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1 Introduction

Dynamic factor models have been extensively used in macroeconomics and �nance since their

introduction by Geweke (1977) and Sargent and Sims (1977) as a way of capturing the cross-

sectional and dynamic correlations between multiple series in a parsimonious way. A far from

comprehensive list of early and more recent applications include not only business cycle analysis

(see Litterman and Sargent (1979), Stock and Watson (1989, 1993), Diebold and Rudebusch

(1996) or Gregory, Head and Raynauld (1997)) and bond yields (Singleton (1981), Jegadeesh

and Pennacchi (1996), Dungey, Martin and Pagan (2000) or Diebold, Rudebusch and Aruoba

(2006)), but also wages (Engle and Watson (1981)), employment (Quah and Sargent (1993)),

commodity prices (Peña and Box (1987)) and �nancial contagion (Mody and Taylor (2007)).

An expanding, in�uential body of literature has shown that one may accurately recover the

unobserved series by using the frequency domain version of principal components put forward by

Brillinger (1981, ch. 9) and further extended by Forni, Hallin, Lippi and Reichlin (2000) (FHLR),

which is based on a non-parametric estimate of the spectral density matrix of the observed series

(see Forni, Hallin, Lippi and Za¤aroni (2015) for more recent developments). In fact, it might

even be possible to use static principal components if certain additional assumptions hold (see

Bai and Ng (2008)). Aside from avoiding the numerical optimisation of a criterion function,

the main advantage of such methods is that they remain valid in the presence of some mild

contemporaneous and dynamic correlation between idiosyncratic terms when the cross-sectional

dimension, N , is commensurate with the time series dimension, T .

There are two closely related issues, though. First, the cross-sectional asymptotic bound-

edness conditions on the eigenvalues of the autocovariance matrices of the idiosyncratic terms

underlying the approximate factor structures originally suggested by Chamberlain and Roth-

schild (1983) are largely meaningless in empirical situations in which N is small relative to

T . And second, although the factors could be regarded as a set of parameters in any given

realisation, e¢ ciency considerations indicate that a signal extraction approach which treats the

underlying latent variables as stochastic processes would be more appropriate for such data sets.

In addition, Doz, Giannone and Reichlin (2012) have recently closed the gap between the two

strands of the literature by proving the NT -consistency of the Gaussian pseudo ML estimators

(MLE) of exact versions of dynamic factor models even when not all the maintained assumptions

hold.

In principle, Gaussian (P)MLEs of the parameters can be obtained from the usual time do-

main version of the log-likelihood function computed as a by-product of the Kalman �lter predic-

tion equations or from Whittle�s (1962) frequency domain asymptotic approximation. Further,
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once the parameters have been estimated the Kalman smoother or its Wiener-Kolmogorov coun-

terpart provide optimally �ltered estimates of the latent factors. These estimation and �ltering

issues are well understood (see e.g. Harvey (1989)), and the same can be said of their numerical

implementation (see Jungbacker and Koopman (2015)). In practice, though, researchers avoid

ML except in relatively small models because of the heavy computational burden involved, which

is disproportionately larger as the number of series considered increases.

To ameliorate this problem, Shumway and Sto¤er (1982), Watson and Engle (1983) and Quah

and Sargent (1993) applied the Expectation-Maximisation (EM) algorithm in Dempster, Laird

and Rubin (1977) to the time domain versions of these models, thereby avoiding the computation

of the likelihood function and its score. This iterative algorithm has been popular in various

areas of statistics and econometrics when the data set is incomplete or contains missing values,

or the model can be posed in a similar form, such as in the �nite mixture models studied by

Arcidiacono and Jones (2003) or the dynamic Markov switching models considered by Hamilton

(1990) and Fruhwirth-Schnatter (2007). Its popularity can be attributed mainly to the e¢ ciency

of the procedure, as measured by its speed, and also to the generality of the approach and its

convergence properties (see Ruud (1991) for an elegant review of this method and McLachlan

and Krishnan (1996) for a more thorough analysis).

However, the time domain version of the EM algorithm has only been derived for dynamic

factor models in which the latent variables follow pure Ar processes (see again Doz, Giannone

and Reichlin (2012)), and works best when the e¤ects of the common factors on the observed

variables are contemporaneous, which substantially limits the class of models to which they can

be successfully applied. In particular, it excludes models in which either common or idiosyncratic

factors follow Arma processes. As is well known, such processes combine autoregressive and

moving average components in a rather parsimonious way, and for that reason they are by far the

most common approximations used to (Wold) represent univariate stationary series. However,

while Ar process often arise as di¤erence equation-type representations of natural phenomena,

the presence of Ma components is sometimes justi�ed as a result of contemporaneous aggregation

of several underlying components. On this basis, one might argue that there is no need to

introduce Ma terms in dynamic factor models.

Nevertheless, there are at least three compelling reasons for considering Arma processes for

common or idiosyncratic factors. First, the temporal aggregation results in Bergstrom (1984)

imply that discrete time observations will often contain Ma components even if the underlying

continuous time processes follow �rst-order stochastic di¤erence equations. Obviously, the same

applies to the increasingly popular continuous time versions of Arma models (see Chambers

and Thorton (2012)). Second, the usual deseasonalisation procedures employed by the national
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statistical o¢ ces imply a transfer function that substantially dampens the spectral density at

high frequencies, which pure Ar models struggle to capture (see Maravall (1993)). Given that

those �lters tend to be very similar for closely related homogeneous series, they are likely to

introduce Ma terms not only in the speci�c component of each series but also in the common

one. Finally, recent macroeconomic applications of dynamic factor models have often considered

speci�cations in which the lagged latent variables appear as additional factors (see again Bai

and Ng (2008) and the references therein). In those circumstances, plausible cross-sectional

restrictions on the dynamic factor loadings made for parsimony reasons also introduce Ma

terms in the common factors.

In the context of general dynamic factor models with latent Arma processes, we make

two independent but complementary contributions. First, we introduce a frequency domain

version of the EM algorithm, which exploits the heteroskedastic factor structure of the spectral

density matrix of the model to carry out the expectation stage very quickly. Nevertheless, a

standard implementation of our algorithm would still require O(N) numerical optimisations

at each maximisation stage in models with idiosyncratic Ma components. For that reason,

our second contribution is a very fast iterated indirect inference procedure for estimating the

parameters of univariate Arma models, which is based on a sequence of simple auxiliary OLS

regressions of certain �ltered series. Importantly, unlike existing indirect inference procedures

for those models, our proposed estimator entails no asymptotic e¢ ciency loss for any �nite

number of iterations. Further, it will generally coincide with the ML estimator in the limit.

The complementary between our proposals is twofold: (i) our iterated indirect inference

method can be implemented far more quickly in the frequency domain than in the time domain;

and (ii) it can be very easily adapted to deal with latent variables with only minor modi�cations.

Our combined proposal, though, di¤ers from more standard applications of indirect esti-

mation methods to factor models, which typically rely on a simpler approximating model as

auxiliary model. For example, in the case of a single factor with static loadings we could �t

univariate Arma models to the �rst principal component of the observed series, as well as to the

di¤erence between each of the observed series and its common component. Such procedures will

result in an e¢ ciency loss relative to maximum likelihood without yielding any gains in terms of

speed because the calibration of the parameters of the true model by minimising a GMM-type

criterion function whose moments have to be evaluated by simulation would remain prohibitive

(but see Sentana, Calzolari and Fiorentini (2008) for a sequential proposal that could speed up

the indirect estimation of large models).

Finally, we illustrate our proposed procedures with an empirical application to US employ-

ment data. Speci�cally, we follow Quah and Sargent (1993) and construct an index that captures
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the common movements of sectoral employment growth rates. Nevertheless, we also compare

our results to the ones obtained by the aforementioned semiparametric approaches.

The rest of the paper is organised as follows. In section 2, we review the properties of dy-

namic factor models and their �lters, as well as maximum likelihood estimation in the frequency

domain. Then, we derive our iterated indirect procedure in section 3 and our spectral EM algo-

rithm in section 4. This is followed by the empirical application in section 5. Finally, we discuss

several interesting extensions for further research in section 6. Auxiliary results are gathered in

appendices.

2 Theoretical background

2.1 Dynamic factor models

To keep the notation to a minimum, we focus on single factor models, which su¢ ce to

illustrate our procedures. A dynamic, exact, single factor model for a �nite dimensional vector

of N observed series, yt, can be de�ned in the time domain by the system of stochastic di¤erence

equations
yt = �+ c(L)xt + ut;
�x(L)xt = �x(L)ft;

�ui(L)ui;t = �ui(L)vi;t; i = 1; : : : ; N;
(ft; v1;t; : : : ; vN;t)jIt�1;�;� � N [0; diag( f ;  1; : : : ;  N )];

9>>=>>; (1)

where xt is the only common factor, ut the N speci�c factors, c(L) =
Pn
k=�m ckL

k a vector

of N possibly two-sided polynomials in the lag operator ci(L), �x(L) and �ui(L) are one-sided

polynomials of orders px and pui , respectively, while �x(L) and �ui(L) are one-sided polynomials

of orders qx and qui coprime with �x(L) and �ui(L), respectively, It�1 is an information set that

contains the values of vt and ft up to, and including time t � 1, � is the mean vector and �

refers to all the remaining model parameters, which we assume variation-free.

Note that the dynamic nature of the model is the result of three di¤erent characteristics:

1. The serial correlation of the common factor xt,

2. The serial correlation of the idiosyncratic factors ut and

3. The heterogeneous dynamic impact of the common factor on each of the observed variables

through the series-speci�c distributed lag polynomials ci(L).

To some extent, characteristics 1 and 3 overlap, as one could always write any dynamic factor

model in terms of white noise common factors. In this regard, the assumption of Arma(px; qx)

dynamics for the common factor can be regarded as a parsimonious way of modelling an in�nite

distributed lag (see sections 2.3 and 4.5 for further details). In any case, we would need to shut
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down all three sources to go back to a traditional static factor model (see Lawley and Maxwell

(1971)). Cancelling only one or two of those channels still results in a dynamic factor model. For

example, Engle and Watson (1981) considered models with static factor loadings, while Peña

and Box (1987) further assumed that the speci�c factors were white noise.

The main di¤erence between the exact model in (1) and the generalised dynamic factor

models considered by Forni, Hallin, Lippi and Reichlin (2000), Forni and Lippi (2001, 2011) and

Forni, Hallin, Lippi and Za¤aroni (2015) is that it rules out any contemporaneous or dynamic

cross-correlation between the idiosyncratic terms. We revisit this issue in section 6.

2.2 Spectral density matrix and �lters

Under the assumption that yt is a covariance stationary process, possibly after suitable

transformations as in section 5, its spectral decomposition will be

yt � � =

Z �

��
ei�tdZy(�);

V [dZy(�)] = Gyy(�)d�;

with a spectral density matrix given by

Gyy(�) = c(e
�i�)Gxx(�)c

0(ei�) +Guu(�); (2)

Gxx(�) =
�x(e

�i�)�x(e
i�)

�x(e�i�)�x(ei�)
 f ;

Guu(�) = diag[Gu1u1(�); : : : ; GuNuN (�)];

Guiui(�) =
�ui(e

�i�)�ui(e
i�)

�ui(e
�i�)�ui(e

i�)
 i:

Thus, (1) implies that Gyy(�) is the sum of the rank 1 matrix c(e�i�)Gxx(�)c0(ei�) and the

diagonal matrixGuu(�), thereby inheriting the exact single factor structure of the unconditional

covariance matrix of a static factor model.

The fact that the idiosyncratic impact of the common factor on each of the observed vari-

ables is in principle dynamic implies that the spectral density matrix of yt will generally be

complex but Hermitian, even though the spectral densities of xt and uit are all real because they

correspond to univariate processes.

Assuming that Gyy(�) is not singular at any frequency, the Wiener-Kolmogorov two-sided

�lter for the common factor xt at each frequency is given by

dZx
K
(�) = Gxx(�)c

0(ei�)G�1
yy(�)dZ

y(�); (3)

where

Gxx(�)c
0(ei�)G�1

yy(�)
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is known as the transfer function of the common factor smoother. As a result, the spectral

density of the smoothed values of the common factors, xKtj1,
1will be

GxKxK (�) = G2xx(�)c
0(ei�)G�1

yy(�)c(e
�i�)

thanks to the Hermitian nature of Gyy(�), while the spectral density of the �nal estimation

error xt � xKtj1 will be given by

Gxx(�)�G2xx(�)c0(ei�)G�1
yy(�)c(e

�i�) = !(�):

Similarly, the Wiener-Kolmogorov smoother for the N speci�c factors will be

dZu
K
(�) = Guu(�)G

�1
yy(�)dZ

y(�)

=
h
IN � c(e�i�)Gxx(�)c0(ei�)G�1

yy(�)
i
dZy(�) = dZy(�)� c(e�i�)dZxK (�):

Hence, the spectral density matrix of the smoothed values of the speci�c factors will be given

by

GuKuK (�) = Guu(�)G
�1
yy(�)Guu(�);

while the spectral density of their �nal estimation errors ut � uKtj1 is

Guu(�)�GuKuK (�) = Guu(�)�Guu(�)G
�1
yy(�)Guu(�) = !(�)c(e�i�)c0(ei�) = �(�):

Finally, the co-spectrum between xKtj1 and uKtj1 will be

GxKuK (�) = Gxx(�)c
0(ei�)G�1

yy(�)Guu(�):

2.3 Identi�cation

The identi�cation by means of homogeneous restrictions of linear dynamic models with latent

variables such as (1) was discussed by Geweke (1977) and Geweke and Singleton (1981), and more

recently by Scherrer and Deistler (1998) and Heaton and Solo (2004) (see also Forni and Lippi

(2001, 2011) for related results). These authors extend well known results from static factor

models and simultaneous equation systems to the spectral density matrix (2) on a frequency by

frequency basis. Thus, two models will be observationally equivalent if and only if they generate

exactly the same spectral density matrix for the observed variables at all frequencies. As in the

traditional case, there are two di¤erent identi�cation issues:

1. the nonparametric identi�cation of common and speci�c components,

1The main di¤erence between the Wiener-Kolmogorov �ltered values, xKtj1, and the Kalman �lter smoothed
values, xKtjT , results from the dependence of the former on a double in�nite sequence of observations.
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2. the parametric identi�cation of dynamic loadings and factor dynamics within the common

components.

