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Abstract

We provide numerically reliable analytical expressions for the
score, Hessian, and information matrix of conditionally het-
eroskedastic dynamic regression models when the conditional
distribution is multivariate t. We also derive one-sided and two-
sided Lagrange Multiplier tests for multivariate normality ver-
sus multivariate t based on the Þrst two moments of the squared
norm of the standardised innovations evaluated at the Gaussian
pseudo-maximum likelihood estimators of the conditional mean
and variance parameters. Finally, we illustrate our techniques
through both Monte Carlo simulations, and an empirical appli-
cation to 26 U.K. sectorial stock returns, which conÞrms that
their conditional distribution has fat tails.

KEYWORDS: Financial Returns, Inequality Constraints,
Kurtosis, Normality Test, Value at Risk, Volatility.
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1 INTRODUCTION
Many empirical studies with Þnancial time series data in-

dicate that the distribution of asset returns is usually rather
leptokurtic, even after controlling for volatility clustering effects
(see e.g. Bollerslev, Chou and Kroner 1992 for a survey). This
has been long realised, and two main alternative inference ap-
proaches have been proposed. The Þrst one uses a �robust� es-
timation method, such as the Gaussian pseudo-maximum likeli-
hood procedure advocated by Bollerslev and Wooldridge (1992),
which remains consistent for the parameters of the conditional
mean and variance functions even if the assumption of condi-
tional normality is violated. The second one, in contrast, speci-
Þes a parametric leptokurtic distribution for the standardised
innovations, such as the Student t distribution employed by
Bollerslev (1987). While the second procedure will often yield
more efficient estimators than the Þrst if the assumed condi-
tional distribution is correct, it has the disadvantage that it
may end up sacriÞcing consistency when it is not (Newey and
Steigerwald 1997). Nevertheless, a non-Gaussian distribution
may be indispensable when we are interested in features of the
distribution of asset returns, such as its quantiles, which go be-
yond its conditional mean and variance. For instance, empirical
researchers and Þnancial market practitioners are often inter-
ested in the so-called Value at Risk of an asset, which is the
positive threshold value V such that the probability of the as-
set suffering a reduction in wealth larger than V equals some
pre-speciÞed level κ < 1/2. Similarly, in the context of mul-
tiple Þnancial assets, one may be interested in the probability
of the joint occurrence of several extreme events, which is reg-
ularly underestimated by the multivariate normal distribution,
especially in larger dimensions.
Notwithstanding such considerations, a signiÞcant advan-

tage of the pseudo-maximum likelihood approach in Bollerslev
and Wooldridge (1992) is that they derived convenient closed-
form expressions for the Gaussian log-likelihood score and the
conditional information matrix, which can be used to obtain nu-
merically accurate extrema of the objective function, as well as
reliable standard errors. In contrast, estimation under an alter-
native distribution typically relies on numerical approximations
to the derivatives, which are often poor. One of the objectives of
our paper is to partly close the gap between the two approaches
by providing numerically reliable analytical expressions for the
score vector, the Hessian matrix and its expected value for the
multivariate conditionally heteroskedastic dynamic regression
model considered by Bollerslev and Wooldridge (1992) when the
distribution of the innovations is assumed to be proportional to a
multivariate t. As is well known, the multivariate t distribution
nests the normal as a limiting case, but the marginal distribu-
tions of its components have generally fatter tails, and it also
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allows for cross-sectional �tail dependence�. In this respect, our
results generalise the expressions in appendix B of Lange, Little
and Taylor (1989), who only analysed an independent and iden-
tically distributed set up in which there is separation between
unconditional mean and variance parameters.
We also use our analytical expressions to develop a test for

multivariate normality when a dynamic model for the condi-
tional mean and variance is fully speciÞed, but the model is
estimated under the Gaussianity null. We compare our pro-
posed test with the kurtosis component of Mardia�s (1970) test
for multivariate normality, which reduces to the well-known Jar-
que and Bera (1980) test in univariate contexts. Importantly,
we take into account the one-sided nature of the alternative hy-
pothesis to derive the more powerful Kuhn-Tucker multiplier
test, which is asymptotically equivalent to the Likelihood Ratio
and Wald tests.
The rest of the paper is organised as follows. First, we ob-

tain closed-form expressions for the log-likelihood score vector,
the Hessian matrix and its conditional expected value in Sec-
tion 2. Then, in Section 3, we introduce our proposed test for
multivariate normality, and relate it to the existing literature.
A Monte Carlo evaluation of different parameter and standard
error estimation procedures can be found in Section 4. Finally,
we include an illustrative empirical application to 26 U.K. sec-
torial stock returns in Section 5, followed by our conclusions.
Proofs and auxiliary results are gathered in appendices.

2 MAXIMUM LIKELIHOOD ESTI-
MATION

2.1 The model

In a multivariate dynamic regression model with time-varying
variances and covariances, the vector of N dependent variables,
yt, is typically assumed to be generated by the following equa-
tions:

yt = µt(θ0) +Σ
1/2
t (θ0)ε

∗
t ,

µt(θ) = µ(zt, It−1;θ),
Σt(θ) = Σ(zt, It−1;θ),

where µ() and vech [Σ()] are N and N(N + 1)/2-dimensional
vectors of functions known up to the p×1 vector of true parame-
ter values θ0, zt are k contemporaneous conditioning variables,
It−1 denotes the information set available at t − 1, which con-
tains past values of yt and zt, Σ

1/2
t (θ) is an N×N �square root�

matrix such that Σ1/2t (θ)Σ
1/20
t (θ) = Σt(θ), and ε∗t is a vector

martingale difference sequence satisfying E(ε∗t |zt, It−1;θ0) = 0
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and V (ε∗t |zt, It−1;θ0) = IN . As a consequence,

E(yt|zt, It−1;θ0) = µt(θ0),

V (yt|zt, It−1;θ0) = Σt(θ0).

As in Bollerslev (1987) in a univariate context, and Harvey,
Ruiz and Sentana (1992) in a multivariate one, followed by many
others, our approach is based on the t distribution. In particu-
lar, we assume hereinafter that conditional on zt and It−1, ε∗t is
independent and identically distributed as a standardised mul-
tivariate t with ν0 degrees of freedom, or i.i.d. t(0, IN , ν0) for
short. That is,

ε∗t =

s
(ν0 − 2) ζt

ξt
ut,

where ut is uniformly distributed on the unit sphere surface
in RN , ζt is a chi-square random variable with N degrees of
freedom, ξt is a Gamma variate with mean ν0 > 2 and variance
2ν0, and ut, ζt and ξt are mutually independent (see Appendix
A). As is well known, the multivariate Student t approaches the
multivariate normal as ν0 → ∞, but has generally fatter tails.
For that reason, it is often more convenient to use the reciprocal
of the degrees of freedom parameter, η0 = 1/ν0, as a measure
of tail thickness, which will always remain in the Þnite range
0 ≤ η0 < 1/2 under our assumptions.

2.2 The log-likelihood function

Let φ = (θ0,η)0 denote the p+1 parameters of interest, which
we assume variation free for simplicity (cf. expression (53) in
Harvey et al. 1992). The log-likelihood function of a sample
of size T (ignoring initial conditions) takes the form LT (φ) =PT
t=1 lt(φ), with lt(φ) = c(η) + dt(θ) + g [ςt(θ), η]:

c(η) = ln

·
Γ

µ
Nη + 1

2η

¶¸
− ln

·
Γ

µ
1

2η

¶¸
− N
2
ln

µ
1− 2η
η

¶
− N
2
lnπ,

dt(θ) = −1
2
ln |Σt(θ)| ,

and

g [ςt(θ), η] = −
µ
Nη + 1

2η

¶
ln

·
1 +

η

1− 2η ςt(θ)
¸
,

where Γ() is Euler�s gamma (or generalised factorial) function,
ςt(θ)=ε∗0t (θ)ε

∗
t (θ), ε

∗
t (θ)=Σ

−1/2
t (θ)εt(θ), and εt(θ)=yt−µt(θ).

