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B General versions of the propositions

Here we extend the propositions in section 3 to those models in which reparametrisation 1

does not necessarily hold, but maintaining the assumption that the regularity conditions A.1 in

Bollerslev and Wooldridge (1992) are satisfied. We also drop the ellipticity assumption when it

is not essential for the statement of the proposition.

Proposition B1 If ε∗t |zt, It−1;φ0 is i.i.d. D(0, IN ,η0) with bounded fourth moments, then√
T (η̃T − η0)→ N [0,F(φ0)], where

F(φ0) = I−1ηη (φ0) + I−1ηη (φ0)I ′θη(φ0)C(φ0)Iθη(φ0)I−1ηη (φ0).

Proof. We can use standard arguments (see e.g. Newey and McFadden (1994)) to show that

the sequential ML estimator of η is asymptotically equivalent to a MM estimator based on the

linearised influence function

sηt(θ0,η)− I ′θη(φ0)A−1(φ0)sθt(θ0,0).

On this basis, the expression for F(φ0) follows from the definitions of B(φ0), C(φ0) and Iηη(φ0)

in Propositions 1 and 3 in Fiorentini and Sentana (2010), together with the martingale difference

nature of edt(θ0,0) and ert(φ0), and the fact that E {edt(θ,0)e′rt(φ)| zt, It−1;φ} = 0. �

Proposition B2 If ε∗t |zt, It−1;φ0 is i.i.d. D(0, IN ,η0) with bounded fourth moments, then
Iηη(φ0) ≤ F(φ0), with equality if and only if

I ′θη(φ0)
{
C(φ0)−

[
Iθθ(φ0)− Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)

]−1} Iθη(φ0) = 0.

Proof. A straightforward application of Theorem 5 in Pagan (1986) allows us to show that

√
T (η̃T − η̂T )→ N [0,Y(φ0)] ,

where

Y(φ0) = I−1ηη (φ0)I ′θη(φ0)
{
C(φ0)−

[
Iθθ(φ0)− Iθη(φ0)I−1ηη (φ0)I ′θη(φ0)

]−1} Iθη(φ0)I−1ηη (φ0).

Therefore, the sequential ML estimator will be asymptotically as effi cient as the joint ML esti-

mator if and only if Y(φ0) = 0. �

Proposition B3 If ε∗t |zt, It−1;φ0 is i.i.d. D(0, IN ,η0) with bounded fourth moments, then the
optimal sequential GMM estimator of η based on nt(θ̃T ,η) will be asymptotically equivalent to
the optimal sequential GMM estimator based on n⊥t (θ̃T ,η), where

n⊥t (θ,η) = nt(θ,η)−Nn(φ0)A−1(φ0)sθt(θ,0),
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with

Nn(φ0) = lim
T→∞

1

T

∑T

t=1
E

(
−∂nt(θ0,η0)

∂θ′

∣∣∣∣φ0) ,
are the residuals from the theoretical IV regression of nt(θ,η) on sθt(θ,0) using sθt(φ) as
instruments.

Proof. Under standard regularity conditions, we can use the expansion

1

T

∑T

t=1
nt(θ̃T ,η0) =

1

T

∑T

t=1
nt(θ0,η0)−Nn(φ0)

√
T (θ̃T − θ0) + op(1)

= [I,−Nn(φ0)A−1(φ0)]
1

T

∑T

t=1

[
nt(θ0,η0)
sθ(θ0; 0)

]
+ op(1),

to show that

lim
T→∞

V

(√
T

T

∑T

t=1
nt(θ̃T ,η0)

∣∣∣∣∣φ0
)

will be given by

En = [I,−Nn(φ0)A−1(φ0)]
(
Gn(φ0) Dn(φ0)
D′n(φ0) B(φ0)

)(
I

−Nn(φ0)A−1(φ0)

)
,

where (
Gn(φ0) Dn(φ0)
D′n(φ0) B(φ0)

)
= lim

T→∞
V

(√
T

T

∑T

t=1

[
nt(θ0,η0)
sθt(θ0; 0)

]∣∣∣∣∣φ0
)
.

