual and Sentana (2009) answer this question by assuming that the condi-

tional distribution is either normal, Kotz, or the two-component scale mixture of normals

previously discussed, for which they obtain analytical expressions for the inefficiency ra-

tio mO
ll (φ∞;ϕ0)/{λ∞[mH

ll (φ∞;ϕ0)]
2}. Trivially, they find that if the true conditional

distribution is Gaussian, then the restricted ML estimator that makes the erroneous as-

sumption that it is a Student t with η̄−1 degrees of freedom is inefficient relative to the

GMM estimator, the more so the larger the value of η̄. Nevertheless, this inefficiency

becomes smaller and less sensitive to η̄ as the number of assets increases. But of course

η∞ = 0 in this case, which suggests that estimating η is clearly beneficial under misspec-

ification. They also find that the restricted t-based PML estimator seems to be strictly

more efficient than the GMM one when the true conditional distribution is leptokurtic.

And again, they find that as N2 increases the restricted t-based PML estimator tends to

achieve the full efficiency of the ML estimator for any η̄ > 0.

As we mentioned before, HLV proposed a semiparametric estimator of multivariate

linear regression models that updates θ̂GMM (or any other root-T consistent estimator)

14When the true distribution is either mesokortic (κ = 0) or platikurtic (κ < 0), Amengual and
Sentana (2009) show that the t-based pseudo ML estimators will be asymptotically equivalent to the
GMM estimators.
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by means of a single scoring iteration without line searches. The crucial ingredient of

their method is the so-called elliptically symmetric semiparametric efficient score (see

Proposition 7 in Fiorentini and Sentana (2007)):

s̊θt(φ0) = sθt(φ0)−Ws(φ0)

{[
δ[ςt(θ0),η0]

ςt(θ0)

N
−1

]
− 2

(N+2)κ0 +2

[
ςt(θ0)

N
− 1

]}
,

where W′
s(φ) = [0,0, 1

2
vec′(Ω−1)DN2 ] and DN2 the duplication matrix of order N2 (see

Magnus and Neudecker (1988)). In fact, the special structure of Ws(φ) implies that we

can update the GMM estimator of γ by means of the following simple BHHH correction:[
T∑
t=1

sγt(φ0)s
′
γt(φ0)

]−1 T∑
t=1

sγt(φ0), (24)

which does not require the computation of s̊ωt(φ0). In practice, of course, sγt(φ0) has

to be replaced by a semiparametric estimate obtained from the joint density of ε∗t .

However, the elliptical symmetry assumption allows one to obtain such an estimate from

a nonparametric estimate of the univariate density of ςt, h (ςt;η), avoiding in this way

the curse of dimensionality (see HLV and appendix B1 in Fiorentini and Sentana (2007)

for details).

Proposition 7 in Fiorentini and Sentana (2007) shows that the elliptically symmetric

semiparametric efficiency bound will satisfy S̊γγ(φ0) = Iγγ(φ0) in view of the structure

of Ws(φ0). This result confirms that the HLV estimator of γ is adaptive.15

Unfortunately, the HLV approach may also lead to erroneous inferences if the true

conditional distribution is asymmetric, and the same is true of the parametric proce-

dure. Amengual and Sentana (2009) illustrate the problem for the case in which ε∗t is

distributed as an i.i.d. multivariate asymmetric t (see Menćıa and Sentana (2009b)). In

that context, they show that the unrestricted t-based PMLE of a will be inconsistent. In

contrast, B will be consistently estimated precisely because the estimator of a will fully

mop up the bias in the mean. Unfortunately, mean-variance efficiency tests are based

on a, not B.

For analogous reasons, the HLV estimator of a also becomes inconsistent under

asymmetry. Intuitively, the problem is that it will not be true any more that the N2-

dimensional density of ε∗t could be written as a function of ςt = ε∗′t ε
∗
t alone. Therefore, a

15HLV also consider alternative estimators that iterate the semiparametric adjustment (24) until it
becomes negligible. However, since they have the same first-order asymptotic distribution, we shall not
discuss them separately.
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semiparametric estimator of sγt(φ0) that combines the elliptical symmetry assumption

with a non-parametric specification for δ[ςt(θ),η] will be contaminated by the skewness

of the data. In contrast, the GMM estimator always yields a consistent estimator of a, on

the basis of which we can develop a GMM-based Wald test with the correct asymptotic

size because (12) remains valid under asymmetry.

Another problem that the semiparametric procedures could have is that their finite

sample performance may not be well approximated by the first-order asymptotic theory

that justifies them. In this respect, the Monte Carlo evidence presented in Amengual and

Sentana (2009) suggests that HLV-based joint and individual tests have systematically

the largest size distortions. In contrast, GMM tests have finite sample sizes that are

close to the asymptotic levels. As for the tests that use the unrestricted t-based PML

estimator, they find that both the robust and non-robust versions are well behaved.

