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1 Introduction

There is a long tradition of factor or multi-index models in finance, where they were origi-

nally applied to simplify the computation of the covariance matrix of returns in a mean-variance

portfolio allocation framework (see Connor, Goldberg and Korajczyk (2010) for a recent mono-

graph). In this context, the common factors usually correspond to unobserved fundamental

influences on returns, while the idiosyncratic factors reflect asset specific risks. In addition,

the concept of factors plays a crucial role in two major asset pricing theories: the mutual fund

separation theory (see e.g. Ross, 1978), of which the standard CAPM is a special case, and the

Arbitrage Pricing Theory (see Ross (1976), and Connor (1984) for a unifying approach).

Factor models for low frequency financial returns are routinely estimated by Gaussian max-

imum likelihood under the assumption that the observations are serially independent using

statistical factor analysis routines (see Lawley and Maxwell (1971)). In this context, the EM

algorithm of Dempster, Laird and Rubin (1977) and Rubin and Thayer (1982) provides a cheap

and reliable procedure for obtaining initial values as close to the optimum as desired, as illus-

trated by Lehmann and Modest (1988), who successfully employed this algorithm to handle a

very large cross-sectional dataset of monthly returns on individual US stocks.

However, there are three empirical characteristics of assets returns which question the ade-

quacy of this estimation procedure. First, there is some evidence of return predictability, which

although far from uncontroversial, casts a doubt on the assumption of lack of serial correlation

of common and idiosyncratic factors. Second, there is strong evidence that volatilities and cor-

relations vary at high frequencies such as daily. Finally, many empirical studies with financial

time series data indicate that the distribution of asset returns is rather leptokurtic, even after

controlling for volatility clustering effects. In this context, the lack of normality implies that

the Kalman filter prediction equations only provide the best linear least squares predictions and

associated mean square errors, as opposed to the first two conditional moments (see Anderson

and Moore (1979)), so that one cannot rely on standard results for Gaussian pseudo maximum

likelihood estimators and tests, such as those in Bollerslev and Wooldridge (1992).

The objective of our paper is to provide joint diagnostic tests for serial dependence in the

common and idiosyncratic factors that take into account the non-normality of asset returns. We

will focus on Lagrange Multiplier (or score) tests, which only require estimation of the static

model. As is well known, LM tests are asymptotically equivalent under the null and sequences

of local alternatives to both Likelihood ratio and Wald tests, and therefore share their optimal-

ity properties. In this context, our main contribution is to derive simple algebraic expressions

for the score tests of serial correlation in the levels and squares of common and idiosyncratic
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factors in static factor models when the distribution of the innovations in the latent variables is

elliptically symmetric, which can be either parametrically or semiparametrically specified. Ellip-

tical distributions are attractive in this context because they generalise the multivariate normal

distribution while retaining its tractability irrespective of the number of assets. Importantly,

our closed form tests are valid even though one must generally resort to simulation methods to

approximate the log-likelihood function and its score in non-Gaussian state space models (see

e.g. Durbin and Koopman (2000) and the references therein). In addition, we also explain how

to robustify the Gaussian versions of our LM tests when the return distribution is not normal.

Finally, we derive tests that focus on either the common factors or the specific factors, or indeed

on some of their elements.

We proceed in steps. We initially derive (i) tests against Ar/Ma-type serial correlation in

the latent factors under the maintained assumption that they are conditionally homoskedastic;

(ii) tests against Arch-type effects in those latent variables under the maintained assumption

that they are serially uncorrelated; and (iii) joint tests of (i) and (ii) above. To keep the notation

to a minimum, we focus on single factor models throughout, which suffi ce to illustrate our main

results. Extensions to multiple factors are considered in Fiorentini and Sentana (2012). We

complement our theoretical results with detailed Monte Carlo exercises to study the finite sample

reliability and power of our proposed tests, and to compare them to other existing procedures.

Finally, we also apply our methods to monthly stock returns on US broad industry portfolios.

The rest of the paper is organised as follows. First, we study the properties of likelihood-

based estimators of the static factor model parameters under the null of serial independence.

Then we derive tests against serial correlation in section 3, against conditional heteroskedasticity

in section 4, and joint tests in section 5. A Monte Carlo evaluation of all the different tests can

be found in section 6, followed by the empirical application to US sectorial stock returns in

section 7. Finally, our conclusions, together with several interesting extensions, can be found in

section 8. Proofs and auxiliary results are gathered in appendices.

2 Static factor models

Consider the following traditional (i.e. static, conditionally homoskedastic and exact) factor

model:
yt = π + cft + Γ1/2v∗t ,(

ft

v∗t

)
|It−1;φs ∼ s

[(
0

0

)
,

(
1 0

0 IN

)
;η

]  (1)

where yt is an N × 1 vector of observable variables with constant conditional mean π, ft is

an unobserved common factor, whose constant variance, λ, we have normalised to 1 to avoid
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the usual scale indeterminacy,1 c is the N × 1 vector of factor loadings, v∗t is a N × 1 vector

of standardised idiosyncratic noises, which are conditionally orthogonal to, but not necessarily

independent from, ft, Γ is a N × N diagonal positive semidefinite (p.s.d.) matrix of constant

idiosyncratic variances, It−1 is an information set that contains the values of yt and ft up to, and

including time t− 1, θs = (π′,c′,γ ′)′, with γ = vecd(Γ) are the mean and variance parameters,

η are some additional parameters that determine the shape of the conditional distribution of the

spherical random vector (ft,v
∗′
t )′, which we assume has a well defined density, and φs = (θ′s,η

′)′.

The most prominent example of spherical distribution is, of course, the standard normal

distribution, which we assume corresponds to η = 0. As in Bollerslev (1987) in a univariate

context, and Harvey, Ruiz and Sentana (1992) in a multivariate one, followed by many others,

we shall also consider in some detail a standardised multivariate Student t with ν degrees of free-

dom, or i.i.d. t(0, IN , ν) for short, which approaches the multivariate normal as ν →∞, or η, its

reciprocal, goes to 0. More flexible families of spherical distributions are discrete scale mixtures

of normals and Laguerre polynomial expansions of the multivariate normal density (see Amen-

gual, Fiorentini and Sentana (2013)), which could form the basis for a proper semiparametric

procedure in which η would effectively be regarded as infinite dimensional.

Our assumptions trivially imply that

yt|It−1;φs ∼ s[π,Σ(θs),η], (2)

Σ(θs) = cc′ + Γ, (3)

where we have exploited the fact that linear combinations of elliptical random variables are

elliptical (see thm. 2.16 in Fang, Kotz and Ng (1990)). As a result, if we define the standardised

innovations

ε∗t = Σ−1/2(θs0)(yt − π0) (4)

as an N−dimensional martingale difference sequence that satisfies E(ε∗t |It−1;φs0) = 0 and

V (ε∗t |It−1;φs0) = IN , then η fully determines the shape of the conditional density of ςt = ε∗′t ε
∗
t .

The most distinctive feature of these models is that they provide a parsimonious specification

of the cross-sectional dependence in the observed variables,2 which results in a significant reduc-

tion in the number of parameters, and allows the estimation of these models with a large number

of series (see e.g. Lehmann and Modest (1988)). For these reasons, model (1) continues to be

rather popular in empirical finance applications such as portfolio allocation, asset pricing tests,

1To free up the variance of the common factor, we can impose alternative restrictions as, for instance, c1 = 1

or c′c = 1.
2See Sentana (2000) for a random field interpretation of factor models, and their time-series and cross-sectional

state-space representations.
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hedging and portfolio performance evaluation (see Connor, Goldberg and Korajczyk (2010) for

details).

The parameters of interest are usually estimated jointly from the log-likelihood function of

the observed variables. The ellipticity assumption and the serial independence of the variables

involved imply that a modified version of the Kalman filter can still be used to estimate the

underlying latent variables even though the innovations are not Gaussian. In particular, we can

prove that:

E

(
ft

vt

∣∣∣∣∣Yt;φs

)
=

[
c′Σ−1(θs)(yt − π)

ΓΣ−1(θs)(yt − π)

]
=

[
fkt(θs)

vkt(θs)

]
, (5)

and

V

(
ft

vt

∣∣∣∣∣Yt;φs

)
=

[
υkt(θs,η) −c′υkt(θs,η)

−cυkt(θs,η) cc′υkt(θs,η)

]
= h[ςt(θs);η] · V

(
ft − fkt(θs)
vt − vkt(θs)

∣∣∣∣∣φs
)
,

where Yt = {yt,yt−1, . . .},

vt = yt − π − cft = Γ1/2v∗t ,

ςt(θs) = ε∗′t (θs)ε
∗
t (θs) = (yt − π)′Σ−1(θs)(yt − π)

and h(ςt;η) is a scalar factor of proportionality that reflects the non-linear dependence between

the elements of a spherical random vector. For example, for the Student t

h(ςt;η) =
ν − 2

ν +N − 2

(
1 +

ςt
ν − 2

)
,

which reduces to 1 under normality (see Harvey, Ruiz and Sentana (1992)). This scaling factor,

whose unconditional mean is 1, multiplies the matrix of unconditional mean square errors

V

(
ft − fkt(θs)
vt − vkt(θs)

∣∣∣∣∣φs
)

=

[
1− c′Σ−1(θs)c −c′Σ−1(θs)Γ

−ΓΣ−1(θs)c Γ− ΓΣ−1(θs)Γ

]

=

[
ωk(θs) −c′ωk(θs)

−cωk(θs) cc′ωk(θs)

]
, (6)

which has rank one because we are trying to infer N + 1 latent variables from N observed ones.

The elements of fkt(θs) and vkt(θs) are known as the “regression scores”in the factor analysis

literature because the weights in (5) coincide with the coeffi cients in the theoretical regression

of each unobserved variable onto the observed series, while (6) coincides with the unconditional

residual covariance matrix from those regressions. As explained in Sentana (2004), the MSE

criterion can be given an intuitive justification in terms of a mean-variance investor, since it

corresponds to the so-called “tracking error”variability in the finance literature. In that sense,

fkt(θs) are the excess returns to the portfolio that best “tracks”ft, while vkt(θs) are the excess

returns to the original vector of asset returns after we have hedged them against the common
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source of risk. As we shall see, fkt(θs), vkt(θs), ωk(θs) and υkt(θs,η) constitute the basic

ingredients of our tests.

In this context, we can formally characterise the asymptotic distribution of three likelihood-

based estimators of the static model parameters: the usual maximum likelihood estimator that

simultaneously estimates θs and η; the elliptically symmetric semiparametric estimator of θ

considered by Hodgson and Vorkink (2003), Hafner and Rombouts (2007) and others, which

restricts ε∗t to have an i.i.d. s(0, IN ;η) conditional distribution but does not impose any structure

on the distribution of ςt;3 and the Gaussian pseudo maximum likelihood estimator of θ, which

sets η = 0 even though the true conditional distribution of ε∗t may well be non-normal.

Proposition 1 Assume that (i) V (yt) in (3) can be uniquely decomposed into cc′ and Γ, and

(ii) the matrix

[Γ− c(c′Γ−1c)−1c′]� [Γ− c(c′Γ−1c)−1c′]

has full rank, where � denotes the Hadamard product of two matrices of equal orders. Then:

1. The asymptotic distribution of the maximum likelihood estimators θ̂s and η̂ will be

√
T (φ̂s − φs0)→ N [0, I−1φsφs(φs0)],

where the information matrix Iφsφs(φs) will be block diagonal between the elements cor-

responding to π and the elements corresponding to (c,γ,η), with the first block given by

mll(η)Σ−1(θs) and the second block by

 mss(η){[c′Σ−1(θs)c]Σ−1(θs) + Σ−1(θs)cc′Σ−1(θs)}+ [mss(η)− 1]Σ−1(θs)cc′Σ−1(θs)

mss(η)E′N [Σ−1(θs)c⊗Σ−1(θs)] + 1
2 [mss(η)− 1]Σ−1(θs)cvecd′[Σ−1(θs)]

m′sr(η)c′Σ−1(θs)

mss(η)[c′Σ−1(θs)⊗Σ−1(θs)]EN + 1
2 [mss(η)− 1]vecd[Σ−1(θs)]c′Σ−1(θs)

1
2mss(η)[Σ−1(θs)�Σ−1(θs)] + 1

4 [mss(η)− 1]vecd[Σ−1(θs)]vecd′[Σ−1(θs)]
1
2m
′
sr(η)vecd′[Σ−1(θs)]

Σ−1(θs)cmsr(η)
1
2vecd[Σ−1(θs)]msr(η)

Mrr(η)

 ,
where En is the unique n2 × n “diagonalisation” matrix which transforms vec(A) into

3The main advantage of this estimator over traditional semiparametric estimators is that one can obtain an

estimate of the joint density of ε∗t from a nonparametric estimate of the univariate density of ςt, thereby avoiding

the curse of dimensionality (see e.g. appendix B1 in Fiorentini and Sentana (2010a) for details).
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vecd(A) as vecd(A) = E′nvec(A),

mll(η) = E

{
δ2[ςt(θ),η]

ςt(θ)

N

∣∣∣∣φ} = E

{
2∂δ[ςt(θ),η]

∂ς

ςt(θ)

N
+ δ[ςt(θ),η]

∣∣∣∣φ} , (7)

mss(η) =
N

N + 2

[
1 + V

{
δ[ςt(θ),η]

ςt
N

∣∣∣φ}] = E

{
2∂δ[ςt(θ),η]

∂ς

ς2t (θ)

N(N + 2)

∣∣∣∣φ}+ 1, (8)

msr(η) = E

[{
δ[ςt(θ),η]

ςt(θ)

N
− 1

}
e′rt(φ)

∣∣∣∣φ] = −E
{
ςt(θ)

N

∂δ[ςt(θ),η]

∂η′

∣∣∣∣φ} , (9)

Mrr(η) = V [ ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η|φ]

= −E[∂2c(η)/∂η∂η′ + ∂2g [ςt(θ),η] /∂η∂η′
∣∣φ], (10)

δ(ςt,η) = −2∂g(ςt,η)/∂ς, (11)

c(η) is the constant of integration of the assumed elliptical density and g(ςt,η) its kernel.

2. Assuming that the population coeffi cient of multivariate excess kurtosis

κ = E(ς2t |η)/[N(N + 2)]− 1 (12)

is such that −2/(N + 2) < κ0 < ∞, the effi ciency bound associated to the elliptically

symmetric semiparametric estimator θ̊s will be block diagonal between π and (c,γ), where

the first block coincides with the first block of the information matrix, and the second one

with the corresponding block of the information matrix minus{[
N + 2

N
mss(η)− 1

]
− 4

N [(N + 2)κ+ 2]

}
×
[

Σ−1(θs)cc′Σ−1(θs)
1
2Σ
−1(θs)cvecd′[Σ−1(θs)]

1
2vecd[Σ−1(θ)]c′Σ−1(θ) vecd[Σ−1(θs)]vecd′[Σ−1(θs)]

]
.

3. If κ0 < ∞, the asymptotic distribution of the Gaussian pseudo maximum likelihood esti-

mator θ̄s will be

√
T (θ̄s − φ̄s0)→ N [0,A−1θsθs(θs0)Bθsθs(φs0)A

−1
θsθs

(θs0)],

where

Aθsθs(θs) = Iθsθs(θs,0),

Iθsθs(θs,0) =

 Σ−1(θs) 0

0 [c′Σ−1(θs)c]Σ−1(θs) + Σ−1(θs)cc′Σ−1(θs)

0 E′N [Σ−1(θs)c⊗Σ−1(θs)]

0

[c′Σ−1(θs)⊗Σ−1(θs)]EN

1
2Σ
−1(θs)�Σ−1(θs)


and Bθsθs(φ) has the same expression as Iθsθs(θs,η) but with mll(η) and mss(η) replaced

by 1 and (κ+ 1), respectively.
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In the multivariate standardised Student t case, in particular, Fiorentini, Sentana and Cal-

zolari (2003) show that:

mll(η) =
ν (N + ν)

(ν − 2) (N + ν + 2)
, mss(η) =

(N + ν)

(N + ν + 2)
, msr(η) = − 2 (N + 2) ν2

(ν − 2) (N + ν) (N + ν + 2)
,

Mrr(η) =
ν4

4

[
ψ′
(ν

2

)
− ψ′

(
N + ν

2

)]
−

Nν4
[
ν2 +N(ν − 4)− 8

]
2 (ν − 2)2 (N + ν) (N + ν + 2)

,

where ψ(.) is the di-gamma function, which under normality reduce to 1, 1, 0 and N(N + 2)/2,

respectively.

Finally, it is worth mentioning that if we reparametrised the covariance matrix Σ(θs) as

ϑ2Σ
◦(ϑ1), where ϑ2 is a scalar and

Σ◦(ϑ1) = c∗c∗′ + Γ∗,

with Γ = ϑ2Γ
∗ and c =

√
ϑ2c
∗, Proposition 8 in Fiorentini and Sentana (2010a) implies that

the maximum likelihood estimator and the elliptically symmetric semiparametric estimator of

ϑ1 would be adaptive (i.e. as effi ciently estimated as if we knew η). If we further eliminated

the resulting scale indeterminacy by forcing

|Σ◦(ϑ1)| =
(∏N

i=1
γ∗i

)(
1 +

∑N

j=1
c∗2j /γ

∗
j

)
to be 1 (or any other fixed value),4 the same proposition implies that the asymptotic covariance

matrices of the three estimators of ϑ1 and ϑ2 considered in Proposition 1 would be block diagonal.

Moreover, the ML estimator of ϑ2 could only achieve the asymptotic effi ciency of its Gaussian

pseudo maximum likelihood estimator, which would be given by the expression:

ϑ2(ϑ1) =
1

N

1

T

T∑
t=1

ς◦t (ϑ1),

ς◦t (ϑ1) = (yt − π)′Σ◦−1(ϑ1)(yt − π),

evaluated at the Gaussian PML estimator ϑ̄1.
4We can solve the resulting determinantal equation for one of the c∗′s, which yields

c∗i = ±γ∗i

 1∏N
i=1 γ

∗
i

− 1−
N∑
j 6=i

c∗2j /γ
∗
j

 ,

or for one of the γ∗′s, yielding

γ∗j =

1− c2j
∏
i6=j

γ∗i

/∏
i6=j

γ∗i

1 +
∑
i6=j

c∗2i /γ
∗
i

 .

7



3 Serial correlation tests for common and idiosyncratic factors

3.1 Baseline case

The most natural way of introducing serial correlation in model (1) would be to assume that

yt = π + cxt + ut

xt = ρxt−1 + ft

ut = diag(ρ∗)ut−1 + Γ1/2v∗t

 (13)

and (
ft

v∗t

)
|It−1,φ ∼ s

[(
0

0

)
,

(
1 0

0 IN

)
,η

]
, (14)

where the parameters of interest become φ = (θ′,η′)′, θ = (θ′s,ρ
†′)′, with ρ† = (ρ,ρ∗′)′, as this

reduces to our baseline specification (1) under H0 : ρ† = 0.

The problem with formulation (13) is that unless the true conditional distribution of the

latent variables is Gaussian, the conditional distribution of the observed variables given their

past values alone is unknown when ρ† 6= 0 and Γ has full rank, and can only be approximated

by simulation (see e.g. Durbin and Koopman (2000)). While it is true that the Kalman filter

continues to produce the best linear least squares predictions of the underlying state variables in

those circumstances (see Anderson and Moore (1979)), its prediction equations do not generally

provide the conditional mean vector and covariance matrix of yt given Yt−1 (and the parameter

values). As a result, we cannot rely on standard results for Gaussian pseudo maximum likelihood

estimators and tests, such as those in Bollerslev and Wooldridge (1992). For that reason, in the

rest of this section we assume that the mean vector and covariance matrix of yt conditional

on Yt−1 are given by the usual Kalman filter recursions (see appendix B in Fiorentini and

Sentana(2012)), but the conditional distribution is elliptically symmetric. We will revisit this

assumption in subsection 3.2.1.

Gaussian versions of dynamic factor models such as (13) have become increasingly popular

in macroeconomic applications (see e.g. Bai and Ng (2008) and the references therein), but they

are not widely used for stock returns (see Dungey, Martin and Pagan (2000) or Jegadeesh and

Pennacchi (1996) for applications to bonds).

