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Abstract

We compare the Sharpe ratios of traders who combine one riskless and

one risky asset following: buy and hold strategies (i); timing strategies

with forecasts from simple (ii) or multiple (iii) regressions; and passive

allocations of (i) and (ii) with mean-variance optimisers (iv). We show that

(iv) implicitly uses the linear forecasting rule that maximises the Sharpe

ratio of managed portfolios, but the remaining rankings are unclear. We

also suggest GMM estimators to make (iv) operational, and evaluate their

signiÞcance with spanning tests. Finally, we characterise the equivalence

between (iii) and (iv), and propose moment tests to assess it.

Key words: Delegated Portofolio Management, Financial Forecasting,

Portfolio Performance Evaluation, Sharpe ratios, Spanning Tests.

JEL: G11, C53
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Introduction

From a formal point of view, mean-variance analysis and least squares pre-

dictions are very closely related, as both are the result of the minimisation of a

mean square norm over a closed linear subspace of the set of all random vari-

ables with Þnite second moments (see e.g. Hansen and Sargent (1991)). From a

practical point of view, they are also closely connected, since many Þnancial mar-

ket practitioners combine the predictions from their regression equations with a

mean-variance optimiser in order to make dynamic portfolio allocation decisions.

In fact, given a set of variables which help predict returns on the stock market or

other Þnancial assets, one would think a priori that this is a rather natural way

to time the market. The purpose of this paper is to determine to what extent

this intuition is correct. To do so, we study an economy with a safe asset and a

risky one, and rank alternative predictions rules that can be used to dynamically

determine the scale of managed portfolios in terms of the Sharpe ratios of the

associated market timing strategies.

We choose the Sharpe ratio, which is deÞned as the ratio of the expected excess

return of an investment to its standard deviation, because it is the most common

measure used by Þnancial market practitioners to rank fund managers and to

evaluate the attractiveness of investment strategies in general. This is particu-

larly true in the hedge fund industry, where portfolio composition is not usually

reported, and hence performance evaluation must be based almost exclusively on

observed track records. The ubiquity of the Sharpe ratio is obviously justiÞed.

Apart from its simplicity, and the fact that it is a rather natural risk-adjusted

measure of performance, it has also the convenient property of being numerically

invariant to the degree of leverage of the position. At the same time, though,

the Sharpe ratio is not without its limitations, as the vast academic literature

on performance evaluation has repeatedly made clear. Nevertheless, despite its

problems, the Sharpe ratio remains a central concept for both researchers and

practitioners.
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Therefore, rather than stressing its shortcomings or suggesting alternative

measures, we take an analogous view to Goetzmann al. (2002), and explain how

to maximise the Sharpe ratio when investors may take positions in managed port-

folios in the Hansen and Richard (1987) sense. Given that by construction such

managed portfolios are linear functions of the predictor variables, we are able to

provide a linear forecasting rule interpretation to the optimal (in the unconditional

mean-variance sense) portfolio. SpeciÞcally, we obtain a closed-form analytical ex-

pression for the linear forecasting rule that maximises the unconditional Sharpe

ratio of an actively traded portfolio, and discuss under which circumstances such

an �optimal� forecast coincides (up to a proportionality factor) with the multiple

least squares projection. We then conÞrm that this linear maximal Sharpe ratio

forecasting rule is implicitly used by a passive portfolio manager who resorts to

static mean-variance analysis to combine the returns of several individual invest-

ment funds, each of which follows dynamic portfolio allocations that use simple

regressions to forecast excess returns.

This homeomorphism allows us to use mean-variance spanning tests to em-

pirically assess whether or not a set of potential explanatory variable increases

the Sharpe ratio of such market timing strategies. In addition, we also develop

tests for the optimality of the least squares prediction rule in our context. In both

cases, we use Hansen�s (1982) generalised method of moments (GMM) framework

to make our inferences robust to potential heteroskedasticity and serial correlation

in the joint stochastic process that generates returns and predictors. As an illus-

tration, we revisit the empirical application in Pesaran and Timmermann (1995),

who used least squares regressions to generate predictions of excess returns on the

Standard and Poor�s 500 (SP500) index using only ex ante dated variables.

The rest of this paper is organised as follows. We introduce the theoretical

set-up in section 1, derive the active and passive portfolio strategies mentioned

above, and obtain general results in terms of Sharpe ratios. Then, in section

2, we make assumptions about the joint distribution of predictors and returns,

and analyse in detail two special cases. Our proposed estimation and testing
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procedures are explained in section 3, while in section 4 we present the results of

our empirical application. Finally, section 5 contains a discussion of our results in

relation to several areas of current research interest in the Þnance and econometrics

literatures, and suggests some extensions. Proofs of our propositions, together

with some auxiliary results, are gathered in the appendix.

1 Investment Strategies and Sharpe Ratios

Let us consider a world with a safe asset and a risky one, whose gross returns

(i.e. total pay-offs per unit invested) are R and R0, respectively. Let r = R−R0
denote the excess return on the risky asset, and suppose that there are k indicator

variables, sometimes called instruments or signals, x = (x1, . . . , xk)0, which help

predict r. Importantly, we assume that there are no transaction costs or other

impediments to trade, and in particular, that short-sales are possible. In this way,

we open the gate for managed portfolios, whose excess returns will be exactly

proportional to r, with a factor of proportionality that depends on some or all of

the signals (see Hansen and Richard (1987)). However, to keep the discussion as

simple as possible, we explicitly exclude options and any other derivative assets

whose pay-offs are non-linear functions of R (see Goetzmann et al. (2002) for the

effects on including such non-linear pay-offs in an unconditional mean-variance

set-up). Finally, we assume that the sizes of the investment funds are such that

their behaviour does not alter the distribution of excess returns on the risky asset.

Let µr denote the expected excess return of an investment fund that effectively

follows a simple buy and hold strategy. More properly, µr coincides with the

expected pay-offs of an arbitrage (i.e. self-Þnancing) position that buys one single

unit of the risky asset by borrowing in the money market. If σr denotes the

standard deviation of r, then its Sharpe ratio is deÞned as,

s(r) = µr/σr.

Without loss of generality, we shall assume in what follows that µr ≥ 0. Otherwise,
a fund manager could take negative positions in the risky asset and invest the
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proceedings in the safe asset, creating in this way an arbitrage portfolio whose

pay-offs would be the opposite of the original pay-offs.