6.2 Tests based on the joint distribution of r1t and r2t

In this section we explicitly study the framework analysed by MacKinlay and Richard-

son (1991) and Kan and Zhou (2006), who considered a joint distribution of excess re-

turns for the N assets in rt. Such an assumption is particularly relevant in this context

because in the presence of a safe asset a sufficient condition for mean-variance analysis

applied to rt to be compatible with expected utility maximisation is that the joint dis-

tribution of rt is elliptical (see e.g. Chamberlain (1983), Owen and Rabinovitch (1983)

and Berk (1997)). As we mentioned before, when the joint distribution of rt is i.i.d.

Gaussian, the distribution of r2t conditional on r1t must also be normal, with a mean

a+Br1t that is a linear function of r1t, and a covariance matrix Ω that does not depend

on r1t. However, while the linearity of the conditional mean will be preserved when

rt is elliptically distributed but non-Gaussian, the conditional covariance matrix will no

longer be independent of r1t. For instance, if we assume that Σ−1/2(ρ)[rt−µ(ρ)] ∼ i.i.d.

t(0, IN , ν), where µ(ρ) and Σ(ρ) are defined in (8) and (9), then

E [r2t|r1t;ρ, ν] = a + Br1t,

V [r2t|r1t;ρ, ν] =

(
ν − 2

ν +N1 − 2

)[
1 +

1

(ν − 2)
(r1t − µ1)

′Σ−1
11 (r1t − µ1)

]
Ω,

which means that model (5) will be misspecified due to contemporaneous, conditionally

heteroskedastic innovations. In other words, the variances and covariances of the re-

gression residuals will be a function of the regressor. In addition, note that we can no
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longer operate the sequential cut of the joint log-likelihood function discussed in section

3, which invalidates the exogeneity of r1t.

As MacKinlay and Richardson (1991) pointed out, the GMM estimator of γ remains

consistent in this case. In fact, Kan and Zhou (2001) and Amengual and Sentana (2009)

show that if rt is independently and identically distributed as an elliptical random vector

with mean µ(ρ), covariance matrix Σ(ρ), and bounded fourth moments, then

V (âGMM) =
[
1 + s2(rp1) (1 + κ0)

]
Ω0 (25)

In this sense, note that the only difference with respect to (12) is that the maxi-

mum (square) Sharpe ratio of the reference portfolios s2(rp1) is multiplied by the factor

(1 + κ0). In practice, we could estimate V (âGMM) by using heteroskedastic robust stan-

dard errors a la White (1980).

At the other extreme of the efficiency range, we can use Proposition 6 in Amengual

and Sentana (2009) to show that

V (âJML) =

[
1

mll(η0)
+

1

mss(η0)
s2(rp1)

]
Ω, (26)

where âJML denotes the joint ML estimator that makes the correct assumption that

ε∗t (ρ) = Σ−1/2(ρ)[rt − µ(ρ)] ∼ i.i.d. s(0, IN ,η), and both mll(η) and

mss(η) =
N

N + 2

[
1 + V

{
δ[ςt(θ),η]

ςt
N

∣∣∣φ}] = E

{
2∂δ[ςt(θ),η]

∂ς

ς2t (θ)

N(N + 2)

∣∣∣∣φ}+ 1

correspond to the N -dimensional joint distribution of rt. This estimator has been pro-

posed by Kan and Zhou (2006) for the case of the multivariate t.

Amengual and Sentana (2009) also prove the consistency of the t-based estimators

of γ which make the erroneous assumption that V [r2t|r1t] = τΥ(υ), where τ = |Ω|1/N2

and Υ(υ) = Ω/|Ω|1/N2 , and provide expressions for the conditional variance of the score

and expected Hessian matrix under such misspecification. Specifically, they show that

a sandwich formula analogous to the one in (23) can still be applied to obtain the

asymptotic variance of the unrestricted ML estimator. They also quantify the efficiency

of the GMM and conditional ML estimator relative to the full information ML estimator

when rt is distributed as a multivariate t. Their results indicate that the restricted t-

based PML estimator of γ is more efficient than the GMM estimator for all values of

η̄, the more so the larger N2 is. Furthermore, the unrestricted t-based PML estimator
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that also estimates η gets close to achieving the full efficiency of the joint ML estimator,

especially for large N2.

In principle, their results will continue to hold if we replace the t-based ML estimator

by any other estimator based on a specific i.i.d. elliptical distribution for r2t|r1t, It−1. But

since the HLV estimator is asymptotically equivalent to a parametric estimator that uses

a flexible elliptical distribution as we increase the number of parameters, their results

suggest that the HLV estimator of γ will continue to be consistent. In fact, an argument

analogous to the one made by Hodgson (2000) in a closely related univariate context

would imply that the HLV estimator is as efficient as the parametric estimator that used

the true unconditional distribution of the innovations εt = r2t−a0−B0r1t. Nevertheless,

inferences about a and B would have to be adjusted to reflect the contemporaneous

conditional heteroskedasticity of εt, which is not straightforward.