Assuming the stationarity conditions |ρ| < 1 and |ρ∗i | < 1 ∀i hold, the autocovariance

matrices of the observed series will be:

Gy(j) = cc′Gx(j) + Gu(j). (15)

The factor structure applies in particular to Σ, the unconditional covariance matrix of yt, even

though xt or ut are serially correlated (see Doz and Lenglart (1999)). It is also easy to see that
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the autocovariance structure in (15) corresponds to a special case of a Varma(2,1) model since

(1− ρL)[IN − diag(ρ∗)L](yt − π) = [IN − diag(ρ∗)L]cft + (1− ρL)vt,

whose right hand side has the autocovariance structure of a Vma(1).5

As the next proposition shows, however, testing the null of multivariate white noise against

such a complex Varma(2,1) specification is extremely easy. Importantly, we shall distinguish

between the optimal score test obtained by exploiting the non-normality of the conditional

distribution, and the Gaussian pseudo LM test, which although uses the Gaussian scores, has

been robustified against possible non-normality:

Proposition 2 Let

Ḡf (j;η) =
1

T

∑T

t=1
δ[ςt(θs),η]fkt(θs)fkt−j(θs)

denote the sample cross moment of δ[ςt(θs),η]fkt(θs) and fkt−j(θs), where δ(ςt,η) is defined

in (11) and fkt(θs) is obtained from the updating equations (5) of the static factor model (1).

Similarly, let

Ḡv(j;η) =
1

T

∑T

t=1
δ[ςt(θs),η]vkt(θs)v

′
kt−j(θs)

denote the analogous sample cross moments for the specific factors.

1. Under the null hypothesis H0 : ρ† = 0, the score test statistic LMAR(1)(η0) given by T

times(
Ḡf (1;η0), vecd

′[Γ
−1/2
0 Ḡv(1;η0)Γ

−1/2
0 ]

)
I−1
ρ†ρ†

(θs0,0;η0)
(
Ḡf (1;η0), vecd

′[Γ
−1/2
0 Ḡv(1;η0)Γ

−1/2
0 ]

)′
,

with

Iρ†ρ†(θs,0;η) = Vρ†ρ†(θs,0;η)� Vρ†ρ†(θs,η;η),

where

Vρ†ρ†(θs,η;η) = V

[
δ[ςt(θs),η]fkt(θs)

δ[ςt(θs),η]Γ−1/2vkt(θs)

]
= mll(η)Vρ†ρ†(θs,0; 0),

Vρ†ρ†(θs,0;η) = V

[
fkt(θs)

Γ−1/2vkt(θs)

]

=

[
c′Σ−1(θs)c c′Σ−1(θs)Γ1/2

Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2

]
= Vρ†ρ†(θs,0; 0),

5When ρ∗ = ρIN , though, the reduced form process becomes a Var(1) with a scalar companion matrix. As a

result, any linear combination of yt will have the autocorrelation structure of an Ar(1) process with autoregressive

coeffi cient ρ.
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will be distributed as a χ2 with N + 1 degrees of freedom for N fixed as T goes to infinity.

Moreover, this asymptotic null distribution is unaffected if we replace θs0 and η0 by their

feasible maximum likelihood estimators in the first part of Proposition 1.

2. It also remains valid if we replace θs0 by its elliptically symmetric semiparametric estimator

in the second part of Proposition 1, which requires the nonparametric estimation of the

density of ςt(θs).

3. Under the same null hypothesis, the Gaussian pseudo score test statistic LMAR(1)(0) given

by T times(
Ḡf (1; 0), vecd′[Γ

−1/2
0 Ḡv(1; 0)Γ

−1/2
0 ]

)
I−1
ρ†ρ†

(θs0,0; 0)
(
Ḡf (1; 0), vecd′[Γ

−1/2
0 Ḡv(1; 0)Γ

−1/2
0 ]

)′
,

will be distributed as a χ2 with N + 1 degrees of freedom for N fixed as T goes to infinity

irrespective of the normality of the conditional distribution. This result continues to hold

if we replace θs0 by its Gaussian pseudo maximum likelihood estimator θ̄s in the third part

of Proposition 1.

Researchers may sometimes be interested in tests that separately assess the serial correla-

tion of either the common factor or the specific factors. In principle, they might even like to

focus on a particular vit. By combining the relevant elements of Ḡf (j;η) and Ḡv(1;η) with

the corresponding blocks of the information matrix, Iρ†ρ†(θs0,0;η), we can easily exploit the

results in Proposition 2 to derive the required test statistics for those subcomponents under the

maintained hypothesis of serial independence.6 Intuitively, the reason is that we can interpret

LMAR(1)(η) as a test based on the N + 1 orthogonality conditions:

E{δ[ςt(θs),η]fkt(θs)fkt−1(θs)|θs,0,η} = 0, (16)

E{γ−1i δ[ςt(θs),η]vkit(θs)vkit−1(θs)|θs,0,η} = 0 (i = 1, . . . , N). (17)

Similarly, LMAR(1)(0) is based on

E [fkt(θs)fkt−1(θs)|θs,0,η] = 0, (18)

E
[
γ−1i vkit(θs)vkit−1(θs)|θs,0,η

]
= 0 (i = 1, . . . , N), (19)

which are the conditions that we would use to test for first order serial correlation if we treated

fkt(θs) and vkit(θs) as the series of interest in the Gaussian case (see Breusch and Pagan (1980)

or Godfrey (1988)). In that sense, the factor δ(ςt,η), which is equal to 1 under Gaussianity and

6See Bera and Yoon (1993) for a possible way of orthogonalising those individual LM test under alternatives

local to H0 : ρ† = 0.
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to (Nη + 1)/(1− 2η + ηςt) for the Student t, can be regarded as the type of damping factor for

big observations used in the robust estimation literature (see e.g. Maronna, Martin and Yohai

(2006)) because it is a decreasing function of ςt for fixed η > 0, the more so the higher η is (see

Fiorentini and Sentana (2010b) for a closely related discussion for univariate models).

Given that we have fixed the variance of the innovations in the common factor to 1, the

moment conditions (18) and (19) closely resemble

E(ftft−1|θs,0) = 0,

E(γ−1i vitvit−1|θs,0) = 0 (i = 1, . . . , N),

which are the Gaussian-based orthogonality conditions that we could use to test for first order

serial correlation if we could observe all the latent variables.

The similarity between these two sets of moment conditions becomes even stronger if we

consider individual tests for serial correlation in each latent variable. Let us start with a test

of H0 : ρ = 0 under the maintained assumption that ρ∗ = 0. Part 3 of Proposition 2 implies

that the asymptotic variance of Ḡf (1; 0) is simply [c′Σ−1(θs)c]2. But we can use (6) to inter-

pret c′Σ−1(θs)c as the R2 in the theoretical least squares projection of ft on a constant and yt.

Therefore, the higher the degree of observability of the common factor, the closer the asymptotic

variance of Ḡf (1; 0) will be to 1, which is the asymptotic variance of the first sample autocorre-

lation of ft. Intuitively, this convergence result simply reflects the fact that the common factor

becomes observable in the limit, which implies that our Gaussian test of H0 : ρ = 0 will become

arbitrarily close to a Gaussian first order serial correlation test for the common factor as the

“signal to noise”ratio c′Σ−1(θs)c approaches 1. Before the limit, though, our test takes into ac-

count the unobservability of ft. A particularly interesting situation arises if we consider models

in which N is large. Since c′Σ−1(θs)c = (c′Γ−1c)/[1 + (c′Γ−1c)] under the assumption that Γ

has full rank, the aforementioned R2 converges to 1 as N grows because (c′Γ−1c)→∞ in those

circumstances due to the pervasive nature of the common factor (see e.g. Sentana (2004)).

Likewise, part 3 of Proposition 2 implies that the asymptotic variance of Ḡvi(1; 0) is [γiσ
ii(θs)]

2,

where σii(θs) denotes the ith diagonal element of Σ−1(θs). But we can again use (6) to inter-

pret γiσ
ii(θs) as the R2 in the theoretical least squares projection of vit on a constant and yt.

Therefore, we can apply a similar line of reasoning to a Gaussian test of H0 : ρ∗i = 0 under the

maintained assumption that both ρ and the remaining elements of ρ∗ are 0. In this respect,

note that σii(θs) = γ−1i −γ
−2
i c2i /[1+(c′Γ−1c)] when Γ has full rank, which means that γiσ

ii(θs)

also converges to 1 as N increases for fixed ci and γi.

Nevertheless, it is important to emphasise that our joint tests take into account the covariance

between the Kalman filter estimators of common and specific factors, even though the latent
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variables themselves are uncorrelated. In fact, Vρ†ρ†(θ,η;η) has rank N instead of N+1 because

of the negative relationship vkt(θ) = yt−π−cfkt(θ), which rules out the direct application of the

multivariate serial correlation test discussed in section 3.3 to the vector process [fkt(θs),v
′
kt(θs)]

′.

Part 3 of Proposition 2 also implies that the asymptotic distribution of the Gaussian tests

does not depend on normality or indeed ellipticity. Effectively, this result mimics the fact that

under conditional homoskedasticity, standard score tests for serial correlation in observed series

are also robust to non-normality. In fact, we can strengthen this intuition as follows. Since

V [fkt(θs)|θs,0,η] = c′Σ−1(θs)c, we can obtain an asymptotically equivalent test of H0 : ρ =

0 by computing the F test of the regression of fkt(θs) on a constant and fkt−1(θs), whose

asymptotic null distribution does not depend on Gaussianity.

Finally, it is worth mentioning that the orthogonality conditions (16) and (17) remain valid

when yt is serially uncorrelated irrespective of V (yt) having an exact single factor structure.

Therefore, one could also use them to derive a standard moment test (see e.g. Newey and Mc-

Fadden (1994), Newey (1985) and Tauchen (1985)), which will continue to have non-trivial power

even though it will no longer be an LM test (see Sentana and Shah (1994) for an interpretation

of θs when Σ(θs) is misspecified). Naturally, the same applies to (18) and (19).

3.2 Extensions

3.2.1 Unobservable conditional means

The assumption that the distribution of yt conditional on its past alone is elliptically sym-

metric but with a mean vector and covariance matrix given by the usual Gaussian Kalman filter

recursions may be regarded as a way of constructing a convenient auxiliary model that coincides

with the model of interest for ρ† = 0 or η = 0, but whose log-likelihood function and score

we can obtain in closed form for every possible value of ρ† when η 6= 0. In this regard, it is

important to bear in mind that the fact that we can compute the true log-likelihood function of

yt under the null of ρ† = 0 is not suffi cient to compute its derivative with respect to ρ†. Never-

theless, it is possible to use the EM principle to obtain this score. Remarkably, it turns out that

the score of the potentially non-Gaussian state-space model (13) and the approximating model

used in the previous section coincide under the null, even though the Kalman filter prediction

equations do not provide the true conditional mean and covariance matrix under the alternative.

As a result, the test statistics we have derived in Proposition 2 remain valid for model (13) too.

The following proposition formalises our claim for the multivariate Student t, but we conjecture

it applies to most other elliptical distributions:

12



Proposition 3 Let st(φ) = ∂lt(φ)/∂φ denote the log-likelihood score of the conditionally ellip-

tical model for yt|Yt−1;φ in section 3.1. Similarly, let qt(φ) = ∂p(yt|Yt−1;φ)/∂φ denote the

exact log-likelihood score of model (13). If (14) is a (standardised) multivariate Student t with

0 ≤ η < .5 then lt(φ) = p(yt|Yt−1;φ) and st(φ) = qt(φ) when evaluated at ρ† = 0.

In other words, the approximating model “smoothly embeds”(in the sense used by Gallant

and Tauchen (1996) in their Theorem 2) the original model in those circumstances.

3.2.2 Moving average processes

Specification (13) assumes that common and specific factors follow Ar(1) processes. How-

ever, recent macroeconomic applications of dynamic factor models have often considered moving

average processes instead, sometimes treating the lagged latent variables as additional factors

(see again Bai and Ng (2008)). Thus, we could alternatively assume that

xt = ft + ϕft−1,

ut = vt + diag(ϕ∗)vt−1.
(20)

In this case the autocorrelation structure of yt corresponds to a restricted Vma(1) process.

Although the Kalman filter recursions for this dynamic model change, we can show that the

scores corresponding to ϕ† = (ϕ,ϕ∗′)′ evaluated at ϕ† = 0 numerically coincide with the scores

corresponding to ρ† in model (13) evaluated at ρ† = 0. Hence, we can also interpret LMAR(1)(η)

in Proposition 2 as the LM test of H0 : ϕ† = 0. This result mimics the well known fact that

Ma(1) and Ar(1) processes provide locally equivalent alternatives in univariate tests for serial

correlation (see e.g. Godfrey (1988)).

3.2.3 Higher order processes

Consider now the following alternative:

xt =
∑h

l=1 ρlxt−l + ft,

uit =
∑h∗i

l=1 ρ
∗
iluit−l + vit, (i = 1, . . . , N).

In view of the discussion in section 3.1, it is perhaps not surprising that the score test of ρl = 0

will be based on a modified version of (18) with fkt−l(θs) replacing fkt−1(θs), while the test of

ρ∗il = 0 will be based on the analogue version of (19). Given that yt is i.i.d. under the null, it is

not diffi cult to show that the joint test for higher order dynamics will be given by T times the

sum of terms of the form(
Ḡf (l;η) vecd′[Γ−1/2Ḡv(l;η)Γ−1/2

)
I−1
ρ†ρ†

(θs,0;η)
(
Ḡf (l;η) vecd′[Γ−1/2Ḡv(l;η)Γ−1/2

)′
.
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As expected, these statistics are also LM tests against Ma(h) structures in the factors. And

if for some reason we wanted to test for different orders of serial correlation in different latent

variables, then we should eliminate the irrelevant autocovariances from the above expression.

Similarly, we could be interested either in models in which the autoregressive structure of

the latent variable follows some restricted distributed lag, or in panel data type structures in

which ρ∗il = ρ∗l ∀i, l to alleviate the incidental parameter problems for large N . In those cases,

we can use the usual chain rule to obtain the relevant moment conditions and their asymptotic

covariance matrix. For example, if we assume that ρl = ρ ∀l, the relevant orthogonality condition

of the Gaussian tests will become

E

[
fkt(θs)

∑h

l=1
fkt−l(θs)|θs,0

]
= 0,

with h·[c′Σ−1(θs)c]2 being the corresponding asymptotic variance. Interestingly, this expression

is entirely analogous to the so-called Hodrick (1992) standard errors used in LM tests for long

run return predictability in univariate regressions with overlapping observations.

3.3 The relative power of AR tests in multivariate contexts

Although we investigate the finite sample properties of our proposed tests of serial correlation

in common and specific factors in section 6, it is illustrative to theoretically compare their

power to other possibilities, such as the multivariate generalisation of the Box and Pierce (1970)

test proposed by Hosking (1981),7 a standard univariate Ar(1) test applied to the Equally

Weighted Portfolio (EWP), and a joint test of univariate first-order autocorrelation in all N

series (H0 : vecd[Gy(1)] = 0), which takes into account that the y′its are contemporaneously

correlated even when they are serially uncorrelated.8 We consider a single factor model of the

form:
yit = πi + cixt + uit (i = 1, . . . , 5)

xt = ρxt−1 +
√

1− ρ2ft
uit = ρ∗iuit−1 +

√
1− ρ∗2i vit

where π = (.5, .4, .5, .4, .5), c = (5, 4, 5, 4, 5), γ = (5, 9, 5, 9, 5) and ρ∗i = ρ∗ ∀i. Such a design

is motivated by the empirical application in section 7 and our desire to avoid exchangeable

models, in which unusual simplifications occur. We evaluate asymptotic power against compatible

sequences of local alternatives of the form ρ†0T = ρ̄†/
√
T (see appendix B for details). To avoid

penalising Hosking’s test, in this section we only consider the Gaussian versions of our tests. In

any case, all the Gaussian tests that we compare will be robust to the presence of non-normality.
7 In the first order case, one can reinterpret his proposal as a test of the null hypothesis of lack of serial

correlation against an unrestricted Var(1) model, as in Hendry (1971), Gulkey (1974) and Harvey (1982).
8Given the single factor structure of Σ, this test differs from Test 2 in Harvey (1982), which tests the null

hypothesis H0 : vecd(Gy(1)) = 0 under the maintained assumption that Σ is diagonal.
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In view of the discussion following Proposition 2, it is worth looking at the first two un-

conditional moments of yt. In this sense, note that by construction E(xt) = 0, V (xt) = 1,

E(uit) = 0, V (uit) = γi and cov(xt, uit) = 0 both under the null and the different alternatives,

which implies that E(yt) = π and V (yt) = cc′+Γ. Thus, the unconditional standard deviations

will be
√

30 for the first, third and fifth series, and 5 for the second and fourth ones, while the

unconditional correlations will be .8̊3 (odd with odd), .73 (odd with even) or .64 (even with

even). Finally, the “signal to noise”ratio c′Σ−1c, which coincides with the R2 in the theoretical

least squares projection of ft on a constant and yt, is .95.9 As for the means, note that we have

implicitly imposed that linear factor pricing holds because π = .1c. Although this restriction

is inconsequential for our econometric results, it implies an a priorily realistic unconditional

mean-variance frontier, with a maximum Sharpe ratio of .34 on an annual basis.10

Figure 1a shows that when ρ∗ = 1.5ρ our proposed test of H0 : ρ† = 0 is the most powerful

at the usual 5% significance level, closely followed by the test of H0 : ρ∗ = 0. Next, we find the

pormentau test of H0 : vec[Gy(1)] = 0 and the univariate test applied to EWP, which is barely

distinguishable from the test of serial correlation in the common factor and very close to the

“diagonal”serial correlation test of H0 : vecd[Gy(1)] = 0. However, the results depend on the

“signal to noise”ratio c′Σ−1c. Figure 1b shows the equivalent picture when we multiply all the

elements of γ by 10, so that the R2 in the regression of ft on yt reduces to .65. In this case,

the power of our test of serial correlation in ft, the univariate test on EWP and especially the

diagonal test increases substantially. In contrast, Figure 1c illustrates the effects of dividing the

elements of γ by 5, so that the aforementioned R2 reaches .99. In this context, the diagonal test

becomes the least powerful.

The other crucial determinant of the power of the different tests is the relative magnitudes

of ρ and ρ∗. Figure 2a shows the effect of setting ρ∗ = 0 for our baseline signal to noise ratio,

while Figure 2b illustrates the effects of ρ = 0. In the first case, the test of serial correlation in

the common factor becomes the most powerful, with the test of serial correlation in the specific

factors having power virtually equal to size, while exactly the opposite happens in the second

case.11

9A more common measure of the importance of commonalities is the R2 in the theoretical regression of each

series on the common factor, which is .8̊3 for the odd numbered series and .64 for the even numbered ones.
10The ex-ante optimal mean-variance portfolio % weights are (25.7,11.4,25.7,11.4,25.7).
11Although the test of H0 : ρ = 0 has non-trivial local power when ρ = 0 but ρ∗ 6= 0, and the same is true of

the test of H0 : ρ∗ = 0 when ρ∗ = 0 but ρ 6= 0, a much larger horizontal axis would be necessary to appreciate

those effects.
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3.4 The relative power of the normality tests

Let us now assess the gains that accrue from exploiting the non-normality in the distribution

of returns. It is not diffi cult to show that the ratio of non-centrality parameters of the normality

test LMAR(1)(0) and the elliptical likelihood test LMAR(1)(η) is m−1ll (η0), which reflects the

fact that the non-centrality parameter of the Gaussian tests is invariant to the true conditional

distribution of the data. In the multivariate Student t case with ν0 > 4, in particular, this

asymptotic effi ciency ratio becomes

(ν0 − 2)(ν0 +N + 2)

ν0(ν0 +N)
. (21)

For any given N , this ratio is monotonically increasing in ν0, and approaches 1 from below as

ν0 → ∞, and 0 from above as ν0 → 2+. For instance, for N = 1 it takes the values of .9̊3 and

.8 for ν0 = 9 and ν0 = 5, respectively. At the same time, this ratio is decreasing in N for a

given ν0, which reflects the fact that Fisher’s information for the mean is “increasing”in N in

the Student t case (see Fiorentini and Sentana (2010a)). For N = 3 and ν0 = 9, for instance, it

takes the value of .907, while for ν0 = 5, its value is only .75.

It is also straightforward to map those effi ciency ratios into power gains by considering

sequences of local alternatives. For illustrative purposes, we look at the baseline design in

section 3.3 under the assumption that the true conditional distribution of ε∗t is a multivariate

t6. Figure 2c shows that the power gains that accrue to our proposed serial correlation tests by

exploiting the leptokurtosis of the Student t distribution are far from trivial.

4 Tests for ARCH effects in common and idiosyncratic factors

4.1 Baseline case

The alternative that we consider next is the following conditionally heteroskedastic factor

model:
yt = π + cft + vt(

ft

vt

)
|It−1;θ,η ∼ s

[(
0

0

)
,

(
λt(θ) 0

0 Γt(θ)

)
,η

]  , (22)

with
λt(θ) = 1 + α[E(f2t−1|Yt−1;θ,0)− 1],

γit(θ) = γi + α∗i [E(v2it−1|Yt−1;θ,0)− γi], (i = 1, . . . , N)

}
(23)

where E(f2t−1|Yt−1;θ,0) and E(v2it−1|Yt−1;θ,0) are the Kalman filter estimators of the squares

of the underlying common and idiosyncratic factors obtained from this model (see appendix B

in Fiorentini and Sentana (2012) for details). In this case, the parameters of interest become

φ = (θ′s,η
′)′, θ = (θ′s,α

†′)′, where α† = (α,α∗) and α∗ = (α1, . . . , αN ). Although it is in
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principle very important to distinguish between It−1 = {yt−1, ft−1, yt−2, ft−2, . . .}, and the

econometrician’s information set Yt−1, which only includes lagged values of yt, (see Harvey,

Ruiz and Sentana (1992)), for ease of exposition we postpone the discussion of those cases in

which λt(θ) /∈ Yt−1 until section 4.2.1.

