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B A geometric interpretation of admissible SDF sets

B.1 Taxonomy of overspecification

It is pedagogically convenient to visualize the restrictions that a linear factor pricing model

such as (1) imposes on the parameters (a,b, c). To do so, we repeat the analysis in section 2.2

assuming that the empirical researcher considers

m = a+ bpfp + bcfc. (B1)

These two pricing factors (fp, fc) can be motivated by a consumption CAPM with Epstein-

Zin preferences, which correspond to the first two factors in the empirical SDF (3). Once again,

let us begin by assuming that risk premia are given by the CAPM (4). The pricing errors of the

empirical model (B1) would be

E (mr) = σp[τp(a+ µpbp + µcbc) + bp] + σcbc, (B2)

where µp and µc denote the population means of the empirical factors.

Given that the empirical model nests the true one, the CAPM solution bp = −a(1+τpµp)
−1τp

and bc = 0 will trivially make these pricing errors zero regardless of the value of σc. However,

there will be (infinitely) many more solutions when σc = σpκcp so that the factor mimicking

portfolios of fc and fp are proportional, and consequently both the CCAPM and the traditional

CAPM will give rise to the same risk premia. Obviously, the (linearized) empirical counter-

parts of these two models will provide admissible SDFs (namely, ac
[
1− (κcp + τpµc)

−1τpfc
]

and ap
[
1− (1 + τpµp)

−1τpfp
]
), respectively), but there will be a continuum of other SDFs. In

particular, defining f∗
c = fc − κcpfp and its mean µ∗

c = µc − κcpµp, the non-trivial SDFs that

simply scale f∗
c − µ∗

c up or down will have zero covariance with the vector of excess returns r.

Therefore, the empirical model will be partially overspecified and econometrically underidenti-

fied.

Let us now consider a more general model in which risk premia depend on an additional risk

factor, fs, as in the ICAPM (6). In this case, the pricing errors of the empirical model (B1)

would be

E (mr) = σp[τp(a+ µpbp + µcbc) + bp] + σsτ s(a+ µpbp + µcbc) + σcbc. (B3)

Therefore, the moment conditions (1) will not be satisfied unless σc = σpκcp + σsκcs. In-

tuitively, this condition requires that the factor mimicking portfolio of fc is spanned by the

factor mimicking portfolios of the true factors fp and fs. This condition nests Statement 1 in

Lewellen, Nagel, and Shanken (2010), which says that the empirical model yields zero pricing

errors if its factors are uncorrelated with the residual of the projection of the vector of returns

onto the true factors. In our setting, one of the true factors already appears in the empirical

model, so the Lewellen, Nagel, and Shanken (2010) condition simply requires that the projec-

tion residual and fc be uncorrelated, namely Cov(r−α− βpfp − βsfs, fc) = 0, or equivalently
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σcc−βpσpc−βsσsc = 0. Given that (βp, βs) = (σp, σs)V
−1, where V is the covariance matrix of

the true factors fp and fs, we can write σc = σpκcp +σsκsp with (κcp, κcs) being the projection

coefficients of fc onto the true factors.

In this context, the value of κcs makes a big difference. If κcs ̸= 0, the moment conditions

(1) will be satisfied because the SDF specification in (B1) gives rise to an admissible empirical

model perfectly compatible with the risk premia in (6).

Things are rather different when κcs = 0. Substituting σc = σpκcp into the pricing errors of

the empirical model (B3) immediately shows that the unique (up to scale) solution of the result-

ing system of linear equations will satisfy bp + κcpbc = 0 and a+ bcµc = 0. Thus, the admissible

empirical SDFs (B1) will be proportional to fc − µc, in marked contrast with the true model

(6). This example provides a useful generalization of the useless factor example put forward by

Kan and Zhang (1999) among others, who implicitly assume that κcp = κcs = 0 so that σc = 0.

In particular, it implies that an empirical asset pricing model can be economically meaningless,

in the sense that it generates uncorrelated SDFs, even though all its risk factors are correlated

with the vector of excess returns and the (normalized) prices of risk are econometrically point

identified.

Finally, we could have complete overspecification if the empirical researcher uses two other

factors, say fc and fd, which have zero covariances with the vector of excess returns r. For

example, she could use non-durable consumption growth together with durable consumption

growth, as in Eichenbaum and Hansen (1989). In this case, the prices of risk will not be point

identified either, and all admissible stochastic discount factors, which are linear combinations of

fc − µc and fd − µd, will have 0 covariance with the vector of excess returns.

B.2 Geometric interpretation

Let us now turn to the geometric interpretation of the cases in the previous section, using

f1 = fp and f2 = fc.

Given (B1), the matrix M in (12) can then be expressed as

M = [ E (r) E (rf1) E (rf2) ],

for an n × 1 vector of excess returns. Admissible SDFs are defined by Mθ = 0. If there exists

a solution to these equations, then we say that the empirical model holds.

When n = 1, there is always a two dimensional linear space of admissible solutions, which can

be regarded as the dual set to the combination line of expected excess returns and covariances

with the risk factors that can be generated by leveraging r1 up or down.

(Figure B1: One asset)

When n = 2, the two dimensional space generated by each asset will generally be different,

so their intersection will be a straight line.
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(Figure B2: Two assets)

Occasionally, though, the two linear subspaces might coincide. This will happen when the

two assets are collinear in the space of expected excess returns and covariances with the risk

factors, an issue we will revisit when we discuss Figures B6 and B7 below.

Three assets is the minimum number required to be able to reject the model. The reason

is the following. If an empirical asset pricing model does not hold, the three linear subspaces

associated to each of the assets will only intersect at the origin. We may then say that there is

financial markets “segmentation”, in the sense that there is no single SDF within the model that

can price all the assets. This situation corresponds to the Epstein-Zin empirical specification (B1)

when the true model is the ICAPM in (6) but the factor mimicking portfolio for consumption

growth is not spanned by the market and the factor mimicking portfolio for the state variable,

in which case the pricing errors will be given by (B3).

(Figure B3: Three segmented asset markets)

If on the other hand the proposed empirical asset pricing model holds, the intersection will

be a linear subspace of positive dimension. This requires that the three assets are coplanar in

the space of expected excess returns and covariances with the risk factors, so that they all lie

on the security market plane E(r) = E(rf1)δ1 + E(rf2)δ2. Therefore,

M = [ E (rf1) E (rf2) ]

 δ1 1 0

δ2 0 1

 .

When this happens, we may say that there is financial markets “integration”. The same example

discussed in the previous paragraph will give rise to this situation when the factor mimicking

portfolio for consumption growth is spanned by the market and the factor mimicking portfolio

for the state variable.

(Figure B4: Three integrated asset markets)

A different example in which the empirical Epstein - Zin specification (B1) holds arises when

the true model is the CAPM in (4) but the market portfolio is not proportional to the mimicking

portfolio for consumption growth, so that

M = [ E (rf1) E (rf2) ]

 δ1 1 0

0 0 1

 ,

An interesting feature of this example is that consumption growth does not appear in any ad-

missible SDF. We discuss tests for such a hypothesis in section 3.2. Formally, the null hypothesis

would be that the entry of b associated to this factor is equal to zero in all the basis vectors

(θ1,θ2, ...,θd).
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(Figure B5: An unpriced second factor)

Let us now turn to situations with overspecification. Specifically, assume that both the

CAPM and the (linearized) CCAPM hold, in the sense that excess returns on the market and

consumption growth can price on their own a cross-section of excess returns, i.e. E(r) = E(rf1)δ1

and E(r) = E(rf2)δ2, so that the two factor mimicking portfolios are proportional. As a

consequence,

M = E(r)( 1 1/δ1 1/δ2 ),

for the (linearized) Epstein-Zin model (B1), which means that we can find a two-dimensional

subspace of SDFs whose parameters satisfy Mθ = 0. Nevertheless, except for a linear subspace

of dimension 1, most SDFs in the admissible set will have a meaningful economic interpreta-

tion. Thus, the empirical model would be econometrically underidentified but only partially

overspecified.