7 Finite sample tests

As we discussed in section 3, one of the nicest features of the GRS test is that it allows

us to make exact finite sample inferences conditional on the observations of r1t for t =

1, . . . , T under the assumption of conditional normality and homoskedasticity. But since

their distributional assumption turns out to be empirically implausible, several studies

have analysed the finite sample properties of their tests in more realistic circumstances.

In particular, Affleck-Graves and McDonald (1989) found that while the nominal size

and power of the GRS test can be seriously misleading if the non-normalities are severe,

they are reasonably robust to minor departures from normality (see also MacKinlay

(1987), and Zhou (1993), who shows that the finite sample results differ depending on

whether the non-normality affects the conditional distribution of r2t given r1t, or the

joint distribution of r1t and r2t, which is not surprising in view of the discussion in the

previous section).

Given that elliptical distributions are natural alternatives to multivariate normality

in this context, Zhou (1993) proposed simulation-based p-values for the GRS statistic for

a few fully specified elliptical distributions, including multivariate t, Kotz and discrete

scale mixtures of normals (see also Harvey and Zhou (1991)). Similarly, Gezcy (2001)

suggested an adjustment to the F version of the GRS test that has approximately the

correct size under the same distributional assumptions.
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More recently, Beaulieu, Dufour and Khalaf (2007a) have developed a method to

obtain the exact distribution of the Gaussian-based Wald, LR, LM and F versions of

the mean-variance efficiency tests described at the beginning of section 3 when the in-

novations are i.i.d. but not necessarily Gaussian or elliptical. For the sake of clarity, let

us discuss first the case in which the distribution of the innovations is fully specified,

including the nuisance parameters η. Their approach relies on the fact that in classical

multivariate regression models such as (5) the numerical values of the LR, W and LM

test of a = 0 depend exclusively on the realisations of the regressors r1t and innovations

ε∗t over the full sample t = 1, . . . , T . Consequently, tests of linear hypothesis on the

regression coefficients a are pivotal with respect to the parameters b and ω for any finite

T . On this basis, one can simulate to any desired degree of accuracy the finite sample

distribution of the trinity of classical tests conditional on the full sample realisation of

r1t by generating artificial sample paths of the standardised disturbances ε∗t according to

some specific i.i.d. distribution, such a multivariate t with some fixed degrees of freedom

ν0.
16

Interestingly, their procedure could also be trivially applied to the Wald, LM and DM

versions of the MacKinlay and Richardson (1991) test, as long as one exploits the i.i.d.

assumption in computing the efficient GMM weighting matrix according to expression

(22).

To handle the more realistic situation in which the distribution of the innovations de-

pends on some unknown parameters η, Beaulieu, Dufour and Khalaf (2007a) exploit the

fact that the sample values of the multivariate skewness and kurtosis measures underly-

ing Mardia’s (1970) multivariate normality tests are also pivotal with respect to b and ω

conditional on the full sample realisation of r1t (see Zhou (1993) and Dufour, Khalaf and

Beaulieu (2003)). On this basis, they manage to construct an exact 1 − α1 confidence

set for the nuisance parameters by “inverting” a simulated moment-based distributional

goodness of fit test that they construct by comparing the aforementioned skewness and

kurtosis components with their finite sample expectations computed by simulation under

the assumed i.i.d. distribution for the innovations.17 Then, they repeat the procedure

16In fact, if one is only interested in finding the exact p-value for a given value of the LR statistic
say, as opposed to the exact critical values at some pre-specificed level α, the Beaulie, Dufour and Khlaf
(2007a) procedure provides the answer with a finite number of simulations.

17That is, their 1 − α1 confidence level set for η is made up by all the values of this parameter for
which their distribution goodness of fit test has an exact Monte Carlo p-value less than or equal to α1.
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described in the previous paragraph at a confidence level α2 for all values of η in the

1 − α1 confidence set, and report the maximum p-value. Somewhat remarkably, they

show that the resulting maximised Monte Carlo p-value has exact level α1 + α2, in the

sense that the probability of rejecting the null hypothesis of mean-variance efficiency is

not greater than α1 + α2 for any data generating process compatible with the null (see

Lehmann (1986, chap. 3)).

Like in the original GRS test, the sampling framework of their tests is one in which

the full sample path of the excess returns on the candidate portfolio r1t is “fixed in

repeated samples”. Except in the i.i.d. normal case, though, it is not clear whether the

null distribution of the Beaulieu, Dufour and Khalaf (2007a) tests is in fact independent

in finite samples from the values of the regressors.