Given (22) and (23), the distribution of yt conditional on Yt−1 is N(0,Σt), where Σt =

cc′λt + Γt has the usual exact factor structure. For this reason, we shall refer to the data

generation process specified by (22) as a multivariate conditionally heteroskedastic exact factor

model, which reduces to our baseline specification (1) under the null hypothesis that H0 : α† =

0. But even if ft or vt are conditionally heteroskedastic, provided that they are covariance

stationary, model (22) also implies an unconditional exact factor structure for yt. That is, the

unconditional covariance matrix, Σ, can be written as:

Σ = E(Σt|θ) = cc′ + Γ, (24)

because we have set the unconditional variance of the common factor to 1 to eliminate the usual

scale indeterminacy.12

The above model has very interesting implications for correlations. A stylised fact that has

been noted before is that periods when markets are increasingly correlated are also times when

markets are volatile (see King, Sentana and Wadhwani (1994)). Since the empirical evidence

typically suggests that changes in the unobservable factor lead to individual stocks moving in

the same direction, model (22) implies that periods when the volatility of the unobservable

factor rises are also those when, ceteris paribus, individual stocks appear to exhibit greater

inter-correlation. Specifically, the conditional correlation coeffi cient between any two elements

of yt is given by

ρ12t =
c1c2λt√

c21λt + γ1t
√
c22λt + γ2t

.

Hence, ρ12t will be increasing in λt if c1c2 > 0 and decreasing in γ1t and γ2t.

A more precise way to characterise the serial dependence structure implied by model (22) is

to consider the autocovariance structure of

vec[(yt − π)(yt − π)′] = (c⊗ c)f2t + vec(vtv
′
t) + (IN2 + KNN )(c⊗ IN )vec(ftvt),

where Kmn is the commutation matrix of orders m and n (see Magnus and Neudecker (1988)).

Given that vec(ftvt) is a martingale difference sequence, yt follows a weak Arch model (see

Nijman and Sentana (1996)) which shares the factor structure in (15) not for the levels but for

the squares and cross-products of the observed variables yt (see appendix B for further details).

12See Fiorentini, Sentana and Shephard (2004) for symmetric scaling assumptions for integrated Arch models.
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In this sense, another empirically appealing feature of (22) is that all linear combinations of yt

will follow weak Arch processes as long as α and α∗ are strictly positive.

Sentana and Fiorentini (2001) develop tests of the null hypothesis H0 : α = 0 under the

maintained hypotheses that α∗ = 0 and the conditional distribution is Gaussian. The following

proposition extends their results to joint tests of Arch effects in common and specific factors

in elliptical contexts.

Proposition 4 Let

S̄f (j;η) =
1

T

∑T

t=1
{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}[f2kt−j(θs) + ωk(θs)− 1]

denote the sample cross moment of δ[ςt(θs),η]f2kt(θs) +ωk(θs)− 1 and E(f2t−j |Yt−j ;θs,0,0) =

f2kt−j(θs) + ωk(θs) − 1, where δ(ςt,η) is defined in (11) and fkt(θs) and ωk(θs) are obtained

from the updating equations (5) of the static factor model (1). Similarly, let

S̄v(j;η) =
1

T

∑T

t=1
vecd{δ[ςt(θs),η]vkt(θs)v

′
kt(θs)+cc′ωk(θs)− Γ}

×vecd[vkt−j(θs)v
′
kt−j(θs)+cc′ωk(θs)− Γ]

denote the analogous sample cross moments for the specific factors.

1. Under the null hypothesis H0 : α† = 0, the score test statistic LMARCH(1)(η) given by

T
4

(
S̄f (1;η0), vecd

′[Γ−10 S̄v(1;η)Γ−10 ]
)
I−1
α†α†

(θs0,0;η0)
(
S̄f (1;η0), vecd

′[Γ−10 S̄v(1;η0)Γ
−1
0 ]
)′
,

is distributed as a χ2 with N +1 degrees of freedom for N fixed as T goes to infinity, where

Iα†α†(θs,0;η) = Vα†α†(θs,0;η)� Vα†α†(θs,η;η),

Vα†α†(θs,η;η) = V

[
1√
2
{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}

1√
2
Γ−1vecd{δ[ςt(θs),η]vkt(θs)v

′
kt(θs) + cc′ωk(θs)− Γ}

]

= mss(η)

[
[c′Σ−1(θs)c]2 c′Σ−1(θs)Γ1/2 � c′Σ−1(θs)Γ1/2

Γ1/2Σ−1(θs)c� Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2 � Γ1/2Σ−1(θs)Γ1/2

]

+
[mss(η)− 1]

2

[
[c′Σ−1(θs)c]2

[cΣ−1(θs)c]vecd[Γ1/2Σ−1(θs)Γ1/2]

[c′Σ−1(θs)c]vecd′[Γ1/2Σ−1(θs)Γ1/2]

vecd[Γ1/2Σ−1(θs)Γ1/2]vecd′[Γ1/2Σ−1(θs)Γ1/2]

]
.

and Vα†α†(θs,0;η) mimics Vα†α†(θs,η;η) after replacing mss(η) by κ + 1. Moreover,

this asymptotic null distribution is unaffected if we replace θs0 and η0 by their feasible

maximum likelihood estimators in Proposition 1.
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2. It also remains valid if we replace θs0 by its elliptically symmetric semiparametric estimator

in Proposition 1, which requires the nonparametric estimation of the density of ςt(θs).

3. Under the same null hypothesis, the Gaussian pseudo score test statistic LMARCH(1)(0)

given by

T
4

(
S̄f (1; 0), vecd′[Γ−10 S̄v(1; 0)Γ−10 ]

)
B−1
α†α†

(φ0)
(
S̄f (1; 0), vecd′[Γ−10 S̄v(1; 0)Γ−10 ]

)′
,

with

Bα†α†(φ) = Vα†α†(θs,0;η)� Vα†α†(θs,0;η), (25)

will be distributed as a χ2 with N + 1 degrees of freedom for N fixed as T goes to infinity

irrespective of whether the elliptical conditional distribution is normal. This result contin-

ues to hold if we replace θs0 by its Gaussian pseudo maximum likelihood estimator θ̄s in

Proposition 1.

Researchers may once more be interested in tests that separately assess the conditional

heteroskedasticity of either the common factor or the specific factors. Indeed, they might even

like to focus on a particular vit. By combining the relevant elements of S̄f (j;η) and S̄v(1;η)

with the corresponding blocks of the information matrix, Iα†α†(θs,0;η), we can easily exploit

the results in Proposition 4 to derive the required test statistics for those subcomponents under

the maintained hypothesis of serial independence. Intuitively, the reason is that we can interpret

LMARCH(1)(η) as a test based on the N + 1 orthogonality conditions:

E

{
1
2{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}
·[f2kt−1(θs) + ωk(θs)− 1]|θs,0,η

}
= 0, (26)

E

{
1
2γ
−2
i {δ[ςt(θs),η]v2kit(θs) + c2iωk(θs)− γi}
·[v2kit−1(θs) + c2iωk(θs)− γi]|θs,0,η

}
= 0 (i = 1, . . . , N). (27)

Similarly, LMARCH(1)(0) is based on

E

{
1
2 [f2kt(θs) + ωk(θs)− 1]

·[f2kt−1(θs) + ωk(θs)− 1]|θs,0,η

}
= 0, (28)

E

{
1
2γ
−2
i [v2kit(θs) + c2iωk(θs)− γi]

·[v2kit−1(θs) + c2iωk(θs)− γi]|θs,0,η

}
= 0 (i = 1, . . . , N). (29)

As in the serial correlation tests, δ(ςt,η) acts as a damping factor for big observations (see

Fiorentini and Sentana (2010b) for a closely related discussion for univariate models).13

13This factor also plays an important role in the beta-t-Arch models proposed by Harvey and Chakravarty

(2008), although if one derived an LM test for conditional homoskedasticity against their models, δ(ςt,η) would

appear not only in the regressand but also in the regressor.
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Once again, given that we normalise V (ft) to 1, the moment conditions (28) and (29) closely

resemble

E[(f2t − 1)(f2t−1 − 1)|θs,0,η] = 0,

E[γ−2i (v2it − γi)(v2it−1 − γi)|θs,0,η] = 0 (i = 1, . . . , N),

which are the Gaussian-based orthogonality conditions that we would use to test for first order

Arch effects if we could observe the latent variables (see e.g. Engle (1982)).

The similarity between these two sets of moment conditions becomes even stronger if we

consider individual tests for Arch in each latent variable. Let us start with a test of H0 :

α = 0 under the maintained assumption that α∗ = 0. Part 3 of Proposition 4 implies that the

asymptotic variance of S̄f (1; 0) is simply 1
2(3κ + 2)2[c′Σ−1(θs)c]4. But as we saw in section

3.1, we can interpret c′Σ−1(θs)c as the R2 in the theoretical least squares projection of ft on

a constant and yt. Therefore, the higher the degree of observability of the common factor, the

closer the asymptotic variance of S̄f (1; 0) will be to 1
2(3κ+2)2, which is the asymptotic variance

of the first sample autocovariance of f2t under normality. Intuitively, this convergence result

simply reflects the fact that the common factor becomes observable in the limit, which implies

that our test of H0 : α = 0 will become arbitrarily close to a first order Arch test for the

common factor as the “signal to noise”ratio c′Σ−1(θs)c approaches 1. Before the limit, though,

our test takes into account the unobservability of ft.

Likewise, part 3 of Proposition 4 implies that the asymptotic variance of S̄vkivki(1,0) is

1
2(3κ + 2)2[γiσ

ii(θs)]
4, where σii(θs) denotes the ith diagonal element of Σ−1(θs). But since

we can again interpret γiσ
ii(θs) as the R2 in the theoretical least squares projection of vit on

a constant and yt, we can apply a similar line of reasoning to a test of H0 : α∗i = 0 under the

maintained assumption that α = 0 and the remaining elements of α∗ are 0. Once again, though,

it is important to emphasise that our joint tests take into account the covariance between the

Kalman filter estimators of the underlying factors, even though the latent variables themselves

are uncorrelated.

Part 3 of Proposition 4 also implies that the asymptotic distribution of the Gaussian tests

does not depend on normality, although if the conditional distribution of yt given Yt−1 were

not elliptical, then one would have to replace Vα†α†(θs,0;η) in (25) by the joint unconditional

covariance matrix of 1√
2
[f2kt(θs) + ωk(θs) − 1] and 1√

2
Γ−1vecd[vkt(θs)v

′
kt(θs)+cc′ωk(θs) − Γ]

under the null of H0 : α† = 0. The advantage of using the theoretical expressions in the

elliptical case is that they should improve the finite sample reliability of the Gaussian tests.

Interestingly, such robust versions of the test for Arch effects in common and idiosyncratic

factors can be regarded as the factor analytic analogues to the suggestion that Koenker (1981)
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made to robustify tests of conditional homoskedasticity based on Gaussian scores, such as the

original univariate Arch test in Engle (1982), whose information matrix version is only valid

under conditional normality. In fact, we can obtain an asymptotically equivalent test of H0 :

α = 0 by computing the F test of the regression of f2kt(θs) on a constant and f
2
kt−1(θs), whose

asymptotic null distribution remains valid irrespective of the normality of fkt(θs) because it is

effectively using a consistent estimator of V [f2kt(θs)] as the residual variance of the regression

under the null. But if we impose that the residual variance is 2[c′Σ−1(θs)c]2 instead, which

is its value under normality because V [fkt(θs)|θs,0,η] = c′Σ−1(θs)c, then our F test will be

incorrectly sized when the conditional distribution is not Gaussian.

Again, it would be straightforward to adapt Proposition 4 to handle large N panel data

restrictions such as α∗i = α∗ ∀i, as in Sentana, Calzolari and Fiorentini (2008). Further, given

that the orthogonality conditions (26) and (27) remain valid when yt is serially independent

irrespective of V (yt) having an exact single factor structure, one could also use them to derive

a standard moment test that will still have non-trivial power even though it will no longer be

an LM test.

4.2 Extensions

4.2.1 Unobservable conditional variances

Following the discussion at the beginning of section 5 in Harvey, Ruiz and Sentana (1992),

specification (22) assumes that the conditional variances of common and specific factors are a

function of lagged observable variables. But it may seem more natural to assume that those

variances are in fact functions of the lagged latent variables. Specifically,

λt(θ) = 1 + α(f2t−j − 1),

γit(θ) = γi + α∗i (v
2
it−1 − γi), (i = 1, . . . , N).

}
(30)

The problem with this formulation is that even in the Gaussian case the log-likelihood function

can no longer be written in closed form except when α† = 0, and one has to resort to simulation

methods, such as the MCMC procedures put forward by Fiorentini, Sentana and Shephard

(2004). As explained by Sentana, Calzolari and Fiorentini (2008), the combination of (22) with

(23) may be regarded as a convenient auxiliary model that coincides with the model of interest

for α† = 0, but whose log-likelihood function and score we can obtain in closed form for every

possible value of α†. In this regard, it is important to bear in mind that the fact that we

can compute the true log-likelihood function of yt under the null of α† = 0 is not suffi cient

to compute its derivative with respect to α†. Fortunately, it is once again possible to use the

EM principle to obtain this score. Remarkably, it turns out that the score of the model with
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latent variances (30) is virtually identical to the score of the approximating model under the

null of conditionally homoskedasticity despite both the non-measurability of λt and Γt and the

potential non-normality of the conditional distribution. In fact, they would coincide if we had

followed section 5.2 of Harvey, Ruiz and Sentana (1992) instead, and replaced the conditional

variances of common and specific factors in (23) by

λt(θ) = 1 + α[E(f2t−1|Yt−1;θ,η)− 1],

γit(θ) = γi + α∗i [E(v2it−1|Yt−1;θ,η)− γi], (i = 1, . . . , N)

}
(31)

where

E(f2t−1|Yt−1;θs,0,η) = f2kt−1(θs) + υkt−1(θs,η)− 1,

E(v2it−1|Yt−1;θs,0,η) = v2ikt−1(θs) + c2i υkt−1(θs,η)− γi,

with fkt(θs), ωk(θs) and υkt−1(θs,η) defined in (5). The following result, which generalises

Proposition 1 in Sentana, Calzolari and Fiorentini (2008), formalises our claim for the multi-

variate Student t, but we conjecture it applies to most other elliptical distributions:

Proposition 5 Let st(φ) = ∂lt(φ)/∂φ denote the log-likelihood score of the conditionally het-

eroskedastic model for yt|Yt−1;φ in (22) when the variances of the latent factors are given by

(31). Similarly, let qt(φ) = ∂p(yt|Yt−1;φ)/∂φ denote the exact log-likelihood score of the same

model when the variances of the latent factors are given by (30) instead. If the conditional dis-

tribution is a (standardised) multivariate Student t with 0 ≤ η < .5 then lt(φ) = p(yt|Yt−1;φ)

and st(φ) = qt(φ) when evaluated at α† = 0.

Therefore, the approximating model that uses (31) “smoothly embeds” the original model

in those circumstances.

4.2.2 Higher order processes

Consider the following alternative specification:

λt(θ) = 1 +
∑q

j=1
αj [E(f2t−j |Yt−j ;θ,0)− 1],

γit(θ) = γi +
∑q∗i

j=1
α∗ij [E(v2it−j |Yt−j ;θ,0)− γi]. (i = 1, . . . , N),

In view of the discussion in section 4.1, it is perhaps not surprising that the score test of αj = 0

will be based on a modified version of (28) with f2kt−j(θs) replacing f
2
kt−1(θs), while the test

of α∗ij = 0 will be based on the analogue version of (29). Given that yt is i.i.d. under the null

hypothesis, it is not diffi cult to show that the joint test for higher order dynamics will be given

by 1
4T times the sum of terms of the form(

S̄f (j;η), vecd′[Γ−1S̄v(j;η)Γ−1]
)
I−1
α†α†

(θs,0;η)
(
S̄f (j;η), vecd′[Γ−1S̄v(j;η)Γ−1]

)′
.
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Once again, we could eliminate the irrelevant autocovariances from the above expression to test

for different orders of serial correlation in the squares of different latent variables.

The univariate empirical evidence, though, suggests that Garch(1,1) specifications of the

form
λt(θ) = 1− α− β + αE(f2t−j |Yt−1;θ,0) + βλt−1(θ)

= 1 + α
∑∞

j=1 β
j−1[E(f2t−j |Yt−j ;θ,0)− 1],

γit(θ) = γi(1− α∗i − β∗i ) + α∗iE(v2it−j |Yt−1;θ,0) + β∗i γit−1(θ)

= γi + α∗i
∑∞

j=1(β
∗
i )
j−1[E(v2it−j |Yt−j ;θ,0)− γi]

should be more realistic than unrestricted Arch(q) ones. As Bollerslev (1986) noted in a uni-

variate context, however, one cannot derive a score test for conditional homoskedasticity versus

these Garch(1,1) specifications in the usual way, because β and β∗i are only identified under

the alternative. A possible solution to testing situations such as this one involves computing

the test statistic for many values of β and β∗i in the range [0,1), which are then combined to

construct an overall statistic, as initially suggested by Davies (1977, 1987). Andrews (2001) dis-

cusses ways of obtaining critical values for such tests by regarding the different LM statistics as

continuous stochastic processes indexed with respect to the parameters β and β∗i (i = 1, . . . , N).

Unfortunately, his procedure is diffi cult to apply in our context because dim(β†) = N + 1. An

alternative solution involves choosing arbitrary values of the underidentified parameters to carry

out a score test of α = 0 and α∗ = 0 based on the moment conditions

E
{

[δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1]
∑∞

l=1
βl−1[f2kt−l(θs) + ωk(θs)− 1]|θs,0,0

}
= 0,

E
{

[δ[ςt(θs),η]v2kit(θs) + c2iωk(θs)− γi]
∑∞

l=1
(β∗i )

l−1[v2kit−l(θs) + c2iωk(θs)− γi]|θs,0,0
}

= 0,

whose asymptotic covariance matrix would be∑∞

l=0
diagl[β,β∗′]Iα†α†(θs,0;η)diagl[β,β∗′],

which can be obtained in closed form. The values of β and β∗ influence the small sample power

of these tests, achieving maximum power when they coincide with their true values (see Demos

and Sentana (1998)), but the advantage is that the resulting tests have standard distributions

under H0. An attractive possibility is to set β and β∗ to the decay factor recommended by

RiskMetrics (1996) to obtain exponentially weighted volatility estimates for fkt and vikt.

4.3 The relative power of ARCH tests in multivariate contexts

We compare the power of our LM tests, Hosking’s test applied to vech[(yt − π)(yt − π)′]

as in Duchesne and Lalancette (2003), a standard univariate Arch(1) test applied to the EW

portfolio, a joint test of univariate first-order autocorrelation in all N(N+1)/2 squares and cross-

products of the (demeaned) observed series, and an analogous test that only focuses on their

23



squares. Note that our joint LM test can also be understood as test of univariate first-order

autocorrelation in the squares of [fkt(θs),v
′
kt(θs)].

14 We consider another non-exchangeable

single factor model of the form:

yit = πi + cift + vit (i = 1, . . . , 5)

λt = (1− α) + αf2t−1
γit = γi(1− α∗i ) + α∗i v

2
it−1

where π = (.5, .4, .5, .4, .5), c = (5, 4, 5, 4, 5), γ ∝ (5, 9, 5, 9, 5) and α∗i = α∗ ∀i, whose first two

unconditional moments are also empirically motivated, as they coincide with those of the model

considered in section 3.3. We evaluate power against compatible sequences of local alternatives

of the form α†0T = ᾱ†/
√
T (see appendix B for details). To avoid penalising Hosking’s test, in

this section we only consider the Gaussian versions of our tests.15

For the baseline case in which γ = (5, 9, 5, 9, 5), and α∗ = α, Figure 3a shows that our

proposed test of H0 : α† = 0 is the most powerful at the usual 5% significance level, followed by

our test of H0 : α∗ = 0. Next we find our test of Arch effects in the common factor and the

univariate Arch test applied to EWP, the diagonal serial correlation tests of vecd[(yt−π)(yt−

π)′] and vech[(yt−π)(yt−π)′], and finally the pormanteau test of unrestricted first-order serial

dependence, which suffers from having a very large number of degrees of freedom. Once again,

though, this ranking crucially depends on the “signal to noise” ratio c′Σ−1c. Figure 3b shows

the equivalent picture when we multiply all the elements of γ by 10, so that the R2 in the

regression of ft on yt reduces to .65. In this case, the power of the two univariate tests decreases

substantially, while the power of the diagonal tests increases. In contrast, Figure 3c illustrates

the effects of dividing the elements of γ by 5, so that the aforementioned R2 reaches .99. Not

surprisingly, the power of the two univariate tests almost coincides because EWP and fkt(θ0)

become very highly correlated.