Let us now suppose that there is a fund manager, a say, with private infor-

mation on x, who pursues an active portfolio strategy. SpeciÞcally, we make the

standard assumption in the literature that the fraction of the funds under her

management invested in the risky asset is proportional to her forecast, which she

generates by means of the linear least squares (LLS) regression of r on (some

instantaneous transformation of) the indicators.1

Let βx= Σ
−1
xxσxr denote the slope coefficients in the (theoretical) multiple

regression of excess returns on x, and let β0 = µr−β0xµx the associated intercept,
where µx = E(x), σxr = cov(x, r) and Σxx = V (x), which we assume is positive

deÞnite. If we then deÞne

w = [1, (x−µx)0]0,
γwr = E(wr) = (µr,σ

0
xr)

0,

Γww = E(ww0) =

⎛⎝ 1 0

0 Σxx

⎞⎠ ,
and

βw = (µr,β
0
x)
0,

we can write βw = Γ
−1
wwγwr. Similarly, let

f = µr + σ
0
xrΣ

−1
xx (x−µx) = β0ww

denote the predicted values from that regression,

u = r − β0ww

the prediction errors,

σ2f = σ
0
xrΣ

−1
xxσxr

the variance of the predicted values,

σ2u = σ
2
r − σ0xrΣ−1xxσxr
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the variance of the residuals, and Þnally

R2 = σ2f/σ
2
r

the theoretical multiple correlation coefficient. With this notation, manager a�s

dynamic portfolio strategy produces excess returns, ra say, which are proportional

to

f · r = β0ww · r = β0wz,

where z = w · r is such that E(z) = µz = γwr. But since

E(f · r) = β0wγwr = γ0wrΓ−1wwγ0wr = µ2r + σ0xrΣ−1xxσxr ≥ 0,

and

V (f · r) = β0wΣzzβw,

where V (z) = Σzz, the unconditional Sharpe ratio of such an active strategy will

be given by the following expression:

s(ra) =
E(ra)p
V (ra)

=
γ0wrΓ

−1
wwγwrp

β0wΣzzβw
≥ 0.

In order to determine under which circumstances the LLS prediction rule that

agent a uses maximises the Sharpe of the associated market timing strategy, let

us Þrst fully characterise the optimal linear prediction rule:

Proposition 1 γ0wrΣ−1zz w is (proportional to) the linear forecasting rule that max-

imises the ratio of excess mean return to standard deviation of an actively traded

portfolio.

In what follows, we shall refer to γ0wrΣ
−1
zz w as the linear maximal unconditional

Sharpe ratio (LMUSR) rule.

Let us call

rp = γ
0
wrΣ

−1
zz w·r = γ0wrΣ−1zz z

the excess returns of the associated market timing strategy. By deÞnition, it must

be the case that

s(rp) =
E(rp)p
V (rp)

=
γ0wrΣ

−1
zz γwrp

γ0wrΣ−1zz γwr
=
p
γ0wrΣ−1zz γwr ≥ s(ra).
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The following result speciÞes a necessary and sufficient condition for the LLS

prediction rule to be optimal with respect to this alternative loss function:

Proposition 2 s(rp) ≥ s(ra) with equality if and only if Γ−1wwγwr is proportional
to Σ−1zz γwr.

In order to gain some intuition on why ra is generally suboptimal from the

point of view of unconditional Sharpe ratios, it is convenient to introduce another

k+1 �active� fund managers, each of whom has information on a single component

of w only. Obviously, the Þrst manager, manager 0 say, simply buys and holds

the risky asset, but the remaining k managers follow truly active market timing

strategies with excess returns proportional to (xj − µj) · r = wj · r (j = 1, . . . , k).
Hence, the vector z = w · r is (proportional to) the k+ 1 vector of excess returns
on those funds.

Although the k truly active funds are redundant assets from the point of view

of any agent who observes the signals because she can always unwind her positions,

it is easy to see that an active strategy based on any linear prediction rule can

be replicated by some passive strategy which combines z and the riskless asset.

SpeciÞcally, rp = ϕ+0w z, where ϕ
+
w = Σ

−1
zz γwr = Σ

−1
zz µz. Hence, rp coincides with

the excess returns of a passive fund manager, p say, who forms a portfolio of

the k + 1 individual funds and the safe asset with constant weightings optimally

chosen according to the rules of unconditional mean-variance analysis. Since we

know from the theory of mean-variance analysis with arbitrage portfolios that the

mean-variance frontier will be spanned by the optimal portfolio alone, and that

its Sharpe ratio will be the highest Sharpe ratio attainable, it is not surprising

that the Sharpe ratio of rp will be at least as high as the Sharpe ratios of ra, r,

and indeed any zj.

In this respect, note that from the point of view of someone who does not

observe the signals, manager a is observationally equivalent to a passive portfolio

manager who is suboptimally allocating her wealth between the k + 1 funds and

the safe asset. In contrast, from point of view of someone who observes the signals,
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manager p is suboptimally forecasting excess returns because she is actively man-

aging her portfolio on the basis of a linear prediction rule which is proportional to

γ0wrΣ
−1
zz w instead of the LLS predictions γ0wrΓ

−1
www. Nevertheless, given that the

evaluation criterion of manager p is the unconditional Sharpe ratio of her fund

performance, as opposed to the root mean square error of her predictions, or the

correlation between those predictions and r, then she is outperforming everyone

else, including manager a.

The relationship between s(rp), s(r) and s(zj), where

s(zj) =
E(zj)p
V (zj)

=

¯̄
σxjr

¯̄
σzj

,

can also be made precise:

Proposition 3 The Sharpe ratio of the optimal portfolio (in the unconditional

mean-variance sense), s(rp), only depends on the vector of Sharpe ratios of the k+1

underlying funds, s(z), and their correlation matrix, ρzz, through the following

quadratic form:

s2(rp) = s(z)
0ρ−1zz s(z).

The above expression, which for the case of k = 1 adopts the particularly

simple form:

s2(rp) =
1

1− ρ2z1r
£
s2(r) + s2(z1)− 2ρz1rs(r)s(z1)

¤
,

where ρz1r = cor(z1, r), turns out to be remarkably similar to the formula that

relates the R2 of the multiple regression of r on (a constant and) x with the

correlations of the simple regressions. SpeciÞcally,

R2 = ρ0xrρ
−1
xxρxr. (1)

The similarity is not merely coincidental. From the mathematics of the mean-

variance frontier, we know that E(zj) = cov(zj, rp)E(rp)/V (rp), and therefore,

that s(zj) = cor(zj, rp)s(rp). In other words, the correlation coefficient between

zj and rp is s(zj)/s(rp), i.e. the ratio of their Sharpe ratios. Hence, the result in
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Proposition 3 follows from (1) and the fact that the coefficient of determination

in the multiple regression of rp on z will be 1 because rp is a linear combination

of this vector.

In principle, one would expect that s(ra) ≥ s(r) with equality if and only

if σxr = 0, since in the absence of parameter uncertainty, it would appear that

superior information should always lead to superior performance. As we shall see

in section 2.1 below, however, it turns out that this is not always the case. And

although one would also expect s(ra) ≥ s(zj) for j = 1, . . . , k, it is not possible to
rank s(ra) and s(zj) either (see section 3.4 of Sentana (1999) for a counterexam-

ple). Therefore, manager a, who uses information on the entire vector x, may do

better or worse than a manager who only uses information on a particular xj, or

no information at all.