Despite the fact that it may seem a contradiction in terms, it is interesting to analyse

the asymptotic behaviour of their finite sample procedures in order to relate them to

the analysis in section 6. Although the exact confidence set for η that they construct

should become more and more concentrated around the true value η0 as T → ∞, let

us consider for simplicity the case in which a researcher specifies that the distribution

of the innovations is i.i.d. t with ν0 degrees of freedom. Given that the multivariate

regression Wald test numerically coincides with a GMM version that exploits the i.i.d.

assumption in computing the efficient GMM weighting matrix, the asymptotic size and

power properties of the Beaulieu, Dufour and Khalaf (2007a) procedure are identical to

the asymptotic size and power properties of the GMM tests discussed in section 6.1 as

long as the distribution of the innovations is i.i.d., regardless of whether or not they

really follow a t with ν0 degrees of freedom. However, their test will have asymptotically

the wrong size if the conditional distribution of the innovations is not i.i.d., and the

same is obviously true in finite samples. As we saw in section 6.2, a potentially relevant

example would be one in which the joint distribution of r1t and r2t were elliptical.

Obviously, standard simulation techniques, such as bootstrap and subsampling meth-

ods, can in principle be applied to any of the tests that we have previously discussed,

although once again it would important to distinguish the situation in which r1t is treated

as if it were “fixed in repeated samples” from the more realistic situation in which the

relevant sampling framework involves all assets in rt.

In this sense, it is worth remembering that the same exogeneity considerations apply
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to Bayesian testing methods, such as the ones considered by Shanken (1987b), Harvey

and Zhou (1990), Kandel, McCulloch and Stambaugh (1995) or Cremers (2006), which

can also be regarded as finite sample methods.

8 Mean-variance-skewness efficiency and spanning

tests

Despite its popularity, mean-variance analysis also suffers from important limitations.

Specifically, it neglects the effect of higher order moments on asset allocation. In par-

ticular, it ignores the third central moment of returns, which as a measure of skewness

is undoubtedly a crucial ingredient in analysing derivative assets, games of chance and

insurance contracts. In this sense, Patton (2004) uses a bivariate copula model to show

the empirical importance of asymmetries in asset allocation. Further empirical evidence

has been provided by Harvey et al. (2002) and Jondeau and Rockinger (2006). From

the theoretical point of view, Athayde and Flores (2004) derive several useful properties

of mean-variance-skewness frontiers, and obtain their shape for some examples by simu-

lation techniques. Similarly, Briec, Kerstens and Jokung (2007) propose an optimisation

algorithm that, starting from a specific portfolio, obtains the mean-variance-skewness

efficient portfolio along a given direction that reflects investors’ relative preferences for

those three moments.

From an econometric point of view, it is important to distinguish between testing the

mean-variance-skewness efficiency of a particular portfolio, and testing spanning of the

mean-variance-skewness frontier.

Let us start with the first test. Using a variational argument, Kraus and Litzen-

berger (1976) showed that the risk premia of any portfolio could be expressed as a linear

combination of its covariance and co-skewness with any mean-variance-skewness efficient

portfolio (see also Barone-Adessi (1985), Ingersoll (1987) and Lim (1989)). Specifically,

they showed that18

µi = τrσi1 + τsφi11 ∀i, (27)

18Strictly speaking, Kraus and Litzenberger (1976) derived a “beta” version of (27), in which σi1 is
divided by σ11 and φi11 by φ111, with the appropriate adjustments to τr and τs An advantage of the
formulation in (27) relative to the original one is that it does not require the reference portfolio to be
asymmetric.
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where

σij = cov(ri, rj),

φijk = E[(ri − µi)(rj − µj)(rk − µk)],

and the coefficients τr and τs are common across assets. These restrictions were cast in

a GMM framework by Sánchez-Torres and Sentana (1998) as follows:

E(r1t − τrσ11 − τsφ111) = 0

E[(r1t − τrσ11 − τsφ111)
2 − σ11] = 0

E[(r1t − τrσ11 − τsφ111)
3 − φ111] = 0

E(rit − τrσi1 − τsφi11) = 0

E[(rit − τrσi1 − τsφi11)(r1t − τrσ11 − τsφ111)− σi1] = 0

E[(rit − τrσi1 − τsφi11)(r1t − τrσ11 − τsφ111)
2 − φi11] = 0

Note that for each asset except the reference portfolio there are three restrictions but only

two parameters, while for the reference portfolio there are four parameters but only three

restrictions. All in all, there are 3(N2+1) moment restrictions on r with 2(N2+1)+2 pa-

rameters (τr, τs, σi1, φi11). Therefore, the corresponding overidentification test has N2−1

degrees of freedom under the null hypothesis of mean-variance-skewness efficiency of r1,

the loss of one degree of freedom relative to the MacKinlay and Richardson (1991) test

being due to the addition of the parameter τs. As in the case of mean-variance fron-

tiers, the overidentifying test can be made robust to departures from the assumption of

normality, conditional homoskedasticity, serial independence or identity of distribution.