The other crucial determinant of the power of the different tests is the relative magnitudes

of α and α∗. Figure 4a shows the effect of setting α∗ = 0 for our baseline signal to noise

ratio, while Figure 4b illustrates the effects of α = 0. In the first case, the test of conditional

homoskedasticity in the common factor becomes the most powerful, with the specific factors test

having power virtually equal to size, while exactly the opposite happens in the second case.

14Another implication of the single factor structure of Σ is that our proposed LM test differs from the multi-

variate Arch test considered by Dufour, Khalaf and Beaulieu (2010), who apply Hosking’s test to the vech of the

outer product of standardised values of yt obtained from a Cholesky decomposition of Σ̄.
15See footnote 12 in Fiorentini and Sentana (2012) for ways of making Hosking’s tests for squares and cross-

products robust to non-normality.
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4.4 The relative power of the normality tests

To keep the algebra simple, we shall initially compare the individual tests of H0 : α = 0

under the maintained assumption that all the remaining Arch parameters in α∗ are 0. In this

context, we can show that the ratio of non-centrality parameters of the Gaussian test and the

elliptical test is 4/{[3mss(η0)− 1](3κ0 + 2)}. In the multivariate Student t case with ν0 > 4, in

particular, this asymptotic effi ciency ratio becomes

(ν0 +N + 2) (ν0 − 4)

(ν0 − 1)(ν0 +N − 1)
.

For any given N , this ratio is monotonically increasing in ν0, and approaches 1 from below as

ν0 → ∞, and 0 from above as ν0 → 4+. For instance, for N = 1 , it takes the values of .8̊3

and .4 for ν0 = 9 and ν0 = 5, respectively. At the same time, this ratio is decreasing in N for

a given ν0. For N = 3 and ν0 = 9, for instance, it takes the value of .795, while for ν0 = 5, its

value is only .75. Exactly the same results apply to tests of H0 : α∗i = 0.

More generally, we can combine the asymptotic distribution of the different estimators of

α† under the null derived in Proposition 4 with the expressions in appendix B to obtain the

non-centrality parameters of joint tests of α∗ = 0 or α† = 0. Unlike in the case of the mean

parameters, though, the asymptotic relative effi ciency of the different tests depends on the

values of the static factor analysis parameters θs. In any case, it is straightforward to map those

effi ciency ratios into power gains by considering sequences of local alternatives. For illustrative

purposes, we look at the baseline design in section 4.3 under the assumption that the true

conditional distribution of ε∗t is a multivariate t6. Figure 4c shows that the power gains are

even bigger for our proposed Arch tests, which is in line with the asymptotic relative effi ciency

results derived above.

5 Joint tests for serial dependence

In this section we shall consider joint tests of Ar(1)-Arch(1) effects in common and specific

factors. Therefore, our alternative will be a single factor version of a dynamic, conditionally

heteroskedastic exact factor model in which both common and idiosyncratic factors follow co-

variance stationary Ar(1)-Arch(1) type processes. Specifically,
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yt = π + cxt + ut

xt = ρxt−l + ft

ut = diag(ρ∗)ut−1 + vt(
ft

vt

)
|It−1;θ ∼ s

[(
0

0

)
,

(
λt(θ) 0

0 Γt(θ)

)
,η

]
,

V (ft|It−1;θ) = λt(θ) = 1 + α[E(f2t−1|Yt−1;θ,0)− 1],

V (vit|It−1;θ) = γit(θ) = γi + α∗i [E(v2it−1|Yt−1;θ,0)− γi], (i = 1, . . . , N)


. (32)

When the conditional variances of the common and idiosyncratic factors are constant (i.e.,

α = 0 and α∗ = 0), the above formulation reduces to (13). Similarly, when the levels of

the latent variables are unpredictable (i.e., ρ = 0 and ρ∗ = 0), the above model simplifies to

(22). Finally, under the null hypothesis of lack of predictability in mean (ρ† = 0) and variance

(α† = 0), model (32) reduces to the traditional (static) factor model (1), which is our baseline

specification.

It turns out that the joint tests of Ar(1)-Arch(1) in Propositions 2 and 4 is simply the sum

of the separate tests:

Proposition 6 1. Under the joint null hypothesis H0 : ρ† = 0,α† = 0 the score test statistic

LMAR(1)−ARCH(1)(η0) = LMAR(1)(η0) + LMARCH(1)(η0),

will be distributed as a χ2 with 2(N + 1) degrees of freedom for N fixed as T goes to

infinity. This asymptotic null distribution is unaffected if we replace θs and η0 by their

joint maximum likelihood estimators in Proposition 1.

2. It also remains valid if we replace θs0 by its elliptically symmetric semiparametric estima-

tor, which requires the nonparametric estimation of the density of ςt(θs).

3. Under the same null hypothesis

LMAR(1)−ARCH(1)(0) = LMAR(1)(0) + LMARCH(1)(0)

will also be distributed as a χ2 with 2(N + 1) degrees of freedom for N fixed as T goes to

infinity irrespective of whether the elliptical conditional distribution is normal. This result

continues to hold if we replace θs0 by its Gaussian pseudo maximum likelihood estimator

θ̄s in Proposition 1.

Intuitively, the reason is that the serial correlation orthogonality conditions (16)-(17) are

asymptotically orthogonal to the Arch orthogonality conditions (26)-(27) because all odd order
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moments of multivariate spherical distributions are 0, which means that the joint test is simply

the sum of its two components.

This additivity, though, no longer holds for non-spherical distributions, in which case one

could robustify the Gaussian tests by using as weighting matrix[
Bρ†ρ†(φ) Bρ†α†(φ)

B′
ρ†α†(φ) Bα†α†(φ)

]
=

[
Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)

V ′
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

]
�
[
Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)

V ′
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

]
,

where

[
Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)

V ′
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

]
= V


fkt(θs)

Γ−1/2vkt(θs)
1√
2
[f2kt(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt(θs)v

′
kt(θs)+cc′ωk(θs)− Γ]


(33)

has to be computed taking into account the third and fourth multivariate moments of the

distribution of yt, except for Vρ†ρ†(θs,0;%), whose Gaussian expression remains valid.

6 Monte Carlo analysis

6.1 Design

We assess the finite sample performance of the different testing procedures discussed above

by means of an extensive Monte Carlo exercise, with an experimental design that nests those in

sections 3.3 and 4.3, and is thereby adapted to the empirical application in section 7. For that

reason, we only report the results for samples of 720 observations each (plus another 100 for

initialisation) in which the cross-sectional dimension is N = 5. This sample size corresponds to

60 years of monthly data, roughly the same as in our empirical analysis. In this sense, the main

reason for looking at a small cross-sectional dimension is to handicap our proposed tests relative

to the existing multivariate serial dependence tests, which in the case of Hosking’s test applied

to vech[(yt−π)(yt−π)′] already involves 784 degrees of freedom for N = 7. We carry out 20,000

replications for the purposes of estimating actual sizes and powers with high precision.16All the

examples of the DGP in (32) considered can be written as nonexchangeable single factor models

of the form:

yit = πi + cixt + uit (i = 1, . . . , 5)

xt = ρxt−1 + ft

uit = ρ∗iuit−1 + vit (i = 1, . . . , 5)

λt = (1− α− β)(1− ρ2) + α(f2kt−1 + ωk − 1) + βλt−1

γit = γi(1− α∗i − β∗i )(1− ρ∗i )2 + α∗i (v
2
it−1 + c2iωk − γi) + ρ∗i γit−1 (i = 1, . . . , 5)

16For instance, the 95% confidence interval for a nominal size of 5% would be (4.7%,5.3%).
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with π = (.5, .4, .5, .4, .5), c = (5, 4, 5, 4, 5), γ = (5, 9, 5, 9, 5), ρ∗i = ρ∗, α∗i = α∗ and β∗i = β∗ ∀i.

Thus, the values of ρ, ρ∗, α, α∗, β, β∗ fully explain the differences between our designs.

We generate samples from a Gaussian distribution, a Student t with 6 degrees of freedom,

a discrete scale mixture of normals (DSMN) with the same kurtosis but finite higher order

moments, and an asymmetric Student t such that the marginal distribution of an equally-

weighted portfolio of yt has the maximum negative skewness compatible with the kurtosis of a

univariate t6 (see Mencía and Sentana (2009, 2012) for details). These distributions allow us

to assess the reliability of the robust Gaussian tests, and to shed some light on the “effi ciency-

consistency”trade-offs of those tests that exploit the leptokurtosis of financial returns.

We draw spherical Gaussian random vectors using the NAG library Fortran G05FDF routine

after initialisation by G05CBF. To sample standardised Student t vectors, we simply divide

those Gaussian random vectors by the square root of an independent univariate Gamma(3,2)

random variable, and scale the result by 2. Similarly, we generate a standardised version of a

two-component scale mixture of multivariate normals as

ε∗t =
st + (1− st)

√
κ√

π + (1− π)κ
· ε◦t ,

where ε◦t is a spherical multivariate normal, κ the variance ratio of the two components, and st

is an independent Bernoulli variate with P (st = 1) = π, which we draw by comparing π with a

uniform from G05CAC. Specifically, we choose π = .05 and κ = .1438. Finally, following Mencía

and Sentana (2012), we generate a standardised asymmetric multivariate t by choosing

ε∗t = β
[
ξ−1t − c(β,η)

]
+

√
ζt
ξt

Ξ1/2ε◦t , (34)

where ξt is Gamma random variable with parameters (2η)−1 and δ2/2 with δ = (1−2η)η−1c(β,η),

β is a N × 1 parameter vector, and Ξ is the N ×N positive definite matrix

Ξ =
1

c(β,η)

[
IN +

c(β,η)− 1

β′β
ββ′

]
,

with

c(β,η) =
− (1− 4η) +

√
(1− 4η)2 + 8β′β (1− 4η) η

4β′βη
.

In this sense, note that limβ′β−→0 c(β,η) = 1, so that the above distribution collapses to the usual

multivariate symmetric t when β = 0. In the asymmetric t case, though, we use β = −106ιN .

Importantly, we use the same underlying pseudo-random numbers in all designs to minimise

experimental error. In particular, we make sure that the standard Gaussian random vectors are

the same for all four distributions. Given that the usual routines for simulating gamma random

variables involve some degree of rejection, which unfortunately can change for different values of
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η, we use the slower but smooth inversion method based on the NAG G01FFF gamma quantile

function so that we can keep the underlying uniform variates fixed across simulations. Those

uniform random variables are also used to generate the DSMN random vectors.

Finally, we combine the underlying random numbers with the vector of conditional means

µt(θ0) and Cholesky decomposition of the covariance matrix Σt(θ0) provided by the rele-

vant Kalman filter recursions, which we describe in appendix B of fiorentini and Sentana

(2012).17 We start up the recursions by exploiting covariance stationarity with x−100|−100 =

ui,−100|−100 = 0, λ−100 = 1 − ρ2, γi,−100 = (1 − ρ∗2i )γi, Ω11,−100|−100 = diag(1,γ ′) and

Ω12,−100|−100 = Ω22,−100|−100 = diag(1− ρ2, 1− ρ∗2ι5).

For each Monte Carlo sample thus generated, our ML estimation procedure employs the

following numerical strategy. First, we estimate the static mean and variance parameters θs

under normality with a scoring algorithm that combines the E04LBF routine with the analytical

expressions for the score and the A(φ0) matrix appearing in the proof of Proposition 1. For

this purpose, the EM algorithm of Rubin and Thayer (1982) provides very good initial values.

Then, we compute Mardia’s (1970) sample coeffi cient of multivariate kurtosis κ, on the basis

of which we obtain the sequential Method of Moments estimator of η suggested by Fiorentini,

Sentana and Calzolari (2003), which exploits the theoretical relationship η = κ/(4κ+ 2). Next,

we could use this estimator as initial value for a univariate optimisation procedure that uses the

E04ABF routine to obtain the sequential ML estimator of η discussed by Amengual, Fiorentini

and Sentana (2013), which keeps π, c and γ fixed at their Gaussian PML estimators. The

resulting estimates of η, together with the PMLE of θs, become the initial values for the t-

based ML estimators, which are obtained with the same scoring algorithm as the Gaussian

PML estimator, but this time using the analytical expressions for the information matrix I(φ0)

in Proposition 1. We rule out numerically problematic solutions by imposing the inequality

constraint 0 ≤ η ≤ .499.

Computational details for the elliptically symmetric semiparametric procedure can be found

in Appendix B of Fiorentini and Sentana (2010a). Given that a proper cross-validation procedure

is extremely costly to implement in a Monte Carlo exercise, we have chosen the “optimal”

bandwidth in Silverman (1986).

6.2 Finite sample size

The size properties under the null of our proposed LM tests, Hosking’s test, the univariate

first-order serial correlation test of EWP, and the joint test of univariate first-order autocorre-

17The choice of a Cholesky factor is inconsequential for the all estimators of the static factor model parameters

that we consider, and for all simulated distributions except the asymmetric t.
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lation in all N series introduced in section 3.3 are summarised in Figures 5a-5d using Davidson

and MacKinnon’s (1998) p-value discrepancy plots, which show the difference between actual

and nominal test sizes for every possible nominal size. When the distribution is Gaussian, all

tests are very accurate. The same conclusion is obtained when the distribution is a Student

t, although in this case the elliptically symmetric semiparametric (SSP) tests show some very

minor distortions. In contrast, when the true distribution is a DSMN, the tests based on the

Student t PMLE’s also show some size distortions, but they are very small. Finally, all tests are

remarkably reliable when the conditional distribution is an asymmetric Student t, which partly

reflects the fact that the elliptically symmetric estimators of the autocorrelation coeffi cients

remain consistent in this case (see Proposition 10 in Fiorentini and Sentana (2010a)).

In turn, Figures 6a-6d show the size of the two-sided versions of our Arch(1) LM tests,

Hosking’s test applied to vech[(yt − π)(yt − π)′], a univariate first-order Arch test applied

to EWP, the joint test of univariate first-order autocorrelation in all N(N + 1)/2 squares and

cross-products of the (demeaned) observed series introduced in section 4.3, and the analogous

test that only focuses on their squares. In the Gaussian case, all tests are fairly accurate, except

the SSP tests, which are rather conservative, and Hosking’s test, which is rather liberal. This

liberality is exacerbated when the true distribution is a Student t, and is shared to some extent

by the diagonal version that looks at all N(N + 1)/2 squares and cross-products, which reflects

the imprecision in unrestrictedly estimating higher order moments in this case. As expected,

the non-robust version of the normal test rejects far too often, while all the other tests follow a

similar pattern: they are liberal for low significance values, and conservative for large ones. Not

surprisingly, the sizes of the Student t tests also become highly distorted when the distribution

is a DSMN, but the two robust versions of the normal tests are also somewhat unreliable in that

context. Finally, those versions of the Gaussian tests that are only robust to kurtosis also suffer

substantial size distortions when the conditional distribution is an asymmetric Student t, but

the ones that are also robust to asymmetries are not very reliable either.

Figures 7a-7d show the size of all our two-sided LM tests for Garch(1,1) effects calculated

with the discount factors β̄ = β̄
∗

= .94 suggested in Riskmetrics (1996). The behaviour of these

tests is fairly similar to that of the Arch(1) tests, although in this case the asymptotically valid

tests show a stronger tendency to underreject in finite samples.

6.3 Finite sample power

In order to gauge the power of the serial correlation tests we look at a design in which ρ = .03

and ρ∗i = .045 but α = α∗ = β = β∗ = 0. The evidence at the 5% significance level is presented

30



in panels (a) and (b) of Table 1, which include raw rejection rates, as well as size adjusted

ones based on the empirical distribution obtained under the null, which in this case provides

the closest match because the Gaussian PML estimators of θs that ignore the dynamics in yt

remain consistent in the presence of serial correlation or conditional heteroskedasticity, as shown

by Doz and Lenglart (1999) and Sentana and Fiorentini (2001), respectively.

As expected from our theoretical analysis, the power of the normal tests does not depend

much on the actual distribution of the data, while the tests that exploit the leptokurtosis of yt

offer noticeable power gains in the case of the multivariate t, especially the parametric versions.

Another result that we saw in section 3.3 is that in this design the joint test of H0 : ρ† = 0 is

only marginally more powerful than the joint test of H0 : ρ∗ = 0, which in turn is substantially

more powerful than the individual test of H0 : ρ = 0. Standard serial correlation tests also

behave very much in line with the theoretical analysis in that section.

We also look at a design with ρ = ρ∗ = 0 but α = α∗ = .05 and β = β∗ = 0.75 to assess

the power of the Arch(1) and Garch(1,1) tests. A comparison of panels (c)-(e) and (d)-(f)

confirms thatGarch(1,1) tests are more powerful than theirArch(1) counterparts, even though

the Riskmetrics values for β̄ and β̄∗are much higher than the true values of these parameters.

We also find that the power of the fully robust versions of the normal tests is slightly reduced

when the distribution of the simulated data is leptokurtic. In contrast, the tests that exploit

the leptokurtosis of yt clearly become more powerful. Another result that we saw in section 4.3

is that in this design the joint tests of H0 : α† = 0 are more powerful than the joint tests of

H0 : α∗ = 0, which in turn are substantially more powerful than tests of H0 : α = 0. Finally,

standard first-order serial correlation tests applied to the squares and cross-products of yt do

not have much power once we take into account their substantial size distortions under the null,

except for the Arch test applied to the EWP, which is almost as powerful as the analogous test

for the common factor.

7 Empirical application

In this section we initially apply the procedures previously developed to the returns on five

portfolios of US stocks grouped by industry in excess of the one-month Treasury bill rate (from

Ibbotson Associates), which we have obtained from Ken French’s Data Library. Specifically, each

NYSE, AMEX, and NASDAQ stock is assigned to an industry portfolio at the end of June of year

t based on its four-digit SIC code at the time18 (see <http://mba.tuck.dartmouth.edu/pages/

18 Industry definitions: Cnsmr: Consumer Durables, NonDurables, Wholesale, Retail, and Some Services (Laun-

dries, Repair Shops). Manuf: Manufacturing, Energy, and Utilities. HiTec: Business Equipment, Telephone and
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faculty/ken.french/data_library.html> for further details). We use monthly data from 1952 to

2008, so that our sample starts soon after the March 1951 Treasury - Federal Reserve Accord

whereby the Fed stopped its wartime pegging of interest rates. Nevertheless, since we reserve

1952 to compute pre-sample values, we effectively work with 672 observations.

Table 2 contains the sample means, standard deviation and contemporaneous correlations

for the excess returns on those portfolios. For our purposes, the two most relevant empirical

characteristic are the strong degree of contemporaneous correlation between the series, and

their leptokurtosis. Regarding the first aspect, it is customary to look at the ratio of the largest

eigenvalue of the sample covariance matrix to its trace in order to judge the representativeness

of the first principal component of yt. However, this measure, which is .79 in our case, fails

to take into account the fact that unlike principal components, factor models fully explain the

variances of all the y′its thanks to the inclusion of idiosyncratic components. For that reason, we

prefer to look at the fraction of the (square) Frobenius norm of the sample covariance matrix

accounted for by a single factor model, which is 99.47%.19

As for the Gaussianity of the data, the Kuhn-Tucker test of normality against the alternative

of multivariate Student t proposed by Fiorentini, Sentana and Calzolari (2003), which test the

restriction on the first two moments of ςt(θ0) implicit in the single condition

E

[
N(N + 2)

4
− N + 2

2
ςt(θ0) +

1

4
ς2t (θ0)

]
= E[mkt(θ0)] = 0,

yields a value of 1478.9 despite having one degree of freedom. In contrast, the test of multivariate

normal against asymmetric alternatives in Mencía and Sentana (2012), which assesses whether

E {εt(θ0) [ςt(θ0)− (N + 2)]} = E[mst(θ0, 0)] = 0, (35)

yields 7.01, whose p-value is 22%. On this basis, we decided to estimate a multivariate t dis-

tribution. The ML estimator of the Student tail parameter η is .189, which corresponds to 5.3

degrees of freedom. This confirms our empirical motivation for developing testing procedures

that exploit such a prevalent feature of the data.