2 Special cases

It is important to note that the results in the previous section are valid re-

gardless of the joint distribution of signals and returns, as long as the required

moments are bounded. In this respect, it is easy to see that the only higher

moments involved are

E[(r − µr)(x−µx)(x−µx)0],
E[(r − µr)2(x−µx)], (2)

E[(r − µr)2(x−µx)(x−µx)0].

For illustrative purposes, however, it is convenient to specify such moments.

We shall do so in two different ways. In our Þrst example, we shall assume that the

distribution of excess returns given the signals has a linear conditional mean and

a constant conditional variance. As we shall see, those two assumptions, together

with assumptions about the third and fourth central moments of the marginal

distribution of x, fully specify (2) irrespective of the remaining characteristics of

the conditional distribution of r given x. In our second example, in contrast, we
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shall fully specify the joint distribution of r and x.

2.1 Linear conditional means, constant conditional vari-

ances, and multivariate normal signals

Let us assume that

E(r|x) = µr + β0x(x−µx) = β0ww,

and

V (r|x) = σ2u,

so that the conditional mean coincides with the LLS prediction rule, and the

conditional variance with the residual variance of the regression.

Further, let us also assume that the x�s are jointly normally distributed.2

However, we shall deliberately make no assumptions about the remaining char-

acteristics of the conditional distribution of r given x, which therefore could be

both skewed and leptokurtic.

Then, we can state the following result:

Proposition 4 If E(r|x) = µr + β
0
x(x − µx) = β0ww, V (r|x) = σ2u and x ∼

N(µx,Σxx), then

1.

rp = r · µr + [1− s
2(r)][1 + s2(r)]−1β0x(x−µx)

σ2r{1 + [1− s2(r)][1 + s2(r)]−1R2}
2.

s(rp) =

s
s2(r) + [1− s2(r)][1 + s2(r)]−1R2
1 + [1− s2(r)][1 + s2(r)]−1R2

≥ s2(r) +R2p
s2(r)(1 + 3R2) + (1 +R2)R2

= s(ra)

with equality if and only if either R2 = 0 or s(r) = 0.
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Several interesting results can be derived from this relationship:

a) The positions on z1, . . . , zk taken by managers a and p are proportional

to the regression coefficients βx. As a result, if an indicator variable has no

additional predictive power, so that the corresponding element of βx is zero, the

desired holdings of the relevant fund will be zero, even though the individual fund

may be very proÞtable. However, the actual positions taken by the fund managers

a and p could have different signs, depending on whether s(r) exceeds 1 or not.

b) The correlation between the LLS prediction γ 0wrΓ
−1
www and the LMUSR

forecast γ0wrΣ
−1
zz w will be 1 if s(r) < 1, 0 if s(r) = 1, and -1 if s(r) > 1. However,

the correlation between rp and ra will generally be less than 1, since the LLS and

LMSUR rules are not usually proportional.

c) The Sharpe ratio of ra is not necessarily higher than the Sharpe ratio of any

zj, including s(r). In fact, fund manager a, who uses information on the entire

vector w, could be beaten in this metric by a simple buy and hold strategy (e.g.

when s2(r) = 1 and 0 < R2 < 1).

The equality between s(rp) and s(ra) when R2 = 0 is rather obvious, because it

corresponds to a situation in which the returns on the risky asset are stochastically

independent from all the signals.

The special case of s(r) = 0, though, is far more interesting, as we can sharpen

some of the previous results. In particular, we can show that the correlation

between rp and ra will be exactly 1. As a result, the performance of both manager

a and manager p, as measured by their common unconditional Sharpe ratio, is

at least as good, and generally better, than the performance of any other fund

manager.

2.2 Jointly log-normal returns and signals

Let us alternatively assume the (k + 1)-dimensional random vector (lnR,

lnx1, . . . , lnxk) is jointly normally distributed, with mean vector ν and covariance

matrix ∆. Therefore, both the conditional mean and conditional variance of R

given the signals will be non-linear functions of x.3

12



In principle, it is straightforward to use the moment generating function of a

multivariate normal vector to obtain all the moments of r = R − R0 and x that
appear in (2). In order to keep the algebra as simple as possible, though, we shall

only consider the case of a single signal, a dynamic example of which would be a

Gaussian AR(1) process for geometric (i.e. continuously compounded) returns.

In this context, we can prove the following result:

Proposition 5 If lnR and lnx1 are jointly normally distributed, with means νR

and ν1, variances δ2R and δ
2
1, and correlation coefficient πR1, so that

µR = E(R) = exp(νR + .5δ
2
R),

σ2R = V (R) = µ2Rλ
2
R,

λR = σR/µR =
q
exp(δ2R)− 1

s(r) =
1− (R0/µR)

λR
,

µ1 = E(x1) = exp(ν1 + .5δ
2
1),

σ21 = V (x1) = µ
2
1λ
2
1,

λ1 = σ1/µ1 =
q
exp(δ21)− 1

ρr1 = E

∙µ
R− µR
σR

¶µ
x1 − µ1
σ1

¶¸
=
exp(πR1δRδ1)− 1

λ1λR
,

φr1 = E

"µ
R− µR
σR

¶2µ
x1 − µ1
σ1

¶#
= ρr1[2λR + ρr1λ1(1 + λ

2
R)],

φ1r = E

"µ
R− µR
σR

¶µ
x1 − µ1
σ1

¶2#
= ρr1[2λ1 + ρr1λR(1 + λ

2
1)],

κr1 = E

"µ
R− µR
σR

¶2µ
x1 − µ1
σ1

¶2#
= 1 + 4λRλ1ρr1

+2[1 + 2(λ21 + λ
2
R) + 3λ

2
1λ
2
R]ρ

2
r1 + 4λRλ1(1 + λ

3
1)(1 + λ

3
R)]ρ

3
r1

+λ21λ
2
R(1 + λ

2
R)(1 + λ

2
1)ρ

4
r1,

then
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1.

rp =
r

σr
£
(1− ρ2r1)s2(r) + 2(φ1r − ρr1φr1)s(r) + (κr1 − φ2r1 − ρ2r1)

¤
×©£s3(r) + 2φ1rs2(r) + (κr1 − 2ρ2r1)s(r)− ρr1φr1¤
+
£−ρr1s2(r)− φr1s(r) + ρr1¤µx1 − µ1σ1

¶¾
.