Nevertheless, it is important to stress that since both µt(θ) and
Σt(θ) are often recursively deÞned (as in ARMA or GARCH
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models), it may be necessary to choose some initial values to
start up the recursions. As pointed out by Fiorentini, Calzolari
and Panattoni (1996), this fact should be taken into account in
computing the analytic score, in order to make the results ex-
actly comparable with those obtained by using numerical deriv-
atives. Not surprisingly, it can be readily veriÞed that LT (θ, 0)
collapses to a conditionally Gaussian log-likelihood.
Given the nonlinear nature of the model, a numerical opti-

misation procedure is usually required to obtain maximum like-
lihood (ML) estimates of φ, �φT say. Assuming that all the
elements of µt(θ) and Σt(θ) are twice continuously differen-
tiable functions of θ, we can use a standard gradient method in
which the Þrst derivatives are numerically approximated by re-
evaluating LT (φ) with each parameter in turn shifted by a small
amount, with an analogous procedure for the second derivatives.
Unfortunately, such numerical derivatives are sometimes unsta-
ble, and moreover, their values may be rather sensitive to the
size of the Þnite increments used. This is particularly true in our
case, because even if the sample size T is large, the Student t-
based log-likelihood function is often rather ßat for small values
of η. As we shall show in the next subsections, though, in this
case it is also possible to obtain simple analytical expressions for
the score vector and Hessian matrix. The use of analytical deriv-
atives in the estimation routine, as opposed to their numerical
counterparts, should considerably improve the accuracy of the
resulting estimates (McCullough and Vinod 1999). Moreover,
a fast and numerically reliable procedure for the computation
of the score for any value of η is of paramount importance in
the implementation of the score-based indirect inference proce-
dures introduced by Gallant and Tauchen (1996) (see Calzolari,
Fiorentini and Sentana 2003 for an application to a discrete-
time, stochastic volatility model).
The analytic derivatives that we shall obtain could also be

used even if the coefficients of the model were reparametrised as
φ = f(ϕ), with ϕ unconstrained, in order to maximise the un-
restricted log-likelihood function LT (ϕ) = LT [f(ϕ)]. In partic-
ular, by virtue of the chain rule for Jacobian matrices (Magnus
and Neudecker 1988, thm. 5.8), we would have that

D [LT (ϕ)] = D [LT (φ)] ·D [f(ϕ)] ,

where the symbol D[.] denotes the corresponding Jacobian ma-
trix. Similarly, we can use the chain rule for Hessian matrices
(Magnus and Neudecker 1988, thm. 6.9) to write:

H [LT (ϕ)] = D [f(ϕ)]
0H [LT (φ)]D [f(ϕ)]

+ (D [LT (φ)]⊗ Ip+1)H [f(ϕ)] ,

where the symbol H[.] denotes the corresponding Hessian ma-
trix.
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2.3 The score vector

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition
it into two blocks, sθt(φ) and sηt(φ), whose dimensions conform
to those of θ and η respectively. Given that

∂dt(θ)

∂θ0
= −1

2
vec0

£
Σ−1t (θ)

¤ ∂vec [Σt(θ)]
∂θ0

and

∂g [ςt(θ), η]

∂θ0
=

∂g [ςt(θ), η]

∂ς

∂ςt(θ)

∂θ0
=

− Nη + 1

2 [1− 2η + ηςt(θ)]
∂ςt(θ)

∂θ0
,

where

∂ςt(θ)

∂θ0
= −2ε0t(θ)Σ−1t (θ)

∂µt(θ)

∂θ0

−vec0 £Σ−1t (θ)εt(θ)ε0t(θ)Σ−1t (θ)¤ ∂vec [Σt(θ)]∂θ0
,

we can immediately show that:

sθt(φ) =
∂dt(θ)

∂θ
+
∂g [ςt(θ), η]

∂θ
=

∂µ0t(θ)
∂θ

Σ−1t (θ)
Nη + 1

1− 2η + ηςt(θ)εt(θ)

+
1

2

∂vec0 [Σt(θ)]
∂θ

h
Σ−1t (θ)⊗Σ−1t (θ)

i
× vec

·
Nη + 1

1− 2η + ηςt(θ)εt(θ)ε
0
t(θ)−Σt(θ)

¸
, (1)

where the Jacobian matrices ∂µt(θ)/∂θ
0 and ∂vec [Σt(θ)] /∂θ0

depend on the particular speciÞcation adopted.
Similarly, it is straightforward to see that

sηt(φ) =
∂c(η)

∂η
+
∂g [ςt(θ), η]

∂η
,

which for η > 0 are given by:

∂c(η)

∂η
=

N

2η (1− 2η) −
1

2η2

·
ψ

µ
Nη + 1

2η

¶
− ψ

µ
1

2η

¶¸
(2)

and

∂g [ςt(θ), η]

∂η
= − Nη + 1

2η (1− 2η)
ςt(θ)

1− 2η + ηςt(θ)
+
1

2η2
ln

·
1 +

η

1− 2η ςt(θ)
¸
, (3)
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where ψ(x) = ∂ lnΓ(x)/∂x is the so-called di-gamma function
(or Gauss� psi function; Abramowitz and Stegun 1964), which
can be computed using standard routines.
If we then take limits as η → 0 from above, we can once

more show that sθt(θ,0) does indeed reduce to the multivariate
normal expression in Bollerslev and Wooldridge (1992). Un-
fortunately, both ∂g [ςt(θ), η] /∂η and especially ∂c(η)/∂η are
numerically unstable for η small. When N = 1, for instance,
Figure 1 shows that the numerical accuracy in the computation
of (2) is poor for small η, and eventually breaks down. In those
cases, we recommend the evaluation of (2) and (3), which in the
limit should be understood as right derivatives, by means of the
(directional) Taylor expansions around η = 0 in Appendix B.
In practice, the log-likelihood score is often used not only as

the input to a steepest ascent, BHHH or quasi-Newton numer-
ical optimisation routine, but also to estimate the asymptotic
covariance matrix of the ML parameter estimators. Neverthe-
less, both these uses could be problematic. First, the results in
Fiorentini et al. (1996) and many others suggest that alterna-
tive gradient methods, such as scoring or Newton-Raphson, usu-
ally show much better convergence properties, particularly when
the parameter values reach the neighbourhood of the optimum.
Similarly, it is well known that the outer-product-of-the-score
standard errors and test statistics can be very badly behaved
in Þnite samples, especially in dynamic models (Davidson and
MacKinnon 1993). For both these reasons, we follow Bollerslev
and Wooldridge (1992), and derive in the next two sections an-
alytic expressions for the Hessian matrix and its expected value
conditional on zt, It−1.

2.4 The Hessian matrix

Let ht(φ) denote the Hessian function ∂2lt(φ)/∂φ∂φ
0, and

partition it into four blocks, hθθt(φ), hθηt(φ)(= h
0
ηθt(φ)) and

hηηt(φ), whose row and column dimensions conform to those of
θ and η.
Let us start with the Þrst block, which will be given by

hθθt(φ) =
∂2dt(θ)

∂θ∂θ0
+
∂2g [ςt(θ), η]

∂θ∂θ0
.

It is then straightforward to see that

∂2dt(θ)

∂θ∂θ0
=
1

2

∂vec0 [Σt(θ)]
∂θ

£
Σ−1t (θ)⊗Σ−1t (θ)

¤ ∂vec [Σt(θ)]
∂θ0

− 1
2

©
vec0

£
Σ−1t (θ)

¤⊗ Ipª ∂vec
∂θ0

½
∂vec0 [Σt(θ)]

∂θ

¾
.

In addition, if we use again the chain rule for Hessian matrices,
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we obtain:

∂2g [ςt(θ), η]

∂θ∂θ0
=
∂2g [ςt(θ), η]

∂ς2
∂ςt(θ)

∂θ

∂ςt(θ)

∂θ0

+
∂g [ςt(θ), η]

∂ς

∂2ςt(θ)

∂θ∂θ0
,

where
∂2g [ςt(θ), η]

∂ς2
=

(Nη + 1) η

2 [1− 2η + ηςt(θ)]2
.

We can then show that

∂2ςt(θ)

∂θ∂θ0
= 2

∂µ0t(θ)
∂θ

Σ−1t (θ)
∂µt(θ)

∂θ0
+ 2

∂vec0 [Σt(θ)]
∂θ

× £Σ−1t (θ)⊗Σ−1t (θ)εt(θ)ε0t(θ)Σ−1t (θ)¤ ∂vec [Σt(θ)]∂θ0

+2
∂µ0t(θ)
∂θ

h
ε0t(θ)Σ

−1
t (θ)⊗Σ−1t (θ)

i ∂vec [Σt(θ)]
∂θ0

+2
∂vec0 [Σt(θ)]

∂θ

£
Σ−1t (θ)εt(θ)⊗Σ−1t (θ)

¤ ∂µt(θ)
∂θ0

−2
h
ε0t(θ)Σ

−1
t (θ)⊗ Ip

i ∂vec
∂θ0

½
∂µ0t(θ)
∂θ

¾
−©vec0 £Σ−1t (θ)εt(θ)ε0t(θ)Σ−1t (θ)¤⊗ Ipª ∂vec∂θ0

½
∂vec0 [Σt(θ)]

∂θ

¾
.

On the other hand,

hθηt(φ) =
∂2g(φ)

∂θ∂η
=
∂µ0t(θ)
∂θ

Σ−1t (θ)εt(θ)
N + 2− ςt(φ)

[1− 2η + ηςt(φ)]2

+
1

2

∂vec0 [Σt(θ)]
∂θ

h
Σ−1t (θ)⊗Σ−1t (θ)

i
× vec

(
N + 2− ςt(φ)

[1− 2η + ηςt(φ)]2
εt(θ)ε

0
t(θ)

)
.