Nevertheless, both parametric and semiparametric elliptically-based procedures are sensitive

to the assumption of elliptical symmetry. For that reason, we follow Mencía and Sentana (2012),

and test the null hypothesis of multivariate Student t innovations against the multivariate asym-

Television Transmission. Hlth: Healthcare, Medical Equipment, and Drugs. Other: Other — Mines, Constr,

BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance.
19The Frobenius norm of a general matrix A, ||A|| say, is the Euclidean norm of vec(A), which can be easily

computed as the square root of the sum of its square singular values since vec′(A)vec(A) = tr(A2). Given that

V (yt) is a real, square symmetric matrix with spectral decomposition U∆U′, with U orthonormal, it is easy to

see ||V (yt)||2 can be additively decomposed as the sum of the square eigenvalues of V (yt).
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metric t distribution in (34). Their statistic checks the following moment conditions:

E

[
Nη + 1

1− 2η + ηςt(θ)
εt(θ) [ςt(θ)− (N + 2)]

]
= E[mst(θ0, η0)] = 0,

which reduce to (35) when η = 0. The asymptotic distribution that takes into account the fact

that θ and η have to be replaced by their t-based ML estimators θ̂T and η̂T is

√
T
T

∑T

t=1
mst(θ̂T , η̂T )→ N [0, 2(N + 2)(Nη0 + 1)Σ0] .

The test statistic is 3.83 with a p-value of 57%, so we cannot reject the null hypothesis that the

distribution of yt is multivariate Student t at conventional levels.

Table 3 presents the three different estimates of the unconditional covariance parameters,

namely Gaussian PMLE, Student t ML, and SSP. As can be seen, the discrepancies are fairly

minor, especially in the case of estimators that exploit the leptokurtosis of the data. Conse-

quently, the time series evolution of the corresponding Kalman filter estimates of the common

factor are very highly correlated with each other (>.999), and also with the excess returns on

the Fama and French market portfolio ('.978), which corresponds to the value weighted return

on all NYSE, AMEX and NASDAQ stocks in CRSP.

Table 4a reports the results of the two multivariate serial correlation tests discussed in

section 3.3. As can be seen, there is evidence of first order serial correlation in the industry

return series. Nevertheless, it is interesting to understand whether the dependence is due to the

common factor or the specific ones. In this sense, note that we have considered not only tests

against Ar(1) dynamics in common and specific factors, but also tests against restricted Ar(3)

and Ar(12) specifications in which the autoregressive coeffi cients are all assumed to be the same.

The motivation for such tests is twofold. First, there is a substantial body of empirical evidence

which suggests that expected returns are smooth processes, while observed returns have a small

first order autocorrelation. Second, a rather interesting example of persistent expected returns

is an Ar(h) model in which ρ = ρι, where ι is a vector of h 1’s. The results in section 3.2.3

imply that a test of ρ = 0 in this context essentially involves assessing the significance of the sum

of the first h autocorrelations of fkt. In this sense, our procedure is entirely analogous to the

one recommended by Jegadeesh (1989) to test for the long run predictability of individual asset

returns without introducing overlapping observations (see also Cochrane (1991) and Hodrick

(1992)). The intuition is that if returns contain a persistent but mean reverting predictable

component, a persistent right hand side variable may pick it up.

The results reported in Table 4a show clear evidence of first order serial correlation in both

common and specific factors. There is also some evidence that the idiosyncratic factors may have

persistent mean-reverting components. In contrast, there is no evidence that such a component
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is present in the common factor. This interesting divergence could be due to the market being

more closely followed by investors than the hedged components of the industry portfolios.

Table 4b presents our tests for conditional heteroskedasticity. Given the strong evidence for

leptokurtosis, we only report the values of the fully robust versions of the different Gaussian tests.

Not surprisingly, the multivariate serial dependence tests reject conditional homoskedasticity.

We also find very strong evidence of Arch effects in the idiosyncratic factors. In contrast,

the Arch(1) tests do not provide such a clear evidence in the case of the common factor.

Nevertheless, the Garch(1,1) tests strongly reject the null of conditionally homoskedasticity.

Our conclusions do not seem to be very sensitive to the degree of aggregation of our data.

When we repeat exactly the same exercise with the excess returns of the ten portfolios of US

stocks grouped by industry in Ken French’s Data Library, we obtain rather similar results.

8 Conclusions and extensions

We obtain simple algebraic expressions for the score tests of serial correlation in the levels

and squares of common and idiosyncratic factors in static factor models. The implicit orthogo-

nality conditions resemble the orthogonality conditions of models with observed factors but the

weighting matrices reflect their unobservability. We robustify our Gaussian tests against non-

normality, and derive more powerful versions when the conditional distribution is elliptically

symmetric, which can be either parametrically or semipametrically specified. We also explain

how to derive tests that focus on either the common factors or the specific factors, or indeed on

some of their elements.

Importantly, we show that despite the non-Gaussian nature of the state-space models that

we consider, which makes it generally impossible to compute the log-likelihood function and its

score without resorting to simulation methods, our tests coincide with the correct score tests.

We conduct Monte Carlo exercises to study the finite sample reliability and power of our

proposed tests, and to compare them to existing multivariate serial dependence tests. Our

simulation results suggest that the serial correlation tests have fairly accurate finite sample sizes,

while the tests for conditional homoskedasticity show some size distortions. Given that yt is

i.i.d. under the null, it would be useful to explore bootstrap procedures, which could also exploit

the fact that elliptical distributions are parametric in N − 1 dimensions, and non-parametric

in only one (see Dufour, Khalaf and Beaulieu (2010) for alternative finite-sample refinements

of existing multivariate serial dependence tests). We also confirm that there are clear power

gains from exploiting the cross-sectional dependence structure implicit in factor models, the

leptokurtosis of financial returns, as well as the persistent behaviour of conditional variances.
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Finally, we apply our methods to monthly stock returns on US broad industry portfolios.

We find clear evidence in favour of first order serial correlation in common and specific factors,

weaker evidence for persistent components in the idiosyncratic terms, and no evidence that such

a component appears in the common factor. We also find strong evidence for persistent serial

correlation in the volatility of common and specific terms.

It should be possible to robustify the serial dependence tests which assume that the return

distribution is a Student t when in fact it is not along the lines described by Amengual and

Sentana (2010) for mean-variance effi ciency tests, and study their relative power in those cir-

cumstances. It should also be feasible to develop semiparametric tests that do not impose the

assumption of elliptical symmetry. Another interesting extension would be to consider non-

parametric alternatives such as the ones studied by Hong and Shehadeh (1999) and Duchesne

and Lalancette (2003) among others, in which the lag length is implicitly determined by the

choice of bandwidth parameter in a kernel-based estimator of a spectral density matrix. In ad-

dition, we could test for the effect of exogenous regressors in either the conditional mean vector

or the conditional covariance matrix of returns. Moreover, we could use the test statistics that

we have derived to obtain easy to compute indirect estimators of the dynamic models that define

our alternative hypothesis along the lines suggested by Calzolari, Sentana and Fiorentini (2004).

The extension of our methods to models in which N/T is non-negligible would also constitute

a very valuable addition with many potentially interesting empirical finance applications. In

those circumstances, though, we would expect our proposed tests to be more reliable in finite

sample and more powerful asymptotically than the Hosking-type multivariate serial correlation

tests for the levels, squares and cross products of the variables under consideration, which involve

orders of magnitude more degrees of freedom for fixed N .

Another particularly interesting extension would be to allow for serial dependence under the

null. Specifically, suppose that we take as our new null hypothesis the factor model with Ar(1)

dynamics in the latent variables that we considered as the alternative in section 3.1, and as

our new alternative a model with a common factor that follows an Ar(2) process instead. Al-

though a Lagrange Multiplier test of the new null hypothesis in the time domain is conceptually

straightforward (see e.g. Engle and Watson (1981)), the algebra is incredibly tedious and the

recursive scores diffi cult to interpret. In contrast, the frequency domain procedures in Harvey

(1989) and Fernández (1990) yield scores which are once again entirely analogous to the uni-

variate frequency domain score obtained if we treated the smoothed estimator of the common

factor, xkt|T , as if it were observed. We explore this interesting research avenue in Fiorentini

and Sentana (2013).
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Appendices

A Proofs

Proposition 1

Given that the conditional density of ε∗t |It−1;φ is exp[c(η) + g(ςt,η)] under ellipticity, the

log-likelihood function of a sample of size T will take the form LT (φ) =
∑T

t=1 lt(φ), with lt(φ) =

dt(θ) + c(η) + g [ςt(θ),η], where dt(θ) = −1/2 ln |Σt(θ)| is the Jacobian, ςt(θ) = ε∗′t (θ)ε∗t (θ),

ε∗t (θ) = Σ
−1/2
t (θ)εt(θ) and εt(θ) = yt − µt(θ). Let st(φ) denote the score function ∂lt(φ)/∂φ,

and partition it into two blocks, sθt(φ) and sηt(φ), whose dimensions conform to those of θ

and η, respectively. Fiorentini and Sentana (2010a) show that if Σt(θ) has full rank and µt(θ),

Σt(θ), c(η) and g [ςt(θ),η] are differentiable, then

sθt(φ) =
∂dt(θ)

∂θ
+
∂gt [ςt(θ),η]

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)

est(φ)

]
= Zdt(θ)edt(φ),

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ),

where

Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′t (θ),

Zst(θ) =
1

2
∂vec′ [Σt(θ)] /∂θ·[Σ−1/2′t (θ)⊗Σ

−1/2′
t (θ)],

elt(θ,η) = δ [ςt(θ),η] ε∗t (θ),

est(θ,η) = vec
{
δ [ςt(θ),η] ε∗t (θ)ε∗′t (θ)− IN

}
,

and δ(ςt,η) is defined in (11). Given correct specification, the results in Crowder (1976) imply

that et(φ) = [e′dt(φ), ert(φ)]′ evaluated at the true parameter values follows a vector martingale

difference, and therefore, the same is true of the score vector st(φ). His results also imply that,

under suitable regularity conditions, the asymptotic distribution of the feasible ML estimator

will be
√
T (φ̂T − φ0)→ N [0, I−1(φ0)], where I(φ0) = E[It(φ0)|φ0],

It(φ) = −E [ht(φ)|zt, It−1;φ] = V [st(φ)|zt, It−1;φ] = Zt(θ)M(η)Z′t(θ),

ht(φ) =
∂st(φ)

∂φ′
=
∂2lt(φ)

∂φ∂φ′
,

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,

andM(η) = V [et(φ)|φ]. In particular, Crowder (1976) requires that: (a) φ0 is locally identified

and belongs to the interior of the admissible parameter space, which is a compact subset of Rp+r;

(b) the Hessian matrix is non-singular and continuous throughout some neighbourhood of φ0;
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(c) there is uniform convergence to the integrals involved in the computation of the mean vector

and covariance matrix of st(φ); and (d) −E−1
[
−T−1

∑
t ht(φ)

]
T−1

∑
t ht(φ)

p→ Ip+r, where

E−1
[
−T−1

∑
t ht(φ)

]
is positive definite on a neighbourhood of φ0. These regularity conditions

are easy to verify in our i.i.d. context. In particular, the conditions in the theorem statement

guarantee the identification of the factor model parameters and the positive definiteness of the

Hessian matrix (see Theorem 12.1 in Anderson and Rubin (1956) and Theorem 2 in Kano (1983)).

So the only remaining task is to find out the expression for the unconditional information matrix.

In this context, Proposition 2 in Fiorentini and Sentana (2010a) states that:

M(η) =

 Mll(η) 0 0

0 Mss(η) Msr(η)

0 M′sr(η) Mrr(η)

 ,

Mll(η) = V [elt(φ)|φ] = mll(η)IN ,

Mss(η) = V [est(φ)|φ] = mss(η) (IN2 + KNN ) + [mss(η)− 1]vec(IN )vec′(IN ),

Msr(η) = E[est(φ)e′rt(φ)
∣∣φ] = −E

{
∂est(φ)/∂η′

∣∣φ} = vec(IN )msr(η),

where mll(η), mss(η), msr(η) and Mrr(η) are defined in (7), (8), (9) and (10), respectively.

Therefore, all we need is the matrix Zdt(θs), which in turn requires the Jacobian of the condi-

tional mean and covariance functions. Differentiating the Kalman filter prediction equations we

obtain dµt(θ) = dπ and

dΣt(θs) = d(cc′ + Γ) = (dc)c′ + c(dc′) + dΓ

(see Magnus and Neudecker (1988)). Hence, the only three non-zero terms of the Jacobian will

be:
∂µt(θs)

∂π′
= IN ;

∂vec [Σt(θs)]

∂c′
= (IN2 + KNN )(c⊗ IN );

∂vec [Σt(θs)]

∂γ ′
= EN .

As a result,

Zdt(θs) =

 Σ−1/2′(θs) 0

0 [c′Σ−1/2′(θs)⊗Σ−1/2′(θs)]

0 1
2E
′
N [Σ−1/2′(θs)⊗Σ−1/2′(θs)]

 = Zd(φ).

After some straightforward algebraic manipulations, we get that the elliptically symmetric

score is

sπt(θs,η) = δ[ςt(θs);η]Σ−1(θs)(yt − π)

sct(θs,η) = δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c−Σ−1(θs)c

sγt(θs,η) = 1
2vecd{δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)−Σ−1(θs)}

(A1)

Assuming that Γ> 0 we can use the Woodbury formula

Σ−1(θs) = Γ−1 − (1 + c′Γ−1c)−1Γ−1cc′Γ−1 = Γ−1[Γ− (1 + c′Γ−1c)−1cc′]Γ−1 (A2)
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to write

δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c−Σ−1(θs)c

= Γ−1{δ[ςt(θs);η]vkt(θs)fkt(θs)− cωk(θs)},

Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)−Σ−1(θs)

= Γ−1{δ[ςt(θs);η]vkt(θs)v
′
kt(θs) + cc′ωk(θs)− Γ}Γ−1,

and

ςt(θs) = (yt − π)′Σ−1(θs)(yt − π) = (yt − π)′Γ−1(yt − π)− f2kt(θs)/ωk(θs),

which greatly simplifies the computation of all the elements of sθt(θs,η), as well as sηt(yt|Yt−1;θ)

(see Sentana (2000)).

If we put all the previous elements together, we can finally obtain the conditional (and

unconditional) information matrix, which in view of the expression for Zdt(θs) will be block

diagonal between the elements corresponding to π, and the elements corresponding to (c,γ,η),

with the diagonal blocks given in the statement of the first part of the proposition. Once

again, the Woodbury formula simplifies considerably the computation of the information matrix

when Γ> 0 because Σ−1(θs)c = (1 + c′Γ−1c)−1Γ−1c and c′Σ−1(θs)c = (1 + c′Γ−1c)−1c′Γ−1c.

Expression (A2) also makes clear that condition (ii) guarantees the full rank of the block of the

information matrix corresponding to γ.

Next, we can use Proposition 7 in Fiorentini and Sentana (2010a) to obtain the elliptically

symmetric semiparametric score and corresponding effi ciency bound. Specifically, they will be

given by:

s̊θt(φ0) =Zdt(θ0)edt(φ0)−Wd(φ0)

{[
δ[ςt(θ0),η0]

ςt(θ0)

N
−1

]
− 2

(N+2)κ0+2

[
ςt(θ0)

N
− 1

]}
,

(A3)

and

S̊(φ0) = Iθθ(φ0)−Wd(φ0)W
′
d(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
, (A4)

respectively, where

Wd(φ) = Zd(φ)[0′, vec′(IN )]′ = E[Zdt(θ)|φ][0′, vec′(IN )]′

= E

{
1

2
∂vec′ [Σt(θ)] /∂θ·vec[Σ−1t (θ)]

∣∣∣∣φ} = −E {∂dt(θ)/∂θ|φ} = E[Wdt(φ)|φ]. (A5)

But since in the case of a static factor model

W′
dt(φ) =

[
0 c′Σ−1(θs)

1
2vecd

′[Σ−1(θs)]
]

= W′
d(φ), (A6)
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we will have that:

s̊πt(θs,η) = sπt(θs,η),

s̊ct(θs,η) = sct(θs,η)−Σ−1(θs)c
[
{δ[ςt(θs),η]ςt(θs)/N − 1} − 2

(N+2)κ+2 (ςt(θs)/N − 1)
]
,

s̊γt(θs,η) = sγt(θs,η)− 1
2vecd[Σ−1(θ)]

[
{δ[ςt(θs),η]ςt(θs)/N − 1} − 2

(N+2)κ+2 (ςt(θs)/N − 1)
]
.

Expression (A6) also implies that the elliptically symmetric semiparametric effi ciency bound

will be block diagonal between π and (c,γ), where the first block coincides with the first block

of the information matrix, and the second one with the expression given in the second part of

the proposition.

Finally, the Gaussian PML estimator of the conditional mean and variance parameters θ

sets to 0 the average value of sθst(θ,0), which is trivially obtained from (A1) by noting that

δ(ςt,0) = 1. Given that the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are

satisfied in our context, then we know from Proposition 3 in Fiorentini and Sentana (2010a)

that
√
T (θ̄T − θ0)→ N [0, C(φ0)], where

C(φ) = A−1(φ)B(φ)A−1(φ),

A(φ) = −E [hθθt(θ,0)|φ] = E [At(φ)|φ] ,

At(φ) = −E[hθθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(0)Z′dt(θ),

B(φ) = V [sθt(θ,0)|φ] = E [Bt(φ)|φ] ,

Bt(φ) = V [sθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(κ)Z′dt(θ),

and K (κ) =V [edt(θ,0)| zt, It−1;φ] =

[
IN 0

0 (κ+1) (IN2 +KNN )+κvec(IN )vec′(IN )

]
, (A7)

which only depends on η through κ. Hence, we can easily see that Aθsθs(φ) coincides with

Iθsθs(θs,0) irrespective of the distribution of yt because the model is static and Aθsθst(φ) =

−E [hθsθst(θ,0)|It−1;φ] is equal to Iθsθst(θs,0). A closely related argument shows that Bθsθs(φ)

also mimics the expression for the information matrix if we replace mll(η) by 1 and mss(η) by

(κ+ 1).

More generally, if ε∗t |It−1;θ0,%0 is i.i.d. (0, IN ) with density function f(ε∗t ;%), where %

are some shape parameters and % = 0 denotes normality, then Proposition 1 in Bollerslev and

Wooldridge (1992) coupled with the static nature of the model implies that:

Bt(φ) = Zdt(θs)K (%) Z′dt(θs),

where

K (%) = V [edt(θ,0)| It−1;θ,%] (A8)

is the matrix of third and fourth order central moments of ε∗t , whose first block is the identity

matrix of order N . This means that the block diagonality between π and (c,γ) disappears if
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the true distribution is asymmetric even though Bππ(φ) continues to equal Iππ(θs,0). In view

of sθt(θs,0), an alternative expression will be

Bθsθs(φ) = V

 Σ−1(θs)(yt − π)

Γ−1[vkt(θs)fkt(θs)− cωk(θs)]
1
2vecd{Γ

−1[vkt(θs)v
′
kt(θs) + cc′ωk(θs)− Γ]Γ−1}

 ,
which is more amenable for empirical applications. �

Proposition 2

Initially, the proof follows the same steps as the proof of Proposition 1. Therefore, we

need expressions for ∂µt(θ)/∂θ and ∂vec[Σt(θ)]/∂θ to obtain Zdt(θ). Given our maintained

assumption about the coincidence of the first two conditional moments with the Kalman filter

prediction equations, we will have that

dµt(θ) = dπ + d( c IN )

(
xt|t−1(θ)

ut|t−1(θ)

)
+ ( c IN )d

(
xt|t−1(θ)

ut|t−1(θ)

)

and

dΣt(θ) = d( c IN )Ωt|t−1(θ)

(
c′

IN

)
+ ( c IN )dΩt|t−1(θ)

(
c′

IN

)

+( c IN )Ωt|t−1(θ)d

(
c′

IN

)
,

whence
∂µt(θ)

∂θ′
=
∂π

∂θ′
+ [xt|t−1(θ)⊗ IN ]

∂c

∂θ′
+ c

∂xt|t−1(θ)

∂θ′
+
∂ut|t−1(θ)

∂θ′

and

∂vec[Σt(θ)]

∂θ′
= (IN2 + KNN )[( c IN )Ωt|t−1(θ)⊗ IN ]

(
∂c/∂θ′

0

)

+[( c IN )⊗ ( c IN )]
∂vec[Ωt|t−1(θ)]

∂θ′
.

Similarly,
∂xt|t−1(θ)

∂θ′
= xt|t−1(θ)

∂ρ

∂θ′
+ ρ

∂xt−1|t−1(θ)

∂θ′
,

and
∂ut|t−1(θ)

∂θ′
= [u′t|t−1(θ)⊗ IN ]EN

∂ρ∗

∂θ′
+ diag(ρ∗)

∂ut−1|t−1(θ)

∂θ′
.