Given that (27) would also arise from an asset pricing model in which the SDF were

proportional to

1− τr(r1t − µ1)− τs[r2
1t − (µ2

1 + σ11)], (28)

we could always interpret a test of H0 : τs = 0 as a test that (co-)skewness with r1t is not

priced.19 This interpretation also suggests that an alternative test of the mean-variance-

skewness efficiency of r1t could be obtained from the SDF-type restrictions:

E[rit{1− τr(r1t − µ1)− τs[r2
1t − (µ2

1 + σ11)]}] = 0 ∀i.
19Chabi-Yo, Leisen and Renault (2007) extend the infinitesimal risk analysis of Samuelson (1970) to

provide a justification for a SDF specification such as (28). They also provide an alternative repre-
sentation of the SDF in terms of r1t and a skewness-representing portfolio, which is the least squares
projection of r21t on a constant and rt.
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An econometric problem that arises in this set-up is that σi1 and φi11 are highly

cross-sectionally collinear in practice (see Barone-Adessi, Gagliardini and Urga (2004)),

which makes the separate identification of τr and τs problematic (see Kan and Zhang

(1999a,b) or Kleibergen (2007) for related discussions in more general contexts).

Given the well-known relationship between beta pricing and SDF pricing, Barone-

Adessi, Gagliardini and Urga (2004) proposed a “quadratic” regression version of the

above problem. Specifically, they showed that if the SDF is a linear combination of r1t

and (R2
1t −R0t), then the intercept of the following multivariate regression

r2t = α+ βr1t + γ(R2
1t −R0t) + vt

must satisfy the restriction

α = τgγ, (29)

where τg is a scalar parameter (see also Barone-Adesi (1985)). However, it is necessary

to bear in mind that unless r1t is symmetric, γi will not be exactly proportional to

the co-skewness of asset i with r1 even if one makes the additional assumptions that

E(vit|r1t, It−1) is 0 and both R0t and V (vit|r1t, It−1) are constant because

φi11 = cov(rit, r
2
1t) = γiV (r2

1t) + βicov(r1t, r
2
1t).

As a result, one has to be careful in testing whether co-skewness with r1t is priced (see

also Chabi-Yo, Leisen and Renault (2007)). Nevertheless, Barone-Adesi, Gagliardini and

Urga (2004) argue that the difference between γi and φi11/V (r2
1t) is likely to be fairly

small in practice when r1t is a well diversified portfolio, since the distribution of such

portfolios is strongly leptokurtic but only mildly asymmetric, if at all.20 More recently,

Beaulieu, Dufour and Khalaf (2008) have explained how to obtain by simulation the

finite sample size of the Wald and LR test of the non-linear restriction (29) under the

assumption that the distribution of εt conditional on It−1 and the past, present and

future of r1t is i.i.d.(0,Ω, ρ).21

Notice, though, that like in the case of the mean-variance frontier without a riskless

asset, the fact that a portfolio is mean-variance-skewness efficient does not imply that

20Sánchez-Torres and Sentana (1998) proposed a moment test of the restriction E(r1t − µ1)3 = 0 to
assess the asymmetry of the distribution of r1t. The advantage of their test relative to the skewness
component of the usual Jarque-Bera (1981) test is that it can be made robust to non-normality, het-
eroskedasticity and serial correlation (see also Bai and Ng (2005) and Bontempts and Meddahi (2005)
for closely related approaches).

21In addition, they explicitly consider the more general case in which a riskless asset is not available.
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any particular agent would be interested in investing in it. An obvious example is the

usual mean-variance tangency portfolio. The properties of the mean-variance frontier

imply that such a portfolio will trivially satisfy (27) with τs = 0. However, only those

agents who do not care about skewness will choose it.

Therefore, from an investors’ point of view it may be more interesting to consider

mean-variance-skewness spanning tests. The problem with those tests is that in gen-

eral the mean-variance-skewness frontier is not generated by any finite number of assets.

Nevertheless, Menćıa and Sentana (2009a) make mean-variance-skewness analysis fully

operational by working with a rather flexible family of multivariate asymmetric distri-

butions, known as location-scale mixtures of normals (LSMN), which nest as particular

cases several important elliptically symmetric distributions, such as the Gaussian or the

Student t, and also some well known asymmetric distributions like the Generalised Hy-

perbolic (GH ) introduced by Barndorff-Nielsen (1977). The GH distribution in turn

nests many other well known and empirically relevant special cases, such as symmetric

and asymmetric versions of the Hyperbolic (Chen, Hardle and Jeong (2008)), Normal

Gamma (Madan and Milne (1991)), Normal Inverse Gaussian (Aas, Dimakos and Haff

(2005)) or Multivariate Laplace (Cajigas and Urga (2007)). In addition, LSMN nest

other interesting examples, such as finite mixtures of normals, which have been shown

to be a flexible and empirically plausible device to introduce non-Gaussian features in

high dimensional multivariate distributions (see e.g. Kon (1984)), but which at the same

time remain analytically tractable.