(Figure B6: Two single factor models)

A closely related situation would be as follows. Consider a two-factor model with a useless

factor such that Cov(r, f2) = 0, so that

M = [ E(r) E(rf1) E(r)µ2 ],

where µ2 is the population mean of the second empirical factor. If f1 is a valid pricing factor on

its own, so that E(r) = E(rf1)δ1, then rank(M) = 1 because

M = E(r)( 1 1/δ1 µ2 ).

Once again, this overspecified pricing model will be economically meaningful but parametrically

underidentified.

(Figure B7: Admissible and attractive model with a useless factor)

In contrast, if E(r) and E(rf1) are linearly independent because the true model involves

a second risk factor as in the ICAPM (6), then the model parameters will be econometric

identified because rank(M) = 2, and we can still rely on standard GMM inference. However, in

these circumstances there can be no admissible SDF affine in the two empirical factors that can

both yield zero pricing errors and have a meaningful economic interpretation. This is the usual

example of a useless factor.

Indeed, when Cov(r, f2) = 0 but E(r) ̸= 0, the SDF conditions (1) will trivially hold for any

m that simply scales f2 − µ2 because they will all satisfy Mθ = 0. As a result, the admissible

SDFs will have b1 = 0 and c = E(m) = 0. Thus, this overspecified model will be econometrically

identified but economically unattractive.
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(Figure B8: Admissible but unattractive model with a useless factor)

Finally, there will also be a two-dimensional subspace of SDFs whose parameters satisfy

Mθ = 0 when there are two useless factors, i.e. Cov(r, f1) = Cov(r, f2) = 0. Hence,

M = E(r)( 1 µ1 µ2 ),

and any SDF which is a linear combination of f1 − µ1 and f2 − µ2 will be admissible. The

final example in the previous section provides an illustration of this situation with durable and

nondurable consumption growth.

(Figure B9: Two useless factors)

The special feature of this completely overspecified case is that c = 0 for all admissible

SDFs, so there is not only underidentification but also the absence of any economic meaningful

specification.

C Normalizations and starting values

C.1 Normalizations

We saw in section 2.1 that the parameter vector (a,b, c) that appears in (1) and (2) is only

identified up to scale. As forcefully argued by Hillier (1990) for single equation IV models, this

suggests that we should concentrate our efforts in estimating the identified direction. However,

empirical researchers often prefer to estimate points rather than directions, and for that reason

they typically focus on some asymmetric scale normalization, such as (1,b/a, c/a). In this

regard, note that δ = −b/a can be interpreted as prices of risk since we may rewrite (1) as

E(r) = E(rf ′)δ. Other normalizations, such as (a/c,b/c, 1) or b′b + c2 = 1 are also possible,

although the former is incompatible with H0 : c = 0. Figure C1 illustrates the role of these

normalizations in pinning down a single point on (b, c) space with 2 factors.

(Figure C1: Normalizations)

Similarly, the extended system of moment conditions (13) and (14) also requires normal-

izations. Although any asymmetric normalization may be problematic in certain circumstances

(see section 4.4 in Peñaranda and Sentana (2015) for further details in the case of a single pricing

factor), in the presentation of our empirical results we use a popular SDF normalization that

fixes the first element of each θi to 1. Additionally, we need to impose enough zero restrictions

on the prices of risk to achieve identification. Alternatively, we could make a d × d block of (a

permutation of) the matrix (θ1,θ2, ...,θd) equal to the identity matrix of order d. Either way,

the advantage of CU-GMM and other single step estimators is that our inferences, including the

DM tests, will be numerically invariant to the chosen normalization.
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For 2-step and iterated methods, the most convenient normalizations are the asymmetric

ones ai = 1 (i = 1, ..., d), because they make the moment conditions (13) and (14) linear in

parameters, which leads to closed-form solutions to the first-order conditions, as illustrated

in Propositions C1 and C2 below. In addition, the results in Newey and West (1987) imply

that the Wald, Lagrange Multiplier and DM tests of linear homogeneous restrictions such as

H0 : ci = 0 will be numerically identical for multi-step methods, as long as the GMM estimators

of the restricted and unrestricted moments share the same weighting matrix. In this respect,

our 2-step and iterated DM tests rely on the optimal weighting matrix under the null using the

estimators in Proposition C2 as starting values. Given the fast convergence, we systematically

stopped the calculations after 50 iterations.

In contrast, single-step methods involve a non-linear optimization procedure even when the

moment conditions are linear in parameters. For that reason, we propose to use as starting value

a computationally simple intuitive estimator that is always consistent, but which would become

efficient when the returns and factors are i.i.d. elliptical. This family of distributions includes

the multivariate normal and Student t distributions as special cases, which are often assumed

in theoretical and empirical finance.

C.2 Efficient GMM estimation with elliptical distributions

C.2.1 Without complete overspecification

Let us define (f1, f2, ..., fd) as the vectors of factors that enter each one of the SDFs in (13)

after imposing the necessary restrictions that guarantee the point identification of the basis of

risk prices (δ1, δ2, ..., δd), where δi contains only those prices of risk which have not been set to

0 for identification purposes, so that the corresponding Jacobian matrices E(rf ′i) have full rank.

As a result, we can re-write (13) as

E
[
(1− f ′1δ1)r

]
= 0, i = 1, 2, .., d, (C1)

and (14) as

E(1− f ′iδi − ci) = 0, i = 1, 2, .., d. (C2)

Let rt and ft denote the values of the excess returns on the n assets and the k factors at

time t. We can then prove that

Proposition C1 If (rt, ft) is an i.i.d. elliptical random vector with bounded fourth moments
such that (C1) holds, then:
a) The most efficient GMM estimator of δi (i = 1, . . . , d) from the system (C1) will be given by

δ̊iT =

(
T∑
t=1

r̃+it r̃
+′
it

)−1 T∑
t=1

r̃+it , (C3)

where r̃+it are the relevant elements of the sample factor mimicking portfolios

r̃+t =

(
T∑

s=1

fsr
′
s

)(
T∑

s=1

rsr
′
s

)−1

rt. (C4)
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b) When we combine the moment conditions (C1) with (C2), the most efficient GMM estimator
of each δi is the same as in a), and the most efficient GMM estimator of each ci is the sample
mean of the corresponding SDF.

Intuitively, Proposition C1 states that the optimal GMM estimator in an elliptical setting

is such that it prices without error the factor mimicking portfolios in any given sample. The

optimal instrumental variables are defined by the Jacobian and the long-run covariance matrix of

the GMM influence functions. In general, the Jacobian depends on the cross-moments between

returns and factors. Under the elliptical assumption of Proposition C1, the long-run covariance

matrix depends only on the first and second moments of returns on the one hand, and the

first and second moments of the SDFs on the other (and their coefficient of multivariate excess

kurtosis). Moreover, under the maintained hypothesis that the asset pricing model holds, we

can relate the first moments of returns in that covariance matrix to the cross-moments between

returns and factors. The proof above shows that these properties of the Jacobian and the long-

run covariance matrix imply that the factor mimicking portfolios span the optimal “instrumental

variables”.

Although the elliptical family is rather broad (see Fang, Kotz and Ng (1990)), it is important

to stress that (C3) will remain consistent under correct specification even if the assumptions of

serial independence or a multivariate elliptical distribution do not hold in practice.