In fact, it is easy to see that this last expression reduces to

∂uit|t−1(θ)

∂θ′
= uit|t−1(θ)

∂ρ∗i
∂θ′

+ ρ∗i
∂uit−1|t−1(θ)

∂θ′
.
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In addition, if we differentiate the updating equation we obtain

∂vec[Ωt|t−1(θ)]

∂θ′
= (I(N+1)2 + KN+1,N+1)

{[
ρ 0

0 diag(ρ∗)

]
⊗ IN+1

}
EN+1

(
∂ρ/∂θ′

∂ρ∗/∂θ′

)

+EN+1

(
0

∂γ/∂θ′

)
+

{[
ρ 0

0 diag(ρ∗)

]
⊗
[
ρ 0

0 diag(ρ∗)

]}
∂vec[Ωt−1|t−1(θ)]

∂θ′
.

In principle, we would need to derive expressions for ∂xt−1|t−1(θ)/∂θ′, ∂uit−1|t−1(θ)/∂θ′ and

∂vec[Ωt−1|t−1(θ)]/∂θ′. However, since we are only interested in evaluating the score at ρ = 0

and ρ∗ = 0, those expressions become unnecessary.

In addition, it is worth noting that under the null xt|t−1(θs,0) = 0, ut|t−1(θs,0) = 0,

Ωt|t−1(θs,0) = diag(1,γ), Σt(θs,0) = cc′ + Γ = Σ(θs), xt|t(θs,0) = fkt(θs) and ut|t(θs,0) =

vkt(θs), so that
∂µt(θs,0)

∂θ′
=
∂π

∂θ′
+ cfkt(θs)

∂ρ

∂θ′
+ diag[vkt(θs)]

∂ρ∗

∂θ′

and
∂vec[Σt(θs,0)]

∂θ′
= (IN2 + KNN )(c⊗ IN )

∂c

∂θ′
+ EN

∂γ

∂θ′
.

Hence

Zdt(θs,0) =


Σ−1/2′(θs) 0

0 1
2(c′ ⊗ IN )(IN2 + KNN )[Σ−1/2′(θs)⊗Σ−1/2′(θs)]

0 1
2E
′
N [Σ−1/2′(θs)⊗Σ−1/2′(θs)]

fkt−1(θs)c
′Σ−1/2′(θs) 0

diag[vkt−1(θs)]Σ
−1/2′(θs) 0

 ,

Zd(φ) =


Σ−1/2′(θs) 0

0 1
2(c′ ⊗ IN )(IN2 + KNN )[Σ−1/2′(θs)⊗Σ−1/2′(θs)]

0 1
2E
′
N [Σ−1/2′(θs)⊗Σ−1/2′(θs)]

0 0

0 0


and

Wd(φ) =
[

0′ c′Σ−1(θs)
1
2vecd

′[Σ−1(θs)] 0 0′
]′
, (A9)

where we have used the fact that

E[fkt(θs)|θs,0,0] = E[c′Σ−1(θs)(yt − π)|θs,0,0] = 0

E[vkt(θs)|θs,0,0] = E[ΓΣ−1(θs)(yt − π)|θs,0,0] = 0

}
(A10)

irrespective of the distribution of yt.

As a result, the elliptically symmetric score under the null will be
sπt(θs,0,η)

sct(θs,0,η)

sγt(θs,0,η)

sρt(θs,0,η)

sρ∗t(θs,0,η)

 =


δ[ςt(θs);η]Σ−1(θs)(yt − π)

δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c−Σ−1(θs)c
1
2vecd{δ[ςt(θs);η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)−Σ−1(θs)}

fkt−1(θs)δ[ςt(θs);η]c′Σ−1(θs)(yt − π)

diag[vkt−1(θs)]δ[ςt(θs);η]Σ−1(θs)(yt − π)

 .
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Therefore, the only difference relative to the static factor model are the scores sρt(θs,0,η) and

sρ∗t(θs,0,η). In this sense, if we assume that Γ > 0, then we can use the Woodbury formula

once again to show that[
sρt(θs,0,η)

sρ∗t(θs,0,η)

]
=

[
δ[ςt(θs);η]fkt−1(θs)fkt(θs)

δ[ςt(θs);η]diag[vkt−1(θs)]Γ
−1vkt(θs)

]
.

Using the expression for Zdt(θs,0), together with (A10), it is easy to show that the uncondi-

tional information matrix Iθθ(θs,0,η) will be block diagonal between π, (c,γ,η) and ρ†, with

the first two blocks as in the static case. Consequently, in computing our ML-based tests we

can safely ignore the sampling uncertainty in estimating θs and η. In addition, we can write

Iρ†ρ†t(θ,0,η) = diag

[
fkt−1(θs)

Γ−1/2vkt−1(θs)

]
Vρ†ρ†(θs,η;η)diag

[
fkt−1(θs)

Γ−1/2vkt−1(θs)

]
,

where

Vρ†ρ†(θs,η;η) = V

[
δ[ςt(θs),η]fkt(θs)

Γ−1/2δ[ςt(θs),η]vkt(θs)

]
= mll(η)

[
c′Σ−1(θs)c c′Σ−1(θs)Γ1/2

Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2

]

= mll(η)

[
(c′Γ−1c)/(1 + c′Γ−1c) c′Γ−1/2/(1 + c′Γ−1c)

Γ−1/2c/(1 + c′Γ−1c) IN − Γ−1/2cc′Γ−1/2/(1 + c′Γ−1c)

]
.

Thus, the only remaining item is the calculation of the second moments appearing in Vα†α†(θs,0;η).

But since

E[f2kt(θs)|θs,0,η] = E[c′Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c|θs,0,η]

= c′Σ−1(θs)c = c′Γ−1c/(1 + c′Γ−1c),

E{vkt(θs)fkt(θs)|θs,0,η} = E{[ΓΣ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c|θs,0,η}

= ΓΣ−1(θs)c = c/(1 + c′Γ−1c)

and

E{vkt(θs)vkt(θs)′]|θs,0,η] = E[ΓΣ−1(θs)(yt − π)(yt − π)′Σ−1(θs)Γ]|θs,0,η}

= ΓΣ−1(θs)Γ = Γ− cc′/(1 + c′Γ−1c),

we finally obtain that Vρ†ρ†(θs,0;η) mimics Vρ†ρ†(θs,η;η) if we replace mll(η) by 1.

In addition, it follows from (A9) that the elliptically symmetric semiparametric scores for

ρ and ρ∗ coincide with the parametric ones, and that the elliptically symmetric semiparamet-

ric effi ciency bound will be block diagonal between π, (ρ,ρ∗) and (c,γ), where the first two

blocks coincide with the first two blocks of the information matrix, and the third one with the

corresponding bound in the static factor model.
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Finally, let us consider the tests based on the Gaussian PML scores sρt(θs,0,0) and sρ∗t(θs,0,0)

when yt|It−1;φ is i.i.d. D(π,Σ(θs);%) but not necessarily normal or elliptical. To do so, let

us partition the parameter vector θ as (θs,ρ
†). It is well known (see e.g. Engle (1984)) that a

robust Gaussian pseudo score test of the null hypothesis H0 : ρ† = 0 can be computed as[√
T

T

T∑
t=1

s′ρ†t(θ̃s,0,0)

]
Aρ†ρ† (φ0) C−1ρ†ρ† (φ0)Aρ

†ρ† (φ0)

[√
T

T

T∑
t=1

sρ†t(θ̃s,0,0)

]
,

where sρ†t(θ̃s,0,0) is the Gaussian score evaluated at the restricted PML estimator θ̃s, Aρ
†ρ† (φ0)

is the relevant block of the inverse of the expected Hessian matrix A(φ) = −E [hθθt(θ,0)|φ] and

Cρ†ρ† (φ0) is the corresponding block of the usual sandwich expression C(φ)=A−1(φ)B(φ)A−1(φ),

with B(φ) = V [sθt(θ,0)|φ]. Once again, the structure of Zdt(θ), together with (A10), im-

plies that A(φ) will be block diagonal between (ρ,ρ∗) and (π, c,γ) irrespective of the true

distribution of yt. In addition, Aρ†ρ†(φ) will coincide with Iρ†ρ†(θs,0,0). A closely related

argument shows that B(φ) will also be block diagonal between (ρ,ρ∗) and (π, c,γ), and that

Bρ†ρ†(φ) = Aρ†ρ†(φ), which validates the expression for LMAR(1)(0). �

Proposition 3

For the sake of brevity, the proof will be developed for the following univariate model:

yt = π + xt + γ1/2v∗t ,

xt = ρxt−1 + ft,(
ft

v∗t

)
|It−1 ∼ t

[(
0

0

)
,

(
1 0

0 1

)
, η

]
.

Nevertheless, it can be tediously extended to cover the general case. Given that when ρ = 0

the log-likelihood function of this model coincides with the log-likelihood function of the model

considered in section 2, we only need to look at the score associated to this parameter.

It is easy to see that the joint distribution of yt and xt give the past of both variables will be(
yt

xt

)
|It−1 ∼ t

[(
ρxt−1

ρxt−1

)
,

(
1 + γ 1

1 1

)
, η

]
.

Hence, we can write down the joint log-likelihood as

c2(η)− 1

2
ln γ + g[ςt(ρ, γ); η],

where

c2(η) = ln

[
Γ

(
2η + 1

2η

)]
− ln

[
Γ

(
1

2η

)]
− ln

(
1− 2η

η

)
− lnπ
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is the (log) constant of integration,

γ =

∣∣∣∣∣
(

1 + γ 1

1 1

)∣∣∣∣∣
the Jacobian, and

g[ςt(ρ, γ); η] = −
(

2η + 1

2η

)
ln

[
1 +

η

1− 2η
ςt(ρ, γ)

]
,

with

ςt(ρ, γ) =
(
yt − ρxt−1 xt − ρxt−1

)( 1 + γ 1

1 1

)−1(
yt − ρxt−1
xt − ρxt−1

)
= γ−1(yt − xt)2 + (xt − ρxt−1)2,

the (log) kernel of the bivariate Student t density.

Given that we can write the standardised residuals as(
1 + γ 1

1 1

)−1/2(
yt − ρxt−1
xt − ρxt−1

)
=

(
1
γ − 1γ
0 1

)(
yt − ρxt−1
xt − ρxt−1

)

=

(
γ−1/2(yt − xt)
xt − ρxt−1

)
and the gradient of the conditional mean vector with respect to ρ will be xt−1 times the vector

(1, 1)′, we will have that the score of the joint log-likelihood function with respect to ρ will be

given by

− 2η + 1

1− 2η + ηςt(ρ, γ)
xt−1

(
1 1

)( γ−1/2 0

−γ−1/2 1

)(
γ−1/2(yt − xt)
xt − ρxt−1

)
= − 2η + 1

1− 2η + ηςt(ρ, γ)
(xt − ρxt−1)xt−1.

The Kullback inequality then implies that score of the marginal log-likelihood function of yt

with respect to ρ will be given by

E

[
− 2η + 1

1− 2η + ηςt(ρ, γ)
(xt − ρxt−1)xt−1

∣∣∣∣YT , ρ

]
.

This expected value becomes analytically tractable when ρ = 0. First of all, the expression

inside the expectation simplifies to

E

[
2η + 1

1− 2η + η
[
γ−1(yt − xt)2 + x2t

]xtxt−1
∣∣∣∣∣YT , ρ = 0

]
.

Second, the joint distribution of yt and xt is i.i.d. over time, which means that the expected

value of this product is equal to

E

[
2η + 1

1− 2η + η
[
γ−1(yt − xt)2 + x2t

]xt
∣∣∣∣∣ yt, ρ = 0

]
E [xt−1| yt−1, ρ = 0] .
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But the distribution of xt = ft given yt will also be t with mean

fkt(γ) =
1

1 + γ
yt, (A11)

variance

υkt(γ, η) =
1− 2η

1− η

(
1 +

η

1− 2η

y2t
1 + γ

)(
1− 1

1 + γ

)
(A12)

=
1− 2η

1− η

(
1 +

η

1− 2η

y2t
1 + γ

)
ωk(γ)

and shape parameter
η

1 + η
, (A13)

since the degrees of freedom of the conditional distribution of xt given yt are 1 plus the degrees

of freedom of the joint distribution. Therefore, the second term is simply given by the lagged

value of (A11). The first term is trickier, as we need to find the expected value of

2η + 1

1− 2η + η
[
γ−1(yt − xt)2 + x2t

]xt. (A14)

To do so, it is convenient to follow Fiorentini, Sentana and Calzolari (2003) and write xt in

terms of a conditionally standardised Student t component x∗t as follows:

xt =
1

1 + γ
yt +

√
1− 2η

1− η

(
1 +

η

1− 2η

y2t
1 + γ

)
γ

1 + γ
x∗t ,

x∗t =

√
1− η
η
×
√
ζt/ξtut,

where ut is either 1 or -1 with probability 1/2, ζt is a chi-square random variable with 1 degree

of freedom and ξt is a gamma random variable with mean 1 + η−1 and variance 2(1 + η−1), with

ut, ζt and ξt mutually independent and independent of yt and It−1.

In turn, this decomposition implies that

ςt(0, γ) = γ−1(yt − xt)2 + x2t =
y2t

1 + γ
+

(
1 + γ

γ

)(
xt −

1

1 + γ
yt

)2
=

y2t
1 + γ

(
1 +

ζt
ξt

)
+

1− 2η

η

ζt
ξt
,

so that the denominator of (A14) can be written as

1− 2η + ηςt(0, γ) =

(
1− 2η +

ηy2t
1 + γ

)(
ξt + ζt
ξt

)
.

As a result, (A14) becomes(
1− 2η +

ηy2t
1 + γ

)−1(
ξt

ξt + ζt

)
2η + 1

1 + γ
yt

+

(
1− 2η +

ηy2t
1 + γ

)−1√
1− 2η

1− η

(
1 +

η

1− 2η

y2t
1 + γ

)
γ

1 + γ

√
1− η
η

(
ξt

ξt + ζt

)√
ζt
ξt
ut.
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The expected value of the second summand conditional on yt is 0 because of the symmetry of

ut. In contrast, we can use the properties of the beta distribution to prove that

E

(
ξt

ξt + ζt

)
=

1 + η

1 + 2η

and consequently, that

E

[(
1− 2η +

ηy2t
1 + γ

)−1(
ξt

ξt + ζt

)
2η + 1

1 + γ
yt

∣∣∣∣∣ yt
]

=

(
1− 2η +

ηy2t
1 + γ

)−1
1 + η

1 + γ
yt.

Therefore, we have proved that

E

[
2η + 1

1− 2η + η
[
γ−1(yt − xt)2 + x2t

]xtxt−1
∣∣∣∣∣YT , ρ = 0

]

=

(
1− 2η +

ηy2t
1 + γ

)−1
1 + η

1 + γ
yt

1

1 + γ
yt−1.

Finally, using the general expressions for the score of the approximating model obtained in

the proof of Proposition 2, we will have that the score with respect to ρ of such a univariate

log-likelihood function under the null of ρ = 0 will be given

η + 1

1− 2η + η(1 + γ)−1y2t
(1 + γ)−1/2yt(1 + γ)−1/2(1 + γ)−1yt−1,

as required. �

Proposition 4

We start again by differentiating the prediction equations, which yield dµt(θ) = dπ and

dΣt(θ) = (dc)λt(θ)c + c[dλt(θ)]c′ + cλt(θ)dc′ + dΓt(θ),

whence
∂µt(θ)

∂θ′
=
∂π

∂θ′

and

∂vec[Σt(θ)]

∂θ′
= (IN2 + KNN )[cλt|t−1(θ)⊗ IN ]

∂c

∂θ′
+ (c⊗ c)

∂λt(θ)

∂θ′
+ EN

∂γt(θ)

∂θ′
.

But since

λt(θ) = 1 + α[E(f2t−1|Yt−1;θ,0)− 1],

γit(θ) = γi + α∗i [E(v2it−1|Yt−1;θ,0)− γi],

we will have that:

∂λt(θ)

∂θ
= α

∂E(f2t−1|Yt−1;θ,0)

∂θ
+
∂α

∂θ
[E(f2t−1|Yt−1;θ,0)− 1],

∂γit(θ)

∂θ
=

∂γi
∂θ

+ α∗i
∂E(v2it−1|Yt−1;θ,0)

∂θ
+
∂α∗i
∂θ

[E(v2it−1|Yt−1;θ,0)− γi].
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This implies that under the null hypothesis of α† = 0,

∂λt(θs,0)

∂θ
=

∂α

∂θ
[f2kt−1(θs) + ωk(θs)− 1],

∂γit(θs,0)

∂θ
=

∂γi
∂θ

+
∂α∗i
∂θ

[v2kit−1(θs) + c2iωk(θs)− γi],

where we have used the fact that Σt(θs,0) = cc′ + Γ = Σ(θs) ∀t.

As a result,

Zdt(θs,0) =


Σ−1/2′(θs) 0

0 1
2(c′ ⊗ IN )(IN2 + KNN )[Σ−1/2′(θs)⊗Σ−1/2(θs)]

0 1
2E
′
N [Σ−1/2′(θs)⊗Σ−1/2(θs)]

0 1
2 [f2kt−1(θs) + ωk(θs)− 1][c′Σ−1/2′(θs)⊗ c′Σ−1/2(θs)]

0 1
2dg[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]E′N [Σ−1/2′(θs)⊗Σ−1/2(θs)]

 ,

whence it is easy to see that

Zd(φ) =


Σ−1/2′(θs) 0

0 1
2(c′ ⊗ IN )(IN2 + KNN )[Σ−1/2′(θs)⊗Σ−1/2(θs)]

0 1
2E
′
N [Σ−1/2′(θs)⊗Σ−1/2(θs)]

0 0

0 0


and

Wd(φ) =
[

0 c′Σ−1(θs)
1
2vecd

′[Σ−1(θs)] 0 0
]′
, (A15)

where we have used the fact that

E[f2kt−1(θs) + ωk(θs)− 1|θs,0] = 0

E[v2kit−1(θs) + c2iωk(θs)− γi|θs,0] = 0

}
(A16)

irrespective of the true distribution of yt.

In addition, it follows that the elliptical score under the null will be:

sπt(θs,0,η)

sct(θs,0,η)

sγt(θs,0,η)

sαt(θs,0,η)

sα∗t(θs,0,η)


=



δ[ςt(θs),η]Σ−1(θs)(yt − π)

δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c−Σ−1(θs)c
1
2vecd[δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)−Σ−1(θs)]

1
2 [f2kt−1(θs) + ωk(θs)− 1]

{δ[ςt(θs),η]c′Σ−1(θ)(yt − π)(yt − π)′Σ−1(θs)c− c′Σ−1(θs)c}
1
2dg[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]

×vecd{δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)−Σ−1(θs)}


.

Therefore, the only difference relative to the static factor model are the scores sαt(θs,0,η) and

sα∗t(θs,0,η). In this sense, if we assume that Γ > 0 we can use the Woodbury formula to show

that

δ[ςt(θs);η]c′Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c− c′Σ−1(θs)c

= δ[ςt(θs);η]f2kt(θs) + ωk(θs)− 1,
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so that[
sαt(θs,0,η)

sα∗t(θs,0,η)

]
=


1
2 [f2kt−1(θs) + ωk(θs)− 1]{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}

1
2dg[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]

×vecd{Γ−1[δ[ςt(θs),η]vkt(θs)v
′
kt(θs) + cc′ωk(θs)− Γ]Γ−1}

 .
Using the expression for Zdt(θs,0), together with (A16), it is easy to show that the uncondi-

tional information matrix Iθθ(θ,0,η) will be block diagonal between π, (c,γ,η) and α†, with

the first two blocks as in the static case. Consequently, in computing our ML-based tests we

can safely ignore the sampling uncertainty in estimating θs and η. In addition, we can write

Iα†α†t(θ,0,η) = diag

[
1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]

]

×Vα†α†(θs,η;η)× diag
[

1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]

]
,

where

Vα†α†(θs,η;η) = V

[
1√
2
{δ[ςt(θs),η]f2kt(θs) + ωk(θs)− 1}

1√
2
Γ−1vecd{δ[ςt(θs),η]vkt(θs)v

′
kt(θs) + cc′ωk(θs)− Γ}

]

= mss(η)

[
[c′Σ−1(θs)c]2 c′Σ−1(θs)Γ1/2 � c′Σ−1(θs)Γ1/2

Γ1/2Σ−1(θs)c� Γ1/2Σ−1(θs)c Γ1/2Σ−1(θs)Γ1/2 � Γ1/2Σ−1(θs)Γ1/2

]

+
[mss(η)− 1]

2

[
[c′Σ−1(θs)c]2 [c′Σ−1(θs)c]vecd′[Γ1/2Σ−1(θs)Γ1/2]

[cΣ−1(θs)c]vecd[Γ1/2Σ−1(θs)Γ1/2] vecd[Γ1/2Σ−1(θs)Γ1/2]vecd′[Γ1/2Σ−1(θs)Γ1/2]

]
.