The answer to the �rst question is easy whenGuu(�) is a diagonal, full rank matrix.2 Specif-

ically, we can show that for the dynamic single factor model (1), nonparametric identi�cation of

common and idiosyncratic terms is guaranteed when N � 3 provided that at least three series

load on the common factor. The intuition is as follows. We know that the condition above

coincides with the so-called Ledermann bound for single factor models (see e.g. Scherrer and

Deistler (1998)). Since it is not possible to transfer variance from the common to the idiosyn-

cratic components (or vice versa) in those circumstances, and any model with more than one

factor will lead to some singular idiosyncratic variance, we can uniquely decompose Gyy(�) into

the rank one matrix c(e�i�)Gxx(�)c0(ei�) and the full rank matrix Guu(�) in this way.

The separate identi�cation of c(e�i�) and Gxx(�) is trickier, as we could always write any

dynamic factor model (up to time shifts) in terms of white noise common factors. But it can

be guaranteed (up to scaling and sign changes) if in addition the dynamic loading polynomials

ci(:) are one-sided of �nite order and coprime, so they do not share a common root across all N

series (see theorem 3 in Heaton and Solo (2004) for a more formal argument along these lines).3

To avoid dealing with nonsensical situations, henceforth we maintain the assumption that

the model that has to be estimated is identi�ed, which will have to be veri�ed on a case by

case basis. Nevertheless, the conditions above su¢ ce to guarantee identi�cation in the empirical

application in section 5. The only remaining issue is the unconditional scaling of the common

factor, which we can achieve by normalising the variance of ft to 1.4

2.4 Maximum likelihood estimation in the frequency domain

Let

Iyy(�j) =
1

2�T

TX
t=1

TX
s=1

(yt � �)(ys � �)0e�i(t�s)�j (4)

denote the Hermitian positive semide�nite periodogram matrix of yt and �j = 2�j=T (j =

0; : : : T � 1) the usual Fourier frequencies. If we assume that Gyy(�) is not singular at any of

those frequencies, the so-called Whittle (discrete) spectral approximation to the log-likelihood

2Scherrer and Deistler (1998) refer to this situation as the Frisch case.
3The one-sided restriction is without loss of generality in �nite order models because any shift in the dating

of the common factor can be exactly matched by an opposite shift in the timing of the dynamic loadings.
4Other symmetric scaling assumptions would normalise the unconditional variance of xt, or some norm of the

vector of loadings c0 or their long run counterparts c(1). Alternatively, we could asymmetrically �x one element
of c0 or c(1) to 1.
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function is5

�NT
2
ln(2�)� 1

2

T�1X
j=0

ln jGyy(�j)j �
1

2

T�1X
j=0

tr
�
G�1
yy(�j)[2�Iyy(�j)]

	
: (5)

Expression (4), though, is far from ideal from a computational point of view, and for that

reason we make use of the Fast Fourier Transform (FFT). Speci�cally, given the T �N original

real data matrix Y = (y1; : : : ;yt; : : : ;yT )
0, the FFT creates the centred and orthogonalised

T �N complex data matrix Zy = (zy0 ; : : : ; z
y
j ; : : : ; z

y
T�1)

0 by e¤ectively premultiplying Y � `T�0

by the T � T Fourier matrix W. On this basis, we can easily compute Iyy(�j) as 2�z
y
j z
y�
j ,

where zy�j is the complex conjugate transpose of zyj . Hence, the spectral approximation to the

log-likelihood function (5) becomes

�NT
2
ln(2�)� 1

2

T�1X
j=0

ln jGyy(�j)j �
2�

2

T�1X
j=0

zy�j G
�1
yy(�j)z

y
j ;

which can be regarded as the log-likelihood function of T independent but heteroskedastic com-

plex Gaussian observations.

But since zyj does not depend on � for j = 1; : : : ; T � 1 because `T is proportional to the

�rst column of the orthogonal Fourier matrix and zy0 = (�yT ��), where �yT is the sample mean

of yt, it immediately follows that the ML of � will be �yT . As for the remaining parameters, the

score function will be given by:

d(�) =
1

2

T�1X
j=0

d(�j ;�);

d(�j ;�) =
1

2

@vec0 [Gyy(�j)]

@�

�
G�1
yy(�j)
G0�1

yy (�j)
�
vec

h
2�zycj z

y0
j �G

0
yy(�j)

i
=

1

2

@vec0[Gyy(�j)]

@�
M(�j)m(�j); (6)

where zycj = zy�0j is the complex conjugate of zyj ,

m(�j) = vec
h
2�zycj z

y0
j �G

0
yy(�j)

i
and

M(�j) = G
�1
yy(�j)
G0�1

yy (�j):

The information matrix is block diagonal between � and the elements of �, with the (1,1)-

element being Gyy(0) and the (2,2)-block being

Q =
1

4�

Z �

��

@vec0[Gyy(�)]

@�
M(�)

�
@vec0[Gyy(�)]

@�

��
d�; (7)

5There is also a continuous version which replaces sums by integrals (see Dunsmuir and Hannan (1976)).
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a consistent estimator of which will be provided by either by the outer product of the score or

by

�(�) =
1

2

T�1X
j=0

@vec0[Gyy(�j)]

@�
M(�j)

�
@vec0[Gyy(�j)]

@�

��
:

Formal results showing the strong consistency and asymptotic normality of the resulting

ML estimators of dynamic latent variable models under suitable regularity conditions were

provided by Dunsmuir (1979), who generalised earlier results for Varma models by Dunsmuir

and Hannan (1976). These authors also showed the asymptotic equivalence between time and

frequency domain ML estimators.6 In addition, they explicitly acknowledged the possibility

that the normality assumption does not hold, in which case the criterion function (5) must be

understood as a pseudo log-likelihood.7

Appendix C provides detailed expressions for the Jacobian of vec [Gyy(�)] and the spectral

score of dynamic factor models, while appendix E includes numerically reliable and e¢ cient

formulae for the information matrix. Those expressions make extensive use of the complex

version of the Woodbury formula in appendix A.

Nevertheless, when N is large the number of parameters is huge, and the direct maximisation

of the log-likelihood function becomes excruciatingly slow, especially without good initial values.

For that reason, in section 4 we derive a much faster alternative to obtain MLEs of all the model

parameters based on the EM algorithm. But �rst, we propose a very fast iterated indirect

inference procedure asymptotically equivalent to ML for estimating the parameters of univariate

Arma models, which will provide a very useful complement to the EM algorithm.

3 Indirect inference estimation of ARMA models

3.1 Pure MA terms

Consider the following Ma(1) model

xt = ft � �ft�1; j�j < 1; ftjxt�1; xt�2; : : : � N(0; 1)

The simplest consistent estimator of � is an indirect inference (II) one based on the misspeci�ed

Ar(1) auxiliary model

xt = �xt�1 + "t; "tjxt�1; xt�2; : : : � N(0; 1)

6This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see
Choudhuri, Ghosal and Roy (2004)).

7See also Quah and Sargent (1993) for a least squares projection interpretation of the EM algorithm under
non-normality
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(see e.g. Gouriéroux, Monfort and Renault (1993), Chumacero (2001) or Ghysels, Khalaf and

Vodounou (2003)). This estimator is equivalent to the GMM estimator of � based on

E[mt(�)j�] = 0; mt(�) =

�
xt +

�

1 + �2
xt�1

�
xt�1;

which coincides with the score of the Ar(1) parameter � evaluated at the binding function

�(�) = � �

1 + �2
:

We could increase the e¢ ciency with which we estimate � by II if we considered higher

order Ar(k) models for k � 2. Unfortunately, for any �nite order k those II estimators of �

are generally ine¢ cient relative to the ML estimator, which is e¤ectively based on the moment

condition

E[st(�)j�] = 0; st(�) = [xt � �t(�)]
@�t(�)

@�
;

where

�t(�) = E(xtjxt�1; xt�2; : : : ;�) = �
1X
j=1

�jxt�j = �
�L

1� �Lxt

is the conditional mean of xt given its past under the maintained assumption that the Ma(1)

process is invertible.

At �rst sight, it would appear that this highly non-linear estimator cannot be obtained by

applying OLS to some auxiliary linear autoregressive model, but appearances can sometimes be

misleading. De�ne

ft(�) = xt � �t(�) =
1X
j=0

�jxt�j =
1

1� �Lxt

as the �innovations�in xt. Similarly, let us use the shorthand notation

wt(�) = �
@�t+1(�)

@�
=

1X
j=0

(j + 1)�jxt�j =
1

(1� �L)2xt:

We know that at the true value of �, say �0, ft(�0) will be white noise while wt(�0) will be

an Ar(1). In addition, it is easy to see that

wt(�) =
1

1� �Lft(�)

so that

ft(�) = wt(�)� �wt�1(�):

Therefore, we can re-write the score of the Ma(1) model as

st(�) = �[wt(�)� �wt�1(�)]wt�1(�);

which coincides with the (minus) score of an Ar(1) model for w(�).

10



This regression is infeasible, but we can compute ��T as the OLS estimator in the regression of

wt(��T ) on wt�1(��T ), where ��T is the II estimator of � based on the misspeci�ed Ar(1) auxiliary

model for xt.

Unfortunately, ��T is even less e¢ cient than ��T . Nevertheless, we can optimally combine

those two di¤erent consistent but ine¢ cient II estimators. Speci�cally, we can easily prove

that ~�T = 2��T � ��T is the outcome of a Gauss-Newton iteration, and therefore asymptotically

equivalent to the ML estimator. In fact, it is possible to iterate the above procedure and obtain

a new estimator ��1T by regressing wt(~�T ) on wt�1(~�T ), which preserves asymptotic e¢ ciency.

The �xed point of these iterations is the ML estimator.

It turns out that Hannan (1969) proposed a simple iterative frequency domain procedure,

which is e¤ectively identical to the iterated indirect inference procedure we have just discussed.

3.2 Mixed models

Let us now consider the extension of our iterated II procedure to the Arma(1,1) model

xt = �xt�1 + ft � �ft�1; j�j; j�j < 1; ftjxt�1; xt�2; : : : � N(0; 1)

The simplest consistent estimator of � and � is an indirect inference one based on the misspeci�ed

Ar(2) auxiliary model

xt = �1xt�1 + �2xt�2 + wt; wtjxt�1; xt�2; : : : � N(0; 1)

(see again Chumacero (2001)). This estimator is asymptotically equivalent to the GMM esti-

mator of � and � based on the moment conditions

E[mt(�; �)j�; �] = 0;

m1t(�; �) =

�
xt �

(�� �)(1� ��)
1� �2 xt�1

�
xt�1;

m2t(�; �) =

�
xt �

�(�� �)(1� ��)
1� �2 xt�2

�
xt�2:

The exactly identi�ed nature of these moment conditions implies that the indirect inference

estimator of � will coincide with the ratio of the second to the �rst autocorrelation of xt, which

is always between -1 and 1. As for the indirect inference estimator of �, we can obtain it from

the �rst moment condition if we keep � �xed at its indirect inference value. In large samples,

this procedure is e¤ectively identical to the indirect inference estimator of � described in the

previous section obtained by �tting an Ar(1) model to the �ltered series �t(�) = xt � �xt�1.

Once again, we could increase the e¢ ciency with which we estimate � and � if we considered

higher orderAr(k) models. Unfortunately, for any �nite order k those II estimators are generally

11



ine¢ cient relative to the ML estimator, which is e¤ectively based on the moment conditions

E[st(�)j�] = 0;

s�t(�; �) = [xt � �t(�)]
@�t(�; �)

@�
;

s�t(�; �) = [xt � �t(�)]
@�t(�; �)

@�

where

�t(�; �) = E(xtjxt�1; xt�2; : : : ;�; �) = (�� �)
1X
j=1

�j�1xt�j =
(�� �)L
1� �L xt

This highly non-linear estimator can also be related to a couple of auxiliary linear autore-

gressive models. Speci�cally, de�ne

ft(�; �) = xt � �t(�; �) =
1� �L
1� �Lxt

as the �innovations�in xt. Similarly, let us use the shorthand notation

rt(�) =
@�t+1(�; �)

@�
=

1

(1� �L)xt

wt(�; �) = �@�t+1(�; �)
@�

=
(1� �L)
(1� �L)2xt:

Then it is easy to see that

s�t(�; �) = [rt(�)� �rt�1(�)]rt�1(�)

s�t(�; �) = �[wt(�; �)� �wt�1(�; �)]wt�1(�; �)

so that we can estimate � for given � from the autoregression of rt(�) and � for given � from

the autoregression of wt(�; �). Again, these alternative indirect inference estimators will be

ine¢ cient when the unknown Arma parameters are replaced by the indirect inference estimators

��T and ��T based on the misspeci�ed Ar(2) auxiliary model for xt, but we can combine them

by means of a Gauss-Newton iteration of the form�
~�T
~�T

�
=

�
��T
��T

�
+

(
1

T

TX
t=1

�
r2t�1(

��T ) �rt�1(��T )wt�1(��T ; ��T )
�rt�1(��T )wt�1(��T ; ��T ) w2t�1(��T ;

��T )

�)�1

� 1
T

TX
t=1

�
rt�1(��T )ft(��T ; ��T )

�wt�1(��T ; ��T )ft(��T ; ��T )

�
:

Once again, it is possible to iterate the above procedure while preserving asymptotic e¢ ciency,

the �xed point of these iterations being the ML estimator.

Analogous procedures apply to general Arma(p,q) models8 if we de�ne

ft(�;�) =
�x(L)

�x(L)
xt; rt(�) =

1

�x(L)
xt; wt(�;�) =

�x(L)

�2x(L)
xt:

8The stationarity and strict invertibility of the estimated Ar and Ma polynomials in high order models could
be achieved by reparametrising them in terms of partial autocorrelations, as in Barndor¤-Nielsen and Schou
(1973).
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Importantly, the variances, autocovariances and cross-covariances of the di¤erent �ltered series

can be computed much faster in the frequency domain than in the time domain, which makes

these iterated indirect inference estimators an ideal match to our spectral estimation techniques

(see again Hannan (1969)).

3.3 Computational gains of the iterated indirect inference procedure

To assess the performance of our iterated II procedure, we have generated 2,000 samples

of 300 observations each (plus 50 initial ones) of univariate Gaussian Arma(1,1) models with

autoregressive parameter � = :95 and three possible values for the moving average parameter �:

�:5; :5 and :7. The �rst design roughly corresponds to the parameter estimates for the common

factor in the empirical application in section 5, while the second one is typical of many observed

time series. The last design, in turn, captures those situations in which the autocorrelations are

small, but they decay rather slowly to 0. For scaling purposes but without loss of generality,

we choose the true value of �2f to be 1, and estimate this parameter in closed- form from the

spectral version of the zero order autocovariance of ft(�; �) evaluated at the II estimates.