Similarly, for η > 0

∂2c(η)

∂η2
=
N

2

4η − 1
η2 (1− 2η)2

− 1

η3

·
ψ

µ
1

2η

¶
− ψ

µ
Nη + 1

2η

¶¸
+
1

4η4

·
ψ0
µ
Nη + 1

2η

¶
− ψ0

µ
1

2η

¶¸
, (4)

where ψ0 (x) = ∂2 lnΓ(x)/∂x2 is the so-called tri-gamma func-
tion (Abramowitz and Stegun 1964). Finally, we have that when
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η > 0

∂2g [ςt(θ), η]

∂η2
= − 1

η3
ln

·
1 +

η

1− 2η ςt(θ)
¸

+
1

η2
ςt(θ)

[1− 2η + ηςt(θ)] (1− 2η)

−Nη + 1
2η

(
4(1− 2η)ςt(θ) + (4η − 1) ς2t (θ)
(1− 2η)2 [1− 2η + ηςt(θ)]2

)
. (5)

Again, both (4) and (5) can be numerically unstable when η
is small. Hence, we also recommend to evaluate them in those
cases by means of the (directional) Taylor expansions in Appen-
dix B.

2.5 The conditional information matrix

Given correct speciÞcation, the results in Crowder (1976)
imply that the score vector st(φ) evaluated at the true para-
meter values has the martingale difference property. His results
also imply that, under suitable regularity conditions, the as-
ymptotic distribution of the ML estimator will be given by the
following expression

√
T (�φT − φ0)→ N

£
0, I−1(φ0)

¤
, (6)

where

I(φ0) = p lim
T→∞

1

T

TX
t=1

It(φ0),

and

It(φ0) = V [st(φ0)|zt, It−1;φ0] = −E [ht(φ0)|zt, It−1;φ0] .

In this respect, we show in Appendix A the following result:

Proposition 1

It(φ) =
µ Iθθt(φ) Iθηt(φ)
I 0θηt(φ) Iηηt(φ)

¶

Iθθt(φ) = ν (N + ν)

(ν − 2) (N + ν + 2)

∂µ0t(θ)
∂θ

Σ−1t (θ)
∂µt(θ)

∂θ0

+
(N + ν)

2(N + ν + 2)

∂vec0 [Σt(θ)]
∂θ

£
Σ−1t (θ)⊗Σ−1t (θ)

¤ ∂vec [Σt(θ)]
∂θ0

− 1

2(N + ν + 2)

∂vec0 [Σt(θ)]
∂θ

vec
£
Σ−1t (θ)

¤
×vec0 £Σ−1t (θ)¤ ∂vec [Σt(θ)]∂θ0

,
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Iθηt(φ) = − (N + 2) ν2

(ν − 2) (N + ν) (N + ν + 2)

×∂vec
0 [Σt(θ)]
∂θ

vec
©
Σ−1t (θ)

ª
,

Iηηt(φ) =
ν4

4

·
ψ0
³ν
2

´
− ψ0

µ
N + ν

2

¶¸
− Nν4

£
ν2 +N(ν − 4)− 8¤

2 (ν − 2)2 (N + ν) (N + ν + 2)
.

It is important to note that unlike the Hessian, the above ex-
pressions only require Þrst derivatives of the conditional mean
and variance functions (see Fiorentini et al. 1996 for the re-
quired derivatives in univariate linear regression models with
GARCH(p,q) innovations, and Sentana in press for analogous
expressions in multivariate conditionally heteroskedastic in mean
factor models). It also shares with the outer-product-of-the-
score formula the convenient property of being positive semi-
deÞnite, usually with full rank.

3 AN LM TEST FOR MULTIVARI-
ATE NORMALITY

3.1 Implementation Details

We can easily compute an LM (or efficient score) test for
multivariate normality versus multivariate t distributed innova-
tions on the basis of the value of the score of the log-likelihood
function evaluated at the restricted parameter estimates �φT =
(�θ
0
T , 0)

0. To do so, it is necessary to Þnd the value of sηt(θ, 0).
In this sense, we can use the results in Appendix B to prove
that

sηt(θ, 0) =
N(N + 2)

4
− N + 2

2
ςt(θ) +

1

4
ς2t (θ),

where sηt(θ, 0) should be understood as a directional derivative.
In addition, it turns out that the information matrix is block-
diagonal between θ and η when η0 = 0, which means that as
far as θ is concerned, there is no asymptotic efficiency loss in
estimating η in that case. More formally:

Proposition 2 If η0 = 0, then

V [sφ(θ0, 0)|θ0, 0] =
·
V [sθt(θ0, 0)|θ0, 0] 0

00 N(N + 2)/2

¸
,

where

V [sθt(θ0, 0)|θ0, 0] = −E [hθθt(θ0, 0)|θ0, 0] .
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Therefore, we can compute the information matrix version
of the LM test, LMI

2T (
�θT ) say, as the square of:

τ IT (�θT ) =
T−1/2

P
t sηt(

�θT , 0)p
N(N + 2)/2

, (7)

which, importantly, only depends on the Þrst two sample mo-
ments of ςt(�θT ). Note also that the block-diagonality of the
information matrix implies that a joint LM test of multivariate
normality and any other restrictions on the conditional mean
and variance parameters θ, can be decomposed in two additive
components, the Þrst of which would be precisely our proposed
test (Bera and McKenzie 1987). If H0 : η = 0 is true, then
LMI

2t(�θT ) will have an asymptotic chi-square distribution with
one degree of freedom. The limiting distribution can be ob-
tained directly from (7) by combining the block-diagonality of
the information matrix under the null with the following result:

Proposition 3 If ε∗t |zt, It−1 ∼ i.i.d. t(0, IN , ν0) with ν0 > 8,
then

√
T

T

X
t

"
sηt(θ0, 0)−E [sηt(θ0, 0)|θ0, ν0]

V 1/2
£
s2ηt(θ0, 0)|θ0, ν0

¤ #
d→ N (0, 1) ,

where

E [sηt(θ0, 0)|θ0, ν0] = N(N + 2)

4

µ
ν0 − 2
ν0 − 4 − 1

¶
E
£
s2ηt(θ0, 0)|θ0, ν0

¤
= −3N

2(N + 2)2

16

+
N(N + 2)2(3N + 4)

8

ν0 − 2
ν0 − 4

−N(N + 2)2(N + 4)

4

(ν0 − 2)2
(ν0 − 4)(ν0 − 6)

+
N(N + 2)(N + 4)(N + 6)

16

(ν0 − 2)3
(ν0 − 4)(ν0 − 6)(ν0 − 8) .

Two asymptotically equivalent test, both under the null and
under local alternatives, are given by (i) the usual outer product
version of the LM test, LMO

2T (
�θT ), which can be computed as

T times the uncentred R2 from the regression of 1 on sηt(�θT , 0),
and (ii) its Hessian version:

LMH
2T (�θT ) =

n
T−1/2

P
t sηt(

�θT , 0)
o2

−T−1Pt hηηt(
�θT , 0)

, (8)

with

hηηt(θ, 0) = −N(N + 2)(N − 5)
6

− (4 + 2N)ςt(θ)

+
N + 4

2
ς2t (θ)−

1

3
ς3t (θ).
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Given that the numerators of those three LM tests coin-
cide, while the denominators of LMH

2T (
�θT ) and LMO

2T (
�θT ) con-

verge in probability to the denominator of LMI
2T (
�θT ), which

contains no stochastic terms, we would expect a priori that
LMI

2T (
�θT ) would be the version of the test with the small-

est size distortions, followed by LMH
2T (
�θT ), whose denomina-

tor involves the Þrst three sample moments of ςt(θ), and Þnally
LMO

2T (
�θT ), whose calculation also requires its fourth sample

moment (Davidson and MacKinnon 1983).
It is important to mention that the fact that η = 0 lies

at the boundary of the admissible parameter space invalidates
the usual χ21 distribution of the likelihood ratio (LR) and Wald
(W) tests, which under the null will be more concentrated to-
wards the origin (see Andrews 2001 and the references therein,
as well as the simulation evidence in Bollerslev 1987). The in-
tuition can be perhaps more easily obtained in terms of the W
test. Given that �ηT cannot be negative,

√
T �ηT will have a half-

normal asymptotic distribution under the null (Andrews 1999).
As a result, the W test will be an equally weighted mixture of a
chi-square distribution with 0 degrees of freedom (by convention,
χ20 is a degenerate random variable that equals zero with proba-
bility 1), and a chi-square distribution with 1 degree of freedom.
In practice, obviously, we simply need to compare the t-statisticp
TN(N + 2)/2�ηT with the appropriate one-sided critical value

from the normal tables. For analogous reasons, the asymptotic
distribution of the LR test will also be degenerate half the time,
and a chi-square with one degree of freedom the other half.
Although the above argument does not invalidate the dis-

tribution of the LM test statistic, intuition suggests that the
one-sided nature of the alternative hypothesis should be taken
into account to obtain a more powerful test. For that reason,
we also propose a simple one-sided version of the LM test for
multivariate normality. In particular, since E [sηt(θ0, 0)|φ0] > 0
when η0 > 0 in view of Proposition 3, we suggest to use