2.

s(rp) =

s
s4(r) + 2φ1rs

3(r) + (κr1 − 3ρ2r1)s2(r)− 2ρr1φr1s(r) + ρ2r1
(1− ρ2r1)s2(r) + 2(φ1r − ρr1φr1)s(r) + (κr1 − φ2r1 − ρ2r1)

≥ s2(r) + ρ2r1p
(1 + 3ρ2r1)s

2(r) + 2ρr1(φ1r + ρr1φr1)s(r) + ρ
2
r1(κr1 − ρ2r1)

= s(ra)

with equality if and only if either πR1 = 0 or s(r) solves the cubic equation

2ρr1s
3(r) + (2ρr1φ1r + φ

2
r1)s

2(r) + ρr1(κr1 − 2ρ2r1 − 1)s(r)− ρ2r1φ2r1 = 0.

The equality between s(rp) and s(ra) when πr1 = 0 is once again rather obvi-

ous, because it corresponds to a situation in which the returns on the risky asset

are stochastically independent from the signal.

Unfortunately, this time the values of s(r) that make the LLS and LMUSR

rules equivalent are not so easy to interpret, although s(r) = 0 is clearly excluded.

Nevertheless, it is still worth looking at the limiting �risk neutral� situation of

lnR0 = νR+ .5δ
2
R, in which the expected return on the risky asset equals the safe

return. With this extra assumption, we will have that

ra ∝ r · ρr1
µ
x1 − µ1
σ1

¶
,

rp ∝ r ·
∙
−ρr1φr1 + ρr1

µ
x1 − µ1
σ1

¶¸
,

so that

s(rp) =
|ρr1|p

κr1 − ρ2r1 − φ2r1
>

|ρr1|p
κr1 − ρ2r1

= s(ra)

because φr1 6= 0 when ρr1 6= 0. Intuitively, the co-skewness in the joint distribution
of returns and signals implies that the excess returns on the risky asset r provide

a hedge for the excess returns on the managed portfolio z1 = r(x1 − µ1), which
induces fund manager p to hold r in her unconditionally mean-variance efficient

frontier portfolio even though its risk premia is 0.
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3 Inference procedures

3.1 Parameter estimation

It is important to stress that the analytical expressions presented in the previ-

ous sections have been obtained under the assumption that the relevant moments

of the joint distribution of r and x are known. However, it is clear that this is

an unrealistic assumption. In practice, of course, those moments will have to be

estimated, and therefore, the empirical analogues to the coefficients of the LLS

and LMUSR rules will be subject to sampling variability.

As is well known, inferences about the theoretical least squares coefficients

βw= Γ
−1
wwγwr can be obtained by applying GMM to the following moment condi-

tions:

E[wt(rt −w0
tβw)] = E[hO(rt,wt;βw)] = 0, (3)

which correspond to the usual orthogonality conditions implicit in the normal

equations, as the subscript O reminds us. Since these moment conditions exactly

identify βw, its unrestricted GMM estimators trivially coincide with the OLS re-

gression coefficients �βw = �Γ−1ww�γwr, where the elements of �γwr and �Γww are the

sample analogues of γwr and Γww, respectively.
4 Then, we can use a standard

heteroskedasticity and autocorrelation consistent (HAC) estimator of the asymp-

totic covariance matrix of
√
T h̄OT (βw) to make robust inferences about βw, where

h̄OT (βw) is the average value of hO(rt,wt;βw) in a sample of size T .

Exactly the same approach can be used to make inferences about the coef-

Þcients of the LMUSR rule described in Proposition 1. SpeciÞcally, given that

ϕ+w = Σ
−1
zz µz, we can write

E

⎡⎣ zt−µz
(zt−µz)(zt−µz)0ϕ+w − zt

⎤⎦ = E
⎡⎣ hM(zt;µz)

hC(zt;ϕ
+
w,µz)

⎤⎦ = E[hE(zt;ϕ+w,µz)] = 0,
where the Þrst set of moment conditions, E[hM(zt;µz)] = 0, simply deÞnes µz as

the mean (M) of z, while the second set of moment conditions, E[hC(zt;ϕ+w,µz)] =

0, deÞnes the optimal weights ϕ+w in terms of centred (C) second moments.
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In this context, parameter estimation is once more trivial because both ϕ+w

and µz are exactly identiÞed. SpeciÞcally, we will end up with

�µz = �γwr,

�ϕ+w = �Σ−1zz �γwr.

Similarly, it is also straightforward to make robust inferences about ϕ+w by

using a HAC estimator of the covariance matrix of
√
T h̄ET (ϕ

+
w,µz).

Interestingly, the moment conditions E[hC(zt;ϕ+w,µz)] = 0 suggest an alterna-

tive interpretation of the optimal forecasting coefficients ϕ+w. In particular, ϕ
+0
w z

corresponds in our context to the so-called centred mean representing portfolio

introduced by Chamberlain and Rothschild (1983), z++ say, which is the unique

portfolio of the arbitrage assets z such that E(z) = cov(z, z++) for any z in the

linear span of z, hzi. In the next section, we shall exploit this interpretation to
assess the contribution of a set of signals to the optimal prediction rule.

3.2 Testing the incremental value of some signals

From a practitioner�s point of view, we may be interested in analysing the

effects of adding new signals to an existing set. SpeciÞcally, let x1 denote our

original k1 signals, and x2 some k2 additional ones, so that the expanded set of

signals x = (x01,x
0
2)
0 is of dimension k = k1 + k2, where k1 ≥ 0 and k2 ≥ 1. The

question that we want to answer is whether the elements of x2 attract non-zero

coefficients in the LMUSR rule. Two particularly important cases that arise in

practice will be those in which k2 = 1, when we want to assess the contribution

of a single variable, and also k2 = k, in which case we want to determine whether

using the whole vector of signals x improves at all the risk-return trade-off of a

simple buy and hold strategy.

Let z = (z01, z
0
2)
0 = w · r, where w = (w0

1,w
0
2)
0, w1 = [1, (x1 − µ1)0]0 and

w2 = (x2−µ2), and partition ϕ+w conformably as (ϕ+0w1,ϕ+0w2)0. In this context, the
null hypothesis of interest is given by the following k2 homogeneous parametric

restrictions H0 : ϕ+w2 = 0. Therefore, we can test the incremental value of x2 by
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using the classical trinity of GMM asymptotic tests: Wald, Lagrange Multiplier

and Distance Metric tests (see e.g. Newey and McFadden (1994)). In addition,

since ϕ+w is exactly identiÞed under the alternative, the Distance Metric test co-

incides with the usual Overidentifying Restriction (or J) test in this case. As is

well known, when the null hypothesis is true, all these tests will be asymptotically

distributed as the same χ2 random variable with k2 degrees of freedom under

standard regularity conditions under fairly weak assumptions on the distribution

of zt, which depends on the joint distribution excess returns and signals.