In addition, we can provide a rather different justification for (C3). Specifically, we can prove

that δ̊iT in (C3) coincides with the GMM estimator that we would obtain if we used as weighting

matrix the second moment of the vector of excess returns r. In other words, δ̊iT minimizes the

sample counterpart to the Hansen and Jagannathan (1997) (HJ) distance

E
[(
1− f ′iδi

)
r
]′ [

E
(
rr′
)]−1

E
[(
1− f ′iδi

)
r
]

irrespective of the distribution of returns and the validity of the asset pricing model. The reason

is that the first order condition of this minimization is

E
(
fir

′) [E (rr′)]−1
E
[(
1− f ′iδi

)
r
]
= 0,

which is equivalent to the exact pricing of the factor mimicking portfolios in Proposition C1.

C.2.2 With complete overspecification

We can extend the previous results to the case when we want to test complete overspecifi-

cation by imposing that ci = 0 for i = 1, . . . , d. Again, normalization-invariant procedures are

crucial to avoid obtaining different results for different basis of the admissible SDF set. But given

the numerical complications that they may entail, we again propose to use as starting value a

computationally simple intuitive estimator that is always consistent, but which would become

efficient when the returns and factors are i.i.d. elliptical. In fact, we can prove that the optimal

estimator of the prices of risk continues to have the same structure as in Proposition C1 if we
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define the factor mimicking portfolios over the extended payoff space spanned by x = (r′, 1)′.

Specifically:

Proposition C2 If (rt, ft) is an i.i.d. elliptical random vector with bounded fourth moments
such that (15) holds, then the most efficient GMM estimator of δi (i = 1, . . . , d) will be given by

δ̇iT =

(
T∑
t=1

x̃+
it x̃

+′
it

)−1 T∑
t=1

x̃+
it , (C5)

where x̃+
it are the relevant elements of the sample factor mimicking portfolios

x̃+
it =

(
T∑

s=1

fsx
′
s

)(
T∑

s=1

xsx
′
s

)−1

xt. (C6)

D Proofs

In the proofs of Propositions 1 and A1, we follow Peñaranda and Sentana (2015) in ex-

ploiting three important properties of CU estimators and related single-step GMM procedures

in an overidentifed GMM system in which one uses the optimal weighting matrix. First, the

inclusion of s additional unrestricted moment conditions with s new parameters does not affect

the estimators of the original parameters or the value of the overidentification restrictions test

(see e.g. Arellano (2003)). Second, the CU estimators and associated overidentification test are

numerically invariant to parameter-dependent full-rank linear transformations of the influence

functions (see Hansen, Heaton and Yaron (1996)). Third, CU is numerically invariant to con-

tinuously differentiable bijective reparametrizations whose Jacobian matrix has full row rank in

an open neighborhood of the true values, in the sense that the overidentification restriction test

is numerically identical and the reparametrized CU estimators are simply the result of applying

the transformation to the original ones.

D.1 Proposition 1

We find it convenient to express the pricing conditions (1) in terms of central moments

in (16), which is numerically inconsequential for single-step procedures such as CU-GMM (see

Proposition 2 in Peñaranda and Sentana (2015) for a formal result).

As we explained in Section 4.1, we need to replicate d times the pricing conditions in (16)

to deal with a d−dimensional subspace of admissible SDFs. Thus, the centred SDF counterpart

to (13) will be based on the moment conditions

E


rm1

...

rmd

f − µ

 = 0, mi = ci + (f−µ)′ bi, (D1)
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where the basis (b1,b2, ...,bd) includes the necessary exclusion restrictions on the factors to

guarantee its identification up to the normalization of each column.

Let us denote by J the CU-GMM value of the overidentifying restrictions test with free

(c1, c2, ..., cd) in (D1). Similarly, let us denote by J0 the CU-GMM value of the corresponding

overidentifying restrictions test after imposing c1 = ... = cd = 0. In this context, it is straight-

forward to see that the overidentification test based on J0 is trivially a rank test on Cov(r, f)

because it is testing the existence of d linear combinations of the columns of this covariance

matrix with weights bi that are equal to zero

E


r (f−µ)′ b1

...

r (f−µ)′ bd

f − µ

 = 0.

By the invariance properties of single-step GMM methods, it is easy to prove that we would

obtain the same value for the overidentification test from the moment conditions (13) and (14).

Finally, note that our DM test of the null hypothesis c1 = ... = cd = 0 is based on J0 − J .□

D.2 Proposition A1

Let us start with the simple case of d = 1. The addition of the pricing of R in (A1) to

the pricing of r in (1) implies that we no longer require an arbitrary normalization of (a,b).

As Peñaranda and Sentana (2015) prove in their Proposition 3, though, the empirical evidence

obtained by single-step methods applied to R is consistent with the analogous evidence obtained

from r alone. In particular, the overidentification restriction test for the joint system (1) and

(A1) is numerically identical to the one for (1) alone, and the ratio of the estimates of b to a

obtained from the moment conditions for excess returns coincides with the same ratio obtained

using all the assets.

The same comments apply to those situations with d > 1. The only difference is that they

involve several SDFs, namely

E



r(a1 + b′
1f)

R(a1 + b′
1f)− 1

...

r(ad + b′
df)

R(ad + b′
df)− 1


= 0.

But since we add one moment and one parameter for each dimension, the equivalence between

the results for excess and gross returns we have just discussed for d = 1 continues to hold for

any d. □
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D.3 Proposition C1

We develop most of the proof for the case d = 2 to simplify the expressions, but explain

the extension to d > 2 at the end.

a) When d = 2, the moment conditions (C1) become

E (m⊗ r) = E

 m1r

m2r

 = E

 (1− f ′1δ1) r

(1− f ′2δ2) r

 = 0.

We know from Hansen (1982) that the optimal moments correspond to the linear combina-

tions

D′S−1 1

T

T∑
t=1

 m1trt

m2trt

 ,

where D is the expected Jacobian and S the corresponding long-run variance

S = avar

 1√
T

T∑
t=1

 m1trt

m2trt

 .

In this setting, the expected Jacobian trivially is

D =

 D1 0

0 D2

 , Di = −E
(
rf ′i
)
.

Since we assume that the chosen normalization (δ1, δ2) is identified, D has full column rank,

which in turn implies that both D1 and D2 must have full column rank too.

When (rt, ft) is an i.i.d. elliptical random vector with bounded fourth moments, we can

tediously show that the long-run covariance matrix of the influence functions will be

S = A⊗ E
(
rr′
)
− B ⊗ E (r)E (r)′ ,

A = (1 + κ)V (m) + E (m)E (m)′ , B = κV (m) + 2 (1− κ)E (m)E (m)′ ,

where κ is the coefficient of multivariate excess kurtosis (see Fang, Kotz and Ng (1990)).

To relate the optimal moments to the factor mimicking portfolios

r+i = Cir, Ci = E
(
rf ′i
)′
E−1

(
rr′
)
,

it is convenient to define the matrix

C′ =

 C′
1 0

0 C′
2

 ,

on the basis of which we can compute

SC′ =
[
A⊗ E

(
rr′
)
− B ⊗ E (r)E (r)′

] C′
1 0

0 C′
2


=

 A11E
(
rf ′1
)

A12E
(
rf ′2
)

A12E
(
rf ′1
)

A22E
(
rf ′2
)
−

 B11E (r)E (r)′C′
1 B12E (r)E (r)′C′

2

B12E (r)E (r)′C′
1 B22E (r)E (r)′C′

2

 .
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Given that the existence of two valid SDFs implies that E(r) = E(rf ′1)δ1 = E(rf ′2)δ2, we

can write these matrices as

SC′ =

 A11E
(
rf ′1
)

A12E
(
rf ′2
)

A12E
(
rf ′1
)

A22E
(
rf ′2
)
−

 B11E
(
rf ′1
)
δ1δ

′
1G1 B12E

(
rf ′2
)
δ2δ

′
2G2

B12E
(
rf ′1
)
δ1δ

′
1G1 B22E

(
rf ′2
)
δ2δ

′
2G2

 ,

Gi = E
(
rf ′i
)′
E−1

(
rr′
)
E
(
rf ′i
)
.