LMI
1T (�θT ) =

n
max

h
τ IT (�θT ), 0

io2
as our one-sided LM test, and to compare it to the same 50:50
mixture of chi-squares 0 and 1. In this context, we would re-
ject H0 at the 100κ% signiÞcance level if the average score with
respect to η evaluated at the Gaussian pseudo-ML (PML) es-
timators �φT = (�θ

0
T , 0)

0 is positive and LM I
1T (
�θT ) exceeds the

100(1 − 2κ) percentile of a χ21 distribution. Since the Kuhn-
Tucker (KT) multiplier associated with the inequality restric-
tion η ≥ 0 is equal to max[−T−1Pt sηt(

�θT , 0), 0], our proposed
one-sided LM test is equivalent to the KT multiplier test intro-
duced by Gourieroux, Holly and Monfort (1980), which in turn
is equivalent in large samples to the LR and W tests. As we
argued before, the reason is that those tests are implicitly one-
sided in our context. In this respect, it is important to mention
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that when there is a single restriction, such as in our case, those
one-sided tests would be asymptotically locally more powerful
(Andrews 2001).
Nevertheless, it is still interesting to compare the power

properties of the one-sided and two-sided LM statistics. But
given that the block-diagonality of the information matrix is
generally lost under the alternative of η0 > 0, and its exact
form is unknown, we can only get closed form expressions for
the case in which the standardised innovations ε∗t are directly
observed. In more realistic cases, though, the results are likely
to be qualitatively similar. On the basis of Proposition 3, we
can obtain the asymptotic power of the one-sided and two-sided
variants of the information matrix version of the LM test for
any possible signiÞcance level κ. The results at the usual 5%
level are plotted in Figures 2a, 2b and 2c for η0 in the range
0 ≤ η0 ≤ .04, that is ν0 ≥ 25. Not surprisingly, the power of
both tests uniformly increases with the sample size T for a Þxed
alternative, and as we depart from the null for a given sample
size. Importantly, their power also increases with the number of
series N . As expected, the one-sided test is more powerful than
the usual two-sided one. The difference is particularly notice-
able for small departures from the null, which is precisely when
power is generally low. For instance, when ν0 = 100, T = 500
and N = 10, the power of the one-sided test is almost 60% while
the power of its two-sided counterpart is less than 50% (see Fig-
ure 2c). Similarly, the one-sided tests for N = 1 and N = 5
are initially more powerful than the two-sided tests for N = 2
and N = 10 respectively. However, as η0 approaches 1/8 from
below, the one-sided test looses power for Þxed N and T , and
eventually the two-sided test becomes more powerful. This is
due to the fact that the variance of the score goes to inÞnity as
ν0 → 8 from Proposition 3
Although in view of Lemma 1 in Appendix A, our proposed

LM test can be regarded as a test of whether ςt(θ0) is χ2N against
the alternative that it is proportional to an FN,ν0 , it is also possi-
ble to re-interpret (7) as a speciÞcation test of the restriction on
the Þrst two moments of ςt(θ0) implicit in E [sηt(θ0, 0)|φ0] = 0.
More speciÞcally:

E

·
N(N + 2)

4
− N + 2

2
ςt(θ) +

1

4
ς2t (θ)

¯̄̄̄
φ0

¸
= 0. (9)

Hence, the two-sided version has non-trivial power against any
spherically symmetric distribution for which sηt(θ0, 0) has ex-
pected value different from zero (see Theorem 1 in Appendix
A for a characterisation of spherically symmetric distributions).
For instance, if we consider the extreme case in which the true
standardised disturbances were in fact uniformly distributed on
the unit sphere surface in RN , so that ςt(θ0) = N ∀t, then
sηt(θ0, 0) = −N(N + 1)/4, which means that we would reject
the null hypothesis with probability approaching one as T goes
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to inÞnite. On the other hand, the one-sided LM test only has
power for the leptokurtic subclass of spherically symmetric dis-
tributions. Nevertheless, as we shall see in Section 5, standard-
ised residuals are frequently leptokurtic and rarely platykurtic
in practice.

3.2 Relationship with existing kurtosis tests

Following Mardia (1970), we can deÞne the population co-
efficient of multivariate excess kurtosis as:

κ =
E
£
ς2t (θ0)

¤
N(N + 2)

− 1, (10)

which equals 2/(ν0 − 4) for the multivariate t distribution, as
well as its sample counterpart:

κ̄T (θ) =
T−1

PT
t=1 ς

2
t (θ)

N(N + 2)
− 1. (11)

On this basis, we can write τ IT (�θT ) in (7) asr
N(N + 2)

8

(√
T

T
κ̄T (�θT )− 2

√
T

NT

TX
t=1

h
ςt(�θT )−N

i)
.

If we ignored the term

√
T

T

TX
t=1

h
ςt(�θT )−N

i
, (12)

then (7) would coincide with the kurtosis component of Mardia�s
(1970) test for multivariate normality, which in turn reduces to
the popular Jarque and Bera (1980) test in the univariate case.
Hence, given that if T−1

PT
t=1 ε

∗
t (�θT )ε

∗0
t (
�θT ) = IN then (12) is

identically 0, it follows from (1) that their tests are numerically
identical to ours in nonlinear regression models with condition-
ally homoskedastic disturbances estimated by Gaussian PML,
in which the covariance matrix of the innovations, Σ, is unre-
stricted and does not affect the conditional mean, and the con-
ditional mean parameters, δ say, and the elements of vech(Σ)
are variation free. However, ignoring (12) in more general con-
texts may lead to size distortions, because it is precisely the
inclusion of such a term what makes sηt(θ0, 0) orthogonal to
the other elements of the score. The same point was forcefully
made by Davidson and MacKinnon (1993) in a univariate con-
text in Section 16.7 of their textbook, and not surprisingly, their
suggested test for excess kurtosis turns out to be equal to the
outer product version of our LM test. Similarly, the term (12)
also appears explicitly in the Kiefer and Salmon (1983) LM test
for univariate excess kurtosis based on a Hermite polynomial
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expansion of the density, which coincides in their context with
the information matrix version of our test (7) (see Hall 1990
for an extension to models in which the higher order moments
depend on the information set).
Nevertheless, the exclusion of the additional term (12) does

not necessarily lead to asymptotic size distortions. In particu-
lar, there will be no size distortions if (12) is op(1). A necessary
and sufficient condition for this to happen is that ςt(θ0) − N
can be written as an exact, time-invariant, linear combination
of sθt(θ0, 0) (Fiorentini, Sentana and Calzolari 2003). Given
that such a condition involves a rather complicated system of
nonlinear differential equations, it is not possible to explicitly
characterise which models for µt(θ) and Σt(θ) will satisfy it,
so we have to proceed on a model by model basis. In this re-
spect, Fiorentini et al. (2003) establish that the condition is
indeed satisÞed for the family of GARCH-M models analysed
by Hentschel (1995). Nevertheless, it is possible to Þnd exam-
ples of other ARCH models in which the aforementioned is not
satisÞed (e.g. the variant of the EGARCH model proposed in
Barndorf-Nielsen and Shephard 2001, chap. 13). Therefore, the
conclusion to draw from the above analysis is that even though
the asymptotic size of the tests commonly employed by practi-
tioners is often correct, it is safer to use the LM test (7) because
its limiting null distribution never depends on the particular
parametrisation used, and the additional computational cost is
negligible.
Finally, several authors have recently suggested alternative

multivariate generalisations of the Jarque-Bera test, which as
far as kurtosis is concerned, consist in adding up the univariate
kurtosis tests for each element of ε∗t (�θT ) (see Lütkepohl 1993;
Doornik and Hansen 1994; Kilian and Derimoglou 2000). But
apart from the issue discussed in the previous paragraphs, an-
other potential shortcoming of those tests is that they are not
invariant to the way in which the residuals εt(�θT ) are orthog-
onalised to obtain ε∗t (�θT ). For instance, while Doornik and
Hansen (1994) obtain Σ1/2t (�θT ) from the spectral decomposi-
tion of Σt(�θT ), the other authors use a Cholesky decomposi-
tion. In this respect, note that by implicitly assuming that the
excess kurtosis is the same for all possible linear combinations
of the true standardised innovations ε∗t , we obtain a test sta-
tistic which is numerically invariant to orthogonal rotations of
Σ
1/2
t (�θT ) (see also Mardia 1970). If ε∗t were directly observed,
the relative power of the two testing procedures would depend
on the exact nature of the alternative hypothesis. Given that
the ε∗it�s are independent across i = 1, . . . , N under the null, the
situation is completely analogous to the comparison between the
one-sided tests for ARCH(q) of Lee and King (1993) and Demos
and Sentana (1998). In particular, if we deÞne κi = E(ε∗4it /3)−1
for i = 1, . . . , N , our test would be more powerful against alter-
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natives close to κi = κ for all i, while the additive test would
have more power when the κ0is were rather dispersed.