We use a frequency domain version of the GMM procedure described in the previous section

to generate starting values. As a benchmark, we consider the direct maximisation of the spectral

log-likelihood function with respect to �, � and �2f using the Quasi Newton (QN) procedure

in matlab�s fmincon routine with analytical �rst derivatives and the spectral estimator of

the information matrix in lieu of the Hessian. The convergence criterion for our iterated II

procedure is that the L1 norm of the parameter changes be less than 10�5, with a maximum of

100 iterations. Finally, we also look at several procedures that only carry out a �xed number of

II iterations.9

The three panels of Table 1 present medians and interquartile ranges (IQR) across replica-

tions for those di¤erent estimators. As can be seen, the e¢ ciency gains increase at a decreasing

rate as the number of II iterations increases, despite the fact that all estimators other than

the GMM procedure are asymptotically equivalent up to �rst order. In fact, only a handful of

iterations seem to be necessary to achieve full e¢ ciency, except in the case in which the Ma

root is close to the Ar one.

The ranking is completely reversed in terms of computational speed. In particular, our

proposed iterated II procedure is an order of magnitude faster than the QN algorithm. Although

this is unlikely to make much of a di¤erence for observed series, it becomes crucial when O(N+1)

such maximisations are required at each stage of the EM algorithm we describe next.

9We also considered mixed procedures that switch to QN after a �xed number of II iterations, but given that
they typically converge to the same estimates as the direct ML procedure after giving up most of the computational
gains, we do not discuss them separately.
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4 Spectral EM algorithm

As we mentioned in the introduction, the EM algorithm in Dempster, Laird and Rubin

(1977) adapted to static factor models by Rubin and Thayer (1982) was successfully employed

to handle a very large dataset of stock returns by Lehmann and Modest (1988). Shumway

and Sto¤er (1982), Watson and Engle (1983) and Quah and Sargent (1993) also applied the

algorithm in the time domain to dynamic factor models and some generalisations, but they

restricted common and speci�c factors to follow low order Ar processes.

We saw before that the spectral density matrix of a dynamic single factor model has the

structure of the unconditional covariance matrix of a static factor model, but with di¤erent

common and idiosyncratic variances for each frequency. Demos and Sentana (1998) applied

a time domain version of the EM algorithm to conditionally heteroskedastic factor models in

which the common factors followedGarch-type processes. We could easily adapt their algorithm

to models with white noise idiosyncratic factors and contemporaneous e¤ects of the common

factors on the observed variables if we replaced the subscript t for time with the subscript j

for frequency. However, since we want to consider more complex models, we need to do some

additional algebra.

4.1 Complete log-likelihood function

Consider a situation in which the common factor xt was also observed. The joint spectral

density of yt and xt, which is given by�
Gyy(�) Gyx(�)
G�
yx(�) Gxx(�)

�
=

�
c(e�i�)Gxx(�)c0(ei�) +Guu(�) c(e�i�)Gxx(�)

Gxx(�)c
0(ei�) Gxx(�)

�
;

could be diagonalised as�
IN c(e�i�)
0 1

� �
Guu(�) 0
0 Gxx(�)

� �
IN 0

c0(ei�) 1

�
;

with ����� IN 0
c0(ei�) 1

����� = 1
and �

IN 0
c0(ei�) 1

��1
=

�
IN 0

�c0(ei�) 1

�
:

Let us de�ne as [Zyjzx] as the Fourier transform of the T � (N +1) matrix [y1; : : : ;yN ;x] =

[Yjx] so that the joint periodogram of yt and xt at frequency �j could be quickly computed as

2�

�
zyj
zxj

��
zy�j zx�j

�
;
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where we have implicitly assumed that either the elements of y have zero mean, or else that

they have been previously demeaned by subtracting their sample averages.

In this notation, the spectral approximation to the joint log-likelihood function would become

l(y; x) = �(N + 1)T

2
ln(2�)� 1

2

T�1X
j=0

ln

����� Gyy(�) Gyx(�j)
G�
yx(�j) Gxx(�j)

�����
�2�
2

T�1X
j=0

�
zy�j zx�j

� � IN 0
�c0(ei�j ) 1

� �
G�1
uu(�j) 0
0 G�1xx (�j)

� �
IN c(e�i�j )
0 1

��
zyj
zxj

�

= �NT
2
ln(2�)� 1

2

T�1X
j=0

ln jGuu(�j)j �
2�

2

T�1X
j=0

zu�j G
�1
uu(�j)z

u
j

�T
2
ln(2�)� 1

2

T�1X
j=0

ln jGxx(�j)j �
2�

2

T�1X
j=0

G�1xx (�j)z
x
j z
x�
j

=

NX
i=1

24�T
2
ln(2�)� 1

2

T�1X
j=0

ln jGuiui(�j)j �
2�

2

T�1X
j=0

G�1uiui(�j)z
ui
j z

ui�
j

35 (8)

�T
2
ln(2�)� 1

2

T�1X
j=0

ln jGxx(�j)j �
2�

2

T�1X
j=0

G�1xx (�j)z
x
j z
x�
j (9)

=
NX
i=1

l(yijx) + l(x) = l(Yjx) + l(x);

where10

zuij = zyij � ci(e
�i�j )zxj = zyij �

nX
k=�m

ci;ke
�ik�zxj ; (10)

so that

zuij z
ui�
j = zyij z

yi�
j � ci(e�i�j )zxj z

yi�
j � ci(ei�j )zyij z

x�
j + ci(e

�i�j )ci(e
i�j )zxj z

x�
j

= Iyiyi(�j)� ci(e�i�j )Ixyi(�j)� ci(ei�j )Iyix(�j) + ci(e�i�j )ci(ei�j )Ixx(�j) = Iuiui(�j):

In this way, we have decomposed the joint log-likelihood function of y1; : : : ;yN and x as the

sum of the marginal log-likelihood of x in (9) and the log-likelihood function of y1; : : : ;yN given

x, l(Yjx), which in turn can be decomposed as the sum of N univariate components in (8) by

exploiting the diagonality of Guu(�j).

Importantly, these expressions can be computed using real arithmetic only since

ci(e
�i�j )Ixyi(�j) + ci(e

i�j )Iyix(�j) = 2<
h
ci(e

�i�j )Ixyi(�j)
i

and

ci(e
�i�j )ci(e

i�j )Ixx(�j) =



ci(e�i�j )


2 Ixx(�j):

Let us classify the parameters into three blocks:
10We could have expressed those log-likelihood in terms of Ixx(�j) = zxj z

x�
j , Iuu(�) = z

u
j z

u�
j and Iux(�) = z

u
j z

x�
j ,

but for the EM algorithm it is more convenient to work with the underlying complex random variables.
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1. the parameters that characterise the spectral density of xt : �x,

2. the parameters that characterise the spectral density of ut :  = ( 1; : : : ;  N )
0 and

�u = (�
0
ui ; ; : : : ;�

0
uN
)0

3. the parameters that characterise the dynamic idiosyncratic impact of the common factors

on each observed variable: c = (c01�; : : : ; c
0
i�; : : : ; c

0
N �)

0, where c0i� = (ci;�m; : : : ; ci;0; : : : ; ci;n).

Importantly, �x only appear in (9) while �u and c appear in (8). This sequential cut on the

joint spectral density con�rms that zx and therefore xt would be weakly exogenous for  , �u

and c (see Engle, Hendry and Richard (1983)). Moreover, the fact that ft is uncorrelated at all

leads and lags with vt implies that xt would be strongly exogenous too.

We can also exploit the aforementioned log-likelihood decomposition to obtain the score of

the complete log-likelihood function. In this way, we can write

@l(Y;x)

@�x
=
@l(x)

@�x
=
1

2

T�1X
j=0

@Gxx(�j)

@�x
G�2xx (�j)

�
2�zxj z

x�
j �Gxx(�j)

�
; (11a)

@l(Y;x)

@�ui
=
@l(yijx)
@�ui

=
1

2

T�1X
j=0

@Guiui(�j)

@�ui
G�2uiui(�j)

h
2�zuij z

ui�
j �Guiui(�j)

i
; (11b)

@l(Y;x)

@ci;k
=
@l(yijx)
@ci;k

=
2�

2

T�1X
j=0

G�1uiui(�j)
h
zuij e

ik�jzx�j + e�ik�jzxj z
ui�
j

i
;

=
2�

2

T�1X
j=0

G�1uiui(�j)

" 
zyij -

nX
l=�m

ci;le
�il�zxj

!
eik�jzx�j +e

�ik�jzxj

 
zyi�j -

nX
l=�m

ci;le
il�zx�j

!#
; (11c)

where we have used the fact that
@zuij
@ci;k

= �e�ik�zxj

in view of (10).

Expression (11a) con�rms that the MLE of �x would be obtained from the marginal log-

likelihood of xt. In models with pure Ar processes, such as the one discussed in appendix F

or in Fiorentini, Galesi and Sentana (2016), one could easily obtain closed form expressions for

the estimators. However, there are no closed form solutions for models with Ma components

because Gxx(�j) also depends on �x, so in principle we would have to resort to the numerical

optimisation of (9). In this context, the swift iterated indirect inference procedures in section 3

would prove very useful because they are asymptotically equivalent to ML.

Analogous comments apply to the dynamic parameters that appear in �ui for a given value

of ci� in view of (11b).

Finally, (11c) would allow us to obtain the ML estimators of ci� for given values of �ui . In

particular, if we write together the derivatives for ci;k for k = �m; : : : ; 0; : : : ; n we end up with
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the �weighted�normal equations:

T�1X
j=0

264G�1uiui(�j)
0B@ eim�jzxj z

x�
j e

�im�j + eim�jzxj z
x�
j e

�im�j : : :
...

. . .
eim�jzxj z

x�
j e

in�j + e�in�jzxj z
x�
j e

�im�j : : :

e�in�jzxj z
x�
j e

�im�j + eim�jzxj z
x�
j e

in�j

...
e�in�jzxj z

x�
j e

in�j + e�in�jzxj z
x�
j e

in�j

1CA
375
0B@ ~ci;�m

...
~ci;n

1CA
=
T�1X
j=0

G�1uiui(�j)

0B@ zyij z
x�
j e

�im�j + zyi�j zxj e
im�j

...
zyij z

x�
j e

in�j + zyi�j zxj e
�in�j

1CA :

Thus, unrestricted MLE�s of c for given values of �ui could be obtained from N univariate

distributed lag weighted least squares regressions of each yit on xt that take into account the

residual serial correlation in uit. Interestingly, given that Guiui(�j) is real, the above system of

equations would not involve complex arithmetic. In addition, the terms in  i would cancel, so

the WLS procedure would only depend on the dynamic elements in �ui .

We could then carry out a zig-zag procedure that would estimate ci� and  i for given �ui ,

and then �ui for a given ci� and  i. This would represent the spectral analogue to the Cochrane-

Orcutt (1949) procedure. Obviously, iterations would be unnecessary when Guu(�j) is in fact

constant, so that the idiosyncratic terms are static, in which case the equations could be written

in terms of the elements of the covariance and �rst autocovariance matrices of yt and xt.

Unfortunately, we would have to resort once again to numerical optimisation in models with

Ma components, which would be far more taxing than in the case of the common factor because

there would beN such optimisations at each Cochrane-Orcutt iteration. Once again, the iterated

indirect inference procedures in section 3 would also prove very useful in this context.

4.2 Expected log-likelihood function

In practice, of course, we do not observe xt. Nevertheless, the EM algorithm can be used to

obtain values for � as close to the optimum as desired. At each iteration, the EM algorithm max-

imises the expected value of l(y1; : : : ;yN jx) + l(x) conditional on Y and the current parameter

estimates, �(n). The rationale stems from the fact that l(y1; : : : ;yN ;x) can also be factorized

as l(y1; : : : ;yN ) + l(xjy1; : : : ;yN ). Since the expected value of the latter, conditional on Y and

�(n), reaches a maximum at � = �(n), any increase in the expected value of l(y1; : : : ;yN ;x)

must represent an increase in l(y1; : : : ;yN ). This is the generalised EM principle.
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In the E step we must compute

E[l(x)jZy;�(n)] = �T
2
ln(2�)� 1

2

T�1X
j=0

ln jGxx(�j)j �
2�

2

T�1X
j=0

G�1xx (�j)E[z
x
j z
x�
j jZy;�(n)];

E[l(yijx)jZy;�(n)] = �T
2
ln(2�)� 1

2

T�1X
j=0

ln jGuiui(�j)j �
2�

2

T�1X
j=0

G�1uiui(�j)E[z
ui
j z

ui�
j jZy;�(n)]:

But

E[zxj z
x�
j jZy;�(n)] = zxKj (�(n))zxK�j (�(n)) + E

n
[zxj � z

xK
j (�(n))][zx�j � zx�j (�(n))]jz

y
j ;�

(n)
o

= I
(n)

xKxK
(�j) + !

(n)(�j);

where

zxKj (�) = E[zxj jZy;�] = Gxx(�j)c
0(ei�j )G�1

yy(�j)z
y
j ;

E
n
[zxj � z

xK
j (�)][zxK�j � zx�j (�)]jZy;�

o
= !(�j);

and

IxKxK (�j) = 2�G2xx(�j)c
0(ei�j )G�1

yy(�j)Iyy(�j)G
�1
yy(�j)c(e

�i�j )

= 2�!2(�j)c
0(ei�j )G�1

uu(�j)Iyy(�j)G
�1
uu(�j)c(e

�i�j ): (12)

is the periodogram of the smoothed values of the common factor.

In turn, if we de�ne

IyxK (�j) = Iyy(�j)G
�1
yy(�j)c(e

�i�j )Gxx(�j) = Iyy(�j)G
�1
uu(�j)c(e

�i�j )!(�j) (13)

as the cross-periodogram between the observed series y and the smoothed values of the common

factor, we will have that

I
(n)
uu (�j) = E[zuj z

u�
j jZy;�(n)] = E

nh
zyj � c(e

�i�j )zxj

i h
zy�j � zx�j c0(ei�j )

i
jZy;�(n)

o
= [zyj � c(e

�i�j )zxKj (�(n))][zy�j � c0(ei�j )zxK�j (�(n))] + c(e�i�j )!(n)(�j)c
0(ei�j )

= Iyy(�j)� I(n)yxK (�j)c
0(ei�j )� c(e�i�j )I(n)

xKy
(�j) + c(e

�i�j )[I
(n)

xKxK
(�j) + !

(n)(�j)]c
0(ei�j ); (14)

which resembles the expected value of Iuu(�j) but the values at which the expectations are

evaluated are generally di¤erent from the values at which the distributed lags are computed.