In addition, let us define the matrices Qi such that E(rf ′1) = E(rf ′2)Q1 and E(rf ′2) =

E(rf ′1)Q2, which are related by Q2 = Q−1
1 . The existence of these matrices is guaranteed by

the lack of full column rank of E(rf ′) together with the full column rank of E(rf ′1) and E(rf ′2).

Thus, we can write

SC′ = DQ,

Q = −

 A11I1 − B11δ1δ
′
1G1 Q2

(
A12I1 − B12δ2δ

′
2G2

)
Q1

(
A12I2 − B12δ1δ

′
1G1

)
A22I2 − B22δ2δ

′
2G2

 .

The assumption that D′S−1 has full row rank guarantees that the same is true for C, so

that Q will be invertible. Therefore, we have found that

D′S−1 = Q′−1C.

In other words, the rows of D′S−1 are spanned by the rows of C, which confirms that the factor

mimicking portfolios span the optimal instrumental variables.

As a result, the optimal moments can be expressed as C1 0

0 C2

 1

T

T∑
t=1

 m1trt

m2trt

 =
1

T

T∑
t=1

 r+1tm1t

r+2tm2t

 = 0,

which proves that the optimal estimator of each vector of risk prices simply uses the corre-

sponding factor mimicking portfolios. This estimator is infeasible because we do not know Ci,

but under standard regularity conditions we can replace r+it by its sample counterpart in (C4)

without affecting the asymptotic distribution.

b) When d = 2, the joint system of moments (C1) and (C2)

E (h) = E

 m⊗ r

m− c

 ,

consists of

E (m⊗ r) = E

 m1r

m2r

 = E

 (1− f ′1δ1) r

(1− f ′2δ2) r

 = 0,

E (m− c) = E

 m1 − c1

m2 − c2

 = E

 1− f ′1δ1 − c1

1− f ′2δ2 − c1

 = 0,
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with the parameters being

θ =

 δ

c

 , δ =

 δ1

δ2

 , c =

 c1

c2

 .

The optimal moments correspond to the linear combinations

D′S−1 1

T

T∑
t=1

ht,

where D is the expected Jacobian and S the corresponding long-run variance

S = avar

[
1√
T

T∑
t=1

ht

]
.

In this setting, the expected Jacobian can be decomposed as

D =

 D 0

D −I2

 ,

where D contains the Jacobian of m− c with respect to δ, and I2 is the identity matrix of order

2. The long-run variance for i.i.d. returns and factors can be decomposed as

S =

 S E (mm′ ⊗ r)

E (mm′ ⊗ r′) V ar (m)

 .

Once again, we can exploit the structure of the optimal moments to show that the optimal

estimator of δ satisfies the moment conditions

D′S−1 1

T

T∑
t=1

(mt ⊗ rt) = 0.

Hence, the optimal estimator of c will satisfy the moment conditions

1

T

T∑
t=1

(mt − c)− E
(
mm′ ⊗ r′

)
S−1 1

T

T∑
t=1

(mt ⊗ rt) = 0.

Obviously, as the additional moments E (m− c) = 0 are exactly identified, the moment

conditions that define the optimal estimator of δ coincide with the conditions in point a), and

consequently the same estimator is obtained. The optimal estimator of c is equal to

1

T

T∑
t=1

mt − E
(
mm′ ⊗ r′

)
S−1 1

T

T∑
t=1

(mt ⊗ rt) ,

with mt evaluated at the optimal estimator of δ.

When (rt, ft) is an i.i.d. elliptical random vector with bounded fourth moments, we can show

that

E
(
mm′ ⊗ r′

)
= C ⊗ E (r)′ , C = V ar (m)− E (m)E (m)′ .

12



There are two valid SDFs: E (r) = E
(
rf ′1
)
δ1 = E

(
rf ′2
)
δ2. Hence, we can write

E
(
mm′ ⊗ r′

)
=

 C11E (r)′ C12E (r)′

C12E (r)′ C22E (r)′

 =

 C11δ′1E
(
rf ′1
)′ C12δ′2E

(
rf ′2
)′

C12δ′1E
(
rf ′1
)′ C22δ′2E

(
rf ′2
)′
 .

Let us focus on the optimal estimator of c1. We can express it as

1

T

T∑
t=1

m1t −
(

C11δ′1 C12δ′2
) E

(
rf ′1
)′

0

0 E
(
rf ′2
)′
S−1 1

T

T∑
t=1

(mt ⊗ rt)

=
1

T

T∑
t=1

m1t +
(

C11δ′1 C12δ′2
)
D′S−1 1

T

T∑
t=1

(mt ⊗ rt) ,

where the second term must be zero by definition of the optimal estimator of δ. A similar

argument can be applied to the optimal estimator of c2. Thus, we can conclude that

ĉ =
1

T

T∑
t=1

mt

will be the optimal estimator of the SDF means in an elliptical setting.

Finally, we can easily extend our proof to d > 2 because the structures of D, S, and C

are entirely analogous. Specifically, S will continue to be the same function of A and B above,

although the dimension of these matrices becomes d instead of 2. In turn, D and C will remain

block-diagonal, but with d blocks instead of 2 along the diagonal. Lastly, E (mm′ ⊗ r′) will

continue to be the same function of C above. □

D.4 Proposition C2

Once again, we develop most of the proof for the case d = 2 to simplify the expressions,

but explain the extension to d > 2 at the end.

When d = 2, the moment conditions (15) become

E (m⊗ x) = E

 m1x

m2x

 = E

 (1− f ′1δ1)x

(1− f ′2δ2)x

 = 0.

The optimal moments correspond to the linear combinations

D′S−1 1

T

T∑
t=1

 m1txt

m2txt

 ,

where D is the expected Jacobian and S the corresponding long-run variance. In this setting,

the expected Jacobian is block-diagonal with blocks −E
(
xf ′i
)
.

When (rt, ft) is an i.i.d. elliptical random vector with bounded fourth moments, and E (m) =

0, we can use the results in the proof of Proposition C1 to show that the long-run covariance
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matrix of the influence functions will be

S = A⊗ E
(
xx′)−B⊗ E (x)E (x)′ ,

A = (1 + κ)E
(
mm′) , B = κE

(
mm′) ,

where κ is the coefficient of multivariate excess kurtosis.

The structure of D and S is similar to the structure of those matrices in the proof of

Proposition C1. Therefore, we can follow the same argument to conclude that if we define the

factor mimicking portfolios on the extended payoff space as

x+
i = Cix, Ci = E

(
xf ′i
)′
E−1

(
xx′) ,

then the sample version of the optimal moments can be written as C1 0

0 C2

 1

T

T∑
t=1

 m1txt

m2txt

 =
1

T

T∑
t=1

 x+
1tm1t

x+
2tm2t

 .

This expression proves that the optimal estimator of each vector of risk prices simply uses the

corresponding factor mimicking portfolios. Once again, this estimator is infeasible because we

do not know Ci, but under standard regularity conditions we can replace x+
it by its sample

counterpart in (C6) without affecting the asymptotic distribution.

As in the case of Proposition C1, we can easily extend our proof to d > 2 because the

structure of D, S, and C is entirely analogous. Specifically, S will continue to be the same

function of A and B above, although the dimension of these matrices becomes d instead of 2. In

turn, D and C will remain block-diagonal, but with d blocks instead of 2 along the diagonal.□

E Additional empirical results

E.1 Yogo’s (2006) estimated risk premia with iterated GMM

Figure E1 reproduces the seeming alignment of the risk premia in the data with the risk

premia generated by Yogo’s (2006) model using exactly the estimation procedure based of the

centred SDF moments (16) with the normalization c = 1 that he used.