4 AMONTECARLOCOMPARISON
OFALTERNATIVEESTIMATION
PROCEDURES AND STANDARD
ERROR ESTIMATORS
In this section, we assess the performance of two alternative

ways of obtaining ML estimates of φ, and three common ways
of estimating the corresponding standard errors. The Þrst es-
timation procedure employs the following mixed approach: ini-
tially, we use a scoring algorithm with a fairly large tolerance
criterion; then, after �convergence� is achieved, we switch to a
Newton-Raphson algorithm to reÞne the solution. Both stages
are implemented by means of the NAG Fortran 77 Mark 19 li-
brary E04LBF routine (see Numerical Algorithm Group 2001
for details), with the analytic expressions for st(φ), It(φ) and
ht(φ) derived in Section 2. The second procedure, in contrast,
uses a quasi-Newton algorithm that computes the score on the
basis of Þnite difference procedures, as implemented by the NAG
E04JYF routine. Importantly, both routines allow for Þxed up-
per and lower bounds in the elements of φ. In this respect, we
should mention that when η is close to zero, the quasi-Newton
algorithm that uses function values only sometimes fails to con-
verge. For that reason, and in accordance with standard prac-
tice, we set �ηT to 0 whenever its estimate falls below a minimum
threshold, ηmin. In particular, we follow MicroÞt 4.0 in choosing
ηmin = .04 (Pesaran and Pesaran 1997, p. 457). Then, we max-
imise a Gaussian pseudo-log likelihood function using the com-
bined scoring plus Newton-Raphson algorithm explained above.
As for the estimators of the asymptotic covariance matrix of

the ML parameter estimators, we consider the three standard
approaches: outer-product of the gradient (OPG), Hessian (H)
and conditional information (CI) matrix. In order to replicate
what an empirical researcher would do in practice, though, we do
not employ numerical expressions when analytic expressions are
used in the optimisation algorithm, and vice versa. Therefore,
we end up with Þve different combinations of estimators and
standard errors.
We assess their performance by means of an extensive Monte

Carlo analysis, with an experimental design borrowed from Bol-
lerslev and Wooldridge (1992). SpeciÞcally, the model that we

15



simulate and estimate is given by the following equations:

yt = µt(δ0) + σt(δ0,γ0)ε
∗
t

µt(δ) = υ + ρyt−1

σ2t (δ,γ) = ϑ+ α
£
yt−1 − µt−1(δ)

¤2
+ βσ2t−1(δ,γ)

ε∗t |It−1 ∼ i.i.d. t(0, 1, ν0)

where δ0 = (υ, ρ), γ0 = (ϑ,α,β), υ0 = 1, ρ0 = .5, ϑ0 = .05, α0 =
.15 and β0 = .8. As for η0, we consider three different values:
0, .04 and .1, which correspond to the Gaussian limit, and two
Student t�s with 25 and 10 degrees of freedom respectively.
Given the large number of parameters involved, we sum-

marise the performance of the estimates of the asymptotic co-
variance matrix of the estimators by computing the experimen-
tal distribution of a very simple W test statistic. In particular,
the null hypothesis that we test is that all six parameters are
equal to their true values. When η0 > 0, the asymptotic dis-
tribution of such a test will be χ26. In contrast, when η0 = 0,
it follows from the discussion in Section 3.1 imply that its as-
ymptotic distribution will be a 50:50 mixture of χ25 and χ

2
6. Our

results, which are based on 10, 000 samples of 1, 000 observa-
tions each, are summarised in Figures 3a-3c using Davidson and
MacKinnon�s (1998) p-value discrepancy plots, which show
the difference between actual and nominal test sizes for every
possible nominal size. As expected, the CI standard errors seem
to be the most reliable, followed by the H-based ones, and Þ-
nally, the OPG versions, which tend to show the largest size
distortions. In addition, there is a marked difference between
numeric and analytic expressions. In Figure 3a, for instance, the
performance of the numerical H standard errors is as distorted
as the performance of the analytic OPG ones. But the most
striking difference arises when η0 = .04 (see Figure 3b). In this
case, the two numerical approaches lead to much larger size dis-
tortions. This is due to two different reasons. First, the loss of
accuracy in the computation of Þrst and second derivatives by
relative numerical increments of the log-likelihood function can
be substantial when η is small, as illustrated in Figure 4 for a
randomly selected replication. But our setting η to 0 whenever
η ≤ ηmin has an even stronger impact. As Figure 5 illustrates,
if we reduce ηmin from .04 to .00001, then the behaviour of nu-
merical and analytical methods is more in line. However, the
problem with using such a small value of ηmin is that conver-
gence failures occur much more frequently. On the basis of these
results, our practical recommendation would be to use the mixed
optimisation algorithm described above with analytical deriva-
tives, and to compute standard errors with the formulae for the
conditional information matrix in Proposition 1.

16



5 AN EMPIRICAL APPLICATION
TO UK STOCK RETURNS
In this section, we investigate the practical performance of

the procedures discussed above. To do so, we substantially
extend the analysis in Sentana (1991), who considered both
Gaussian and t distributions in his empirical characterisation
of multivariate leverage effects by means of a conditionally het-
eroskedastic latent factor model for the monthly excess returns
on 26 U.K. sectorial indices for the period 1971:2 to 1990:10
(237 observations), with a GQARCH(1,1) parametrisation for
the common factor, and a constant diagonal covariance matrix
for the idiosyncratic terms. In order to concentrate on the mod-
elling of the second and higher order moments of the conditional
distribution of returns, all the data was demeaned prior to es-
timation. Nevertheless, a more explicit modelling of the mean
has little impact on the remaining parameters (Sentana 1995).
SpeciÞcally, the model he initially estimated by Gaussian PML
is:

yt = cft +wt,µ
ft
wt

¶
|yt−1,yt−2, ... ∼ N

·µ
0
0

¶
,

µ
λt 00

0 Γ

¶¸
,

λt = ϑ+ α
h¡
ft−1|t−1 − υ

¢2
+ ωt−1|t−1

i
+ βλt−1,

where yt is the vector of returns, c the vector of factor load-
ings, Γ the diagonal matrix of idiosyncratic variances, ft|t =
ωt|tc0Γ−1yt is the Kalman-Þlter based estimate of the latent
factor, and ωt|t = [λ−1t + (c0Γ−1c)]−1 the corresponding con-
ditional mean square error. Note that λt differs from a stan-
dard GQARCH(1,1) speciÞcation in that the unobserved fac-
tors are replaced by their expected value ft−1|t−1, and the term
ωt−1|t−1 is included to reßect the uncertainty in the factor es-
timates (Harvey et al. 1992). We solved the usual scale inde-
terminacy of the factor by Þxing E(λt) = 1. To do so, we set
ϑ = (1−α−β)−αυ, υ =p(1− α− β)/α%, and estimated the
model subject to the inequality constraints 0 ≤ β ≤ 1 − α ≤ 1
and −1 ≤ % ≤ 1, which also ensure that λt ≥ 0 ∀t. PML esti-
mates for α, β, % and η can be found in Table 1, together with
robust standard errors a la Bollerslev and Wooldridge (1992)
calculated with analytical derivatives. On the basis of those
estimates, we generated the time series of squared Euclidean
norms of the standardised innovations, ςt(�θT ), and computed
the information matrix version of the LM tests for multivariate
normality described in Section 3. Since τ IT (�θT ) equals 54.43,
we can easily reject the null hypothesis regardless of whether
we use a one-sided or a two-sided critical value, which suggests
that it is worth estimating the same model with the student
t. Given that �θT is a consistent estimator, we used it as ini-
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tial values for θ. As for η, we used .106, which is the value of
a consistent, two-stage method of moments estimator obtained
from the sample coefficient of excess kurtosis of the standard-
ised residuals κ̄T (�θT ) by exploiting the theoretical relationship
η = κ/(4κ + 2). ML parameter estimates, together with stan-
dard errors based on Proposition 1, are also reported in Table
1. Apart from the marked improvement in Þt, as measured
by the increase in the likelihood function and the decrease in
standard errors, and the fact that the estimated % is now at
the boundary of the admissible parameter space, the most no-
ticeable difference is the drastic reduction in the parameter α,
which measures the immediate effect of shocks to the level of the
conditional variance, and the slight increase in the parameter β,
which measures the rate at which the impact of those shocks
decays over time.
In order to compare the two models from a graphical per-

spective, we have estimated the conditional standard deviations
that they generate for an equally weighted portfolio. In this re-
spect, note that conditional variance of ι0yt/N implied by our
single factor model is (c0ι/N)2λt + ι0Γι/N2, where ι is a N × 1
vector of ones. Although the correlation between both series is
high (97.6%), the results depicted in Figure 6 indicate that the t
distribution tends to produce less extreme values for λt. This is
particularly true around the two most signiÞcant episodes in the
sample: the October 1987 crash (a 23.6% drop in stock prices),
and the January 1975 bounce back (a 51.5% surge).
As mentioned in the introduction, one of the reasons for