Given the interpretation of ϕ+w as the weights of the centred mean representing

portfolio of hzi, a test of ϕ+w2 = 0 is effectively a test of the equality of z++

and z++1 , which is the centred mean representing portfolio corresponding to hz1i.
Therefore, following Peñaranda and Sentana (2004), we can also interpret H0 :

ϕ+w2 = 0 as a mean-variance spanning restriction. The intuition is that since all

the frontier arbitrage portfolios that can be generated from z are proportional to

z++, by testing that z++ = z++1 , we will be testing the null hypothesis that the

unconditional mean-variance frontier generated by z1 remains unaltered when we

add z2 to the universe of available assets.

Such a homeomorphism allows us to apply to our problem some of the alter-

native mean-variance spanning tests that have been suggested in the literature.

For instance, let z+ = φ+0w z, where

φ+w = E
−1(zz0)E(z) = [V (z)+E(z)E(z0)]−1E(z),

denote the unique uncentred mean representing portfolio of hzi, which is such that
E(z) = E(z, z+) for any z in hzi (see Chamberlain and Rothschild (1983)). In
this context, we can alternatively test for spanning by testing the null hypothesis

H0 : φ
+
w2
= 0 (see Peñaranda and Sentana (2004)). The main advantage of this

procedure is that the uncentred (U) moment conditions on which it is based,

namely

E[zt(z
0
tφ
+
w − 1)] = E[hU(zt;φ+w)] = 0, (4)

are linear in φ+w and do not involve any nuisance parameters. Once more, es-
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timation is trivial because φ+w is exactly identiÞed under the alternative.
5 As a

result,

�φ
+

w = (�Σzz + �γwr�γ
0
wr)

−1�γwr.

Likewise, it is also easy to make inferences about φ+w which are robust to het-

eroskedasticity and autocorrelation in hU(zt;φ
+
w). In addition, the linearity of

both hU(zt;φ
+
w) and H0 in φ

+
w implies that the trinity of asymptotic tests can

be made numerically identical by using a common estimator of the asymptotic

covariance matrix of
√
T h̄UT (φ

+
w) (see Newey and West (1987b)).

Similarly, we can also consider the Gibbons, Ross and Shanken (GRS) (1989)

test, which is based on the multivariate regression of z2 on a constant and z1.

Following MacKinlay and Richardson (1991), we can also cast such a multivariate

regression in a GMM framework by using the orthogonality conditions

E

⎡⎣⎛⎝ 1

z1t

⎞⎠ (z2t − a−Bz1t)
⎤⎦ = E[hG(zt; a,b)] = 0,

where b = vec(B), and the subscript G refers to the initial letter of GRS. In this

context, the hypothesis of interest is simply H0 : a = 0.

The equivalence between the null hypotheses H0 : ϕ+w2 = 0 and H0 : φ
+
w2
= 0

becomes immediately apparent if we use the Woodbury formula to show that

φ+w =
1

1 + γwrΣ
−1
zz γwr

ϕ+w,

so that z+ and z++ are proportional. Similarly, it is also possible to prove that

z++ = z++1 +
1

1 + γ 0w1rΣ
−1
z1z1
γw1r

a0Ω−1(z2 − a−Bz1),

where Ω = V (z2 − a−Bz1), which conÞrms that the three null hypotheses are
equivalent.

However, the fact that the parametric restrictions to test are equivalent does

not necessarily imply that from a statistical point of view the corresponding GMM-

based tests are equivalent too. The precise relationship between these three testing

procedures is analysed in detail in Peñaranda and Sentana (2004). In this respect,
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they show that these three approaches to test for spanning are asymptotically

equivalent under the null and sequences of local alternatives, and also, that they

are consistent against Þxed alternatives.6

3.3 Testing the optimality of the least squares prediction

rule

In line with the motivation of our paper, we could also be interested in assessing

whether the LLS prediction rule that agent a follows is proportional to the LMUSR

rule. Once more, we can easily do so in a GMM framework by jointly considering

the moment conditions

E

⎡⎣ wt(rt −w0
tβw)

zt(z
0
tφ
+
w − 1)

⎤⎦ = E
⎡⎣ hO(rt,wt;βw)

hU(zt;φ
+
w)

⎤⎦ = 0,
or alternatively E[hO(rt,wt;βw)] = 0 and E[hE(zt;ϕ

+
w ,µz)] = 0. In this context,

the hypothesis of interest would be H0 : φ
+
w = λβw, or equivalently, H0 : ϕ

+
w =

δβw, where λ and δ are additional scalar parameters to be estimated under H0.

Again, we can apply the trinity of classical GMM tests to this problem, which

will be asymptotically distributed as the same χ2 random variable with k degrees

of freedom under the null hypothesis. Moreover, since both βw and φ
+
w (or ϕ

+
w)

are exactly identiÞed under the alternative, then the Distance Metric test still

coincides with the usual Overidentifying Restrictions test.

4 Empirical illustration

In order to illustrate the estimation and testing procedures discussed in the

previous section, we are going to revisit the empirical application in Pesaran and

Timmermann (1995), who used least squares regressions to generate predictions

of excess returns on Standard and Poor�s 500 (SP500) portfolio using only ex ante

dated variables. In particular, they estimated a monthly excess return regression

over the period 1954(1) to 1992(12) in which the signals were:
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1. x1t : the Þrst lag of the dividend yield deÞned as the ratio of dividends to

share prices,

2. x2t : the second lag of the rate of change of the twelve-month moving average

of the producer prices index,

3. x3t : the Þrst lag of the change in the one-month T-bill rate, and

4. x4t : the rate of change of the twelve-month moving average of the index of

industrial production

(see Pesaran and Timmermann (1995) for data sources, transformations, and pub-

lication delays).

Their results are reproduced in the Þrst column of Table 1, with the only dif-

ference that we have used the orthogonality conditions in (3) to obtain individual

t-ratios and joint signiÞcance tests which are robust to heteroskedasticity and se-

rial correlation. Nevertheless, our results conÞrm theirs, in the sense that both

the Wald test and the overidentifying restriction test (J) clearly indicate that the

null hypothesis of unpredictability of excess returns is rejected by the data.

The second column of the same table contains the coefficient estimates of the

optimal linear forecasting rule in Proposition 1, which we have obtained by means

of the GMM procedures described in Section 4. For the purposes of simplifying

the comparisons between the two columns, we have chosen the arbitrary scale

parameter by minimising the mean square error of the associated predictions. As

for the individual t-ratios and joint signiÞcance tests, they have been obtained on

the basis of the orthogonality conditions in equation (4). In this respect, note

that the Wald and J versions of the uncentred representing portfolios spanning

test of Peñaranda and Sentana (2004) indicate that the Sharpe ratio of a buy and

hold strategy, which is .48216 in annual terms, is clearly dominated by a Sharpe

ratio of 1.0178 for the optimal dynamic investment strategy. Exactly the same

conclusion is reached with the centred representing portfolio and GRS versions of

the spanning tests discussed in section 3, which we do not report for the sake of

brevity.
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The predictability of excess returns is conÞrmed by our robust version of the

Henriksson-Merton-Pesaran-Timmermann statistic reported in Table 1, which we

have computed as the HAC t-ratio of the slope coefficient in the regression of the

sign of r on a constant and the sign of its predictions. Under the null hypothesis of

lack of predictability, these directional market timing tests should be distributed

as a standard normal random variable regardless of the potential heteroskedastic-

ity and/or serial correlation in the joint data generating process for returns and

signals, while they should have a positive mean under the alternative.