(Figure E1: Risk premia from 2S-GMM)

In addition to the theoretical considerations we have discussed in section 5.1, we found that

his results are sensitive to his choice of estimation method (2-step GMM) and the imposition of

restrictions on the prices of risk. Specifically, if we use instead iterated GMM starting from the

2-step estimates, we encounter a cycle with four different solutions.

(Figure E2: Risk premia from IT-GMM)
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Convergence does not improve if we free up the price of risk coefficients: iterated GMM

enters yet another cycle of three different solutions.

(Figure E3: Risk premia from IT-GMM, free coefficients)

These discrepancies highlight the advantages of the single-step GMM estimation procedures

that we use with the uncentred SDF moment conditions (12), but they might also be a sign of

overspecification.

E.2 Evaluation of submodels

In this section, we report the results of analyzing the different empirical asset pricing models

associated to the basis of the space of admissible SDFs as if they were empirical models on their

own.

Specifically, in the case of the original Yogo (2006) data, Table E1 reports the separate

evaluation of each submodel in the second and third blocks of columns of Tables 1 and 2. As

can be seen, we find that the SDFs that correspond to the two versions of the Epstein-Zin

model are uncorrelated with the cross-section of asset returns when d = 2, which is in line with

our simultaneous results in Table 1. In addition, we find that the traditional CAPM is clearly

rejected when d = 3, while each of the consumption factors appears to be useless. In this respect,

the R2′s in the regressions of each factor onto the vector of excess returns are 0.983, 0.099 and

0.177 for the market portfolio, durable and nondurable consumption, respectively.

(Table E1: Submodels of Yogo model 1951-2001)

We repeat the same exercise for the Jagannathan-Wang (1999) mode analyzed in Tables

5 and 6. When d = 2, the results in Panel A of Table E2 indicate that the two submodels

that we use as a basis to characterize the identified set of admissible SDFs are economically

meaningless when we focus on size and book-to-market sorted portfolios. Similarly, we find that

the traditional CAPM is clearly rejected when d = 3, while the additional factors (labor income

and default premium) appear to be useless on their own. In contrast, in Panel B we only find

one uncorrelated two-factor model when we add industry portfolios because the correlation of

their returns with labor income is statistically significant.

(Table E2: Submodels of Jagannathan-Wang model 1959-2012)

We would like to emphasize that most of these submodel results can be inferred directly

from the results in section 5. For example, the conclusions about the Jagannathan-Wang model

with industry portfolios follow from the fact that our methodology pins down a one-dimensional

set of admissible SDFs that is uncorrelated with the cross-section in which only the coefficient

of the default premium is statistically significant (see Panel B of Table 5). Therefore, although
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this model is econometrically identified, the fact that it is not rejected is due to a useless factor:

the default premium.

Looking at each individual submodel separately, though, substantially complicates inferences,

as the number of simultaneous tests increases very quickly, which in turn increases the chances

of falsely rejecting one of the multiple null hypotheses. For that reason, we recommend using

the simultaneous procedures in the main text.

E.3 Fama and French 3-factor model

Next, we apply our proposed methodology to the popular Fama-French 3-factor model,

whose pricing factors are all traded. As is well known, the factors are the market portfolio and

two portfolios that aim to capture the size and value effects; see Fama and French (1993) for

details. When we use the quarterly data in section 5.2, we find that the J statistics associated

to a one-dimensional set are 60.55 and 39.53 for the 25 size- and value-sorted portfolios and the

11 sorted and industry portfolios, respectively, whose p-values are very close to zero. Similarly,

the corresponding J statistics for two-dimensional SDF sets reject their null hypothesis too. In

addition, the rank test of Proposition 1 has a zero p-value in all cases.

We obtain entirely analogous results when we consider the monthly data in section 5.3.

Therefore, the problem with this model is neither overspecification nor underidentification, but

rather lack of admissible SDFs.

F Monte Carlo Evidence

In this appendix, we assess the finite sample size and power properties of the testing proce-

dures we have discussed in the main text by means of several extensive Monte Carlo exercises.

The exact design of our experiments is described below, and corresponds to three-factor empir-

ical models in section 2.2 and our empirical applications. In an earlier version (see Manresa,

Peñaranda and Sentana (2017)), we present analogous results for the two-factor models in ap-

pendix B. Unlike in section 2.2, though, we do not explicitly assume the existence of some

underlying true factors, relying instead in the concept of HJ distance. Nevertheless, given that

the number of mean, variance and correlation parameters for returns and empirical factors is

large, we have simplified the data generating process (DGP) as much as possible without losing

generality, so that in the end we only had to select a handful of parameters whose interpretation

is very simple.
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F.1 Data generating process

Consider the following unrestricted joint data generating process (DGP) for the k+n random

vector (f , r):

f ∼ N (µ,Σ) , (F1a)

r = µr +Br (f − µ) + ur, ur ∼ N (0,Ωrr) , (F1b)

with cov(f ,ur) = 0, so that Br is the n × k matrix of least squares projection coefficients

characterized by the beta vectors

Br = ( β1 . . . βk ).

By premultiplying f and µ by Σ−1/2 and postmultiplying Br by Σ1/2, where Σ1/2 is one of

the square roots of the positive definite matrix Σ, we can alternatively express (F1) so that the

covariance matrix of the k factors is the identity matrix. In addition, given that the only thing

that matters for asset pricing tests is the linear span of r, we can substantially reduce the number

of parameters characterizing the conditional DGP for r in (F1b) without loss of generality by

premultiplying r, µr and Br by Ω
−1/2
rr , where Ω

1/2
rr is one of the square roots of Ωrr, so that

the residual covariance matrix becomes the identity matrix. In this respect, note that positive

definite matrices of dimension higher than 1 have a continuum of square root matrices, which

are all orthogonal transformations of each other, the usual lower triangular Cholesky matrix

being just one such example.

Next, we can exploit the singular value decomposition of the matrix of regression coefficients

of the resulting system, Ω
−1/2
rr BrΣ

1/2 = B∗
r = U∗Λ∗V∗′, where U∗ and V∗ are orthonormal

matrices of dimensions n and k, respectively, and Λ∗ is an n×k matrix in which all the elements

except the k along its main diagonal are 0. Specifically, if we further premultiply the assets by

U∗′ and the factors by V∗′, we end up with a version of (F1b) in which the only non-zero betas

of the n portfolios on the k risk factors will appear in positions (1, 1) . . . , (k, k), so that both the

true factors and their mimicking portfolios will now be orthogonal to each other.

Finally, we can further premultiply the returns on the resulting portfolios by a bordered

Householder matrix (Householder, 1964) that leaves the k mimicking portfolios unchanged but

sets to 0 the risk premia of portfolios k+2, . . . , n, which nevertheless not only continue to have

zero betas but also remain uncorrelated to the mimicking portfolios because Household matrices

are orthonormal. Thus, the risk premia of the first three assets will reflect the risk premia of

the factor mimicking portfolios while the risk premia of the k + 1 asset, which also has zero

betas and is orthogonal to the rest by construction, will fully characterize the mispricing of the

original set of test assets by those factors. As we explain in the next section, this mispricing is

very closely related to the Hansen - Jagannathan (1994) distance.

As a result, we can use without loss of generality the following simplified DGP for excess
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returns

r = µr1e1 + µr2e2 + µr3e3 + µr4e4 + β11e1 (f1 − µ1) + β22e2 (f2 − µ2) + β33e3 (f3 − µ3) + ur,

ur ∼ N (0, In) ,

where the vectors (e1, e2, e3, e4) are the first four columns of the identity matrix, and

f ∼ N (µ, I3) .

F.2 Calibration of first and second moments

We set the values of the three elements of µ to 1. In turn, we calibrate the parameters that

define r as follows. First, we define the (squared) HJ distance for this three-factor model as the

minimum with respect to (a normalized version of) ϕ of the quadratic form

ϕ′M′V ar−1 (r)Mϕ,

where

Mϕ = [ E (r) Cov (r, f) ]

 c

b

 .