Formally, a random vector r of dimension N follows a LSMN if it can be generated

as:

r = υ + ξ−1Υδ + ξ−1/2Υ1/2εo, (30)

where υ and δ are N -dimensional vectors, Υ is a positive definite matrix of order N ,

εo ∼ N(0, IN), and ξ is an independent positive mixing variable whose distribution

function depends on a vector of q shape parameters %. Since r given ξ is Gaussian with

conditional mean υ+ Υδξ−1 and covariance matrix Υξ−1, it is clear that υ and Υ play

the roles of location vector and dispersion matrix, respectively. The parameters % allow

for flexible tail modelling, while the vector δ introduces skewness in this distribution. For

ease of interpretation, Menćıa and Sentana (2009) re-write the data generation process
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for returns as

r = µ+ Σ1/2ε∗, (31)

where ε∗ is a standardised LSMN vector that is obtained from (30) by choosing υ and

Υ appropriately. In addition, they choose

δ = Σ−1/2d (32)

in order to make the distribution of r independent of the particular factorisation of Σ

in (31).

In terms of portfolio allocation, Menćıa and Sentana (2009a) show that if the dis-

tribution of asset returns can be expressed as a LSMN , then the distribution of any

portfolio that combines those assets will be uniquely characterised by its mean, variance

and skewness parameter w′Σd. This implies that, from an investor’s point of view, the

relative attractiveness of any two portfolios can always be explained in terms of those

three quantities because all higher-order moments depend on the lower ones and the com-

mon tail parameters %. Hence, one only needs to characterise the investment opportunity

set in terms of these moments to fully describe the investor’s available strategies.

Furthermore, Menćıa and Sentana (2009a) show that the efficient part of this frontier

can be spanned by three funds: the fund that together with the safe asset generates the

usual mean-variance frontier, whose weights are proportional to ϕ+ = Σ−1µ, plus an ad-

ditional fund whose weights are given by the vector d in (32). This second vector can be

interpreted as an asymmetry-variance efficient portfolio because one can maximise effi-

ciency for a given standard deviation by considering portfolios with weights proportional

to d. Consequently, any portfolio in the efficient part of the mean-variance-skewness

frontier will be of the type wrϕ
+ + wsd, where wr and ws are two scalars.22

On this basis, Menćıa and Sentana (2009a) develop a mean-variance-skewness span-

ning test that jointly assesses whether ϕ+
2 = 0 and d2 = 0. Given that they work within

a fully parametric framework, their test is based on the asymptotic distribution of the

ML estimator of the parameters of the LSMN model. In this regard, they provide

22There are other asymmetric distributions that satisfy this property. Specifically, Simaan (1983)
studies portfolio allocation when excess returns are the sum of an elliptical random vector and an
independent scalar asymmetric variable times a constant vector. Similalry, Menćıa and Sentana (2009b)
consider a multivariate Hermite expansion of a multivariate normal vector in which asymmetry is a
common feature.
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analytical expressions for the score by means of the EM algorithm, and explain how to

reliably evaluate the information matrix.23

9 Conclusions

This paper provides a survey of the econometrics of mean-variance efficiency tests.

Starting with the classic F test of Gibbons, Ross and Shanken (1989) and its generalised

method of moments version, I analyse the effects of the number of assets and portfo-

lio composition on test power. I then discuss asymptotically equivalent tests based on

portfolio weights, and study the trade-offs between efficiency and robustness of using

parametric and semiparametric likelihood procedures that assume either elliptical in-

novations or elliptical returns. After reviewing finite sample tests, I conclude with a

discussion of mean-variance-skewness efficiency and spanning tests.

A unifying theme of this survey is that empirical researchers must decide how much a

priori knowledge about the degree of inefficiency of the candidate portfolio, its exogeneity,

the pattern of the residual covariance matrix or the conditional distribution of asset

returns they want to use in order to obtain tests that are either more powerful or have

more reliable finite sample distributions. As usual, if they make the wrong a priori

assumptions they may inadvertently introduce potential biases in their conclusions. In

this sense, it is important that they are aware of and understand those biases, so that they

can robustify their inferences. However, it does not necessarily follow that they should

systematically rely on “asymptotically robust” procedures whose main justification is

based on first-order limiting results if they provide a poor approximation in finite samples.

In any case, there are many important issues that I have unfortunately not considered

in the interest of space. In particular, I have not looked at mean-variance efficiency tests

when a riskless asset is not available (as in e.g. Gibbons (1982), Kandel (1986), Shanken

(1985, 1986), Zhou (1991), Velu and Zhou (1999) and more recently Beaulieu, Dufour and

Khalaf (2007b)), in which case the regression should be run in terms of returns instead

of excess returns, and the null hypothesis should become H0 : αi = $(1−
∑N1

j=1 bij) ∀i,

where $ is a scalar parameter representing the expected return of the so-called zero-beta

23In principle, one could exploit the non-elliptical nature of the distribution of returns for the only
purpose of obtaining more efficient parameter estimates of the mean vector and covariance matrix of
returns, as in section 6. As we have just seen, though, mean-variance analysis is generally suboptimal
for asymmetric return distributions.
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portfolio. As we mentioned before, in those circumstances it is important to distinguish

between mean-variance efficiency tests on the one hand, and spanning tests on the other

(see Huberman and Kandel (1987), and De Roon and Nijman (2001) for a recent survey),

in which the null hypothesis involves restrictions on both intercepts and slopes of the

multivariate regression model (5) (see Peñaranda and Sentana (2008a) for a comparison

of alternative GMM procedures).