As expected, the correlation between actual and predicted excess returns is

higher for the OLS rule than for the optimal rule. Similarly, the root mean square

error is lower for the former than for the latter. In contrast, the Sharpe ratio of the

optimal market timing rule is larger than the Sharpe ratio of the OLS-based rule,

and the same applies to the correlation between the signs of the forecasts and the

signs of the returns. However, the numerical differences are minor, reßecting the

very high correlation (=.973) between the forecasts produced by the two empirical

prediction rules. In fact, if we compute the test of optimality of the linear least

squares projections described in Section 4.3, we Þnd that we cannot reject the

null hypothesis because the p-values of the HAC Wald and J tests are .468 and

1, respectively. Therefore, we can conclude that the least squares rule used by

Pesaran and Timmermann (1995) to predict the SP500 excess returns was not

statistically signiÞcantly different from the linear prediction rule that maximised

the Sharpe ratio of the associated market timing strategy, which in turn reßects

the fact that the joint empirical distribution of excess returns and signals is such

that the moment condition in Proposition 2 cannot be rejected by the data.

5 Summary and Discussion

In the context of a portfolio allocation between one riskless and one risky as-

set, we show that a dynamic strategy which combines multiple regression with a

mean-variance optimiser, cannot beat in terms of unconditional Sharpe ratios a
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passive portfolio strategy which combines individual managed funds that trade

on the basis of a single information variable each. Furthermore, we present a

counterexample in which the manager who uses all the available information will

perform in this metric strictly worse than a manager who uses no information

at all. We also show that the aforementioned passive portfolio allocation implic-

itly uses the linear forecasting rule that maximises the Sharpe ratio of actively

traded portfolios. In addition, we discuss under what circumstances such an �op-

timal� forecast coincides (up to a factor of proportionality) with the least squares

prediction.

In order to make such prediction rules operational, we have also developed

a GMM estimation and testing strategy based on the moment conditions that

deÞne the optimal prediction rule. In this respect, we exploit the interpretation

of our prediction rule in terms of mean-variance efficient portfolios, which allows

us to use spanning tests to empirically assess whether or not a set of potential

explanatory variable increases the Sharpe ratio of such market timing strategies.

Finally, we propose a simple way of testing for the optimality of the least squares

prediction rules.

An empirical illustration of our techniques with monthly excess returns on

the SP500 portfolio conÞrms the predictability of this series on the basis of the

regressors used by Pesaran and Timmermann (1995), and indicates that their

linear least squares predictive regression was not statistically signiÞcantly different

from the linear maximal unconditional Sharpe ratio rule.

Our theoretical results are not entirely surprising. First, we know from the

asset pricing literature that conditional mean-variance efficiency does not neces-

sarily imply unconditional mean-variance efficiency (see e.g. Hansen and Richard

(1987)). Second, we also know from the portfolio evaluation literature that one-

parameter performance measures such as Sharpe ratios, designed to compare pas-

sive portfolio strategies, may often yield misleading results if fundmanagers pursue

market timing strategies (see Chen and Knez (1996), and the references therein).

The fact that the passive fund manager is the best performer also raises the
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question of why any other fund would make efforts to Þnd and extract the signals

when they can free-ride on the others. This issue was originally addressed by

Grossman and Stiglitz (1980), and subsequently analysed in several other papers

(see e.g. Admati and Pßeiderer (1990) and the references therein). It could justify,

for instance, that in order to make sure that there is an incentive to Þnd and do

research on the information, fund managers charge management fees.

Finally, there has been increasing attention recently in the time series econo-

metrics literature on the estimation of models based on alternative prediction loss

functions (see e.g. Weiss (1996)). In this respect, our results can be understood

as saying that the quadratic loss function implicit in least squares regressions will

not generally lead to estimators which maximise unconditional Sharpe ratios. At

the same time, since in the presence of return predictability, most conventional

expected utility functions will lead to portfolio rules that either maximise the

conditional Sharpe ratio, thus making the behaviour of the active fund manager

superior to the behaviour of the passive fund manager, or are not even condition-

ally mean-variance efficient, which is a necessary but not sufficient condition for

unconditional mean-variance efficiency, our results should also provide a note of

warning regarding the indiscriminate use of such estimation methods.

For simplicity, we have considered a single risky asset, but in practice, portfolio

decisions typically involve multiple assets. Perhaps the most natural approach to

extend the analysis in this paper to a world with N risky assets whose excess re-

turns r1, . . . , rN are predictable on the basis of a common set of signals, x1, . . . , xk,

would be to apply the rules of unconditional mean variance analysis to those N

assets together with the Nk managed portfolios z11 = r1(x1 − µ1), . . . , zNk =
rN(xk−µk). In such a framework, we could compare the resulting unconditionally
mean-variance efficient portfolio with the portfolio that would optimally combine

the N managed portfolios whose positions are proportional to the least squares

projections of each ri on all the signals. Similarly, we could also deal with different

predictors for different assets by simply eliminating some of the aforementioned

managed portfolios from the investors� opportunity set.
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It would be also be interesting to relax the linearity of the prediction rules that

we have analysed, even though linearity is less restrictive that it may seem because

instantaneous transformations involving one or several signals can be trivially ac-

commodated as additional signals. Nevertheless, since the objective of such an

exercise would be to obtain the maximal unconditional Sharpe ratio investment

rule as a function of the signals x, this is not a standard optimisation problem,

but rather a problem in the calculus of variations. Hence, except in some simple

examples, we should not expect to obtain closed form expressions. Instead, we

should typically derive a Þrst-order condition that must be satisÞed by the optimal

investment rule, analogous to the usual orthogonality condition that characterises

conditional expectations as the non-linear prediction rule that minimises the un-

conditional mean square forecast error among all possible prediction rules (see e.g.

Hansen and Sargent (1991)).

In addition, it would be worth extending the econometric analysis conducted

in this paper, which like standard OLS prediction theory is in-sample in nature,

to cover alternative sampling schemes, such as rolling and recursive in-samples,

Þxed or proportional out-of-sample sizes relative to the in-sample size, etc. (see

e.g. McCracken (2000)).