For the ith series, this expression reduces to

I(n)uiui(�j) = E[zuij z
ui�
j jZy;�(n)] = [zyij � ci(e

�i�j )zxKj (�(n))][zyi�j � ci(ei�j )zxK�j (�(n))]

+!(n)(�j)ci(e
�i�j )ci(e

i�j )

= Iyiyi(�j)� ci(e�i�j )I
(n)

xKyi
(�j)� I(n)yixK

(�j)ci(e
i�j ) + [I

(n)

xKxK
(�j) + !

(n)(�j)]ci(e
�i�j )ci(e

i�j ):
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Therefore, if we put all these expressions together we end up with

E[l(x)jY;�(n)] = -T
2
ln(2�)-

1

2

T�1X
j=0

ln jGxx(�j)j -
2�

2

T�1X
j=0

G�1xx (�j)
h
I
(n)

xKxK
(�j)+!(n)(�j)

i
; (15)

E[l(yijx)jY;�(n)] = �
T

2
ln(2�)� 1

2

T�1X
j=0

ln jGuiui(�j)j �
2�

2

T�1X
j=0

G�1uiui(�j)I
(n)
uiui(�j): (16)

We can then maximise E[l(x)jY;�(n)] in (15) with respect to �x to update those parameters.

Similarly, we can maximise E[l(yijx)jY;�(n)] in (16) with respect to ci�,  i and �ui to update

those parameters.

In order to conduct those maximisations, we need the scores of the expected log-likelihood

functions.

Given that (15) is obtained from (9) by simply replacing zxj z
x�
j with its conditional expected

value I(n)
xKxK

(�j) + !
(n)(�j), it is easy to see that

@E[l(x)jY;�(n)]
@�x

=
1

2

T�1X
j=0

@Gxx(�j)

@�x
G�2xx (�j)

n
2�
h
I
(n)

xKxK
(�j) + !

(n)(�j)
i
�Gxx(�j)

o
;

which, not surprisingly, coincides with the the expected value of (11a) given Y and the current

parameter estimates, �(n).

It is also straightforward to modify the indirect inference procedures discussed in section 3

to handle models with Arma terms if we replace the periodogram of the common factor by its

expected value given observables, which coincides with sum of the periodogram of the smoothed

values of the factor and its estimation error. Those periodograms can be obtained in no time in

the E step of the algorithm from the minimal �su¢ cient statistics�discussed in appendix B.

Similar expressions would apply to the dynamic parameters that appear in �ui and  i for a

given value of ci�.

Finally, the derivatives of (16) with respect to ci;k for k = �m; : : : ; 0; : : : ; n for �xed values

of �ui will give rise to the modi�ed �weighted�normal equations:
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Once again, we suggest a zig-zag procedure that estimates ci� and  i for given �ui and �ui

for a given ci� and  i, although it is not clear that we really need to fully maximise the expected

log-likelihood function at each EM iteration since the generalised EM principle simply requires

us to increase it. Obviously, such iterations would be unnecessary when the idiosyncratic terms

are static.

4.3 The EM algorithm in practice

Taking into account the theoretical results obtained in the previous sections, the step by step

spectral EM algorithm combined with the iterated indirect inference procedure can be described

as follows:

Preliminary steps

� Choose some arbitrary initial values for the parameters �(0)x ; (0);�
(0)
u ; c(0).

� Select the number of EM iterations M:

� Select the number of zig-zag iterations Z for the spectral Cochrane-Orcutt estimator.

� Select the maximum number of Indirect Inference iterations Q, as well as a convergence

tolerance �.

� Set n=0.

EM algorithm

1. Compute I(n)
xKxK

and !(n) using expressions (12) and (A1), respectively (E-step).

2. Treat I(n)
xKxK

+ !(n) as if it were the periodogram of the observed data and iterate the

indirect inference procedure in section 3 until the number of iterations is equal to Q or the

norm of the change in the parameters is less than �. Store the results into �(n+1)x (M-step).

3. Compute �rst I(n)
yxK

and then I(n)uu using expressions (13) and (14), respectively (E-step).

4. Perform Z iterations of the zig-zag procedure in the following way (M-step).

(a) Treat each element I(n)uiui of the diagonal of I
(n)
uu as if it were the periodogram of an

observed univariate series and perform the iterated indirect inference procedure in

section 3 until the number of iterations is equal to Q or the norm of the change in

the parameters is less than �. Store the results into  (n+1)i and �(n+1)ui .

(b) For the given value of �(n+1)ui solve the modi�ed linear system of normal equations in

Section 4.2 to obtain c(n+1)i .
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(c) Repeat (a) and (b) Z times.

5. if n �M stop, else n = n+ 1 and go to 1.

4.4 Convergence properties of the EM algorithm

To assess the speed and convergence properties of our proposed spectral EM algorithm,

we have generated 100 samples of size N = 10 and T = 300 from a generalised version

of the dynamic factor model in (F8) in which both common and idiosyncratic factors follow

Arma(1,1) processes with autoregressive parameters �x = �i = :95 and moving average para-

meters �x = �:5 and �i = :5; i = 1; : : : ; N . These values correspond to the ones considered in

section 3.3 that most closely resemble those found in the empirical application described in sec-

tion 5. Note that the presence of Ma components prevents the use of the time domain versions

of the EM algorithm mentioned in the introduction. As for the factor loadings, we introduce

some heterogeneity by assuming that they are c0 = (1; 2; 0:5; 1:5; 1:5; 0:5; 2; :5; 1:5; 1:5)0 and c1 =

(1; 0:5; 1:5; 0:5; 1:5; 0:5; 0:5; 1:5; 1:5; 2)0. Finally, we also allow for di¤erent variances for the idio-

syncratic innovations. Speci�cally, we consider 
 = (1:5; 0:5; 1:5; 0:5; 1:5; 0:5; 1:5; 0:5; 1:5; 0:5)0,

which leads to widely di¤erent signal to noise ratios across series.

We carry out two Cochrane-Orcutt iterations only within each EM iteration. Similarly,

for each univariate Arma-type maximisation we use the same convergence L1 criterion as in

section 3.3 with a maximum of �ve II iterations. As starting values, we assume unit loadings

on the contemporaneous and lagged values of the common factor, unit speci�c variances, and

all autoregressive and moving average coe¢ cients set to 0.5 and 0.1, respectively. These initial

values are far away from the true parameters.

We attempt to reproduce the likely behaviour of empirical researchers by capping the number

of EM iterations to 300. As in section 3.3, we also consider as benchmark the direct maximisation

of the spectral log-likelihood function using the QN procedure in matlab�s fmincon routine with

the analytical �rst derivatives in appendix C and the spectral estimator of the information matrix

in appendix E in lieu of the Hessian. Finally, we also look at two combined procedures that

switch to QN after either 5 or 10 EM iterations. For completeness, we also look at the values of

the log-likelihood at those switching points, as well as the ratio of the L2 norm of the di¤erences

between the initial values and the values of the parameters at that point to the L2 norm of the

di¤erences between initial and �nal values. Such a measure gives us a precise indication of the

ground covered by the EM algorithm after a �xed number of iterations.

The results are described in Table 2 based on 99 Monte Carlo replications.11 Given the

11 In the remaining replication, the mixed procedures converged to a local maximum with a lower value for the
log-likelihood than the one achieved by the EM algorithm after 5,000 iterations, which in turn coincided with the
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persistence in the common factor, we re-normalise the results so that c01 = 1, replacing this

parameter with the variance of the innovations in the common factor, ft. As can be seen, 300

iterations of the EM algorithm are almost as costly in terms of CPU as the direct maximisation

of the spectral log-likelihood. They also fail to reach the maximum, although they get very close.

However, a signi�cant fraction of the gains in �t are achieved after just a few iterations. For

that reason, the mixed methods, which converge to the maximum roughly twice as fast, provide

a very good compromise. In that regard, switching after ten EM iterations slightly dominates

doing so after �ve.

Ideally, we would like to repeat this exercise with a larger cross-sectional dimension N , but

the computational cost of a Monte Carlo exercise involving the QN method becomes prohibitive.

Nevertheless, we conjecture that the optimal number of EM iterations conducted before switch-

ing to the direct maximisation of the log-likelihood function is an increasing function of N .

Figure 1 illustrates a typical example of our Monte Carlo results with ten series, while Figure

2 corresponds to a model with one hundred series, with a design which is a tenfold replica of

the one described in the �rst paragraph of this section. Remarkably, the �rst iteration of the

EM yields a massive increase in the log-likelihood function in both cases. In addition, successive

iterations also provide noticeable gains. As expected, though, the algorithm slows down con-

siderably as we approach the optimum. Reassuringly, though, if we conduct a su¢ ciently large

number of iterations, the value of the estimated parameters coincides with the estimates ob-

tained by maximising the marginal log-likelihood function directly using the method of scoring

with analytical expressions for the score and information matrix.

4.5 E¢ ciency gains of modelling the common factors�ARMA processes

Dynamic factor models with Arma(p,q) processes for the common factors may alternatively

be written as models with simpler Ar(p) common factors by replacing the dynamic loadings

polynomials ci(L) with c�i (L) = ci(L)�x(L); i = 1; : : : ; N (see the end of section 2.1 for a more

general discussion). Therefore, one might argue that the indirect procedures described in section

3 are unnecessary, at least as far as the common factors are concerned. However, by ignoring the

commonality of �x(L), the number of parameters that must be estimated increases in proportion

to the number of series, which in turn may lead to substantial e¢ ciency losses.

To assess the extent to which this potential e¢ ciency loss is relevant in practice, we have

conducted two Monte Carlo experiments with a very simple exchangeable design with 300 ob-

servations for 10 and 80 series, in which the only dynamic feature is the serial correlation of the

common factor. Speci�cally, we assume that xt follows an Arma(1,1) process with parameters

value yielded by the QN method.
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� = :95 and � = :5, and all the factor loadings and idiosyncratic variances are equal to 1. We

then estimate two observationally equivalent versions of this dynamic factor model. In the �rst

one, xt explicitly contains a �rst-order Ma component, which forces us to employ our proposed

iterated indirect inference procedure. In the second version, in contrast, we model the common

factor as an Ar(1) process, but add an additional lag in the dynamic loadings of each series.

Nevertheless, the static nature of the idiosyncratic terms together with the pure autoregressive

nature of the common factor imply that our proposed EM algorithm is able to estimate this

alternative model very quickly even for large values of N without resorting to indirect inference

or Cochrane-Orcutt iterations.

We assess the di¤erences between the two procedures by looking at the MSE in estimating

(i) the white noise innovations in the common factor and (ii) the common component for each

series, which we compute as the di¤erence between the observed series and the estimate of its

idiosyncratic terms. Since both these quantities are common to the two representations of the

dynamic factor model when evaluated at the true parameter values, their di¤erences only re�ects

the sampling variability in the ML estimators (see Ansley and Kohn (1986)). Our results are

based on 2,000 replications. Importantly, we average the MSE of all the time series observations

except the �rst and last 50, so as to avoid end of sample e¤ects. Further, we average across

series whenever possible to improve the precision of our estimates.

As a benchmark, we can use the fact that at the true values the theoretical MSEs for ft are

.8525 when N = 10 and .6589 when N = 80, while the respective �gures for cixt = yit � uit

are 2.95 and .8528. When we explicitly model the common factor as an Arma(1,1) process, the

MSEs for ft at the ML estimates become .8598 when N = 10 and .6709 when N = 80, so the

e¢ ciency loss resulting from parameter uncertainty is minor. In contrast, when we ignore the

common nature of the Ma polynomial �x(L), those MSEs become 1.0740 (N=10) and 1.0146

(N=80), which are noticeably worse. This deterioration is far more acute if we look at the

common components of the series. In particular, while the MSEs of yit � uit are 3.7278 for

N = 10 and 1.5596 for N = 80 when we explicitly model the common factor as an Arma(1,1)

process, they become 6.0188 (N=10) and 3.0534 (N=80), implying deteriorations of 104.4% and

252.4% in the precision with which we estimate those components.

These results are due to a substantial e¢ ciency loss in the estimators of the model parameters,

and in particular in the factor loadings. Speci�cally, the interquartile range in the estimates of

a typical contemporaneous loading ci0 goes from .26 to 1.98 when N = 10 and from .31 to 3.10

when N = 80, while the corresponding �gures for the implied dynamic loadings are .23 versus

1.98 (N=10) and .24 versus 3.10 (N=80). Moreover, the median biases are also noticeably

larger. In contrast, the e¤ect on the idiosyncratic variances and especially the Ar parameter of
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the common factor is much lower. Therefore, we can safely conclude that ignoring the common

Ma roots for the purposes of avoiding our iterated indirect inference procedures is not advisable,

especially if the cross-sectional dimension is reasonably large.

5 Common dynamics in sectoral employment

5.1 Dynamic factor models in practice

There is a long tradition of analysing comovements of sectoral activity indicators (see for

example Abraham and Katz (1986), Lilien (1982) or Rogerson (1987)). In this context, dynamic

factor models have proved useful in assessing the extent to which observed �uctuations in sectoral

aggregates are accounted for by common sources of variation. In their seminal paper, Quah and

Sargent (1993) studied the behavior of annual employment series across sixty US industries over

the period 1948-1989. They found that the bulk of the time variation of the di¤erent sectors was

explained by a common factor, and that their estimated measure of �business activity�captured

aggregate dynamics in sectoral employment very well.

Motivated by their results, we downloaded employment series from the Bureau of Labor

Statistics corresponding to the 81 NAICS 3-digit sectors, measured at monthly frequency and

seasonally adjusted, for the period 1990M1-2014M4, which was the longest available (see Table

3 for the list of sectors). We decided to work with (annualised) growth rates for T = 291

months in view of the overwhelming evidence that the (log) levels of those employment series

are nonstationary.12

Since our latent factor is meant to capture the common source of variation across sectoral

employment growth rates, we followed Quah and Sargent (1993) and considered a dynamic

single factor model. In order to determine the dynamic speci�cation of common and speci�c

factors, as well as the dynamic impact of the former on each sectoral series, we carried out some

preliminary empirical analysis. Given that one can expect total nonfarm employment to provide

an imperfect proxy for the latent variable, we �tted univariate Arma models of various orders

to the (geometric) rate of growth of this observed series. We found that an Arma(1,1) yields the

best �t according to both the Schwartz and Akaike criteria. Next we regressed the demeaned

changes of employment on the demeaned contemporaneous and one-month lagged changes of

total nonfarm employment. We found that the coe¢ cients associated to the lagged changes were

signi�cantly di¤erent from zero for a sizeable fraction of the series, which strongly suggests that

the sector-speci�c employment growth rates may be driven not only by the contemporaneous

12A preliminary check on data quality indicated that a handful of series display abnormal values. We treated
them as additive outliers in the (log) levels and replaced them by the average of the adjacent observations, which
is a simple �lter that is nevertheless optimal under the random walk hypothesis.
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value of the latent factor but also by its one-month lagged values. In addition, we conducted

LM tests for �rst- and second-order residual autocorrelation to assess whether the idiosyncratic

disturbances are likely to be serially correlated. We found that roughly 2/3 of the series require

serially correlated idiosyncratic terms.