using the t distribution is to compute the quantiles of the one-
period-ahead predictive distributions of portfolio returns requi-
red in Value at Risk calculations. To determine to what extent
the t is more useful than the normal in this respect across all
conceivable quantiles, we have computed the empirical cumula-
tive distribution function of the probability integral transforms
of the equally weighted portfolio returns generated by the two
Þtted distributions (see Diebold, Gunther and Tay 1998). Figure
7 shows the difference between those two cumulative distribu-
tions and the 45◦ degree line. Under correct speciÞcation, those
differences should tend to 0 asymptotically. Unfortunately, a
size-corrected version of the usual Kolmogorov-type test that
takes into account the sample uncertainty in the estimates of
the underlying parameters is rather difficult to obtain in this
case. Nevertheless, the graph clearly suggests that the multi-
variate t distribution does indeed provide a better Þt than the
normal, especially in the tails. In this respect, it is important to
emphasize that the estimating criterion is multivariate, and not
targeted to this particular portfolio. The observed differences
are partly due to the fact that the t distribution has both fatter
tails than the normal and more density around its mean. How-
ever, this cannot be the only reason, for a standardised univari-
ate t distribution with 9.71 degrees of freedom and a standard
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normal share not only the median, but also the 3.6 and 96.4
percentiles. The other reason for the differing results are the
differences in estimated volatilities plotted in Figure 6.

6 CONCLUSIONS
In the context of the general multivariate dynamic regression

model with time-varying variances and covariances considered
by Bollerslev and Wooldridge (1992), our main contributions
are:

1. We provide numerically reliable analytical expressions for
the score vector, the Hessian matrix, and its conditional
expected value when the distribution of the innovations is
assumed to be proportional to a multivariate t.

2. We conduct a detailed Monte Carlo experiment in which
we demonstrate that a mixed scoring-Newton-Raphson al-
gorithm with analytical derivatives constitutes the best
way to maximise the log-likelihood function. In addition,
we show that our analytic expressions for the conditional
information matrix provide the most reliable standard er-
rors.

3. We derive an LM test for multivariate normal versus mul-
tivariate t innovations, and relate it to the kurtosis com-
ponent of the traditional tests proposed by Mardia (1970)
and Jarque and Bera (1980). Since the limiting null dis-
tribution of our proposed LM test is correct regardless of
the model used, and the additional computational cost is
negligible, we recommend its use.

4. We also derive a one-sided version of the LM test pre-
viously discussed, which apart from being more powerful
than its two-sided counterpart, is asymptotically equiva-
lent to the LR and W tests.

5. We show that the multivariate t distribution provides not
only a much better Þt to the distribution of U.K. sectorial
returns than the normal, but also more reliable quantiles
to be used in portfolio Value at Risk calculations.

Since the existing simulation evidence indicates that the Þ-
nite sample size properties of many LM tests could be signif-
icantly different from the nominal levels, a fruitful avenue for
future research would be to consider bootstrap procedures in
order to reduce size distortions (see e.g. Kilian and Demiroglu
2000). Similarly, given that we are ruling out by assumption
any asymmetries in the conditional distribution of asset returns,
it would be interesting to explore asymmetric extensions of the
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multivariate t distribution (see Bauwens and Laurent 2002). Re-
latedly, it would also be worth exploring ways in which our LM
test for multivariate excess kurtosis can be complemented with
tests for multivariate skewness. One possibility would be to use
the asymmetry component of Mardia�s (1970) test for multivari-
ate normality, which is also numerically invariant to the way in
which the residuals are orthogonalised. As argued in Section
3.2, though, if the conditional mean and variance parameters
have to be estimated, it may be necessary to modify his test
statistic to make it orthogonal to all the elements of sθt(θ0, 0)
(see Davidson and MacKinnon 1993 for the correction involved
in the univariate case).

7 ACKNOWLEDGEMENTS
We are grateful to seminar audiences at Carlos III (Madrid),
Federico II (Naples), and the 2001 European Meeting of the
Econometric Society for very helpful comments and suggestions.
Special thanks are due to Alastair Hall and Jeffrey Wooldridge
for their input in revising the paper. Of course, the usual
caveat applies. Financial support from CICYT, CNR, IVIE
and MURST-MIUR through the projects �Stochastic models
and simulation methods for dependent data� and �Statistical
models for time series analysis� is gratefully acknowledged.

[Received July 2000; Revised January 2003]

20



Appendix

A PROOFS AND AUXILIARY RE-
SULTS

Let us Þrst state the three following auxiliary results, which
correspond to Theorem 2.5 (iii), and Examples 2.4 and 2.5, re-
spectively, in Fang, Kotz and Ng (1990):

Theorem 1 ε◦t is distributed as a spherically symmetric multi-
variate random vector of dimension N if and only if ε◦t = etut,
where ut is uniformly distributed on the unit sphere surface in
RN , and et is an non-negative random variable which is inde-
pendent of ut.

Example 1 ε�t is distributed as a standardised multivariate nor-
mal random vector of dimension N if and only if ε�t =

p
ζtut,

where ut is uniformly distributed on the unit sphere surface in
RN , and ζt is an independent chi-square random variable with
N degrees of freedom.

Example 2 ε∗t is distributed as a standardised multivariate Stu-
dent t random vector of dimension N if and only if ε∗t =

√
ν0 − 2

×pζt/ξtut, where ut is uniformly distributed on the unit sphere
surface in RN , ζt is a chi-square random variable with N de-
grees of freedom, and ξt is a Gamma variate with mean ν0 and
variance 2ν0, with ut, ζt and ξt mutually independent.

The variables et and ut are usually referred to as the gener-
ating variate and the uniform base of the spherical distribution.
On this basis, we can prove the following auxiliary result:

Lemma 1 The squared Euclidean norm of the true standardised
innovations, ςt(θ0), is independently and identically distributed
as N(ν0 − 2)/ν0 times an F variate with N and ν0 degrees of
freedom when ν0 <∞, and as a chi-square random variable with
N degrees of freedom under Gaussianity.

Proof. The general result follows immediately from the fact
that

ςt(θ0) = ε
∗0
t (θ0)ε

∗
t (θ0) =

(ν0 − 2)ζtu0tut
ξt

=
N(ν0 − 2)

ν0

ζt/N

ξt/ν0
.

The special case follows from the well known fact that ξt/ν0
converges in probability to 1 as ν0 →∞. ¤
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Proposition 1

For our purposes, it is convenient to re-write the score func-
tion as

sθt(φ0) =
∂µ0t(θ0)
∂θ

Σ
−1/2
t (θ0)

Nη0 + 1

1− 2η0 + η0ςt(θ0)
ε∗t (θ0)

+
1√
2

∂vec0 [Σt(θ0)]
∂θ

h
Σ
−1/2
t (θ0)⊗Σ−1/2t (θ0)

i
× 1√

2
vec

·
Nη0 + 1

1− 2η0 + η0ςt(θ0)
ε∗t (θ0)ε

∗0
t (θ0)− IN

¸
and

sηt(φ0) =
1

2η20
ln

·
1 +

η0
1− 2η0

ςt(θ0)

¸
− 1

2η20

·
ψ

µ
Nη0 + 1

2η0

¶
− ψ

µ
1

2η0

¶¸
+

N

2η0 (1− 2η0)
− Nη0 + 1

2η0 (1− 2η0)
ςt(θ0)

1− 2η0 + η0ςt(θ0)
.

In view of Lemma 1, we will have that

Nη0 + 1

1− 2η0 + η0ςt(θ0)
ε∗t (θ0)

=
(ν0 +N)p
(ν0 − 2)

sµ
ζt

ζt + ξt

¶µ
1− ζt

ζt + ξt

¶
ut,

Nη0 + 1

1− 2η0 + η0ςt(θ0)
ε∗t (θ0)ε

∗0
t (θ0)− IN =

(N + ν0) ζt
ξt + ζt

utu
0
t − IN ,

ln

·
1 +

η0
1− 2η0

ςt(θ0)

¸
−
·
ψ

µ
Nη0 + 1

2η0

¶
− ψ

µ
1

2η0

¶¸
= ln

µ
ξt + ζt
ξt

¶
−
·
ψ

µ
ν0 +N

2

¶
− ψ

³ν0
2

´¸
,

and

1 +Nη0
2η0 (1− 2η0)

ςt(θ0)

1− 2η0 + η0ςt(θ0)
− 1

2η0

N

(1− 2η0)
=

ν20 (ν0 +N)

2(ν0 − 2)
·

ζt
ξt + ζt

− N

(ν0 +N)

¸
.