Moreover, I have ignored the effects of transaction costs and short sale constraints

on testing for mean-variance analysis, which are discussed in detail by De Roon, Nijman

and Werker (2000). Short sale and additivity constraints are particularly relevant in

style analysis, which is often used in practice (see Sharpe (1992) for a definition and De

Roon, Nijman and ter Horst (2004) for a discussion of the econometric issues).

I have also disregarded the effects of using proxies of the true benchmark portfolios

r1t, which is particularly relevant in asset pricing applications in view of the so-called

Roll (1977) critique (see Shanken (1987a) and Kandel and Stambaugh (1987)).

There is also an extensive body of literature that looks at the two-pass procedures of

Fama and McBeth (1973), which continue to attract substantial attention from practi-

tioners (see Shanken (1992), Shanken and Zhou (2006) and Lewellen, Nagel and Shanken

(2007)), and also Cochrane (2001, p. 247) for a re-interpretation of their procedure in

cross-sectional and pooled regression contexts in which the estimated regression coeffi-

cients B̂ are held constant over the full sample period).

Similarly, there is a growing literature that discusses portfolio selection and its pric-

ing implications taking into account either fourth order moments of the distribution of

returns through expansions of general expected utility von Neumann-Morgenstern pref-

erences (see e.g. Dittmar (2002), Jondeau and Rockinger (2006), Guidolin and Timmer-

mann (2008) and Chabi-Yo, Ghysels and Renault (2008)), or a specific parametric class

of utility functions (see Gourieroux and Monfort (2005)). Relatedly, Jurczenko, Maillet

and Merlin (2006) extend the dual approach in Briec, Kerstens and Jokung (2007) to

obtain the portfolio frontier for fourth order moments.

Finally, a very important issue that I have ignored is the fact that nowadays it is

widely accepted that asset returns are predictable, if not in mean at least in variance,

and that investors can exploit this fact to their advantage by using conditional distri-
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butions as opposed to unconditional ones in deciding their portfolio strategies.24 For

instance, an investor can not only choose a passive “buy and hold” portfolio strategy

whose weights are fixed over time, but also define a dynamic trading strategy as a func-

tion of the volatility level of the stock market, as measured by the VIX, say. Frontiers

for such active strategies were introduced by Hansen and Richard (1987), and have been

recently revisited by Ferson and Siegel (2001), Abhyankar, Basu and Stremme (2007)

and Peñaranda and Sentana (2008b). Hansen and Richard (1987) carefully distinguish

between conditional mean variance frontiers, which refer to conditional moments of ac-

tive strategies, from unconditional mean-variance frontiers, which bound the first two

unconditional moments of all conceivable actively managed portfolios. In turn, these un-

conditional frontiers should not be confused with unconditional mean-variance frontiers

for passive portfolios, where by passive we mean portfolios whose weights do not depend

on the information available at the time of trading.25

In line with most of the existing literature on mean-variance efficiency tests, though,

the information that is available at the time of trading has played no explicit role in

this paper. In this strict sense, therefore, one could regard the procedures that I have

surveyed as tests of passive mean-variance efficiency, although the underlying assets could

be portfolios managed according to some specific dynamic strategy. At first sight, it may

seem irrelevant to study passive strategies in the presence of conditioning information.

However, following Hansen and Richard (1987) and many others, empirical work on

unconditional mean-variance frontiers typically relies on passive strategies of managed

portfolios such as rt ⊗ xt−1, where xt−1 is a vector of predictor variables known at time

t − 1, as a way of approximating the complexity of active strategies without running

the risk of misspecifying the conditional distribution of asset returns (see chapter 8 in

Cochrane (2001) for a justification).

Still, other authors prefer to impose functional form restrictions on the conditional

distribution of rt given xt−1. In some cases, those restrictions amount to assuming

24See Cochrane (2001) for a summary of the empirical evidence on mean predictability, and Sentana
(2005) for a recent example of the link between regression forecasts and optimal portfolios.

25Peñaranda and Sentana (2008b) also discuss extended mean variance frontiers, which correspond
to actively managed portfolios whose cost is one on average, but not necessarily one for every possible
value of the variables in the information set. In addition, there is a nontrivial connection between
mean-variance preferences and return frontiers when investors rely on active strategies. Peñaranda
(2008) studies such a connection, showing that different mean-variance preferences lead to different
interpretations of the results of portfolio efficiency tests.
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that the conditional analogue to the multivariate regression slope and intercepts in (5)

linearly depend on xt−1 while Ω remains constant (see Beaulieu, Dufour and Khalaf

(2007a) or Morales (2009) for recent examples). Alternatively, the conditional regression

coefficients and residual covariance matrix may be kept constant, but the conditional

means, variances and covariances of r1t are allowed to change over time (as in Gourieroux,

Monfort and Renault (1991)). A third possibility is to assume that the conditional mean

of rt is linear in xt−1 but the corresponding conditional covariance is constant (see e.g.