In view of those �ndings, we began by estimating a special case of model (F8) in which both

xt and xt�1 heterogeneously a¤ect each of the sectoral growth rates, xt follows an Arma(1,1)

process while the idiosyncratic terms uit follow simple Ar(1)�s. Individual tests for H0 : �i = 0

indicated that there are 35 series for which the white noise hypothesis is not rejected,13 which we

decided to impose thenceforth. For the remaining 46 series we jointly tested the null of Ar(1)

against Arma(1,1) speci�c factors, the likelihood ratio statistic taking the extremely signi�cant

value of 1369.9.14

Estimation of the �nal model with 46 Arma(1,1) and 35 white noise idiosyncratic processes

was conducted by means of the EM algorithm using the iterated indirect procedure discussed in

previous sections. As starting values, we assumed again unit loadings on the contemporaneous

and lagged values of the common factor, unit speci�c variances, and autoregressive and moving

average coe¢ cients set 0.5 and 0.1, respectively, for both common and idiosyncratic factors. As

expected, the direct maximisation of the log-likelihood function in (5) starting from the same

starting values failed to converge.

In order to speed up the EM iterations, we conducted �ve Cochrane-Orcutt iterations only

instead of continuing until convergence. Despite the hundreds of parameters involved, this

procedure worked very well to begin with. Eventually, though, the norm of the gradients cor-

responding to the idiosyncratic parameters of three series reached a positive lower bound. A

careful inspection suggested that the corresponding Ar and Ma coe¢ cients were probably too

close to each other, and the resulting quasi cancellations slowed down our iterated indirect in-

ference procedure, as predicted by the Monte Carlo results in section 3.3. For that reason, we

switched at that point to an alternative, slower version of the EM algorithm that relied instead in

the direct maximisation of the expected log-likelihood function in (16) using a scoring algorithm

with analytical derivatives and information matrix. Although the estimated parameters did not

change much, the log-likelihood function improved slightly and the norm of the gradients went

down all the way to 0. Finally, we computed standard errors of the parameter estimators using

the analytical expressions for the information matrix in appendix E. The estimation results are

reported in Tables 4 and 5.

13The series are: 5 8 18 19 22 23 26 28 32 34 35 36 37 38 39 40 41 43 45 47 48 51 54 58 62 63 65 66 70 71 73
75 77 79 81, which by and large coincide with the LM tests computed for the total nonfarm regressions.
14See Fiorentini and Sentana (2013) for computationally simple and intuitive individual and joint LM tests for

neglected serial correlation in common and speci�c factors.
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As is well known, the usual Wiener-Kolmogorov �lter can lead to �ltering distortions at

both ends of the sample. For that reason, we wrote the model in state-space form and applied

the Kalman �lter in the time domain with exact initial conditions derived from the stationary

distribution of the 165 state variables (3 for the common factor and 2 for each of the idiosyn-

cratic ones; see appendix G for details).15 Given that the standard �xed interval smoother was

numerically unstable with such a big state vector, we used the modi�ed Bryson-Frazier smoother

instead (see Bierman (1977)). In Figure 3 we benchmark our procedure by plotting the yearly

growth rate of our estimated employment factor (solid blue line) and the total nonfarm em-

ployment (red dashed line). Importantly, our smoothed factor is remarkably close to the actual

growth rate of aggregate employment, especially during recession phases, such as in 1991, 2001,

and 2009, although it is unsurprisingly smoother than the observed series.

5.2 Comparison with semiparametric approaches

One potential drawback of our parametric procedure is that it might yield misleading re-

sults if the dynamic factor model speci�cation is incorrect. Although the testing procedures in

Fiorentini and Sentana (2016b) are designed to detect those situations, the �ltered estimates of

the state variables are likely to be heavily in�uenced by the dynamic speci�cation of the model

when N is relatively small.

As we mentioned in the introduction, an alternative possibility is to resort to non-parametric

procedures, which impose much less structure on the spectral density matrix.

Conceptually, the simplest such procedure is the spectral version of principal components

put forward by Brillinger (1981, ch. 9). The idea is to create a linear combination of the Fourier

components of the observed series at a �nite number of frequencies, with weights given by

p1(�), which is the eigenvector associated to the largest eigenvalue of a standard non-parametric

estimate of the spectral density matrix of yt at the same frequency. The resulting spectral series

is then transformed to the time domain by means of the inverse Fourier transform. We use the

BUSY software developed by Fiorentini and Planas (2003), which in turn follows Forni, Hallin,

Lippi and Reichlin (2000) (FHLR) in the choice of frequencies and non-parametric spectral

estimator.

Unfortunately, the fact that we can multiply complex eigenvectors by a complex number on

the unit circle without altering its scale implies that we can arbitrarily phase shift the spectral

principal component di¤erently for di¤erent frequencies. For that reason, we choose the scaling at

15The main di¤erence between the Wiener-Kolmogorov �ltered values, xKtj1, and the Kalman �lter smoothed
values, xKtjT , results from the implicit dependence of the former on a doubly in�nite sequence of past and future
observations. As shown by Fiorentini (1995) and Gómez (1999), though, they can be made numerically identical
by replacing both pre- and post- sample observations by their least squares projections onto the linear span of
the sample observations.
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each frequency in such a way that the principal component is in phase with the actual growth rate

of aggregate employment. We do so by dividing p1(�) by p�1(�)fye(�)=jp�1(�)fye(�)j, where fye(�)

is the cross-spectral density between the rates of growth of the 80 sectoral employment series

and non-farm employment, so that the co-spectrum between this re-scaled principal component

and the rate of growth of aggregate employment is frequency-invariant.

FHLR considered an alternative way of constructing an index of comovements. Speci�cally,

they cross-sectionally averaged the component attributable to the common factor for each of

the series by the spectral principal component, which is univocally de�ned regardless of the

normalisation chosen for p1(�). Given the widely di¤erent employment levels across sectors, we

consider a weighted average that re�ects relative sector sizes at each point in time.

The two additional indices are depicted in Figure 4, together with our estimated factor. The

dynamic principal component is the noisiest of the three measures, which is probably due to

the phase normalisation that we have chosen. The FHLR index is also more erratic than the

estimate of the common factor produced by the Kalman �lter smoother, but sometimes it leads

it, providing a more timely indication of turning. This suggests that adding �forward�loadings

to our dynamic factor model constitutes an interesting avenue for research. Overall, though, our

smoothed factor provides a clearer signal, with a slightly higher correlation with total nonfarm

employment.

6 Directions for further work

The spectral EM algorithm developed in the previous sections can be extended in several

interesting directions. One obvious possibility would be models with multiple common factors.

Although this would be intensive in notation, such an extension would be otherwise straightfor-

ward after dealing with identi�cation issues before estimating the model. However, sometimes

it would be necessary to add many common factors to adequately capture the o¤-diagonal ele-

ments of the autocovariance matrices even though the number of pervasive sources of variation is

small. To some extent, this fact explains the success of approximate factor structures. In those

situations in which it is natural to group the N series into R homogeneous blocks, an attractive

alternative solution are bifactor models with two types of factors:

1. Pervasive common factors that a¤ect all N series

2. Block factors that only a¤ect a subset of the series, such as the ones belonging to the same

country or region.
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In Fiorentini, Galesi and Sentana (2016) we explain how to e¢ ciently exploit the sparsity

of the factor loading matrix of bifactor models so that the spectral EM algorithm we propose

in this paper can successfully estimate them by maximum likelihood with a large number of

series from multiple regions. In this regard, it would be convenient to extend our algorithm to

dynamic trifactor models, in which each block has a bifactor structure of its own. Such models

would be particularly well suited to the analysis of international business cycles using a large

set of country speci�c macro variables.

More generally, we could in principle extend our numerical procedures to dynamic factor

structures with non-diagonal idiosyncratic spectral density matrices because in those models

the factorisation of the complete log-likelihood function of observed series and common factors

will still be true. Nevertheless, except in models with contemporaneously correlated, white

noise idiosyncratic terms, we would have to resort to frequency domain versions of multivariate

regressions, whose numerically e¢ cient estimation when N is relatively large deserves further

consideration. For that reason, an extension of the Doz, Giannone and Reichlin (2012) analysis

that looks at the properties of our algorithm and the resulting ML estimators in approximate

factor models in which the cross-sectional dimension is non-negligible relative to the time series

dimension would constitute a very valuable addition. In fact, a very large number of series might

constitute a computational blessing in this framework, the rationale being that for large N the

unobservable factors will be consistently estimated by the Kalman-Wiener-Kolmogorov �lter, so

that the model e¤ectively becomes a multivariate regression model.

Another interesting extension would deal with models in which the heterogeneous dynamic

impact of the common factor on each observed variable, which is characterised by the ci(L)

polynomials, can be represented by the ratio of two low order polynomials (see Hannan (1965)

and Hannan and Nichols (1972) for frequency domain estimators of some rational distributed

lag models when xt is observable).

Finally, it is worth mentioning that although we have exploited some speci�cities of dynamic

factor models, our procedures can be easily extended to most unobserved components time

series processes, and in particular to Ucarima models and the state-space models underlying

the recent nowcasting literature (see Fiorentini and Sentana (2016a) and Banbura, Giannone

and Reichlin (2011), respectively, and the references therein). We are currently pursuing some

of these research avenues.
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Appendices

A The Woodbury formula

Computations can be considerably speeded up by exploiting the Woodbury formula under

the assumption that neither Gxx(�) nor Guu(�) are singular at any frequency (see Sentana

(2000) for a generalisation). Speci�cally, we obtain

jGyy(�)j = jGuu(�)jGxx(�)!(�);

G�1
yy(�) = G�1

uu(�)� !(�)G�1
uu(�)c(e

�i�)c0(ei�)G�1
uu(�);

!(�) = [G�1xx (�) + c
0(ei�)G�1

uu(�)c(e
�i�)]�1: (A1)

The advantage of these expressions is that Guu(�) is a diagonal matrix and !(�) a scalar,

which greatly simpli�es the computations. On this basis, the transfer function of the Wiener-

Kolmogorov common factor smoother becomes

Gxx(�)c
0(ei�)G�1

yy(�) = !(�)c0(ei�)G�1
uu(�);

so

GxKxK (�) = !(�)Gxx(�)c
0(ei�)G�1

uu(�)c(e
�i�) = Gxx(�)� !(�);

where we have used the fact that

!(�)c0(ei�)G�1
uu(�)c(e

�i�) = 1� !(�)G�1xx (�); (A2)

which can be easily proved by dividing both sides by !(�).

Similarly, the transfer function of the Wiener-Kolmogorov speci�c factors smoother will be

Guu(�)G
�1
yy(�) = IN � !(�)c(e�i�)c0(ei�)G�1

uu(�);

so

GuKuK (�) = Guu(�)� !(�)c(e�i�)c0(ei�):

Finally,

GxKuK (�) = !(�)c0(ei�):

We can also exploit the same formula to compute the quadratic form zy�j G
�1
yy(�j)z

y
j as

zy�j G
�1
uu(�j)z

y
j � z

y�
j G

�1
uu(�)!(�j)c(e

�i�)c0(ei�)G�1
uu(�)z

y
j

= zy�j G
�1
uu(�j)z

y
j � !(�j)z

xK�
j (�)zx

K

j (�);

where

zx
K

j (�) = E[zxj jZy;�] = Gxx(�j)c
0(ei�j )G�1

yy(�j)z
y
j = !(�)c0(ei�j )G�1

uu(�j)z
y
j (A3)

denotes the �ltered value of zxj given the observed series and the current � from (3).
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B The minimal su¢ cient statistics for fxtg

In any given realisation of the vector process fytg, the values of fxtg could be regarded as a

set of T parameters. With this interpretation in mind, we can de�ne xGtj1 as the spectral GLS

estimator of xt through the transformation

dZx
G
(�) = [c0(ei�)G�1

uu(�)c(e
�i�)]�1c0i�)G�1

uu(�)dZ
y(�):

Similarly, we can de�ne uGtj1 through

dZu
G
(�) = fIN � [c0(ei�)G�1

uu(�)c(e
�i�)]�1c0(ei�)G�1

uu(�)gdZy(�):

It is then easy to see that the joint spectral density of xGtj1 and uGtj1 will be block-diagonal,

with the (1,1) element being

Gxx(�) + [c
0(ei�)G�1

uu(�)c(e
�i�)]�1

and the (2,2) block

Gyy(�)� c(e�i�)[c0(ei�)G�1
uu(�)c(e

�i�)]�1c0(ei�);

whose rank is N � 1. This orthogonalisation allows us to factorise the spectral log-likelihood

function of yt as the sum of the log-likelihood function of xGtj1, which is univariate, and the

log-likelihood function of uGtj1. The Jacobian of the transformation is 1, as we can write�
[c0(ei�)G�1

uu(�)c(e
�i�)]�1c0(ei�)G�1

uu(�)
fIN � c(e�i�)[c0(ei�)G�1

uu(�)c(e
�i�)]�1c0(ei�)G�1

uu(�)g

�
=

 
1 0

0 G
1=2
uu (�)

!

�
 

[c0(ei�)G�1
uu(�)c(e

�i�)]�1c0(ei�)G
�1=2
uu (�)

fIN �G�1=2
uu (�)c(e�i�)[c0(ei�)G�1

uu(�)c(e
�i�)]�1c0(ei�)G

�1=2
uu (�)g

!
G
�1=2
uu (�);

where the matrix in the centre is orthogonal. Importantly, the parameters characterising Gxx(�)

only enter through the �rst component. In contrast, the remaining parameters a¤ect both

components. Moreover, we can easily show that

1. xGtjT = xt + �
G
tjT , with xt and �

G
tjT orthogonal at all leads and lags.

2. The smoothed estimator of xt obtained by applying the Wiener- Kolmogorov �lter to xGtj1

coincides with xKtj1.