Importantly, we only need to compute unconditional mo-
ments because ut, ζt and ξt are independent of zt and It−1 by as-
sumption. In this respect, note that the expectation of the Þrst
term is clearly zero because all the variables involved are mutu-
ally independent, and E(ut) = 0 from Fang et al. (1990), thm.
2.7. The same theorem also implies that E(utu0t) = N−1IN . In
addition, since ζt/(ξt + ζt) is an independent beta variate with
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parameters N/2 and ν0/2, whose expected value is N/(ν0+N),
then the second and fourth terms will also be 0 in expectation.
Finally, we can use the results in Johnson (1949) to show that
the mean of the third term is also 0.
As for the conditional information matrix, it is also conve-

nient to write the required expressions as

∂g [ςt(θ0), η]

∂ς
= − Nη + 1

2 [1− 2η + ηςt(θ0)] = −
(N + ν0) ξt

2 (ν0 − 2) (ζt + ξt)
,

∂ςt(θ0)

∂θ0
= −2ε∗0t (θ0)Σ−1/2t (θ0)

∂µt(θ0)

∂θ0
− vec0 [ε∗t (θ0)ε∗0t (θ0)]

×
h
Σ
−1/2
t (θ0)⊗Σ−1/2t (θ0)

i ∂vec [Σt(θ0)]
∂θ0

= −2
s
(ν0 − 2) ζt

ξt
u0tΣ

−1/2
t (θ0)

∂µt(θ0)

∂θ0
− (ν0 − 2) ζt

ξt
vec0 (utu0t)

×
h
Σ
−1/2
t (θ0)⊗Σ−1/2t (θ0)

i ∂vec [Σt(θ0)]
∂θ0

,

∂2g [ςt(θ0), η]

∂ς2
=

(Nη + 1) η

2 [1− 2η + ηςt(θ0)]2
=

(N + ν0) ξ
2
t

2(ν0 − 2)2 (ζt + ξt)2
,

and

∂2ςt(θ0)

∂θ∂θ0
= 2

∂µ0t(θ0)
∂θ

Σ−1t (θ0)
∂µt(θ0)

∂θ0
+ 2

∂vec0 [Σt(θ0)]
∂θ

×
h
Σ−1t (θ0)⊗Σ−1/2t (θ0)ε

∗
t (θ0)ε

∗0
t (θ0)Σ

−1/2
t (θ0)

i ∂vec [Σt(θ0)]
∂θ0

+2
∂µ0t(θ0)
∂θ

h
ε∗0t (θ)Σ

−1/2
t (θ0)⊗Σ−1t (θ0)

i ∂vec [Σt(θ0)]
∂θ0

+2
∂vec0 [Σt(θ0)]

∂θ

h
Σ
−1/2
t (θ0)ε

∗
t (θ0)⊗Σ−1t (θ0)

i ∂µt(θ0)
∂θ0

−2
h
ε∗0t (θ0)Σ

−1/2
t (θ0)⊗ Ip

i ∂vec
∂θ0

½
∂vec0 [µt(θ0)]

∂θ

¾
−
n
vec0

h
Σ
−1/2
t (θ0)ε

∗
t (θ0)ε

∗0
t (θ0)Σ

−1/2
t (θ0)

i
⊗ Ip

o
×∂vec
∂θ0

½
∂vec0 [Σt(θ0)]

∂θ

¾
= 2

∂µ0t(θ0)
∂θ

Σ−1t (θ0)
∂µt(θ0)

∂θ0

+2
(ν0 − 2) ζt

ξt

∂vec0 [Σt(θ0)]
∂θ

×
h
Σ−1t (θ0)⊗Σ−1/2t (θ0)utu

0
tΣ

−1/2
t (θ0)

i ∂vec [Σt(θ0)]
∂θ0

+2

s
(ν0 − 2) ζt

ξt

∂µ0t(θ0)
∂θ

h
u0tΣ

−1/2
t (θ0)⊗Σ−1t (θ0)

i
×∂vec [Σt(θ0)]

∂θ0
+ 2

s
(ν0 − 2) ζt

ξt

∂vec0 [Σt(θ0)]
∂θ

×
h
Σ
−1/2
t (θ0)ut ⊗Σ−1t (θ0)

i ∂µt(θ0)
∂θ0
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−2
s
(ν0 − 2) ζt

ξt

h
u0tΣ

−1
t (θ0)⊗ Ip

i ∂vec
∂θ0

½
∂vec0 [µt(θ0)]

∂θ

¾
−(ν0 − 2) ζt

ξt

n
vec0

h
Σ
−1/2
t (θ0)utu

0
tΣ

−1/2
t (θ0)

i
⊗ Ip

o
×∂vec
∂θ0

½
∂vec0 [Σt(θ0)]

∂θ

¾
.

In order to compute the expected value of −hθθt(φ) con-
ditional on zt and It−1, the only extra element that we need
are the fourth moments of the uniform distribution on the unit
sphere surface in RN , which are given by

E [vec(utu
0
t)vec

0(utut)] = E (utu0t ⊗ utu0t)
=

1

N(N + 2)
[(IN2 +KNN ) + vec(IN )vec

0(IN )] ,

where we have used the fact that utζt = ε�t say, is a spherical
multivariate normal random vector whose fourth moment can
be found in Balestra and Holly (1990), and E(ζ2t ) = N(N +
2). Tedious but otherwise simple calculations show that we are
eventually left with

E [−hθθt(φ0)| zt, It−1;φ0] =
ν0 (N + ν0)

(ν0 − 2) (N + ν0 + 2)

∂µ0t(θ0)
∂θ

×Σ−1t (θ0)
∂µt(θ0)

∂θ0
+

(N + ν0)

2(N + ν0 + 2)

∂vec0 [Σt(θ0)]
∂θ

× £Σ−1t (θ0)⊗Σ−1t (θ0)
¤ ∂vec [Σt(θ0)]

∂θ0

− 1

2(N + ν0 + 2)

∂vec0 [Σt(θ0)]
∂θ

×vec £Σ−1t (θ0)¤ vec0 £Σ−1t (θ0)¤ ∂vec [Σt(θ0)]∂θ0
,

which converges to the usual expression under Gaussianity.
Similarly, we can write hθηt(φ) as

∂2g(φ)

∂θ∂η
=
∂µ0t(θ)
∂θ

Σ
−1/2
t (θ)ε∗t (θ)

N + 2− ςt(φ)
[1− 2η + ηςt(φ)]2

+
1

2

∂vec0 [Σt(θ)]
∂θ

h
Σ
−1/2
t (θ)⊗Σ−1/2t (θ)

i
×vec

(
N + 2− ςt(φ)

[1− 2η + ηςt(φ)]2
ε∗t (θ)ε

∗0
t (θ)

)
.

The expected value of the Þrst term (conditional on zt and
It−1) is clearly zero when evaluated at φ0 because ε∗t (θ0) is
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proportional to ut. As for the second term, we can show that

N + 2− ςt(φ0)
[1− 2η + ηςt(φ0)]2

ε∗t (θ0)ε
∗0
t (θ0)

=
ν20

ν0 − 2

"
(N + 2)

µ
ζt

ξt + ζt

¶
− (N + ν0)

µ
ζt

ξt + ζt

¶2#
utu

0
t,

whose expected value is

2 (N + 2) ν20
(ν0 − 2) (ν0 +N) (N + ν0 + 2)

IN ,

which clearly goes to 0 as ν0 →∞.
Finally, let us look at the term

∂2g [ςt(θ0), η]

∂η2
= − 1

η30
ln

·
1 +

η0
1− 2η0

ςt(θ0)

¸
+
1

η20

ςt(θ0)

[1− 2η0 + η0ςt(θ0)] (1− 2η0)
− 2 (Nη0 + 1) ςt(θ0)

(1− 2η0) η0 [1− 2η0 + η0ςt(θ0)]2

−Nη0 + 1
2η0

(4η0 − 1) ς2t (θ0)
(1− 2η0)2 [1− 2η0 + η0ςt(θ0)]2

.

Taking expectations element by element we get

− 1

η30
E

½
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·
1 +

η0ςt(θ0)

1− 2η0

¸¾
= ν30E

·
ln

µ
ξt

ξt + ζt

¶¸
= ν30

·
ψ
³ν0
2

´
− ψ

µ
ν0 +N

2

¶¸
,

E

½
1

η20

ςt(θ0)

[1− 2η0 + η0ςt(θ0)] (1− 2η0)
¾
=

ν40
(ν0 − 2)E

µ
ζt

ξt + ζt

¶
=

ν40N

(ν0 − 2) (N + ν0)
,

−E
(

2 (Nη0 + 1) ςt(θ0)

(1− 2η0) η0 [1− 2η0 + η0ςt(θ0)]2
)

= −2(N + ν0)ν
3
0

(ν0 − 2) E

"µ
ζt

ξt + ζt

¶
−
µ

ζt
ξt + ζt

¶2#

= − 2ν40N

(ν0 − 2)2 (N + ν0 + 2)
,
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and

−Nη0 + 1
2

E

Ã
(4η0 − 1) ς2t (θ0)

(1− 2η0)2 η0 [1− 2η0 + η0ςt(θ0)]2
!