Given the practical relevance of all these issues, they constitute obvious av-

enues for further research.
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Notes
1One formal way of rationalising such a behaviour is through conditional

mean-variance analysis, under the maintained assumptions that the conditional

expectations of returns are linear in the signals, and the corresponding con-

ditional variances constant. More precisely, if we assume that the optimisa-

tion problem of a manager endowed with information I can be expressed as

maxwr(I) {wr(I)E(r|I)− .5αw2r(I)V (r|I)}, where α is a positive risk aversion pa-
rameter, her optimal investment strategy will be w∗r(I) = α

−1E(r|I)/V (r|I). Nev-
ertheless, we would like to stress that it is not by any means necessary to make

these assumptions for the validity of our results.

2In this way, we are implicitly guaranteeing that the distribution of returns

conditional on the whole of x and each of its elements has a linear mean and a

constant variance.

3As explained in footnote 1, though, this is largely inconsequential for our

resuts because we concentrate on linear prediction rules.

4In practice, wt is unobserved, but we can either replace it with (1,x0t)
0, which

only affects the deÞnition of the �intercepts� of the different linear prediction

rules, or else add the exactly identiÞed moment conditions E(xt−µx) = 0 without
altering our substantive results.

5As shown by Britten-Jones (1999), we can also obtain �φ
+

w by simply regressing

1 on z. The intuition is as follows. If we had a safe asset among our original set

of assets, the mean-representing portfolio would be simply 1. Although this is not

the case in our context, the mean-representing portfolio is the portfolio of z which

is closest to 1 in the mean-square norm (see also Peñaranda and Sentana (2004)).

6In addition, these authors use Bahadur�s concept of asymptotic relative effi-

ciency to compare the power of the different spanning tests against Þxed alterna-

tives (see e.g. Geweke (1981)), and conclude that their ranking usually depends

on the speciÞc values of the parameters and the distributional assumptions.
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Appendix

Auxiliary results

Cauchy-Schwartz Inequality

For any two vectors a and b of the same order, we have that

(a0b)2 ≤ (a0a)(b0b),

with equality if and only if a and b are linearly dependent.

(see e.g. Magnus and Neudecker (1988) for proofs and extensions).

Proof of Proposition 1

Formally, we can characterize (up to scale) the linear forecasting rule that

maximises the Sharpe ratio, ϕ⊕0w w, as

ϕ⊕0w = argmax
ϕw

ϕ0wγwrγ
0
wrϕw

ϕ0wΣzzϕw
.

The solution to this well-known programme is an eigenvector associated with the

maximum eigenvalue of the rank 1 matrix γwrγ
0
wr in the metric of Σzz. That is,

max
ϕw

ϕ0wγwrγ
0
wrϕw

ϕ0wΣzzϕw
= λ1(Σ

−1/2
zz γwrγ

0
wrΣ

−1/2
zz ) = γ0wrΣ

−1
zz γwr = s

2(rp)

where λ1(A) denotes the largest eigenvalue of the matrix A. This conÞrms that

ϕ⊕w ∝ Σ−1zz γwr, as required. ¤

Proof of Proposition 2

If we call a = Σ−1/2zz γwr and b = Σ
1/2
zz Γ−1wwγwr, then by the Cauchy-Schwartz

inequality,

σ2f=(γ
0
wrΓ

−1
wwγwr)

2 ≤ (γ0wrΣ−1zz γwr)(γ0wrΓ−1wwΣzzΓ−1wwγwr)=(γ 0wrΣ−1zz γwr)(β0wΣzzβw),

so

s2(rp) ≥ s2(ra),
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and s(rp) ≥ s(ra) because they are both positive. Equality is achieved in the

above inequality if and only if Σ1/2zz Γ−1wwγwr = Σ
−1/2
zz γwrθ, where θ is a non-zero

scalar, or equivalently, if and only if Γ−1wwγwr = θΣ
−1
zz γwr, as stated. ¤

It is in fact possible to fully characterise the matrices Σzz for which s(rp) =

s(ra). To do so, it is convenient to re-write the necessary and sufficient condition

as

Γ−1/2ww ΣzzΓ
−1/2
ww

Γ
−1/2
ww γwrp
γ0wrΓ−1wwγwr

= θ
Γ
−1/2
ww γwrp
γ0wrΓ−1wwγwr

,

so that (γ0wrΓ
−1
wwγwr)

−1/2Γ−1/2ww γwr can be regarded as a normalized eigenvector of

the matrix Γ−1/2ww ΣzzΓ
−1/2
ww .

In this context, if we deÞne P as an arbitrary symmetric positive semideÞnite

matrix of order (k + 1), then it is easy to see that the matrix

θ
Γ
−1/2
ww γwrγ

0
wrΓ

−1/2
ww

γ0wrΓ−1wwγwr
+

Ã
I-
Γ
−1/2
ww γwrγ

0
wrΓ

−1/2
ww

γ 0wrΓ−1wwγwr

!
P

Ã
I-
Γ
−1/2
ww γwrγ

0
wrΓ

−1/2
ww

γ0wrΓ−1wwγwr

!
will have θ as one of its eigenvalues, and (γ0wrΓ

−1
wwγwr)

−1/2Γ−1/2ww γwr as the associ-

ated eigenvector. Hence, the above condition will be satisÞed if and only if

Σzz = θ
γwrγ

0
wr

γ 0wrΓ−1wwγwr
+
µ
Γ−1ww −

γwrγ
0
wr

(γ0wrΓ−1wwγwr)

¶
Q

µ
Γww − γwrγ

0
wr

(γ 0wrΓ−1wwγwr)

¶
,

where Q = Γ−1/2ww PΓ−1/2ww is any arbitrary symmetric positive semideÞnite matrix

of dimension k + 1.

To guarantee thatΣzz has full rank, we can chooseP = UΘU0, whereΘ is any

diagonal positive deÞnite matrix of order k, and U is any (k + 1)× k orthogonal
matrix such that I− Γ−1/2ww γwr(γ

0
wrΓ

−1
wwγwr)

−1γ0wrΓ
−1/2
ww = UU0.

Proof of Proposition 3

We have already seen that rp = µ0zΣ
−1
zz z, E(rp) = µ0zΣ

−1
zz µz, and V (rp) =

µ0zΣ
−1
zz µz. Therefore,

s2(rp) = µ0zΣ
−1
zz µz = µ

0
zdg

−1/2(Σzz)dg1/2(Σzz)Σ
−1
zz dg

1/2(Σzz)dg
−1/2(Σzz)µz

= s0(z)ρ−1zz s(z),

as required. ¤
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Proof of Proposition 4

Since in view of our assumptions

E[(r − µr)|x) = β0x(x− µx),
E[(r − µr)2|x) = β0x(x− µx)(x−µx)0βx + σ2u,

it follows from the law of iterated expectations that

E[(r − µr)(x−µx)(x− µx)0] = E[β0x(x−µx) · (x− µx)(x−µx)0],
E[(r − µr)2(x− µx)] = E{[β0x(x−µx)(x−µx)0βx] · (x−µx)},

E[(r − µr)2(x−µx)(x−µx)0] =
E{[β0x(x−µx)(x−µx)0βx] · (x−µx)(x− µx)0}.