This con�rms that xGtj1 constitute minimal su¢ cient statistics for xt, thereby general-

ising earlier results by Jungbacker and Koopman (2015), who considered models in which

c(e�i�) = c for all �, and Fiorentini, Sentana and Shephard (2004), who looked at the related

class of factor models with time-varying volatility (see also Gouriéroux, Monfort and Renault

(1991)). In addition, the degree of unobservability of xt depends exclusively on the size of

[c0(ei�)G�1
uu(�)c(e

�i�)]�1 relative to Gxx(�) (see Sentana (2004) for a closely related discussion).
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C Spectral scores

The score function for all the parameters other than the mean is given by (6). Since

dGyy(�) = dc(e�i�)Gxx(�)c
0(ei�) + c(e�i�)dGxx(�)c

0(ei�) + c(e�i�)Gxx(�)dc
0(ei�) + dGuu(�)

(see Magnus and Neudecker (1988)), it immediately follows that

dvec [Gyy(�)] =
h
c(ei�)Gxx(�)
 IN

i
dc(e�i�) +

h
IN 
 c(e�i�)Gxx(�)

i
dc(ei�)

+
h
c(ei�)
 c(e�i�)

i
dGxx(�) +ENdvecd [Guu(�)] ;

where E0N = (e1e
0
1j : : : jeNe0N ), with (e1j : : : jeN ) = IN , is the unique N2 � N �diagonalisa-

tion�matrix that transforms vec(A) into vecd(A) as vecd(A) = E0Nvec(A), and Kmn is the

commutation matrix of orders m and n (see Magnus (1988)). But

c(e�i�) =
nX

l=�m
cl(�)e

�il�; (C4)

so

dc(e�i�) =
nX

l=�m
dcl(�)e

�il�:

Consequently, we can write

dvec [Gyy(�)] =
nX

l=�m

nh
e�il�c(ei�)Gxx(�)
 IN

i
+
h
IN 
 eil�c(e�i�)Gxx(�)

io
dcl(�)

+
h
c(ei�)
 c(e�i�)

i
dGxx(�) +ENdvecd [Guu(�)] :

Hence, the Jacobian of vec [Gyy(�)] will be

@vec [Gyy(�)]

@�0
=

nX
l=�m

� �
e�il�c(ei�)Gxx(�)
 IN

�
+
�
IN 
 eil�c(e�i�)Gxx(�)

� � @cl
@�0

+
h
c(ei�)
 c(e�i�)

i @Gxx(�)
@�0

+EN
@vecd [Guu(�)]

@�0
: (C5)

If we combine this expression with the fact that

�
G�1
yy(�j)
G0�1

yy (�j)
�
vec

h
zycj z

y0
j �G

0
yy(�j)

i
= vec

h
2�G0�1

yy (�j)z
yc
j z

y0
j G

0�1
yy (�j)�G0�1

yy (�j)
i
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and I0yy(�j) = z
yc
j z

y0
j we obtain:

2d(�;�) =

nX
l=�m

@c0l
@�

� �
e�il�Gxx(�)c0(ei�)
 IN

�
+
�
IN 
 eil�Gxx(�)c0(e�i�)

� � vec �2�G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)�G0�1

yy (�)
�

+
@Gxx(�)

@�

h
c0(ei�)
 c0(e�i�)

i
vec

�
2�G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)�G0�1

yy (�)
�

+
@vecd0 [Guu(�)]

@�
ENvec

�
2�G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)�G0�1

yy (�)
�

=

nX
l=�m

@c0l
@�

vec

�
2�G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)c(e

i�)Gxx(�)e
�il� �G0�1

yy (�)c(e
i�)Gxx(�)e

�il�

+2�eil�Gxx(�)c
0(e�i�)G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)� eil�Gxx(�)c0(e�i�)G0�1

yy (�)

�
+
@Gxx(�)

@�
vec

h
2�c0(e�i�)G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)c(e

i�)� c0(e�i�)G0�1
yy (�)c(e

i�)
i

+
@vecd0 [Guu(�)]

@�
ENvec

�
2�G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)�G0�1

yy (�)
�
:

Let us now try to interpret the di¤erent components of this expression. The �rst thing to

note is that

e�il�vec
h
2�G0�1

yy (�)I
0
yy(�)G

0�1
yy (�)c(e

i�)Gxx(�)�G0�1
yy (�)c(e

i�)Gxx(�)
i

and

eil�vec
h
2�Gxx(�)c

0(e�i�)G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)�Gxx(�)c0(e�i�)G0�1

yy (�)
i

are complex conjugates because Gyy(�) is Hermitian and the conjugate of a product is the

product of the conjugates, so it su¢ ces to analyse one of them.

If we further assume that Gxx(�) > 0 and Guu(�) > 0 we can write

2�G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)c(e

i�)Gxx(�)�G0�1
yy (�)c(e

i�)Gxx(�)

= G0�1
uu (�)

�
2�I0xKuK (�)�G

0
xKuK (�)

�
;

2�c0(e�i�)G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)c(e

i�)� c0(e�i�)G0�1
yy (�)c(e

i�)

= G�2xx (�) [2�IxKxK (�)�GxKxK (�)]

and

2�G0�1
yy (�)I

0
yy(�)G

0�1
yy (�)�G0�1

yy (�) = G
0�1
uu (�)

�
2�I0uKuK (�)�G

0
uKuK (�)

�
G0�1
uu (�):

Therefore, the component of the score associated to cl will be the sum across frequencies of

terms of the form

e�il�G0�1
uu (�)

�
2�I0xKuK (�)�G

0
xKuK (�)

�
(and their conjugate transposes), which capture the di¤erence between the cross-periodogram

and cross-spectrum of xKt�l and u
K
it inversely weighted by the spectral density of uit. As a result,
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we can understand this term as arising from the normal equation in the spectral regression of

yit onto xt�l but taking into account the unobservability of the regressor.

Similarly, the component of the score associated to the parameters that determineGxx(�) will

be the cross-product across frequencies of the product of the derivatives of the spectral density

of xt with the di¤erence between the periodogram and spectrum of xKt inversely weighted by

the squared spectral density of xt. In this case, we can interpret this term as arising from a

marginal log-likelihood function for xt that takes into account the unobservability of xt.

Finally, the component of the score associated to the parameters in Guiui(�) will be the cross-

product across frequencies of the product of the derivatives of the spectral density of uit with

the di¤erence between the periodogram and spectrum of uKit inversely weighted by the squared

spectral density of uit. Once again, we can interpret this term as arising from the conditional

log-likelihood function of uit given xt that takes into account the unobservability of uti .

As usual, we can then exploit the Woodbury formula, as in expressions (12), (D6) and (D7),

to greatly speed up the computations. In particular, we will get

Gxx(�)c
0(ei�)G�1

yy(�)Iyy(�)G
�1
yy(�)�Gxx(�)c0(ei�)G�1

yy(�)

= Gxx(�)c
0(ei�)G�1

yy(�)Iyy(�)
h
G�1
uu(�)� !(�)G�1

uu(�)c(e
�i�)c0(ei�)G�1

uu(�)
i
� !(�)c0(ei�)G�1

uu(�)

= Gxx(�)c
0(ei�)G�1

yy(�)Iyy(�)
h
IN � !(�)G�1

uu(�)c(e
�i�)c0(ei�)

i
G�1
uu(�)� !(�)c0(ei�)G�1

uu(�)

=
h
IxKuK (�)� !(�)c0(ei�)

i
G�1
uu(�);

G�1
yy(�)Iyy(�)G

�1
yy(�)�G�1

yy(�)

=
h
G�1
uu(�)� !(�)G�1

uu(�)c(e
�i�)c0(ei�)G�1

uu(�)
i
Iyy(�)

h
G�1
uu(�)� !(�)G�1

uu(�)c(e
�i�)c0(ei�)G�1

uu(�)
i

�
h
G�1
uu(�)� !(�)G�1

uu(�)c(e
�i�)c0(ei�)G�1

uu(�)
i

G�1
uu(�)

h
IN � !(�)c(e�i�)c0(ei�)G�1

uu(�)
i
Iyy(�)

h
IN � !(�)G�1

uu(�)c(e
�i�)c0(ei�)

i
G�1
uu(�)

�G�1
uu(�)

h
Guu(�)� !(�)c(e�i�)c0(ei�)

i
G�1
uu(�)

= G�1
uu(�) [IuKuK (�)�GuKuK (�)]G

�1
uu(�);

and

c0(ei�)G�1
yy(�)Iyy(�)G

�1
yy(�)c(e

�i�)�c0(ei�)G�1
yy(�)c(e

�i�) = G�1xx (�)[IxKxK (�)�GxKxK (�)]G�1xx (�):

D Alternative marginal scores

As is well known, the EM algorithm slows down considerably near the optimum (see e.g.

Tanner (1996)). At that point, the best practical strategy would be to switch to a �rst derivative-

based method. In this regard, the EM principle can also be exploited to simplify the computation
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of the score This result was �rst noted by Louis (1982); see also Ruud (1991) and Tanner (1996).

Since the Kullback inequality implies that E [l(xjY;�)jY;�] = 0, it is clear that @l(Y;�)=@�

can be obtained as the expected value (given Y and �) of the sum of the unobservable scores

corresponding to l(y1; : : : ;yN jx) and l(x). This yields

@l(Y)

@�x
=

1

2

T�1X
j=0

@Gxx(�j)

@�x
G�2xx (�j)

�
2�E[zxj z

x�
j jZy;�]�Gxx(�j)

�
@l(Y)

@�ui
=

1

2

T�1X
j=0

@Guiui(�j)

@�ui
G�2uiui(�j)

h
2�E[zuij z

ui�
j jZy;�]�Guiui(�j)

i
@l(Y)

@ci;k
=

2�

2

T�1X
j=0

G�1uiui(�j)
h
eik�jE[zuij z

x�
j jZy;�] + e�ik�jE[zxj zui�j jZy;�]

i
:

But since the scores are now evaluated at the values of the parameters at which the expec-

tations are computed, we will have that

E[zxj z
x�
j jZy;�] = IxKxK (�j) + !(�j);

E[zuj z
u�
j jZy;�] = E[zuj jZy;�]E[zu�j jZy;�] + E

��
zuj � E[zuj jZy;�]

	�
zu�j � E[zu�j jZy;�]

	
jZy;�

�
= IuKuK (�j) + c(e

�i�j )!(�j)c
0(ei�j ):

E[zuj z
x�
j jZy;�] = E[zuj jZy;�]E[zx�j jZy;�] + E

��
zuj � E[zuj jZy;�]

	�
zx�j � E[zx�j jZy;�]

	
jZy;�

�
= IuKxK (�j)� c(e�i�j )!(�j)

where

zu
K

j = E[zuj jZy;�] = Guu(�j)G
�1
yy(�j)z

y
j = z

y
j � c(e

�i�j )zx
K

j ;

E[(zuj � zu
K

j )(zu�j � zuK�j )jZy;�] = c(e�i�j )!(�j)c
0(ei�j );

E[(zuj � zu
K

j )(zx�j � zxK�j )jZy;�] = c(e�i�j )!(�j);

IuKuK (�j) = 2�Guu(�j)G
�1
yy(�j)Iyy(�j)G

�1
yy(�j)Guu(�j)

= 2�
h
IN � !(�j)c(e�i�j )c0(ei�j )G�1

uu(�j)
i
Iyy(�j)

h
IN � !(�j)c(ei�j )c0(e�i�j )G�1

uu(�j)
i
(D6)

is the periodogram of the smoothed values of the speci�c factors, and

IxKuK (�j) = 2�Gxx(�j)c
0(ei�j )G�1

yy(�j)Iyy(�j)G
�1
yy(�j)Guu(�j)

= 2�!(�j)c
0(ei�j )G�1

uu(�j)Iyy(�j)
h
IN � !(�j)G�1

uu(�j)c(e
�i�j )c0(ei�j )

i
(D7)

is the co-periodogram between xKtj1 and uKtj1.

Tedious algebra shows that these scores coincide with the expressions in appendix C. They

also closely related to the scores of the expected log-likelihoods in section 4.2, but the di¤erence

is that the expectations were taken there with respect to the conditional distribution of x given

Y evaluated at �(n), not �.

39



E Spectral information matrix

Given the expression for the Jacobian matrix (C5), we will have that

@vec0 [Gyy(�)]

@�
=

nX
l=�m

@c0l
@�

� �
e�il�Gxx(�)c0(ei�)
 IN

�
+
�
IN 
 eil�c0(e�i�)Gxx(�)

� �
+
@Gxx(�)

@�

h
c0(ei�)
 c0(e�i�)

i
+
@vecd [Guu(�)]

@�
E0N

and �
@vec0 [Gyy(�)]

@�

��
=

nX
l=�m

� �
eil�c(e�i�)Gxx(�)
 IN

�
+
�
IN 
 e�il�c(ei�)Gxx(�)

� � @cl
@�0

+
h
c(e�i�)
 c(ei�)

i @Gxx(�)
@�0

+EN
@vecd [Guu(�)]

@�0
:

Hence, it is straightforward to see that the elements of the block of the information matrix

(7) corresponding to the dynamic factor loadings will be

@vec0[Gyy(�)]

@cl

�
G�1
yy(�)
G0�1

yy (�)
��@vec0 [Gyy(�)]

@ck

��
=

� �
e�il�Gxx(�)c0(ei�)
 IN

�
+
�
IN 
 eil�Gxx(�)c0(e�i�)

� � �G�1
yy(�)
G0�1

yy (�)
�� �

eik�c(e�i�)Gxx(�)
 IN
�

+
�
IN 
 e�ik�c(ei�)Gxx(�)

� �

= G2xx(�)

8>><>>:
e�i(l+k)�G0�1

yy (�)c(e
i�)c0(ei�)G�1

yy(�)

+ei(l+k)�
�
G�1
yy(�)c(e

�i�)c0(e�i�)G0�1
yy (�)

�
e�i(l�k)�c0(ei�)G�1

yy(�)c(e
�i�)]G0�1

yy (�)

ei(l�k)�
�
c0(e�i�)G0�1

yy (�)c(e
i�)
�
G�1
yy(�)

9>>=>>;
Notice that since the information matrix is real, there will be cancellation between the

complex parts of the above matrices.

Similarly,

@vec0[Gyy(�)]

@cl

�
G�1
yy(�)
G0�1

yy (�)
� @vec [Gyy(�)]

@�0x

=

� �
e�il�Gxx(�)c0(ei�)
 IN

�
+
�
IN 
 eil�Gxx(�)c0(e�i�)

� � �G�1
yy(�)
G0�1

yy (�)
� h
c(e�i�)
 c(ei�)

i @Gxx(�)
@�0x

= Gxx(�)

� �
e�il�c0(ei�)G�1

yy(�)c(e
�i�)

�
G0�1
yy (�)c(e

i�)

+
�
eik�c0(e�i�)G0�1

yy (�)c(e
i�)
�
G�1
yy(�)c(e

�i�)

�
@Gxx(�)

@�0x
;

which again will be real.