=
1

2

ν30 (ν0 − 4) (N + ν0)

(ν0 − 2)2 E

µ
ζt

ξt + ζt

¶2
=
1

2

ν30 (ν0 − 4)
(ν0 − 2)2

N (N + 2)

N + ν0 + 2
.

If we now add the expression for ∂2c(η0)/∂η
2, it is clear that

the terms of order η−3 vanish, and the rest is equal to

ν40
4

·
ψ0
µ
N + ν0
2

¶
− ψ0

³ν0
2

´¸
+

ν30N

(ν0 − 2)
·

ν0
(N + ν0)

− 2ν0
(N + ν0 + 2) (ν0 − 2)

+
1

2

(ν0 − 4) (N + 2)

(ν0 − 2) (N + ν0 + 2)
− (ν0 − 4)
2(ν0 − 2)

¸
=
ν40
4

·
ψ0
µ
N + ν0
2

¶
− ψ0

³ν0
2

´¸
+

ν40N

(ν0 − 2)2 (N + ν0 + 2)

·
ν0 − 4(N + 2)

(N + ν0)

¸
.

Proposition 2

Most of the expressions can be obtained by simply taking
limits as ν0 → ∞ of the formula for the conditional informa-
tion matrix in Proposition 1. Nevertheless, the expression for
V [sηt(θ0, 0)|zt, It−1,θ0, 0] is in fact easier to derive by taking
expected values of the outer product of the score. SpeciÞcally,
we can show that

E
£
s2ηt(θ0, 0)|zt, It−1,θ0, 0

¤
=
N2(N + 2)2

16

−N(N + 2)2

4
E [ςt(θ0)|zt, It−1,θ0, 0]

+

·
(N + 2)2

5
+
N(N + 2)

8

¸
E
£
ς2t (θ0)|zt, It−1,θ0, 0

¤
−N + 2

4
E
£
ς3t (θ0)|zt, It−1,θ0, 0

¤
+
1

16
E
£
ς4t (θ0)|zt, It−1,θ0, 0

¤
=
N(N + 2)

2
,

where we have used the fact that under the null ςt(θ0) is an
i.i.d. chi-square variate with N degrees of freedom (see Lemma
1), whose uncentred moment of integer order r is

E(ζrt ) = 2
r

µ
r − 1 + N

2

¶µ
r − 2 + N

2

¶
· · ·
µ
1 +

N

2

¶
N

2

(Mood, Graybill and Boes 1973).
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Proposition 3

The expressions for conditional Þrst and second moment of
sηt(θ0, 0) given zt, It−1 and φ0 are obtained as in the proof of
Proposition 2, except for the fact that under the alternative,
ςt(θ0) is proportional to an i.i.d. F variate with N and ν0 de-
grees of freedom (see Lemma 1), whose uncentred moment of
integer order r < ν0/2 is

E

·
ζt/N

ξt/ν0

¸r
=

³ν0
N

´r r − 1 +N/2
−1 + ν0/2

r − 2 +N/2
−2 + ν0/2 · · ·

× 1 +N/2

−r + 1 + ν0/2
N/2

−r + ν0/2
(Mood et al. 1973). Therefore, the restriction ν0 > 8 guarantees
that the fourth moments of ςt(θ0) are bounded. Finally, the
asymptotic distribution is obtained as a direct application of
the Lindeberg-Levy central limit theorem for independent and
identically distributed observations.

B SERIES EXPANSIONS INTERMS
OF η OF THE LOG-LIKELIHOOD
FUNCTION

Let us start with the term:

c(η) = ln

·
Γ

µ
Nη + 1

2η

¶¸
− ln

·
Γ

µ
1

2η

¶¸
−N
2
ln

µ
1− 2η
η

¶
− N
2
lnπ,

whose Þrst three derivatives are given by

∂c(η)

∂η
=

N

2η (1− 2η) −
1

2η2

·
ψ

µ
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2η

¶
− ψ

µ
1

2η

¶¸
,

∂2c(η)

∂η2
=

2N

η (1− 2η)2 −
1

η3

·
ψ

µ
1

2η

¶
− ψ

µ
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2η

¶¸
+
1

4η4

·
ψ0
µ
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2η

¶
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µ
1

2η

¶¸
− N

2η2(1− 2η)2 ,
∂3c(η)

∂η3
=

3

η4

·
ψ

µ
1

2η

¶
− ψ

µ
Nη + 1

2η

¶¸
+

12N

η(1− 2η)3

− 3

2η5

·
ψ0
µ
Nη + 1

2η

¶
− ψ0

µ
1

2η

¶¸
− 6N

η2 (1− 2η)3

− 1

8η6

·
ψ00
µ
Nη + 1

2η

¶
− ψ00

µ
1

2η

¶¸
+

N

η3 (1− 2η)3 ,

where ψ(x), ψ0(x) and ψ00(x) are the di-, tri-, and cuatri-gamma
functions respectively. If we take limits as η → 0 from above,
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we can show that

lim
η→0+

c(η) = −N
2
ln 2π,

lim
η→0+

∂c(η)

∂η
=

N(N + 2)

4
,

lim
η→0+

∂2c(η)

∂η2
= −N(N + 2)(N − 5)

6
,

lim
η→0+

∂3c(η)

∂η3
=

N(N + 2)(N2 − 6N + 16)

4
,

so that we Þnally obtain

c(η) = −N
2
ln 2π +

N(N + 2)

4
η − 1

2

N(N + 2)(N − 5)
6

η2

+
1

6

N(N + 2)(N2 − 6N + 16)

4
η3 +O(η4).

Our experience with N = 1 suggests that c(η) and its deriv-
atives can be accurately computed by their original expressions
when η > 8 ∗ 10−4, but that the Taylor expansions are more
reliable for smaller values.
Similarly,

g [ςt(θ), η] = −1
2
ςt(θ)+

·
−N + 2

2
ςt(θ) +

1

4
ς2t (θ)

¸
η

+
1

2

·
−2(N + 2)ςt(φ) +

N + 4

2
ς2t (φ)−

1

3
ς3t (φ)

¸
η2

+
1

6

· −12(2 +N)ςt(θ) + 6(N + 3)ς2t (θ)
− (6 +N) ς3t (θ) + 1

8 ς
4
t (θ)

¸
η3

+
1

24

· −96 (N + 2) ςt(θ)+24 (8 + 3N) ς
2
t (θ)

−24 (N + 4) ς3t (θ) + 3 (N + 8) ς4t (θ)− 12
5 ς

5
t (θ)

¸
η4

+
1

120


−960 (N + 2) ςt(θ) + 600 (2N + 5) ς2t (θ)

−1440 (3N + 10) ς3t (θ)+
120 (N + 5) ς4t (θ)

−12 (N + 10) ς5t (θ) + 10ς
6
t (θ)

 η5 +O(η6).
It is important to mention that the above expression is only

guaranteed to provide a good approximation if in addition ςt(φ)
is not excessively large. In our experience, g [ςt(θ), η] and its
derivatives can be accurately evaluated with the analytical ex-
pressions in Section 2 when η > .03 or ηςt(θ) >.001, but other-
wise the Taylor expansions are more reliable.
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Table 1

Estimates of a Conditionally Heteroskedastic Single Factor
Model for 26 U.K. Sectorial Indices

Monthly Excess Returns 1971:2-1990:10 (237 obs.)
Estimates of Dynamic Variance Parameters and Degrees of

Freedom

λt = (1− α− β)(1− %2)

+α

·³
ft−1|t−1 −

p
(1− α− β) /α%

´2
+ ωt−1|t−1

¸
+ βλt−1

0 ≤ β ≤ 1− α ≤ 1, −1 ≤ % ≤ 1

Parameter Gaussian Student t
s.e. s.e.

α .111 .075 .053 .026
β .670 .258 .675 .120
% .951 .629 1.0 �
η 0 .103 .012

Log-likelihood -4,471.216 -4,221.162

Notes: ft|t denotes the Kalman Þlter estimate of the latent
factor, and ωt|t the associated conditional mean square error
(Harvey et al. 1992). Standard errors (s.e.) are computed using
analytical derivatives based on the expressions in Bollerslev and
Wooldridge (1992) in the Gaussian case, and Proposition 1 in
the case of the t.
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FIGURE 2-A: Power of the LM test (T=100, αααα=5%).
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FIGURE 2-B: Power of the LM test (T=250, αααα=5%).

ηηηη

1-sided
2-sided



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.2

0.4

0.6

0.8

1

N=1

N=2

N=5

N=10

FIGURE 2-C: Power of the LM test (T=500, αααα=5%).
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FIGURE 3-B: P-value discrepancy plot for Wald-test φ=φ0        T=1000  Rep.=10000 
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