Note that Mϕ = Mθ for the appropriate θ and rank(M) = rank(M), where M and θ are

defined in (12). Therefore, the centred SDF representation in this appendix is equivalent to the

uncentred SDF used in the main text.

The 4× 4 weighting matrix

W = M′V ar−1 (r)M

=

 E (r)′ V ar−1 (r)E (r) E (r)′ V ar−1 (r)Cov (r, f)

Cov (r, f)′ V ar−1 (r)E (r) Cov (r, f)′ V ar−1 (r)Cov (r, f)

 =


σ00 σ01 σ02 σ03

σ01 σ11 0 0

σ02 0 σ22 0

σ03 0 0 σ33


can be interpreted as the variance matrix of four noteworthy portfolios. The first one yields the

maximum Sharpe ratio

r0 = r′V ar−1 (r)E (r) ,

while the other three are the centred factor mimicking portfolios

ri = r′V ar−1 (r)Cov (r, fi) , i = 1, 2, 3.

Note that if we minimize the above quadratic form subject to the symmetric normalization

ϕ′ϕ = 1, then the (squared) HJ distance will be equal to the minimum eigenvalue of the

covariance matrix W.
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The first entry σ00 of W is the variance of r0 or, equivalently, the squared maximum Sharpe

ratio. The other three diagonal entries (σ11, σ22, σ33) are the variances of (r1, r2, r3) or, equiva-

lently, the R2 of their respective factor mimicking regressions. Finally, we can pin down the three

covariances (σ01, σ02, σ03) between r0 and (r1, r2, r3) by the factor mimicking portfolios’ Sharpe

ratios because the portfolio with the maximum Sharpe ratio is such that Cov(r0, r) = E(r) for

any r. In this way, we have seven parameters that are easy to interpret and calibrate, from which

we can obtain the seven parameters that our DGP requires for r, namely (µr1, µr2, µr3, µr4) and

(β11, β22, β33).

Below we start from the free design and progressively add more and more constraints. In

addition, we can interpret the constraints that the different models impose as forcing certain

linear combinations of (r0, r1, r2, r3) with coefficients (c, b1, b2, b3) to have zero variance. Thus,

the rank of the weighting matrix W controls the dimension of the admissible set of SDFs. We

define 4 designs (with some variants) indexed by the dimension of the subspace of prices of risk

d:

� Design d = 0: The matrix W has full rank. We need to give values to the seven parameters

with the interpretations mentioned before, and we calibrate their values to the data. The

rest of designs require constraints on the matrix W, which we impose by means of small

changes in that matrix.

� Design d = 1: The matrix W has one rank failure defined by a one-dimensional subspace

of vectors (c, b1, b2, b3). This design will have two variants: one with nonzero c in the linear

combination (c, b1, b2, b3), and a second one with c = 0. In the former variant, we make

the fourth column of W linearly dependent from the other columns by changing a single

parameter

σ03 =

[
σ33

[
σ00 −

σ2
01

σ11
− σ2

02

σ22

]]0.5
.

with respect to the design d = 0. In the latter variant, we make the third factor mimicking

portfolio equal to zero (an uncorrelated factor) by changing two parameters

σ03 = σ33 = 0.

� Design d = 2: The matrix W has two rank failures defined by a two-dimensional subspace

of vectors (c, b1, b2, b3). We start from the parameters used above to impose d = 1 and

c = 0, that is, σ03 = σ33 = 0. Once again, this design will have two variants: one with

nonzero c in the additional linear combination (c, b1, b2, b3), and a second one with c = 0.

In the former variant, we make the third column of W linearly dependent from the first

two columns by changing a single parameter

σ02 =

[
σ22

[
σ00 −

σ2
01

σ11

]]0.5
.
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In the latter variant, we make the second factor mimicking portfolio equal to zero by

changing two parameters

σ02 = σ22 = 0.

Now both the second and third factors are uncorrelated with the cross-section of returns.

� Design d = 3: The matrix W has three rank failures defined by a three-dimensional

subspace of vectors (c, b1, b2, b3). We start from the parameters used above to impose

d = 2 and c = 0. This design will also have two variants: one with nonzero c in the

additional linear combination (c, b1, b2, b3), and a second one with c = 0. In the former

variant, we make the second column of W linearly dependent from the first column by

changing a single parameter

σ01 = [σ11σ00]
0.5 .

In the latter variant, we make the first factor mimicking portfolio equal to zero by changing

two parameters

σ01 = σ11 = 0.

Now the three factors are useless.

Given its lack of empirical relevance, though, in the interest of space we do not report the

results for d = 3, which are available on request. As for the d = 0 design, whose results are also

available on request, we find that our procedures have a lot of power when the admissible set of

SDFs consists of the trivial element m = 0 only, as expected.

In view of the fact that many empirical papers assessing linear factor pricing models rely on

monthly returns, finally we have calibrated the values of the parameters to the dataset we used

in section 5.3, whose exact values are available upon request. Thus, we simulate 5, 000 samples

for each design with n = 25, k = 3 and T = 660.

F.3 Computational details

As we mentioned in appendix C, the main practical difficulty is that we have to rely on

numerical optimization methods to maximize the non-linear CU-GMM criterion function even

though the moment conditions are linear in the parameters. For that reason, we explore the

parameter space by computing the criterion function by means of the auxiliary OLS regressions

described in appendix B of Peñaranda and Sentana (2012) using as starting values five different

random perturbations of the consistent estimators in Propositions C1 and C2, together with

another five different random perturbations of the consistent first-step estimators that use the

identity as weighting matrix.

Given that single-step methods are invariant to different parametrizations of the SDF, we

use the uncentred version in (C1) because it is the most parsimonious in terms of parameters.

Nevertheless, one could exploit the numerical equivalence of the different approaches mentioned
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in section 4.1, as well as the different normalizations, to check that a global minimum has been

reached.

In view of the exactly identified nature of the moment conditions (C2), further speed gains

can be achieved by minimizing the original moment conditions (C1) with respect to δ1, . . . , δd

only. Once this is done, the joint criterion function can be minimized with respect to c1, . . . , cd

only, keeping δ1, . . . , δd fixed at their continuously updated estimates and using the sample

means of the estimated SDF basis as consistent starting values.

F.4 One-dimensional set of admissible SDFs

Table F1 displays the rejection rates of the continuously updated, 2-step and iterated ver-

sions of our proposed tests when the empirical model contains only one (up to scale) admissible

SDF compatible with the original moment conditions (1). Specifically, Panel A contains the re-

jection rates when the SDF has a nonzero mean, while Panel B reports the corresponding figures

when the model is completely overspecified. As we explained in appendix F.2, we achieve com-

plete overspecification by imposing that one of the factors is uncorrelated with the cross-section

of returns, which effectively makes it a useless factor. In each panel, we report the Monte Carlo

rejection rates for nine different tests: the overspecification tests for the moment conditions (13)

for d = 1, d = 2, and d = 3, their augmented variants in (15), and the corresponding DM tests

for zero SDF means.

(Table F1: Rejection rates for a one-dimensional set of admissible SDFs (T = 660))

For the design in Panel A, we would expect the J test for d = 1 to yield rejection rates close

to size, while the J test for d = 2 and d = 3, as well as the J tests that additionally impose

that c = 0 regardless of d and the associated DM tests should show substantial power. And

in fact, our simulation results confirm that this is indeed the case. In addition, we find that

continuously updated tests have more reliable finite sample sizes than either 2-step or iterated

GMM, as expected from footnote 2.