Ferson and Siegel (2009)).

Such parametric restrictions typically imply that some of the procedures surveyed in

the previous sections can be easily adapted. For instance, Beaulieu, Dufour and Khalaf

(2007a) test conditional mean-variance efficiency by checking that the coefficients of xt−1

in the regression of r2t on xt−1 and r1t ⊗ xt−1 are simultaneously 0. Similarly, Property

17 in Gourieroux, Monfort and Renault (1991) implies that under their assumptions

a′Ω−1a also reflects the time-invariant incremental Sharpe ratio that separates the con-

ditional mean-variance frontier generated from r1t alone from the one generated from

both r1t and r2t, even though the unconditional means of the corresponding maximum

conditional Sharpe ratios do not coincide with the maximum Sharpe ratios of constant-

weight portfolios discussed in section 2. As a result, a test of H0 : a = 0 is relevant for

both conditional and passive mean-variance frontiers. Finally, Ferson and Siegel (2009)

compare the maximum Sharpe ratio of the unconditional Hansen and Richard (1987)

frontier for arbitrage portfolios constructed from r1t alone, with the one generated from

both r1t and r2t. To do so, they exploit a result in Ferson and Siegel (2001) which indi-

cates that the arbitrage portfolio with maximum unconditional Sharpe ratio is given by

[µ(xt−1)µ
′(xt−1)+Σ(xt−1)]

−1µ′(xt−1)rt, where µ(xt−1) and Σ(xt−1) are the mean vector

and covariance matrix of the distribution of rt given xt−1.

In principle, the procedures described in the earlier sections could also be modified

to test for conditional mean variance efficiency for a specific value that the conditioning

variables may take at the time of trading. Non-parametric procedures can be developed

by localising either with respect to state (as in Wang (2002, 2003) and Kayahan and

Stengos (2007)) or with respect to time (as in Lewellen and Nagel (2006); see also Fan,

Fan and Jiang (2007) for a combined approach).

All these issues constitute interesting avenues for further research.
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Sentana, E. (2005): Least squares predictions and mean-variance analysis, Journal of

Financial Econometrics 3, 56-78.

Shanken, J. (1985): “Multivariate tests of the zero-beta CAPM”, Journal of Financial

Economics 14, 327-348.

Shanken, J. (1986): “Testing portfolio efficiency when the zero-beta rate is unknown: A

note”, Journal of Finance 41, 269–276.

49



Shanken, J. (1987a): “Multivariate proxies and asset pricing relations: Living with Roll’s

critique”, Journal of Financial Economics 18, 91-110.

Shanken, J. (1987b): “A Bayesian approach to testing portfolio efficiency”, Journal of

Financial Economics 19, 195-215.

Shanken, J. (1992): “On the estimation of beta pricing models”, Review of Financial

Studies 5, 1–33.

Shanken, J. (1996): “Statistical methods in tests of portfolio efficiency: a synthesis”,

in G.S. Maddala, C.R. Rao Handbook of Statistics 14: Statistical Methods in Finance,

693-711, Elsevier.

Shanken, J. and G. Zhou (2006): “Estimating and testing beta pricing models: alter-

native methods and their performance in simulations”, Journal of Financial Economics,

forthcoming.

Sharpe, W.F. (1964): “Capital Asset Prices: A theory of capital market equilibrium

under conditions of risk”, Journal of Finance 19, 425-442.

Sharpe, W.F. (1966): “Mutual fund performance”, Journal of Business 39, 119-138.

Sharpe, W.F. (1992): “Asset allocation: management style and performance measure-

ment”, Journal of Portfolio Management Winter 7-19.

Sharpe, W.F. (1994): “The Sharpe ratio”, Journal of Portfolio Management 21, Fall

49-58.

Simaan, Y. (1993): “Portfolio selection and asset pricing - Three parameter framework”,

Management Science 39, 568-577.

Velu, R. and G. Zhou (1999): “Testing multi-beta pricing models”, Journal of Empirical

Finance 6, 219–241.

Wang, K.Q. (2002): “Nonparametric tests of conditional mean-variance efficiency of a

benchmark portfolio”, Journal of Empirical Finance 9,133-169.

Wang, K.Q. (2003): “Asset pricing with conditioning information: a new test”, Journal

of Finance 58, 161–196

White, H. (1980). “A heteroskedastic-consistent covariance matrix estimator and a direct

test for heteroskedasticity”, Econometrica, 45, 817-838.

White, H. (1982): “Maximum likelihood estimation of misspecified models”, Economet-

rica 50, 1-25.

Zhou, G. (1991): “Small sample tests of portfolio efficiency”, Journal of Financial Eco-

50



nomics 30, 165–191.

Zhou, G. (1993): “Asset-pricing tests under alternative distributions”, Journal of Fi-

nance 48, 1927–1942.

51



Figure 1: Incremental mean-variance frontiers
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Figure 2: GMM estimator of incremental Sharpe ratio
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