In addition

@vec0[Gyy(�)]

@cl

�
G�1
yy(�)
G0�1

yy (�)
� @vec [Gyy(�)]

@�0uj

=

� �
e�il�Gxx(�)c0(ei�)
 IN

�
+
�
IN 
 eil�Gxx(�)c0(e�i�)

� � �G�1
yy(�)
G0�1

yy (�)
�
EN

 
ej
@Gujuj (�)

@�0uj

!

= Gxx(�)

� �
e�il�c0(ei�)G�1

yy(�)ej
�
G0�1
yy (�)ej

+
�
eil�c0(e�i�)G0�1

yy (�)ej
�
G�1
yy(�)ej

�
@Gujuj (�)

@�0uj
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since

e0jE
0
N = e

0
j(e1e

0
1j : : : jeNe0N ) = e0j 
 e0j :

In turn,

@vec0 [Gyy(�)]

@�x

�
G�1
yy(�)
G0�1

yy (�)
� @vec [Gyy(�)]

@�0x

=
@Gxx(�)

@�x

h
c0(ei�)
 c0(e�i�)

i �
G�1
yy(�)
G0�1

yy (�)
� h
c(e�i�)
 c(ei�)

i @Gxx(�)
@�0x

=
h
c0(ei�)G�1

yy(�)c(e
�i�)

i h
c0(e�i�)G0�1

yy (�)c(e
i�)
i @Gxx(�)

@�x

@Gxx(�)

@�0x
:

Further

@vec0 [Gyy(�)]

@�x

�
G�1
yy(�)
G0�1

yy (�)
� @vec [Gyy(�)]

@�0ui

=
@Gxx(�)

@�x

h
c0(ei�)
 c0(e�i�)

i �
G�1
yy(�)
G0�1

yy (�)
�
ENej

@Gujuj (�)

@�0uj

=
h
c0(ei�)G�1

yy(�)ej

i h
c0(e�i�)G0�1

yy (�)ej

i @Gxx(�)
@�x

@Gujuj (�)

@�0uj
:

Finally,

@vec0 [Gyy(�)]

@�ui

�
G�1
yy(�)
G0�1

yy (�)
� @vec [Gyy(�)]

@�0uj

=
@Guiui(�)

@�ui
e0iE

0
N

�
G�1
yy(�)
G0�1

yy (�)
�
ENej

@Gujuj (�)

@�0uj

= e0i
�
G�1
yy(�)�G0�1

yy (�)
�
ej
@Guiui(�)

@�ui

@Gujuj (�)

@�0uj
;

where � denotes the Hadamard (or element by element) product of two matrices of equal size.

If we assume that both Gxx(�) and Guu(�) are strictly positive, we can use again the

Woodbury formula to considerably simplify the previous expressions. In particular,

G�1
yy(�)c(e

�i�) = G�1
uu(�)c(e

�i�)� !(�)G�1
uu(�)c(e

�i�)c0(ei�)G�1
uu(�)c(e

�i�);

G0�1
yy (�)c(e

i�) = G�1
uu(�)c(e

i�)� !(�)G�1
uu(�)c(e

i�)c0(e�i�)G�1
uu(�)c(e

i�);

so that

c0(ei�)G�1
yy(�)c(e

�i�) =
h
c0(e�i�)G0�1

yy (�)c(e
i�)
i
= c0(ei�)G�1

uu(�)c(e
�i�)G�1xx (�)!(�)

in view of (A2). Finally, further speed gains can be achieved by noticing that

c0(ei�)G�1
uu(�)c(e

�i�) =
NX
j=1



cj(ei�)

2
Gujuj (�)

:
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F A simple example with pure AR processes

F.1 The model and spectral density

We illustrate our spectral EM algorithm with the following model0B@ y1;t
...

yN;t

1CA =

0B@ �1
...
�N

1CA+
0B@ c1;0

...
cN;0

1CAxt +

0B@ c1;1
...

cN;1

1CAxt�1 +

0B@ u1;t
...

uN;t

1CA ; (F8)

xt = �x1xt�1 + ft;

uit = �ui1uit�1 + vit; i = 1; : : : ; N:

In this case:

Gxx(�) =
1

1 + �2x1 � 2�x1 cos�
 f ;

Guiui(�) =
1

1 + �2ui1 � 2�ui1 cos�
 i;

and

c(e�i�t) = c0 + c1e
�i� =

0B@ c1;0 + c1;1e
�i�

...
cN;0 + cN;1e

�i�

1CA =

0B@ c1(e
�i�t)
...

cN (e
�i�t)

1CA : (F9)

F.2 Complete likelihood

Using the results in section 4, the derivative of Gxx(�) with respect to �x1 would be

@Gxx(�)

@�x1
=

2(cos�� �x1)
(1 + �2x1 � 2�x1 cos�)2

:

Hence, the log-likelihood score would become

@l(x)

@�x1
=

1

2

T�1X
j=0

2(cos�j � �x1)
(1 + �2x1 � 2�x1 cos�j)2

(1 + �2x1 � 2�x1 cos�j)2 �

�
�
2�zxj z

x�
j � 1

(1 + �2x1 � 2�x1 cos�j)

�
= 2�

T�1X
j=0

(cos�j � �x1)zxj zx�j ;

where we have exploited the fact that

T�1X
j=0

(cos�j � �x1)
(1 + �2x1 � 2�x1 cos�j)

= 
xx(1)� �x1
xx(0) = 0:

As a result, if we set the score to 0 and solve for �x1 then we would obtain

�̂x1 =

PT�1
j=0 cos�jz

x
j z
x�
jPT�1

j=0 z
x
j z
x�
j

=

PT�1
j=0 cos�jIxx(�j)PT�1

j=0 Ixx(�j)
:

But since

Ixx(�j) = 
̂xx(0) + 2
T�1X
k=1


̂xx(k) cos(k�j);
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we would have that
T�1X
j=0

2�Ixx(�j) = T 
̂xx(0)

and
T�1X
j=0

cos�j [2�Ixx(�j)] = T [
̂xx(1) + 
̂xx(T � 1)];

which is the �rst sample (circulant) autocovariance of xt. Therefore, the expression for �̂x1

is (almost) identical to the one we would obtain in the time domain, which will be given by


̂xx(1)=
̂xx(0), because 
̂xx(T � 1) = T�1xTx1 = op(1).

Similar expressions would apply to the dynamic parameters that appear in �ui for a given

value of ci� in view of (11b), since in this case it would be possible to estimate the variances of

the innovations  i in closed form.

Speci�cally, the partial derivatives of Guiui(�) with respect to  i and �ui1 would be

@Guiui(�)

@ i
=

1

1 + �2ui1 � 2�ui1 cos�
;

@Guiui(�)

@�ui1
=

2(cos�� �ui1) i
(1 + �2ui1 � 2�ui1 cos�)2

;

so the corresponding log-likelihood scores would be

@l(yijx)
@ i

=
1

2

T�1X
j=0

(1 + �2ui1 � 2�ui1 cos�j)
2�

1 + �2ui1 � 2�ui1 cos�j
�
 2i

"
2�zuij z

ui�
j �  i

1 + �2ui1 � 2�ui1 cos�j

#

=
1

2 2i

T�1X
j=0

h
(1 + �2ui1 � 2�ui1 cos�j)2�z

ui
j z

ui�
j �  i

i
;

@l(yijx)
@�ui1

=
1

2

T�1X
j=0

2(cos�j � �ui1) i(1 + �2ui1 � 2�ui1 cos�j)
2

(1 + �2ui1 � 2�ui1 cos�j)2 
2
i

�
�
2�zuij z

ui�
j �  i

(1 + �2x1 � 2�x1 cos�j)

�
=
2�

 i

T�1X
j=0

(cos�j � �ui1)z
ui
j z

ui�
j :

Hence, the spectral ML estimators of  i and �ui1 for �xed values of ci� would satisfy

~ i =
2�

T

XT�1

j=0
(1 + ~�2ui1 � 2~�ui1 cos�j)z

ui
j z

ui�
j ;

~�ui1 =

PT�1
j=0 cos�jz

ui
j z

ui�
jPT�1

j=0 z
ui
j z

ui�
j

:

Intuitively, these parameter estimates are, respectively, the sample analogues to the variance

of vit, which is the residual variance in the regression of uit on uit�1, and the slope coe¢ cient in

the same regression.
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Finally, as far as the dynamic loading parameters are concerned, the matrix on the left hand

of the normal equations becomes

T�1X
j=0

G�1uiui(�j)

�
2zxj z

x�
j (e�i�j + ei�j )zxj z

x�
j

(ei�j + e�i�j )zxj z
x�
j 2zxj z

x�
j

�

=

T�1X
j=0

G�1uiui(�j)2z
x
j z
x�
j

�
1 cos�j

cos�j 1

�
;

while the vector on the right hand side will be

T�1X
j=0

G�1uiui(�j)

�
zyij z

x�
j + zyi�j zxj

ei�jzyij z
x�
j + e�i�jzyi�j zxj

�
:

F.3 Expected log-likelihood

The expected log-likelihood score for the autoregressive parameter of the common factor

becomes
@E[l(x)jY;�(n)]

@�x1
= 2�

T�1X
j=0

(cos�j � �x1)
h
I
(n)

xKxK
(�j) + !

(n)(�j)
i
:

Hence,

�̂
(n+1)
x1 =

PT�1
j=0 cos�j

h
I
(n)

xKxK
(�j) + !

(n)(�j)
i

PT�1
j=0

h
I
(n)

xKxK
(�j) + !(n)(�j)

i :

Similarly,

@E[l(yijx)jY;�(n)]
@ i

=
1

2 2i

T�1X
j=0

(1 + �2ui1 � 2�ui1 cos�)
h
2�I(n)uiui(�j)�  i

i
;

E[l(yijx)jY;�(n)]
@�ui1

=
2�

 i

T�1X
j=0

(cos�j � �ui1)I(n)uiui(�j):

As a result, the spectral ML estimators of  i and �ui1 given ci� will satisfy

 ̂
(n+1)

i =
2�

T

XT�1

j=0

�
1 +

�
�̂
(n+1)
ui1

�2
� 2�̂(n+1)ui1

cos�j

�
I(n)uiui(�j);

�̂
(n+1)
ui1

=

PT�1
j=0 cos�jI

(n)
uiui(�j)PT�1

j=0 I
(n)
uiui(�j)

:

Finally, the matrix on the left hand of the normal equations for the example in (F9) becomes

T�1X
j=0

G�1uiui(�j)2[I
(n)

xKxK
(�j) + !

(n)(�j)]

�
1 cos�j

cos�j 1

�
;

while the vector on the right hand side will be

T�1X
j=0

G�1uiui(�j)

 
I
(n)

yixK
(�j) + I

(n)

xKyi
(�j)

ei�jI
(n)

yixK
(�j) + e

�i�jI
(n)

xKyi
(�j)

!
:
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G State space representation in the time domain

There are several ways of casting the dynamic factor model in (F8) into state-space format,

but the most straightforward one is to consider a huge state vector of dimension 2N+3 in which

the Arma(1,1) process for the common factor is written as a trivariate Var(1) in (xt; xt�1; ft)

and the N Arma(1,1) processes for the speci�c factors are written as �rst order bivariate Vars

in (uit; vit). As a result, we can write the measurement equation without an error term as

yt = �xt;

xt = (xt; xt�1; ft;u1t; v1t; : : : ;uit; vit; : : : ;uNt; vNt)
0

and � is an N � (2N + 3) matrix with typical row equal to

[ci0; ci1; 0; 0; 0; : : : ; 1; 0; : : : ; 0; 0]:

In turn, the transition equation will be24 xt
xt�1
ft

35 =

24 � 0 ��
1 0 0
0 0 0

3524 xt�1
xt�2
ft�1

35+
24 ft
0
ft

35 ;
�
uit
vit

�
=

�
� ��
0 0

� �
uit�1
vit�1

�
+

�
vit
vit

�
(i = 1; : : : ; N);

with a block diagonal covariance matrix for its innovations.

Given our stationary assumption, the initial conditions for the state will trivially be x1j0 =

0(2N+3)x1 and

P1j0 =

26666666664

Qx 0 � � � � � � � � � 0
0 Q1 � � � � � � � � � 0
...

...
. . . . . . . . .

...
...

...
. . . Qi

. . .
...

...
...

. . . . . . . . . 0
0 0 � � � � � � 0 QN

37777777775
;

in which the �rst 3� 3 block is

Qx =

24 
x0 
x1 1

x1 
x0 0
1 0 1

35 ; 
x0 =
1 + �2 � 2��
1� �2 ; 
x1 =

(1� ��)(�� �)
1� �2 ;

and the other N 2� 2 blocks are

Qi =

�

i0  i
 i  i

�
; 
i0 =

1 + �2i � 2�i�i
1� �2i

 i:
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Figure 1: A model with N = 10 series
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Figure 3: Total nonfarm employment and smoothed employment factor (annualised monthly
frequency)
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Figure 4: Total nonfarm employment and non-parametric factor estimators (annualised monthly
frequency)



Table 1: Performance of the Indirect Inference procedure for univariate Arma(1,1)

α β σ2
f Relative time

True values 0.95 -0.50 1.00
GMM 0.9428 (0.0291) -0.4457 (0.1461) 1.1200 (0.2496) 0.0029
Ind. Inf. (1 iteration) 0.9431 (0.0287) -0.4453 (0.1169) 1.1087 (0.2509) 0.0080
Ind. Inf. (3 iterations) 0.9429 (0.0287) -0.4473 (0.1117) 1.1076 (0.2477) 0.0208
Ind. Inf. (5 iterations) 0.9432 (0.0286) -0.4472 (0.1116) 1.1063 (0.2463) 0.0338
Iterated Ind. Inf. 0.9432 (0.0286) -0.4472 (0.1115) 1.1063 (0.2463) 0.0375
Direct ML (Quasi-Newton) 0.9432 (0.0286) -0.4472 (0.1115) 1.1063 (0.2463) 1

True values 0.95 0.50 1.00
GMM 0.9428 (0.0430) 0.4805 (0.1532) 1.0198 (0.1201) 0.0028
Ind. Inf. (1 iteration) 0.9420 (0.0344) 0.4800 (0.0856) 1.0093 (0.1133) 0.0073
Ind. Inf. (3 iterations) 0.9420 (0.0335) 0.4814 (0.0816) 1.0079 (0.1137) 0.0190
Ind. Inf. (5 iterations) 0.9420 (0.0334) 0.4816 (0.0818) 1.0079 (0.1139) 0.0307
Iterated Ind. Inf. 0.9420 (0.0334) 0.4817 (0.0818) 1.0074 (0.1135) 0.0384
Direct ML (Quasi-Newton) 0.9420 (0.0334) 0.4817 (0.0818) 1.0074 (0.1135) 1

True values 0.95 0.70 1.00
GMM 0.9079 (0.0936) 0.6633 (0.2522) 1.0488 (0.1928) 0.0023
Ind. Inf. (1 iteration) 0.9475 (0.0484) 0.6941 (0.1230) 1.0217 (0.1501) 0.0068
Ind. Inf. (3 iterations) 0.9464 (0.0456) 0.6924 (0.1027) 1.0126 (0.1294) 0.0172
Ind. Inf. (5 iterations) 0.9445 (0.0421) 0.6892 (0.0906) 1.0036 (0.1156) 0.0288
Iterated Ind. Inf. 0.9432 (0.0402) 0.6853 (0.0805) 0.9993 (0.1099) 0.0972
Direct ML (Quasi-Newton) 0.9424 (0.0396) 0.6837 (0.0786) 0.9970 (0.1075) 1

Monte Carlo medians and (interquartile ranges) of estimated parameters and computation time relative to direct

maximization of the log-likelihood. Model: (1 − αL)xt = (1 − βL)ft. Sample length=300. Replications=2,000.