In contrast, for the design in Panel B, we would expect the J test of (15) with d = 1 to yield

rejection rates close to size, while the J test of (13) and (15) should show substantial power for

d = 2 and d = 3. And again, our Monte Carlo results are in line with these predictions. The

only noticeable result is that the DM test of H0 : c = 0 when d = 1 is too liberal, which suggests

that our finding of an overspecified model in Panel B of Table 5 cannot be attributed to these

distortions. Finally, we also find that the continuously updated tests have more reliable finite

sample sizes than either 2-step or iterated GMM. In addition, their pattern of rejections is in

line with the results reported in Manresa, Peñaranda and Sentana (2017) despite now using 25

assets rather than 6 and three factors instead of two.
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F.5 Two-dimensional set of admissible SDFs

Table F2 shares the format of Table F1 to display the rejection rates of the tests discussed in

the previous section when there is a two-dimensional set of admissible SDFs compatible with the

original moment conditions (1). Panel A reports those rates when most SDFs in the admissible

set have nonzero means, while Panel B shows the corresponding figures when the asset pricing

model is completely overspecified. To achieve this, we force two of the factors to be uncorrelated

with the cross-section of returns, as we explained in appendix F.2.

(Table F2: Rejection rates for a two-dimensional set of admissible SDFs (T = 660))

In Panel A, standard GMM asymptotic theory suggests that we would expect the rejection

rates of the J test of the moment conditions (13) to be close to the nominal size for d = 2,

while the same test for d = 3, as well as the J tests that additionally impose that c = 0 and

the associated DM tests should display substantial power for d ≥ 2. And while most of these

predictions are confirmed by our simulations, we also observe that the continuously updated

version of the J test of the moment conditions (13) is too liberal, while the 2-step and iterated

versions too conservative. This suggests that the lack of rejections that we saw in the middle

blocks of columns of Tables 1, 3 and 5 cannot be attributed to these distortions.

We also find that the J test of (1) massively underrejects, as one would expect from the results

in Cragg and Donald (1993) because the parameters of this linear set of moment conditions are

underidentified. In contrast, the J test of (15) with d = 1 shows rejection rates close to nominal

size because there is always a single (up to scale) zero-mean linear combination of the pricing

factors in this partially overspecified model. Not surprisingly, the combination of these two

results implies that the DM test for c = 0 when d = 1 shows a high rejection rate.

In turn, Panel B of Table F2 reports the rejection rates when the empirical model is com-

pletely overspecified. As expected, the continuously updated version of the J test of (13) has

rejection rates close to nominal size when d = 2, while the corresponding test of (15) and the

associated DM tests are too liberal, so once again, the lack of rejections that we saw in the

middle blocks of columns of Tables 1, 3 and 5 are unlikely to be due to these distortions. On

the other hand, our results indicate the excessive conservative nature of the 2-step and iterated

versions of these tests. Nevertheless, we find systematic rejections of the different tests for d = 3.

Finally, it is worth mentioning that the continuously updated versions of the J tests of (1)

and (15) with d = 1 underreject in this design, as they should because the parameters of both

sets of moment conditions become underidentified in this completely overidentified situation.

Once again, our continuously updated results are in line with the ones we reported in Man-

resa, Peñaranda and Sentana (2017), although not surprisingly the size distortions tend to be

larger with many more assets and three factors instead of two.
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F.6 Selection of the dimension of the admissible set of SDFs

Although the underidentification tests put forward by Arellano, Hansen and Sentana (2012)

were not intended as the basis for a consistent estimator of the dimension of the identified SDF

set, we have recycled the Monte Carlo results that we have just discussed to tentatively analyze

the performance of a very simple dimension selection procedure whose rational would be as

follows. In line with our discussion of the empirical tables in section 5, we may select d = 1

if the J tests associated to this dimension fail to reject but the corresponding tests for d = 2

succeed. Similarly, we could choose d = 2 if the J tests associated to this dimension do not

reject but those for d = 3 do so. Finally, in our three-factor specification it would seem natural

to select d = 0 when all those tests reject and d = 3 when none of them does.

We focus on the completely overspecified designs in Panels B of Tables F.1 and F.2, which

seem the most relevant ones in our empirical applications. In this respect, we find that when we

apply the rule described in the previous parargraph to the continuously updated versions of the

overidentified tests of (15) using 1% as the threshold for the p-values, we select d = 0, d = 1,

d = 2 and d = 3 with relative (%) frequencies 1.09, 98.32, 0.59 and 0, respectively, when the

identified set of SDFs is of dimension 1. In turn, the corresponding relative frequencies become

0, 3.3, 96.7 and 0 when the true dimension d is 2. Therefore, our methodology shows some

promise to consistently estimate the degree of underidentification of an empirical asset pricing

model in practice, although further research would be necessary for different combinations of n,

k and T and alternative parameter configurations.
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Table E1: Submodels of Yogo model 1951-2001

Market, Nondur. Market, Durables Market Nondur. Durables

CU-GMM

Mean -0.13 (0.17) 0.02 (0.79) 0.67 (0.00) 0.02 (0.86) -0.02 (0.75)

Criterion 25.19 (0.34) 21.30 (0.56) 78. 72 (0.00) 35.26 (0.07) 22.47 (0.55)

Criterion0 27.11 (0.30) 21.37 (0.62) 104.24 (0.00) 35.29 (0.08) 22.56 (0.60)

2S-GMM

Mean 0.05 (0.51) 0.06 (0.20) 0.87 (0.00) 0.13 (0.05) 0.04 (0.40)

Criterion 29.99 (0.15) 19.01 (0.70) 84.19 (0.00) 33.00 (0.10) 21.45 (0.61)

Criterion0 30.43 (0.17) 20.68 (0.66) 899.25 (0.00) 36.87 (0.06) 22.15 (0.63)

IT-GMM

Mean 0.06 (0.41) 0.07 (0.16) 0.65 (0.00) 0.13 (0.04) 0.04 (0.36)

Criterion 30.47 (0.14) 20.18 (0.63) 43.87 (0.01) 34.97 (0.07) 22.64 (0.54)

Criterion0 31.16 (0.15) 22.19 (0.57) 131.27 (0.00) 39.33 (0.03) 23.49 (0.55)

Notes: This table displays the J and J0 tests (with free and constrained SDF mean) with p-values

in parenthesis () for each individual submodel in Tables 1 and 2. We display the results for the same

normalization as in those tables, which CU-GMM is numerically invariant to. 2S-GMM and IT-GMM

refer to 2-step and iterated procedures. The J tests are complemented with significance tests of a zero

SDF mean. In particular, the p-value of the distance metric test of the null hypothesis of zero parameter

is reported in parenthesis to the right of the estimate. The payoffs of the test assets correspond to 25

nominal excess returns of size and book-to-market sorted portfolios on a quarterly basis.

25



Table E2: Submodels of Jagannathan-Wang model 1959-2012

Market, Labor Market, Premium Market Labor Premium

Panel A. 25 size and book-to-market sorted portfolios

CU-GMM
Mean -0.22 (0.09) 0.02 (0.71) 0.98 (0.00) -0.31 (0.01) 0.03 (0.58)
Criterion 23.26 (0.45) 28.36 (0.20) 104.57 (0.00) 24.01 (0.46) 30.70 (0.16)
Criterion0 26.10 (0.35) 28.50 (0.24) 126.38 (0.00) 31.39 (0.18) 31.00 (0.19)
2S-GMM
Mean 0.07 (0.40) 0.05 (0.16) 0.99 (0.00) 0.03 (0.74) 0.07 (0.06)
Criterion 27.65 (0.23) 28.70 (0.19) 104.43 (0.00) 36.00 (0.06) 30.81 (0.160)
Criterion0 28.35 (0.25) 30.70 (0.16) 13688.97 (0.00) 36.10 (0.07) 34.30 (0.10)
IT-GMM
Mean 0.07 (0.42) 0.06 (0.17) 0.90 (0.00) 0.02 (0.77) 0.07 (0.08)
Criterion 26.34 (0.29) 26.95 (0.26) 40.78 (0.02) 33.26 (0.10) 28.37 (0.25)
Criterion0 27.00 (0.31) 28.81 (0.23) 371.31 (0.00) 33.34 (0.12) 31.51 (0.17)