Then, we can use the following well known results on the multivariate normal

distribution (see e.g. Arellano (1989))

E[(x−µx)⊗ (x−µx)(x− µx)0] = 0,
E[(x− µx)(x−µx)0 ⊗ (x− µx)(x−µx)0] =
(Σxx ⊗Σxx)(K+ I) + vec(Σxx)vec0(Σxx),

where K is the commutation matrix (see e.g. Magnus and Neudecker (1988)), to

show that

Σzz =

⎛⎝ σ2r − µ2r 00

0 (σ2r + µ
2
r)Σxx

⎞⎠+
⎛⎝ µr

σxr

⎞⎠³ µr σ0xr

´
.

If we use the Woodbury formula, then after some tedious algebra we end up with

Σ−1zz γrw =
1

σ2r{1 + [1− s2(r)][1 + s2(r)]−1R2}

⎧⎨⎩ µr

[1− s2(r)][1 + s2(r)]−1βx

⎫⎬⎭ ,
which proves part 1.

To prove part 2, we simply need to carefully compute

s(rp) =
p
γ0wrΣ−1zz γwr =

s
s2(r) + [1− s2(r)][1 + s2(r)]−1R2
1 + [1− s2(r)][1 + s2(r)]−1R2 ,

s(ra) =
γ0wrΓ

−1
wwγwrp

β0wΣzzβw
=

s2(r) +R2p
s2(r)(1 + 3R2) + (1 +R2)R2

,

30



whence it follows that

s2(rp)−s2(ra) = 4s6(r)R2

{1 + [1− s2(r)][1 + s2(r)]−1R2}[s2(r)(1 + 3R2) + (1 +R2)R2] ≥ 0

as required. ¤

Proof of Proposition 5

The proof consists of two steps. First, we shall obtain all the required expres-

sions for the case of a single signal in terms of s(r), ρr1, φr1, φ1r and κr1 regardless

of the joint distribution of returns and signals. Then, we shall obtain expressions

for those quantities in the particular case of joint log-normally distributed returns

and signal.

But before, we need to obtain expressions for cov(r, z1) and V (z1). In this

respect, note that

cov(r, z1) = E{(r − µr)[r(x1 − µ1)− σr1]}

= σ2rσ1E

"µ
r − µr
σr

¶2µ
x1 − µ1
σ1

¶
+
µr
σr

µ
r − µr
σr

¶2µ
x1 − µ1
σ1

¶#
= σ2rσ1[φr1 + s(r)ρr1]

and

V (z1) = E[r
2(x1 − µ1)2]− σ2r1

= E{[(r − µr)2 + 2µr(r − µr) + µ2r](x1 − µ1)2}− σ2r1

= σ2rσ
2
1

(
E

"µ
r − µr
σr

¶2µ
x1 − µ1
σ1

¶2#

+2s(r)E

"µ
r − µr
σr

¶µ
x1 − µ1
σ1

¶2#
+ s2(r)− ρ2r1

)
= σ2rσ1[κr1 + 2s(r)φ1r + s

2(r)− ρ2r1].

Hence, we can write

Σzz =

⎧⎨⎩ σ2r σ2rσ1[φr1 + s(r)ρr1]

σ2rσ1[φr1 + s(r)ρr1] σ
2
rσ
2
1[κr1 + 2s(r)φ1r + s

2(r)− ρ2r1]

⎫⎬⎭ ,
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from where

Σ−1zz γwr =
1

σr {[κr1 + 2s(r)φ1r + s2(r)− ρ2r1]− [φr1 + s(r)ρr1]2}

×
⎧⎨⎩ s(r)[κr1 + 2s(r)φ1r + s

2(r)− 2ρ2r1]− ρr1φr1
{ρr1[1− s2(r)]− s(r)φr1}σ−11

⎫⎬⎭ ,
which directly gives us the weights of the LMUSR forecasting rule. In contrast,

the least squares weights are simply

Γ−1wwγwr = σr

⎡⎣ s(r)

ρr1σ
−1
1

⎤⎦
Finally, we plug in these formulae in the expressions in section 1 to obtain the

Sharpe ratios of ra and rp.

As for the required moments of the joint log-normal distribution, we only need

to make repeated use of the expression

E(Rlxj1) = E[exp(l lnR+ j lnx1)] = lνR + jν1 + .5(l
2δR + j

2δ1 + 2ljδR1).

In this respect, note that a necessary and sufficient condition for ρr1 to be 0 is

that πR1 = 0. In that case, though, the joint normality of lnR and lnx1 implies

that R and x1 are stochastically independent, so that φr1 = φ1r = 0 and κr1 = 1.

In contrast, when ρr1 6= 0, the coefficient vectors Γ−1wwγwr will be proportional
to Σ−1zz γwr when s(r) > 0 if and only if

ρr1s(r)[κr1 + 2s(r)φ1r + 2s
2(r)− 2ρ2r1 − 1]− [ρ2r1 − s2(r)]φr1 = 0,

which coincides with the cubic equation in the statement of the proposition.

Finally, note that when ρr1 6= 0 but s(r) = 0, then Σ−1zz γwr and Γ−1wwγwr cannot
be proportional, since φr1 6= 0 as long as πR1 6= 0. ¤
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Table 1

Prediction rules for SP500 monthly excess returns

1954:1 to 1992:12 (468 observations)

Predictors OLS Optimal rule

constant -.0240 -.0150
t-ratio -2.688 -1.148

(-2.489) (-1.308)
Dividend yield 14.27 11.99
t-ratio 4.752 2.800

(4.365) (3.393)
Producer prices -.2786 -.2868
t-ratio -4.096 -4.514

(-4.026) (-5.365)
T-bill rates -.688×10−2 -.422×10−2
t-ratio -2.068 -2.501

(-2.239) (-2.079)
Industrial production -.1586 -.1834
t-ratio -5.615 -4.442

(-4.328) (-4.400)

R2 .0870 .0824
RMSE .04050 .04061
Sharpe ratio .989 1.018
Directional correlation .181 .216

Wald tests for 53.22 33.85
zero slopes (44.55) (46.94)
J tests for 14.26 13.66
zero slopes (32.06) (30.41)
PT tests 3.639 4.303

(3.930) (4.735)

Notes: The test statistics in italics have been computed by means of the usual Newey-

West (1987a) expressions with 8 lags, while the values in brackets use 0 lags. The

1% critical value of a χ2 with 4 degrees of freedom is 13.3. Directional correlation

refers to the linear correlation coefficient between the signs of the forecasts and the

signs of the returns. Finally, the J statistic is the usual Sargan-Hansen overidentifying

restriction test, while the PT statistics correspond to the Henriksson-Merton-Pesaran-

Timmermann market timing test.
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