(A17)

Thus, the only remaining item is the calculation of fourth order terms appearing in Vα†α†(θs,0;η).

But if we write

f2kt(θs) + ωk(θs)− 1 = c′Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c− [1− ωk(θs)],

then it is easy to see that

E[f2kt(θs) + ωk(θs)− 1]2

= E{vec[c′Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c]vec′[c′Σ
−1

(θs)(yt − π)(yt − π)′Σ−1(θs)c]}

−[1− ωk(θs)]2

= [c′Σ−1/2′(θs)⊗ c′Σ−1/2′(θs)]E[vec(ε∗tε
∗′
t )vec′(ε∗tε

∗′
t )][Σ−1/2(θs)c⊗Σ−1/2(θs)c]

−[1− ωk(θs)]2

= [c′Σ−1/2′(θs)⊗ c′Σ−1/2′(θs)](κ+ 1)[(IN2 + KNN ) + vec (IN ) vec′ (IN )]

[Σ−1/2(θs)c⊗Σ−1/2(θs)c]− [1− ωk(θs)]2

= (κ+ 1){2[c′Σ−1(θs)c]2 + [c′Σ−1(θs)c]2} − [c′Σ−1(θs)c]2 = (3κ+ 2)[c′Σ−1(θs)c]2.
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Similarly, since

vecd[vkt(θs)v
′
kt(θs)+cc′ωk(θs)− Γ]

= E′N{vec[ΓΣ−1(θs)(yt − π)(yt − π)′Σ−1(θs)Γ]− vec[Γ− cc′ωk(θs)]},

we will have that

E{vecd[vkt(θs)v
′
kt(θs)+cc′ωk(θs)− Γ]vecd′[vkt(θs)v

′
kt(θs)+cc′ωk(θs)− Γ]}

= E′NE{vec[ΓΣ−1(θs)(yt − π)(yt − π)′Σ
−1

(θs)Γ]vec′[ΓΣ−1(θs)(yt − π)(yt − π)′Σ−1(θs)Γ]}EN

−vecd[Γ− cc′ωk(θs)]vecd
′[Γ− cc′ωk(θs)]

= E′N [ΓΣ−1/2′(θs)⊗ ΓΣ−1/2′(θs)]E[vec(ε∗tε
∗′
t )vec′(ε∗tε

∗′
t )][Σ−1/2(θs)Γ⊗Σ−1/2(θs)Γ]

−vecd[Γ− cc′ωk(θs)]vecd
′[Γ− cc′ωk(θs)]

= E′N [ΓΣ−1/2′(θs)⊗ ΓΣ−1/2′(θs)](κ+ 1)[(IN2 + KNN ) + vec (IN ) vec′ (IN )]

×[Σ−1/2(θs)Γ⊗Σ−1/2(θs)Γ]− vecd[Γ− cc′ωk(θs)]vecd
′[Γ− cc′ωk(θs)]

= (κ+ 1){2[ΓΣ−1(θs)Γ� ΓΣ−1(θ)Γ] + vecd[ΓΣ−1(θs)Γ]vecd′[ΓΣ−1(θs)Γ]}

−vecd[Γ− cc′ωk(θs)]vecd[Γ− cc′ωk(θs)]EN

= 2(κ+ 1)[ΓΣ−1(θs)Γ� ΓΣ−1(θs)Γ] + κvecd[ΓΣ−1(θs)Γ]vecd′[ΓΣ−1(θs)Γ]}.

Finally,

E{vecd[vkt(θs)v
′
kt(θs)+cc′ωk(θs)− Γ][f2kt(θs) + ωk(θs)− 1]}

= E′NE{vec[ΓΣ−1(θs)(yt − π)(yt − π)′Σ
−1

(θs)Γ]vec′[c′Σ
−1

(θs)(yt − π)(yt − π)′Σ−1(θs)c]}

−vecd[Γ− cc′ωk(θs)][1− ωk(θs)]

= E′N [ΓΣ−1/2′(θs)⊗ ΓΣ−1/2′(θs)]E[vec(ε∗tε
∗′
t )vec′(ε∗tε

∗′
t )][Σ−1/2(θs)c⊗Σ−1/2(θs)c]

−vecd[Γ− cc′ωk(θs)][1− ωk(θs)]

= E′N [ΓΣ−1/2′(θs)⊗ ΓΣ−1/2′(θs)](κ+ 1)[(IN2 + KNN ) + vec (IN ) vec′ (IN )]

×[Σ−1/2(θs)c⊗Σ−1/2(θs)c]− vecd[Γ− cc′ωk(θs)][1− ωk(θs)]

= 2(κ+ 1)[ΓΣ−1(θs)c� ΓΣ−1(θs)c] + κvecd[ΓΣ−1(θs)Γ][c′Σ−1(θs)c].

Therefore, Vα†α†(θs,0;η) mimics Vα†α†(θs,η;η) if we replace mss(η) by κ+ 1.

In addition, it follows from (A15) that the elliptically symmetric semiparametric scores

for α† coincide with the parametric ones, and that the elliptically symmetric semiparametric

effi ciency bound will be block diagonal between π, (c,γ), and α†, where the first and last blocks

coincide with the corresponding blocks of the information matrix, and the second one with the

corresponding bound in the static factor model.
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Finally, let us consider the tests based on the Gaussian PML scores sαt(θs,0,0) and sα∗t(θs,0,0)

when yt|It−1;φ is i.i.d. D(π,Σ(θs);%) but not necessarily normal or elliptical. Once again, a

robust Gaussian pseudo score test of the null hypothesis H0 : α†1 = 0 can be computed as[√
T

T

T∑
t=1

s′α†t(θ̃s,0,0)

]
Aα†α† (φ0) C−1α†α† (φ0)Aα

†α† (φ0)

[√
T

T

T∑
t=1

s′α†t(θ̃s,0,0)

]
,

where s′
α†t(θ̃s,0,0) is the Gaussian score evaluated at the restricted PML estimator θ̃s, Aα

†α† (φ0)

is the relevant block of the inverse of the expected Hessian matrix A(φ) = −E [hθθt(θ,0)|φ] and

Cα†α† (φ0) is the corresponding block of the usual sandwich expression C(φ)=A−1(φ)B(φ)A−1(φ),

with B(φ) = V [sθt(θ,0)|φ] (see e.g. Engle (1984)). The structure of Zdt(θ), together with (A16)

and the fact that Aθθt(φ) equals Iθθt(θs,0,0), implies that A(φ) will be block diagonal between

(α,α∗) and (π, c,γ) irrespective of the true distribution of yt. In addition, it is easy to see that

Aα†α†(φ) = E[Aα†α†t(φ)|θs,0;%] = Vα†α†(θs,0;%)� Vα†α†(θs,0; 0),

where

Vα†α†(θs,0;%) = V

[
1√
2
[f2kt(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt(θs)v

′
kt(θs) + cc′ωk(θs)− Γ]

∣∣∣∣∣θs,0;%

]
.

A closely related argument shows that Bt(φ) will also be block diagonal between (α,α∗) and

(π, c,γ). Further, the stationarity of yt implies that

Bα†α†(φ) = E[Bα†α†t(φ)|θs,0;%] = Vα†α†(θs,0;%)� Vα†α†(θs,0;%),

which is generally different from Aα†α†(φ). As we have seen in (A17) above, Vα†α†(θs,0;%) will

simplify considerably when ε∗t is spherical. In any case, the block diagonality of A(φ) and B(φ)

implies that

Aα†α† (φ0) C−1α†α† (φ0)Aα
†α† (φ0) = B−1

α†α†t
(φ),

which proves the last part of the proposition. �

Proposition 5

For the sake of brevity, the proof will be developed for the following univariate model:

yt = ft + vt,(
ft

vt

)
|It−1 ∼ t

{(
0

0

)
,

[
1 + α(f2t−1 − 1) 0

0 γ

]
, η

}
,

where α ≥ 0 and γ ≥ 0. Nevertheless, it can be tediously extended to cover the general case.

Given that when α = 0 the log-likelihood function of this model coincides with the log-likelihood
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function of the model considered in section 2, we only need to look at the score associated to

this parameter.

It is easy to see that the joint distribution of yt and ft give the past of both variables will be(
yt

ft

)
|It−1 ∼ t

[(
0

0

)
,

(
1 + α(f2t−1 − 1) + γ 1 + α(f2t−1 − 1)

1 + α(f2t−1 − 1) 1 + α(f2t−1 − 1)

)
, η

]
.

Hence, we can write down the joint log-likelihood as

c2(η)− 1

2
ln γ − 1

2
ln[1 + α(f2t−1 − 1)] + g[ςt(ρ, γ); η],

where

c2(η) = ln

[
Γ

(
2η + 1

2η

)]
− ln

[
Γ

(
1

2η

)]
− ln

(
1− 2η

η

)
− lnπ

is the (log) constant of integration,

γ[1 + α(f2t−1 − 1)] =

∣∣∣∣∣
(

1 + α(f2t−1 − 1) + γ 1 + α(f2t−1 − 1)

1 + α(f2t−1 − 1) 1 + α(f2t−1 − 1)

)∣∣∣∣∣
the Jacobian and

g[ςt(α, γ); η] = −
(

2η + 1

2η

)
ln

[
1 +

η

1− 2η
ςt(ρ, γ)

]
,

with

ςt(α, γ) =
(
yt ft

)( 1 + α(f2t−1 − 1) + γ 1 + α(f2t−1 − 1)

1 + α(f2t−1 − 1) 1 + α(f2t−1 − 1)

)−1(
yt

ft

)
= γ−1(yt − ft)2 + [1 + α(f2t−1 − 1)]−1f2t ,

the (log) kernel of the bivariate Student t density.

Given that we can write the standardised residuals as(
1 + α(f2t−1 − 1) + γ 1 + α(f2t−1 − 1)

1 + α(f2t−1 − 1) 1 + α(f2t−1 − 1)

)−1/2(
yt

ft

)

=

(
γ−1/2 −γ−1/2

0 [1 + α(f2t−1 − 1)]−1/2

)(
yt

ft

)

=

(
γ−1/2(yt − ft)

[1 + α(f2t−1 − 1)]−1/2ft

)

and the gradient of the vec of the conditional covariance matrix with respect to α will be f2t−1−1

times the vector (1, 1, 1, 1)′, we will have that the score of the joint log-likelihood function with
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respect to α will be given by

1

2
(f2t−1 − 1)(1, 1, 1, 1)

×
[(

γ−1/2 0

−γ−1/2 [1 + α(f2t−1 − 1)]−1/2

)
⊗
(

γ−1/2 0

−γ−1/2 [1 + α(f2t−1 − 1)]−1/2

)]

×vec

 2η+1
1−2η+ηςt(α,γ)

(yt−ft)2
γ − 1 2η+1

1−2η+ηςt(α,γ)
(yt−ft)√

γ
ft√

1+α(f2t−1−1)
2η+1

1−2η+ηςt(α,γ)
(yt−ft)√

γ
ft√

1+α(f2t−1−1)
2η+1

1−2η+ηςt(α,γ)
f2t

1+α(f2t−1−1)
− 1


=

1

2

(
2η + 1

1− 2η + ηςt(α, γ)

f2t
1 + α(f2t−1 − 1)

− 1

)
f2t−1 − 1

1 + α(f2t−1 − 1)
,

where we have used the fact that(
γ−1/2 −γ−1/2

0 [1 + α(f2t−1 − 1)]−1/2

)(
1 1

1 1

)(
γ−1/2 0

−γ−1/2 [1 + α(f2t−1 − 1)]−1/2

)

=

(
0 0

0 [1 + α(f2t−1 − 1)]−1

)
.

The Kullback inequality implies that score of the marginal log-likelihood function of yt with

respect to α will be given by

1

2
E

[(
2η + 1

1− 2η + ηςt(α, γ)

f2t
1 + α(f2t−1 − 1)

− 1

)
f2t−1 − 1

1 + α(f2t−1 − 1)

∣∣∣∣YT , α

]
.

This expected value becomes analytically tractable when α = 0. First of all, the expression

inside the expectation simplifies to

E

[(
(2η + 1)f2t

1− 2η + η
[
γ−1(yt − ft)2 + f2t

] − 1

)
(f2t−1 − 1)

∣∣∣∣∣YT , α = 0

]
.

Second, the joint distribution of yt and ft is i.i.d. over time, which means that the expected

value of this product should be equal to

E

[(
(2η + 1)f2t

1− 2η + η
[
γ−1(yt − ft)2 + f2t

] − 1

)∣∣∣∣∣ yt, α = 0

]
E
[
f2t−1 − 1

∣∣ yt−1, α = 0
]
.

But since ft given yt has a Student t distribution with (conditional) mean, variance and

shape parameter given by (A11), (A12) and (A13), respectively, the second term is simply given

by

f2kt−1(γ) + υkt−1(γ, η)− 1.

The first term is trickier, as we need to find the expected value of

(2η + 1)f2t
1− 2η + η

[
γ−1(yt − ft)2 + f2t

] − 1. (A18)
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To do so, it is convenient to follow Fiorentini, Sentana and Calzolari (2003) and write ft in terms

of a conditionally standardised Student t component f∗t as follows:

ft =
1

1 + γ
yt +

√
1− 2η

1− η

(
1 +

η

1− 2η

y2t
1 + γ

)
γ

1 + γ
f∗t ,

f∗t =

√
1− η
η
×
√
ζt/ξtut,

where ut is either 1 or -1 with probability 1/2, ζt is a chi-square random variable with 1 degree

of freedom and ξt is a gamma random variable with mean 1 + η−1 and variance 2(1 + η−1), with

ut, ζt and ξt mutually independent and independent of yt and It−1.

This decomposition allows us to express

ςt(0, γ) = γ−1(yt − ft)2 + f2t =
y2t

1 + γ
+

(
1 + γ

γ

)(
ft −

1

1 + γ
yt

)2
=

y2t
1 + γ

+
1− 2η

η

(
1 +

η

1− 2η

y2t
1 + γ

)
ζt
ξt

=
y2t

1 + γ

(
1 +

ζt
ξt

)
+

1− 2η

η

ζt
ξt
,

so that the denominator of (A14) can be written as

1− 2η + ηςt(0, γ) = 1− 2η + η
y2t

1 + γ

(
1 +

ζt
ξt

)
+ (1− 2η)

ζt
ξt

=

(
1− 2η +

ηy2t
1 + γ

)(
ξt + ζt
ξt

)
= (1− 2η)

(
1 +

η

1− 2η

y2t
1 + γ

)(
ξt + ζt
ξt

)
.

As for the numerator, we are left with 2η + 1 times

f2t =
1

(1 + γ)2
y2t +

1− 2η

η

(
1 +

η

1− 2η

y2t
1 + γ

)
γ

1 + γ

ζt
ξt

+
2

1 + γ
yt

√
1− 2η

η

(
1 +

η

1− 2η

y2t
1 + γ

)
γ

1 + γ

√
ζt
ξt
ut.

Therefore, we can re-write (A18) as −1 plus 2η + 1 times

1
(1+γ)2

y2t

(1− 2η)
(

1 + η
1−2η

y2t
1+γ

) ( ξt
ξt + ζt

)

+
γ

η(1 + γ)

(
ζt

ξt + ζt

)

+

2
1+γ yt

√
1−2η
η

(
1 + η

1−2η
y2t
1+γ

)
γ
1+γ

√
ζt
ξt
ut

(1− 2η)
(

1 + η
1−2η

y2t
1+γ

)(
ξt+ζt
ξt

) .

The expected value of the last summand is clearly 0 because of the symmetry of ut. In

contrast, we can use the properties of the beta distribution to prove that

E

(
ξt

ξt + ζt

)
=

1 + η

1 + 2η
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and

E

(
ζt

ξt + ζt

)
=

η

1 + 2η
.

If we put all the pieces together we end up with

1 + η(
1− 2η + η y2

1+γ

) y2t
(1 + γ)2

+
γ

1 + γ
− 1

=
1 + η(

1− 2η + η y2

1+γ

)f2kt(γ) + υkt(γ, 0)− 1

=
1 + η(

1− 2η + η y2

1+γ

) [f2kt(γ) +
1− η
1 + η

υkt(γ, η)

]
− 1.

As a result, the score of the true log-likelihood at α = 0 is

1

2

 1 + η(
1− 2η + η y2

1+γ

)f2kt(γ) + υkt(γ, 0)− 1

 [f2kt−1(γ) + υkt−1(γ, η)− 1
]
.

Interestingly, note that υkt(γ, η) is evaluated in the regressand at its Gaussian value (= ωk(γ)),

while in the regressor it is evaluated at the true value of η.

Consider now the following HRS-style auxiliary model

yt = ft + vt,(
ft

vt

)
|It−1 ∼ t

{(
0

0

)
,

[
1 + α[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1] 0

0 γ

]
, η

}
,

ft|t(θ) =
1 + α[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1]

1 + α[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1] + γ
· yt,

ωt|t(θ, η) =
1− 2η

1− η

(
1 +

η

1− 2η

y2t
1 + α[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1] + γ

)

×
1 + α[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1]

1 + α[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1] + γ
· γ,

and α ≥ 0, γ ≥ 0. In order to compute the score of this model with respect to α, we need the

derivative of the conditional variance of yt with respect to this parameter. This derivative will

be

[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1] + α

[
2ft−1|t−1(θ)

∂ft−1|t−1(θ)

∂α
+
∂ωt−1|t−1(θ, η)

∂α

]
.

However, since we are only interested in evaluating it at α = 0 we do not need to compute the

second term.

The other component of the derivative will be given by the expression

1 + η

1− 2η + ηε∗2t (θ)
ε∗2t (θ)− 1,
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where

ε∗t (θ) =
yt√

1 + α[f2t−1|t−1(θ) + ωt−1|t−1(θ, η)− 1] + γ
.

Hence, under the null of α = 0 the score with respect to α will be

1

2

 1 + η

1− 2η + η
y2t
1+γ

y2t
1 + γ

− 1

 1

1 + γ
[f2t−1|t−1(γ, 0) + ωt−1|t−1(γ, 0, η)− 1]

But since 1 + η

1− 2η + η
y2t
1+γ

y2t
1 + γ

− 1

 1

1 + γ
=

1 + η(
1− 2η + η y2

1+γ

) 1

(1 + γ)2
y2t +

γ

1 + γ
− 1,

the pseudo log-likelihood score of the auxiliary model coincides with the score of the true model

when we evaluate them at α=0. Hence, the Student t version of HRS auxiliary model smoothly

embeds the true model at those parameter values.

Proposition 6

The proof of this proposition combines many elements of the proofs of Propositions 2 and 4.

Given that model (32) reduces to model (13) when α = 0 and α∗ = 0 for every possible value

of the parameters π, ρ,ρ∗, c and γ, while it reduces to model (22) when ρ = 0 and ρ∗ = 0 for

every possible value of the parameters π, c,γ,α and α∗, then it trivially follows that under the

joint null of ρ† = 0 and α† = 0 we will have that

Zdt(θs,0,0) =



Σ−1/2′(θs)

0

0

fkt−1(θs)c
′Σ−1/2′(θs)

diag[vkt−1(θs)]Σ
−1/2′(θs)

0

0

0
1
2(c′ ⊗ IN )(IN2 + KNN )[Σ−1/2′(θs)⊗Σ−1/2′(θs)]0

1
2E
′
N [Σ−1/2′(θs)⊗Σ−1/2(θs)]

0

0
1
2 [f2kt−1(θs) + ωk(θs)− 1][c′Σ−1/2′(θs)⊗ c′Σ−1/2(θs)]

1
2dg[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]E′N [Σ−1/2′(θs)⊗Σ−1/2(θs)]


,
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whence

Zd(φ) =



Σ−1/2′(θ) 0

0 1
2(c′ ⊗ IN )(IN2 + KNN )[Σ−1/2′(θs)⊗Σ−1/2′(θs)]

0 1
2E
′
N [Σ−1/2′(θs)⊗Σ−1/2(θs)]

0 0

0 0

0 0

0 0


and

Wd(φ) =
[

0 c′Σ−1(θs)
1
2vecd

′[Σ−1(θs)] 0 0 0 0
]′
. (A19)

As a result, the score vector under the null will be



sπt(θs,0,0,η)

sct(θs,0,0,η)

sγt(θs,0,0,η)

sρt(θs,0,0,η)

sρ∗t(θs,0,0,η)

sαt(θs,0,0,η)

sα∗t(θs,0,0,η)


=



δ[ςt(θs),η]Σ−1(θs)(yt − π)

δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c−Σ−1(θs)c
1
2vecd[δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)−Σ−1(θs)]

fkt−1(θs)δ[ςt(θs);η]c′Σ−1(θs)(yt − π)

diag[vkt−1(θs)]δ[ςt(θs);η]Σ−1(θs)(yt − π)
1
2 [f2kt−1(θs) + ωk(θs)− 1]{δ[ς(θs),η]c′Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)c

−c′Σ−1(θs)c}
1
2dg[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]

×vecd[δ[ςt(θs),η]Σ−1(θs)(yt − π)(yt − π)′Σ−1(θs)−Σ−1(θs)]


.