Panel B. 6 size and book-to-market sorted portfolios, and 5 industry portfolios

CU-GMM
Mean -0.10 (0.40) 0.04 (0.46) 0.98 (0.00) -0.30 (0.03) 0.06 (0.34)
Criterion 23.18 (0.01) 15.95 (0.07) 77.14 (0.00) 27.27 (0.00) 17.82 (0.06)
Criterion0 23.90 (0.01) 16.50 (0.09) 152.61 (0.00) 32.28 (0.00) 18.73 (0.07)
2S-GMM
Mean 0.08 (0.33) 0.07 (0.13) 0.99 (0.00) 0.08 (0.34) 0.08 (0.05)
Criterion 24.22 (0.00) 15.38 (0.08) 77.58 (0.00) 33.17 (0.00) 16.82 (0.08)
Criterion0 25.17 (0.01) 17.65 (0.06) 13288.56 (0.00) 34.09 (0.00) 20.80 (0.04)
IT-GMM
Mean 0.08 (0.34) 0.07 (0.15) 0.93 (0.00) 0.08 (0.34) 0.08 (0.06)
Criterion 23.69 (0.01) 14.60 (0.10) 21.53 (0.02) 33.28 (0.00) 15.62 (0.11)
Criterion0 24.60 (0.01) 16.68 (0.08) 262.01 (0.00) 34.21 (0.00) 19.04 (0.06)

Note: This table displays the J and J0 tests (with free and constrained SDF mean) with p-values
in parenthesis () for each individual submodel in Tables 5 and 6. We display the results for the same
normalization as in those tables, which CU-GMM is numerically invariant to. 2S-GMM and IT-GMM
refer to 2-step and iterated procedures. The J tests are complemented with significance tests of a zero
SDF mean. In particular, the p-value of the distance metric test of the null hypothesis of zero parameter
is reported in parenthesis to the right of the estimate. The payoffs of the test assets correspond to 25 real
excess returns of size and book-to-market sorted portfolios at the quarterly frequency (Panel A), and 6
size- and value-sorted portfolios plus 5 industry portfolios (Panel B).
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Table F1: Rejection rates (%) for a one-dimensional set of admissible SDFs (T = 660)

CU 2S IT
Nominal size

1 5 10 1 5 10 1 5 10

Panel A. Correct specification

J d=1 0.88 5.21 10.13 0.38 2.96 6.82 0.52 2.72 6.58
J d=1, c=0 99.58 99.98 99.98 100 100 100 99.98 100 100
DM c=0 99.92 99.98 99.98 100 100 100 100 100 100

J d=2 98.73 98.85 99.96 6.44 19.02 29.56 7.78 21.58 32.20
J d=2, c=0 100 100 100 100 100 100 100 100 100
DM c=0 100 100 100 100 100 100 100 100 100

J d=3 100 100 100 89.58 95.36 97.30 85.18 93.52 95.86
J d=3, c=0 100 100 100 100 100 100 100 100 100
DM c=0 100 100 100 100 100 100 100 100 100

Panel B. Complete overspecification

J d=1 0.26 2.56 6.40 0.34 1.60 3.68 0.32 1.74 3.68
J d=1, c=0 1.09 5.60 10.66 11.20 26.28 36.60 11.38 26.02 36.72
DM c=0 9.24 21.48 30.35 71.92 88.66 93.52 71.80 88.48 93.58

J d=2 43.55 68.58 78.94 5.88 17.60 27.34 5.78 17.26 27.00
J d=2, c=0 99.41 98.98 100 99.96 100 100 99.96 100 100
DM c=0 97.13 98.35 98.93 100 100 100 100 100 100

J d=3 99.97 100 100 89.64 95.50 97.32 85.82 93.72 96.16
J d=3, c=0 100 100 100 100 100 100 100 100 100
DM c=0 100 100 100 100 100 100 100 100 100

Note: This table displays the rejection rates of J tests, their variants restricted to zero SDF means,

and the corresponding DM tests, as described in Section 3. The tests are computed for CU, two-step and

iterated GMM. The rates are shown in percentage for the asymptotic critical values at 1, 5, and 10%.

5,000 samples of 25 excess returns and 3 factors are simulated under two variants of a two-dimensional

set of admissible SDFs. Panel A reports the results for the first variant, when most of these SDFs have

nonzero means, and Panel B reports the results for the second variant, when the asset pricing model is

completely overspecified.
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Table F2: Rejection rates (%) for a two-dimensional set of admissible SDFs (T = 660)

CU 2S IT
Nominal size

1 5 10 1 5 10 1 5 10

Panel A. Partial overspecification

J d=1 0.00 0.19 0.78 0.00 0.02 0.12 0.00 0.02 0.14
J d=1, c=0 1.21 5.81 11.73 12.56 26.90 37.62 12.54 26.52 37.48
DM c=0 36.69 53.43 62.08 93.70 98.66 99.52 93.58 98.68 99.48

J d=2 2.74 10.27 17.79 0.02 0.34 1.04 0.02 0.36 1.16
J d=2, c=0 99.27 99.92 99.98 99.88 100 100 99.90 100 100
DM c=0 99.98 99.98 100 100 100 100 100 100 100

J d=3 99.97 99.97 100 73.42 87.14 91.18 63.42 80.06 86.64
J d=3, c=0 100 100 100 100 100 100 100 100 100
DM c=0 100 100 100 100 100 100 100 100 100

Panel B. Complete overspecification

J d=1 0.00 0.04 0.40 0.04 0.66 2.14 0.08 0.66 2.34
J d=1, c=0 0.00 0.12 0.84 1.74 7.16 13.40 1.64 7.28 13.26
DM c=0 4.06 13.63 22.05 35.72 60.62 72.54 35.32 60.22 72.36

J d=2 1.14 5.31 11.90 0.00 0.10 00.40 0.00 0.10 0.46
J d=2, c=0 3.29 11.01 19.80 7.90 21.60 31.98 8.14 21.54 32.20
DM c=0 15.37 30.58 41.26 91.34 97.80 98.98 91.42 97.74 98.98

J d=3 61.51 81.14 88.30 74.64 87.74 92.30 66.14 82.14 88.54
J d=3, c=0 100 100 100 100 100 100 100 100 100
DM c=0 100 100 100 100 100 100 100 100 100

Note: This table displays the rejection rates of J tests, their variants restricted to zero SDF means,

and the corresponding DM tests, as described in Section 3. The tests are computed for CU, two-step and

iterated GMM. The rates are shown in percentage for the asymptotic critical values at 1, 5, and 10%.

5,000 samples of 25 excess returns and 3 factors are simulated under two variants of a two-dimensional

set of admissible SDFs. Panel A reports the results for the first variant, when most of these SDFs have

nonzero means, and Panel B reports the results for the second variant, when the asset pricing model is

completely overspecified.
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Figure B1: One asset

Figure B2: Two assets
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Figure B3: Three segmented asset markets

Figure B4: Three integrated asset markets
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Figure B5: An unpriced second factor

Figure B6: Two single factor models
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Figure B7: Admissible and attractive model with a useless factor

Figure B8: Admissible but unattractive model with a useless factor
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Figure B9: Two useless factors

Figure C1: Normalizations
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Figure E1: Risk premia from 2S-GMM
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Figure E2: Risk premia from IT-GMM

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4
IT−GMM 1

model (%)

d
a
ta

 (
%

)

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4
IT−GMM 2

model (%)

d
a
ta

 (
%

)

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4
IT−GMM 3

model (%)

d
a
ta

 (
%

)

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4
IT−GMM 4

model (%)
d

a
ta

 (
%

)

Figure E3: Risk premia from IT-GMM, free coefficients
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