Table 2: Convergence properties of the EM algorithm

% maximum distance covered Log-likelihood. Relative time.

Initial values 0 -11519.2457 0
5 EM iterations 70.36 -4695.3231 0.0158
10 EM iterations 76.63 -4687.7697 0.0317
300 EM iterations 98.83 -4669.6352 0.9503
5 EM iterations + QN 100 -4669.5494 0.5341
10 EM iterations + QN 100 -4669.5494 0.5174
QN 100 -4669.5494 1

Monte Carlo averages of the percentage of the maximum distance covered, of the log-likelihood values and of the

computation time relative to Quasi-Newton. The maximum distance is assumed to be the L2 norm of the difference

between the parameter initial values and the QN estimates. Sample length=300. Replications=100.



Table 3: Sample of NAICS 3-digits sectors for estimating the employment index

Oil and gas extraction (211) Warehousing and storage (493)
Mining, except oil and gas (212) Publishing industries, except Internet (511)
Support activities for mining (213) Motion picture and sound recording industries (512)
Construction of buildings (236) Broadcasting, except Internet (515)
Heavy and civil engineering construction (237) Telecommunications (517)
Specialty trade contractors (238) Data processing, hosting and related services (518)
Wood products (321) Other information services (519)
Nonmetallic mineral products (327) Monetary authorities - central bank (521)
Primary metals (331) Credit intermediation and related activities (522)
Fabricated metal products (332) Securities, commodity contracts, investments, etc. (523,5)
Machinery (333) Insurance carriers and related activities (524)
Computer and electronic products (334) Real estate (531)
Electrical equipment and appliances (335) Rental and leasing services (532)
Transportation equipment (336) Lessors of nonfinancial intangible assets (533)
Furniture and related products (337) Administrative and support services (561)
Miscellaneous durable goods manufacturing (339) Waste management and remediation services (562)
Food manufacturing (311) Ambulatory health care services (621)
Textile mills (313) Hospitals (622)
Textile product mills (314) Nursing and residential care facilities (623)
Apparel (315) Social assistance (624)
Paper and paper products (322) Performing arts and spectator sports (711)
Printing and related support activities (323) Museums, historical sites, and similar institutions (712)
Petroleum and coal products (324) Amusements, gambling, and recreation (713)
Chemicals (325) Accommodation (721)
Plastics and rubber products (326) Food services and drinking places (722)
Miscellaneous nondurable goods manufacturing (312,6) Repair and maintenance (811)
Wholesale trade, durable goods (423) Personal and laundry services (812)
Wholesale trade, nondurable goods (424) Membership associations and organizations (813)
Electronic markets and agents and brokers (425) Federal, except U.S. Postal Service
Motor vehicle and parts dealers (441) State government, excluding education
Furniture and home furnishings stores (442) Local government, excluding education
Electronics and appliance stores (443)
Building material and garden supply stores (444)
Food and beverage stores (445)
Health and personal care stores (446)
Gasoline stations (447)
Clothing and clothing accessories stores (448)
Sporting goods, hobby, book, and music stores (451)
General merchandise stores (452)
Miscellaneous store retailers (453)
Nonstore retailers (454)
Air transportation (481)
Rail transportation (482)
Water transportation (483)
Truck transportation (484)
Transit and ground passenger transportation (485)
Pipeline transportation (486)
Scenic and sightseeing transportation (487)
Support activities for transportation (488)
Couriers and messengers (492)

Notes: NAICS 3-digit codes in parentheses.



Table 4: Dynamic loadings estimates

Series ci,0 std.err. ci,1 std.err. Series ci,0 std.err. ci,1 std.err.

1 0.510 (0.458) -0.183 (0.458) 42 0.956 (0.401) -0.469 (0.400)
2 0.606 (0.542) -0.201 (0.542) 43 0.026 (0.394) 0.275 (0.395)
3 0.233 (0.657) 1.180 (0.663) 44 0.049 (0.748) 0.178 (0.748)
4 1.757 (0.335) -0.957 (0.331) 45 1.080 (0.235) -0.522 (0.232)
5 2.004 (0.499) -1.343 (0.494) 46 0.279 (0.608) -0.136 (0.608)
6 2.195 (0.316) -1.351 (0.308) 47 -0.520 (0.461) 0.444 (0.461)
7 2.457 (0.385) -1.445 (0.377) 48 -0.341 (1.523) 0.836 (1.524)
8 2.031 (0.297) -1.226 (0.288) 49 0.572 (0.299) 0.011 (0.300)
9 1.582 (0.295) -0.135 (0.300) 50 0.312 (0.663) 0.241 (0.665)

10 1.060 (0.141) 0.038 (0.149) 51 0.877 (0.266) -0.486 (0.264)
11 0.720 (0.183) 0.479 (0.195) 52 0.290 (0.135) 0.247 (0.140)
12 0.447 (0.169) 0.236 (0.172) 53 1.518 (0.908) -1.227 (0.906)
13 0.741 (0.226) 0.166 (0.232) 54 -0.245 (0.216) 0.654 (0.221)
14 1.839 (0.483) -1.042 (0.478) 55 0.136 (0.232) 0.163 (0.233)
15 2.068 (0.243) -1.060 (0.234) 56 0.822 (0.339) -0.617 (0.338)
16 0.625 (0.168) -0.224 (0.167) 57 0.622 (0.430) 0.067 (0.430)
17 0.159 (0.200) -0.069 (0.200) 58 -0.018 (0.480) 0.106 (0.480)
18 2.786 (0.448) -1.992 (0.437) 59 0.030 (0.139) 0.010 (0.139)
19 2.037 (0.412) -1.298 (0.406) 60 0.212 (0.220) 0.337 (0.223)
20 1.760 (0.462) -1.068 (0.458) 61 0.029 (0.109) 0.040 (0.109)
21 0.677 (0.154) -0.289 (0.153) 62 0.416 (0.193) -0.174 (0.192)
22 0.391 (0.180) 0.212 (0.185) 63 0.456 (0.268) 0.212 (0.272)
23 0.329 (0.451) -0.316 (0.451) 64 -0.610 (0.745) 0.847 (0.746)
24 0.168 (0.132) 0.067 (0.133) 65 2.734 (0.272) -1.932 (0.255)
25 1.542 (0.236) -0.694 (0.232) 66 0.261 (0.323) -0.031 (0.323)
26 0.568 (0.358) -0.319 (0.357) 67 0.260 (0.085) -0.267 (0.085)
27 0.614 (0.098) -0.169 (0.098) 68 0.073 (0.063) -0.051 (0.063)
28 0.593 (0.125) -0.367 (0.123) 69 -0.092 (0.090) 0.038 (0.090)
29 0.778 (0.156) -0.502 (0.154) 70 -0.195 (0.301) 0.273 (0.301)
30 1.187 (0.136) -0.819 (0.132) 71 -1.157 (0.970) 1.437 (0.971)
31 2.035 (0.261) -1.352 (0.252) 72 0.093 (0.429) 0.174 (0.429)
32 1.547 (0.437) -0.925 (0.434) 73 0.736 (0.496) -0.374 (0.495)
33 1.668 (0.275) -1.202 (0.269) 74 0.953 (0.262) -0.544 (0.261)
34 0.119 (0.136) 0.031 (0.137) 75 0.683 (0.162) -0.479 (0.160)
35 0.171 (0.194) -0.006 (0.194) 76 0.967 (0.204) -0.587 (0.202)
36 0.205 (0.187) -0.016 (0.187) 77 0.520 (0.161) -0.310 (0.160)
37 1.621 (0.365) -1.326 (0.362) 78 0.182 (0.149) -0.134 (0.149)
38 1.238 (0.565) -0.821 (0.563) 79 -0.717 (1.330) 0.442 (1.329)
39 0.512 (0.318) -0.326 (0.318) 80 -0.156 (0.113) 0.203 (0.113)
40 0.828 (0.277) -0.303 (0.276) 81 -0.155 (0.137) 0.195 (0.137)
41 0.581 (0.420) -0.128 (0.420)



Table 5: ARMA parameter estimates

Series α std.err. β std.err. ψ std.err. Series α std.err. β std.err. ψ std.err.

x 0.969 (0.015) -0.448 (0.092) 1.000

1 0.974 (0.017) 0.828 (0.044) 60.096 (4.986) 42 0.695 (0.092) 0.347 (0.120) 40.336 (3.358)
2 0.722 (0.130) 0.528 (0.159) 78.369 (6.502) 43 0.000 0.000 46.122 (3.826)
3 0.903 (0.034) 0.470 (0.069) 112.757 (9.371) 44 -0.299 (0.276) -0.473 (0.255) 144.746 (12.001)
4 0.941 (0.031) 0.754 (0.060) 29.177 (2.465) 45 0.000 0.000 15.325 (1.288)
5 0.000 0.000 70.792 (5.926) 46 0.468 (0.088) 0.830 (0.055) 211.881 (17.568)
6 0.961 (0.024) 0.811 (0.052) 24.725 (2.125) 47 0.000 0.000 63.006 (5.227)
7 0.898 (0.062) 0.767 (0.091) 37.122 (3.168) 48 0.000 0.000 689.215 (57.149)
8 0.000 0.000 22.695 (1.942) 49 -0.424 (0.221) -0.203 (0.239) 32.114 (2.673)
9 0.980 (0.014) 0.819 (0.043) 22.489 (1.908) 50 -0.043 (0.188) 0.273 (0.181) 183.986 (15.264)
10 0.983 (0.012) 0.797 (0.044) 4.482 (0.394) 51 0.000 0.000 20.391 (1.702)
11 0.978 (0.014) 0.761 (0.047) 8.523 (0.725) 52 0.935 (0.042) 0.811 (0.069) 5.039 (0.422)
12 0.913 (0.030) 0.432 (0.067) 7.197 (0.601) 53 0.087 (0.320) 0.266 (0.309) 291.773 (24.221)
13 0.981 (0.015) 0.886 (0.038) 14.162 (1.188) 54 0.000 0.000 13.672 (1.140)
14 0.025 (0.302) 0.220 (0.295) 80.586 (6.733) 55 0.968 (0.018) 0.715 (0.050) 14.950 (1.240)
15 0.931 (0.047) 0.819 (0.075) 13.359 (1.172) 56 0.954 (0.028) 0.811 (0.054) 32.269 (2.686)
16 0.921 (0.100) 0.877 (0.124) 7.852 (0.657) 57 0.934 (0.026) 0.509 (0.062) 48.497 (4.027)
17 0.653 (0.175) 0.778 (0.146) 13.743 (1.140) 58 0.000 0.000 68.358 (5.667)
18 0.000 0.000 53.176 (4.522) 59 0.933 (0.026) 0.518 (0.062) 5.091 (0.422)
19 0.000 0.000 47.095 (3.964) 60 0.944 (0.029) 0.740 (0.059) 13.408 (1.115)
20 0.975 (0.020) 0.883 (0.042) 59.655 (4.991) 61 0.900 (0.037) 0.558 (0.071) 3.167 (0.263)
21 0.969 (0.027) 0.898 (0.048) 6.569 (0.551) 62 0.000 0.000 10.871 (0.904)
22 0.000 0.000 9.236 (0.773) 63 0.000 0.000 20.938 (1.745)
23 0.000 0.000 60.368 (5.006) 64 0.924 (0.057) 0.832 (0.082) 158.608 (13.160)
24 0.937 (0.046) 0.841 (0.071) 4.965 (0.412) 65 0.000 0.000 15.862 (1.431)
25 0.903 (0.057) 0.763 (0.086) 13.737 (1.174) 66 0.000 0.000 30.885 (2.562)
26 0.000 0.000 37.754 (3.135) 67 0.974 (0.016) 0.791 (0.045) 1.986 (0.166)
27 0.937 (0.029) 0.673 (0.062) 2.344 (0.200) 68 0.935 (0.028) 0.619 (0.061) 1.084 (0.090)
28 0.000 0.000 4.314 (0.363) 69 0.961 (0.021) 0.735 (0.052) 2.248 (0.186)
29 0.966 (0.019) 0.758 (0.049) 6.406 (0.541) 70 0.000 0.000 26.847 (2.227)
30 0.908 (0.033) 0.485 (0.070) 3.934 (0.356) 71 0.000 0.000 278.380 (23.109)
31 0.970 (0.022) 0.869 (0.046) 16.520 (1.434) 72 0.032 (0.386) 0.183 (0.379) 63.386 (5.257)
32 0.000 0.000 54.725 (4.571) 73 0.000 0.000 72.657 (6.031)
33 0.870 (0.081) 0.743 (0.111) 19.082 (1.626) 74 0.055 (0.368) -0.107 (0.366) 17.384 (1.454)
34 0.000 0.000 5.503 (0.457) 75 0.000 0.000 7.423 (0.622)
35 0.000 0.000 11.180 (0.928) 76 0.843 (0.078) 0.665 (0.109) 10.737 (0.904)
36 0.000 0.000 10.322 (0.857) 77 0.000 0.000 7.504 (0.626)
37 0.000 0.000 37.501 (3.148) 78 0.879 (0.048) 0.604 (0.080) 6.007 (0.499)
38 0.000 0.000 93.621 (7.783) 79 0.000 0.000 525.057 (43.536)
39 0.000 0.000 29.886 (2.481) 80 0.942 (0.035) 0.803 (0.061) 3.619 (0.301)
40 0.000 0.000 22.070 (1.841) 81 0.000 0.000 5.515 (0.458)
41 0.000 0.000 52.014 (4.318)