But this score is simply made up of the components of the different special cases that we have

already studied, so the only thing left to do is to study the blocks of the information matrix and

the other effi ciency bounds that corresponds to the cross product of

[sρt(θs,0,0,η), s′ρ∗t(θs,0,0,η)]

with

[sαt(θs,0,0,η), s′α∗t(θs,0,0,η)].

When the observed variables are elliptically distributed, the vector

[fkt−1(θs),v
′
kt−1(θs)]

is unconditionally orthogonal to the vector

{[f2kt−1(θs) + ωk(θs)− 1], vecd′[vkt−1(θs)v
′
kt−1(θs) + cc′ωk(θs)− Γ]},

so all the relevant off-diagonal blocks of Iθθ(φ0), S̊(φ0), A(φ0) and B(φ0) will be 0, which

confirms the additive decomposition of the different joint tests under elliptical symmetry.
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For general distributions, though, the expressions for A(φ0) and B(φ0) are more involved.

Specifically, while it is still true that these matrices will remain block diagonal between (ρ†,α†)

and θs regardless of the true distribution of yt in view of (A10) and (A16), and that A(φ0)

will also be block diagonal between ρ† and α†, with the relevant expressions for Aρ†ρ†(φ0)

and Aα†α†(φ0) as in the proofs of Propositions 2 and 4, respectively, it will no longer be true

that B(φ0) will be block diagonal between Ar and Arch parameters, even though Bρ†ρ†(φ0) =

Aρ†ρ†(φ0). Nevertheless, straightforward calculations show that the blocks of Bt(φ0) corre-

sponding to (ρ†,α†) will be given by

diag


fkt−1(θs)

Γ−1/2vkt−1(θs)
1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]


×
[
Vρ†ρ†(θs,0;%) Vρ†α†(θs,0;%)

V ′
ρ†α†(θs,0;%) Vα†α†(θs,0;%)

]

×diag


fkt−1(θs)

Γ−1/2vkt−1(θs)
1√
2
[f2kt−1(θs) + ωk(θs)− 1]

1√
2
Γ−1vecd[vkt−1(θs)v

′
kt−1(θs) + cc′ωk(θs)− Γ]

 ,

which confirms (33) in view of the stationarity of yt. �

B Local power calculations

Let mt(θ1,θ2) denote the h influence functions used to develop the following moment test

of H0 : θ2 = 0:

MT = Tm̄′T (θ10,0)Ψ−1m̄T (θ10,0), (B20)

where m̄T (θ10,0) is the sample average of mt(θ) evaluated under the null, Ψ is the correspond-

ing asymptotic covariance matrix and θ10 the true values of the remaining model parameters.

In order to obtain the non-centrality parameter of this test under Pitman sequences of local

alternatives of the form Hla : θ2T = θ̄2/
√
T , it is convenient to linearise mt(θ10,0) with respect

to θ2 around its true value θ2T . This linearisation yields

√
Tm̄T (θ10,0) =

√
Tm̄T (θ10,θ2T )− 1

T

∑T

t=1

∂mt(θ10,θ
∗
2T )

∂θ′2
θ̄2,

where θ∗2T is some “intermediate”value between θ2T and 0. As a result,

√
Tm̄T (θ10,0)→ N [M(θ10,0)θ̄2,Ψ],
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under standard regularity conditions, where

M(θ10,0) = E[−∂mt(θ10,0)/∂θ′2],

so that the non-centrality parameter of the moment test (B20) will be

θ̄
′
2M
′(θ10,0)Ψ−1M(θ10,0)θ̄2. (B21)

On this basis, we can easily obtain the limiting probability of MT exceeding some pre-

specified quantile of a central χ2h distribution from the cdf of a non-central χ2 distribution with

h degrees of freedom and non-centrality parameter (B21). When mt(θ1,θ2) coincides with a

subset of the true scores with respect to θ2, M(θ10,0) and Ψ can be readily obtained from the

relevant blocks of the information matrix. Similarly, they can be obtained from the A(φ) and

B(φ) matrices, respectively, when mt(θ1,θ2) coincides with a subset of the Gaussian scores.

Importantly, (B21) remains valid when we replace θ10 by its ML estimator under the null

if mt(θ1,0) and the scores corresponding to θ1, sθ1t(θ1,0) say, are asymptotically uncorrelated

when H0 is true, as in all our tests. The same applies to the Gaussian PMLE’s because the

matrices involved in the asymptotic expansions are block diagonal too. More generally, it would

be convenient to work with the alternative influence functions

m⊥t (θ1,0) = mt(θ1,0)− cov[mt(θ1,0), sθ1t(θ1,0)]V −1[sθ1t(θ1,0)]sθ1t(θ1,0),

which can be interpreted as the residual in the regression of mt(θ1,0) onto sθ1t(θ1,0).

Serial correlation tests

Let us assume without loss of generality that π = 0. Hosking’s test is effectively based on

the influence functions

mlt(θs,ρ
†) = vec[yty

′
t−1 −Gy(1)]

evaluated at ρ† = 0. But since

Gy(1) = cc′ρ+ diag(γ � ρ∗)

for the model considered in section 3.3 in view of (15), and

vec[Gy(1)] = (c⊗ c)ρ+ vec[diag(γ � ρ∗)],

it trivially follows that

Ml(θs,0) = E[∂mlt(θs,0)/∂ρ†′] = −[ (c⊗ c) ENΓ ].
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Hence, we will have that

Ml(θs,0)ρ̄† = −[(c⊗ c)ρ+ ENγρ
∗]

when

ρ̄†′ = ( ρ ρ∗ι′N ).

As for the asymptotic covariance matrix, the proof of Proposition 4 in Fiorentini and Sentana

(2012) implies that if ρ† = 0, then

√
Tmlt(θs,0) =

√
Tvec(yty

′
t−1)→ N(0,Σ⊗Σ)

irrespective of the distribution of yt.

Since the diagonal serial correlation test uses the influence functions

vecd[yty
′
t−1 −Gy(1)] = E′Nvec[yty

′
t−1 −Gy(1)],

it is easy to obtain the corresponding Jacobian matrix by premultiplying Ml(θs,0) by E′N .

Specifically,

E′NMl(θs,0)ρ̄† = −[(c� c)ρ+ γρ∗].

We can also exploit the properties of EN (see Magnus (1988)) to show that under the null

√
Tvecd(yty

′
t−1)→ N(0,Σ�Σ).

Finally, to obtain the non-centrality parameter for the serial correlation test of w′yt, we

simply have to exploit the fact that the relevant influence functions are

w′yty
′
t−1w −w′Gy(1)w = (w′ ⊗w′)vec[yty

′
t−1 −Gy(1)],

so that the appropriate Jacobian will be (w′ ⊗w′)Ml(θs,0), whence

(w′ ⊗w′)Ml(θs,0)ρ̄† = −[(w′c)2ρ+ (w′Γw)ρ∗].

Similarly, it is straightforward to show that

√
T (w′yty

′
t−1w)→ N [0, (w′Σw)2].

In the case of the LM test of H0 : ρ† = 0, the information matrix equality implies that the

Jacobian of the scores of ρ† with respect to ρ† will be given by (minus) the information matrix,

which also gives us the covariance matrix of the scores under the null. By suitably selecting the

relevant elements of Iρρ(φ), we can also compute the non-centrality parameters for the tests of

the null hypotheses H0 : ρ = 0 and H0 : ρ∗ = 0. Analogous comments apply to the Gaussian-

based LM tests if we replace the elements of the information matrix by the appropriate elements

of Aρρ(φ) or Bρρ(φ).
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ARCH tests

To keep the algebra simple, we assume once again that π = 0, that the conditional variances

of common and specific factors have been generated according to (30) and that the conditional

distribution is elliptically symmetric. Hosking’s test applied to all the squares and cross-products

of yt is effectively based on the influence functions that correspond to the first-order autocovari-

ance matrix of vec(yty′t), Syy(1) say, evaluated at α† = 0. More specifically,

mst(θs,α
†) = vec{[vec(yty′t −Σ)vec′(yt−1y

′
t−1 −Σ)]− Sy(1)}.

But since

E(yty
′
t|It−1;θ) = cc′λt + Γt

so that

vec[E(yty
′
t −Σ|It−1;θ)] = (c⊗ c)(λt − 1) + EN (γt − γ),

and

vec(yt−1y
′
t−1 −Σ) = (c⊗ c)(f2t−1 − 1) + vec(vt−1v

′
t−1 − Γ) + (IN2 + KNN )(c⊗ IN )ft−1vt−1,

then it follows that

Sy(1) = E[vec(yty
′
t −Σ)vec′(yt−1y

′
t−1 −Σ)] = E{E[vec(yty

′
t −Σ)|It−1;φ]vec′(yt−1y

′
t−1 −Σ)]}

= E{[(c⊗ c)(λt − 1) + EN (γt − γ)][(c′ ⊗ c′)(f2t−1 − 1)

+vec′(vt−1v
′
t−1 − Γ) + ft−1v

′
t−1(c

′ ⊗ IN )(IN2 + KNN )}

= (cc′ ⊗ cc′)E[(λt − 1)(f2t−1 − 1)] + (c⊗ c)E[(λt − 1)(v′t−1 � v′t−1 − γ ′)]E′N

ENE[(γt − γ)(f2t−1 − 1)](c′ ⊗ c′) + ENE[(γt − γ)(v′t−1 � v′t−1 − γ ′)]E′N

because of the assumed elliptical symmetry and lack of cross-sectional correlation between ft

and the v′its, and the fact that we are assuming univariate Arch(1) processes for them. This

last assumption also implies that

E[(λt−1)(f2t−1−1)] = αV (f2t−1) = α[E(f4t−1)−1] = α

[
3(κ+ 1)(1− α2)
1− 3(κ+ 1)α2

− 1

]
= α

(3κ+ 2)

1− 3(κ+ 1)α2
,

where κ is the multivariate excess kurtosis coeffi cient. Similarly

E[(γit − γi)(v2it−1 − γi)] = αiV (v2it−1) = αi
(3κ+ 2)

1− 3(κ+ 1)α2i
γ2i .

In addition, we can show that

E[(γit − γi)(v2jt−1 − γj)] = αicov(v2it−1, v
2
jt−1) = αi[E(v2it−1v

2
jt−1)− γiγj ] = αiγiγj

κ

1− (κ+ 1)αiαj
,

E[(λt − 1)(v2it−1 − γi)] = αcov(f2t−1, v
2
it−1) = αγi

κ

1− (κ+ 1)ααi
,

E[(γit − γi)(f2t−1 − 1)] = αicov(f2t−1, v
2
it−1) = αiγi

κ

1− (κ+ 1)ααi
.
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From here, it is straightforward to see that under the null of conditional homoskedasticity

in common and idiosyncratic factors the only non-zero derivatives will be

∂E[(λt − 1)(f2t−1 − 1)/∂α = (3κ+ 2)

∂E[(γit − γi)(v2it−1 − γi)]/∂αi = (3κ+ 2)γ2i

∂E[(γit − γi)(v2jt−1 − γj)]/∂αi = κγiγj

∂E[(λt − 1)(v2it−1 − γi)]/∂α = κγi

∂E[(γit − γi)(f2t−1 − 1)]/∂αi = κγi

whence we can obtain the appropriate Jacobian matrix

Ms(θs,0) = ∂E[mt(θs,0)]/∂α†′.

Finally, we will have that

Ms(θs,0)ᾱ† = −vec{(cc′ ⊗ cc′)(3κ+ 2)α+ (c⊗ c)γ ′E′Nκα

+ENγ(c′ ⊗ c′)κα∗ + EN [2(κ+ 1)(Γ� Γ) + κγγ ′]E′Nα
∗} (B22)

when

ᾱ†′ = ( α α∗ι′N ).

As for the asymptotic covariance matrix, the proof of Proposition 8 in Fiorentini and Sentana

(2012) implies that if ρ† = 0, then

√
Tmst(θs,0) =

√
Tvec[vec(yty

′
t −Σ)vec′(yt−1y

′
t−1 −Σ)]→ N{0, [H(κ)⊗H(κ)]},

when the conditional distribution of yt is elliptically symmetric, where

H(κ) = (κ+ 1)(IN2 + KNN )(Σ⊗Σ) + κvec(Σ)vec′(Σ) = H(κ).

But given that the autocovariance matrix of vech(yty
′
t) will be

D+
NE[vec(yty

′
t −Σ)vec′(yt−1y

′
t−1 −Σ)]D+′

N = D+
NSyy(1)D+′

N ,

it is straightforward to obtain the relevant limiting mean vector as

(D+
N ⊗D+

N )Ms(θs,0)ᾱ†.

Similarly, the proof of Proposition 8 in Fiorentini and Sentana (2012) also implies that
√
T

T

∑T

t=1
vec[vech(yty

′
t −Σ)vech′(yt−1y

′
t−1 −Σ)]→ N [0, (D+

NH(κ)D+′
N ⊗D+

NH(κ)D+′
N )],
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where

D+
NH(κ)D+′

N = 2(κ+ 1)D+
N (Σ⊗Σ)D+′

N + κvech(Σ)vech′(Σ)].

From here, we can obtain the non-centrality parameter for the test that only looks at the

marginal autocovariances of vech(yty
′
t) by premutiplying by E′N(N+1)/2.

In turn, the diagonalisation matrix EN allows us to obtain the autocovariance matrix of

vecd(yty
′
t −Σ) as

E′NE[vec(yty
′
t −Σ)vec′(yt−1y

′
t−1 −Σ)]EN = E′NSy(1)EN ,

whence we can obtain the non-centrality parameter for the test that only looks at the marginal

autocovariances of vecd(yty
′
t) by premutiplying Ms(θs,0)ᾱ† by (E′N ⊗ E′N ). An analogous

manipulation yields the asymptotic covariance matrix of the relevant influence functions.

Finally, it is straightforward to obtain the autocovariance structure of the squares of any

linear combination of yt, w′yt say, by exploiting the fact that

E[(w′yt)
2(w′yt−1)

2] = vec′(ww′)E[vec(yty
′
t)vec

′(yt−1y
′
t−1)]vec(ww′).

Similarly, it is easy to prove that
√
T

T

∑T

t=1
(w′yt)

2(w′yt−1)
2 → N [0, (3κ+ 2)(w′Σw)2]

under the null.

In the case of the LM test of H0 : α† = 0, the information matrix equality implies that the

Jacobian of the scores of α† with respect to α† will be given by (minus) the information matrix,

which also gives us the covariance matrix of the scores under the null. By suitably selecting

the relevant elements of Iαα(φ), we can also compute the non-centrality parameters for the

tests of the null hypotheses H0 : α = 0 and H0 : α∗ = 0. Analogous comments apply to the

Gaussian-based LM tests if we replace the elements of the information matrix by the appropriate

elements of Aαα(φ) or Bαα(φ).
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Table 1

Test power

(a) AR(1) tests. DGP: Gaussian (ρ=.03,ρ∗i=.045,α=α∗=β=β∗=0)

Common Specific Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vecd EWP

Rejection rate 0.121 0.121 0.126 0.395 0.396 0.401 0.402 0.402 0.411 0.203 0.110 0.121

Size adjusted 0.116 0.115 0.117 0.390 0.391 0.376 0.398 0.399 0.381 0.209 0.109 0.117

(b) AR(1) tests. DGP: Student t6 (ρ=.03,ρ∗i=.045,α=α∗=β=β∗=0)

Common Specific Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vecd EWP

Rejection rate 0.120 0.143 0.155 0.391 0.500 0.524 0.397 0.509 0.539 0.202 0.110 0.120

Size adjusted 0.119 0.143 0.138 0.394 0.502 0.479 0.399 0.511 0.489 0.206 0.110 0.118

(c) ARCH(1) tests. DGP: Gaussian (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vech Vecd EWP

Rejection rate 0.263 0.261 0.228 0.391 0.391 0.315 0.469 0.473 0.389 0.279 0.197 0.219 0.259

Size adjusted 0.270 0.270 0.264 0.401 0.405 0.391 0.480 0.487 0.475 0.215 0.192 0.222 0.265

(d) ARCH(1) tests. DGP: Student t6 (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint Hosking

PML ML SSP PML ML SSP PML ML SSP Gen Vech Vecd EWP

Rejection rate 0.229 0.238 0.259 0.377 0.397 0.444 0.438 0.484 0.543 0.510 0.293 0.258 0.226

Size adjusted 0.265 0.267 0.268 0.339 0.384 0.423 0.390 0.467 0.517 0.196 0.189 0.223 0.265

(e) GARCH(1,1) tests (β̄=β̄∗=.94). DGP: Gaussian (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint

PML ML SSP PML ML SSP PML ML SSP

Rejection rate 0.321 0.321 0.292 0.499 0.499 0.437 0.592 0.594 0.525

Size adjusted 0.358 0.355 0.350 0.538 0.540 0.533 0.631 0.635 0.622

(f) GARCH(1,1) tests (β̄=β̄∗=.94). DGP: Student t6 (ρ=ρ∗=0,α=α∗=.05,β=β∗=.75)

Common Specific Joint

PML ML SSP PML ML SSP PML ML SSP

Rejection rate 0.286 0.330 0.352 0.456 0.545 0.600 0.530 0.652 0.714

Size adjusted 0.337 0.372 0.380 0.511 0.554 0.612 0.574 0.662 0.726



Table 2

Descriptive statistics

Industry portfolios

Correlations

Sector Means Std.dev. Cnsmr Manuf HiTec Hlth Other

Cnsmr .566 4.481 1

Manuf .543 4.178 .804 1

HiTec .497 5.320 .734 .718 1

Hlth .733 4.995 .710 .668 .634 1

Other .500 4.998 .878 .848 .739 .708 1

Notes: Sample: January 1953-December 2008. Industry definitions: Cnsmr: Consumer Durables,
NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufactur-
ing, Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:
Healthcare, Medical Equipment, and Drugs. Other: Other —Mines, Constr, BldMt, Trans, Hotels, Bus
Serv, Entertainment, Finance.



Table 3

Estimates of Σ = cc′ + Γ

Industry portfolios

Factor Loadings Specific Variances

Sector PML ML SSP PML ML SSP

Cnsmr 4.130 4.309 4.292 3.024 3.263 3.215

Manuf 3.708 3.840 3.847 3.710 3.683 3.705

HiTec 4.223 4.337 4.342 10.465 8.453 8.997

Hlth 3.791 4.120 4.075 10.574 10.915 10.870

Other 4.740 4.900 4.909 2.518 3.105 3.062

Notes: Sample: January 1953-December 2008. Industry definitions: Cnsmr: Consumer Durables,
NonDurables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufactur-
ing, Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:
Healthcare, Medical Equipment, and Drugs. Other: Other —Mines, Constr, BldMt, Trans, Hotels, Bus
Serv, Entertainment, Finance. PML refers to the Gaussian-based ML estimators, ML to the Student t
ones, and SSP to the elliptically symmetric semiparametric estimators.



Table 4a

Serial correlation tests (p-values, %)

Ar(1) Ar(3) Ar(12)

PML ML SSP PML ML SSP PML ML SSP

Common factor 0.35 2.64 1.35 19.75 35.49 24.04 39.59 53.85 59.63

Specific factors 1.46 2.70 1.45 1.40 8.84 4.11 0.06 0.00 0.00

Joint 0.11 0.87 0.30 1.52 11.31 4.71 0.11 0.00 0.00

Table 4b

Conditional heteroskedasticity tests (p-values, %)

Arch(1) Garch(1,1)

PML ML SSP PML ML SSP

Common factor 0.36 6.12 1.79 0.00 0.26 0.01

Specific factors 0.00 0.00 0.00 0.00 0.00 0.00

Joint 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Sample: July:1962-June:2007. Industry definitions: Cnsmr: Consumer Durables, NonDurables,
Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufacturing, Energy, and
Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth: Healthcare, Medical
Equipment, and Drugs. Other: Other —Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment,
Finance. PML refers to the (fully robust) tests based on the Gaussian ML estimators, ML to the Student
t ones, SSP to the elliptically symmetric semiparametric estimators.
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(a) Baseline signal to noise ratio

 

 

Figure 1: Power of mean dependence tests at 5% level against local alternatives
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(b) Low signal to noise ratio
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(c) High signal to noise ratio
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Figure 2: Power of mean dependence tests at 5% level against local alternatives
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(b) Specific
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(c) DGP Student t with 6 df
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(a) Baseline signal to noise ratio

 

 

Figure 3: Power of variance dependence tests at 5% level against local alternatives
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Figure 4: Power of variance dependence tests at 5% level against local alternatives
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(c) DGP Student t with 6 df
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