Similarly, it is easy to see that under standard regularity conditions

1

T

∑T

t=1
n⊥t (θ̃T ,η0) =

1

T

∑T

t=1
n⊥t (θ0,η0)−Nn⊥(φ0)

√
T (θ̃T − θ0) + op(1),

where

Nn⊥(φ0) = lim
T→∞

1

T

∑T

t=1
E

(
−∂n⊥t (θ0,η0)

∂θ′

∣∣∣∣φ0) .
But since

Nn⊥(φ0) = Nn(φ0)−Nn(φ0)A−1(φ0)A(φ0) = 0,

it immediately follows that

lim
T→∞

V

(√
T

T

∑T

t=1
n⊥t (θ̃T ,η0)

∣∣∣∣∣φ0
)

= En(φ0).

Finally, given that
∂n⊥t (θ,η)

∂η′
=
∂nt(θ,η)

∂η′
,

it follows that the optimal sequential GMM estimators based on nt(θ̃T ,η) and n⊥t (θ̃T ,η) will

be asymptotically equivalent. �
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Proposition B4 Let JM (φ0) and KM (φ0) denote the asymptotic variances of the optimal se-
quential GMM estimators of η based on p′[ςt(θ),η] = {p2[ςt(θ),η], ..., pM [ςt(θ),η]} and `′t(θ,η) =
[`2t(θ,η), ..., `Mt(θ,η)], respectively, which are the orthogonal polynomials and higher order mo-
ments of order 2 to M for ςt(θ0). If

[Nq(φ0)−Np(φ0)]A−1(φ0) = D′q(φ0)B−1(φ0), (B6)

where No(φ0) = cov{o[ςt(θ0),η0], sθt(θ0,η0)|φ0}, Do(φ0) = cov{o[ςt(θ0),η0], sθt(θ0,0)|φ0},
o[ςt(θ),η] are some generic influence functions and q′[ςt(θ),η] = {q2[ςt(θ),η], ..., qM [ςt(θ),η]}′,
with

qm[ςt(θ),η] = `mt(θ,η)−
m−1∑
j=2

cov{`mt(θ0,η0), pj [ςt(θ0),η0]|φ0}
V {pj [ςt(θ0),η0]|φ0}

qj [ςt(θ),η]

for j = 2, ...,M , then JM (φ0) ≤ KM (φ0), with equality if and only if (ςt/N − 1) can be written
as an exact linear combination of sθt(θ0,0), in which case (B6) necessarily holds.

Proof. The first thing to note is that the mapping from `t(θ,η) to q[ςt(θ),η] is bijective because

the coeffi cients used to recursively construct q[ςt(θ),η] from `t(θ,η) are the same as the coeffi -

cients used to recursively construct p[ςt(θ),η] from `t(θ,η) and p1[ςt(θ),η] (see (C9)). Hence,

the sequential GMM estimators of η based on q[ςt(θ),η] and `t(θ,η) will be asymptoticaly

equivalent.

It is also straightforward to see that

cov{q2[ςt(θ),η], sηt(φ)|φ} = cov[`2t(θ,η), sηt(φ)|φ] = cov{p2[ςt(θ),η], sηt(φ)|φ}

because cov[p1(θ,η), sηt(φ)|φ] = 0. We can then show by induction that

cov{qm[ςt(θ),η], sηt(φ)|φ} = cov{pm[ςt(θ),η], sηt(φ)|φ}

for all m > 2, so that

Hq(φ) = cov{q[ςt(θ),η], sηt(φ)|φ} = cov{pt[ςt(θ),η], sηt(φ)|φ} = Hp(φ).

Therefore, we can ignore the Jacobians in comparing JM (φ0) with KM (φ0), focusing instead on

the asymptotic variances of the relevant sample moments evaluated at θ̃T , which we denote by

Ep(φ) and Eq(φ). Following Proposition B3, we work with the modified influence functions

q◦[ςt(θ),η] = q[ςt(θ),η]−Nq(φ0)A−1(φ0)sθt(θ,0),

p◦[ςt(θ),η] = p[ςt(θ),η]−Np(φ0)A−1(φ0)sθt(θ,0),

which lead to asymptotically equivalent estimators of η but are invariant to the sampling un-

certainty surrounding θ̃T . It is easy to see that the asymptotic variance of the sample average
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of q◦[ςt(θ0),η0] is

Eq(φ0) = Gq(φ0) +N ′q(φ0)C(φ0)Nq(φ0)− 2N ′q(φ0)A−1(φ0)Dq(φ0),

where Go(φ0) denotes the asymptotic variance of the sample average of o[ςt(θ0),η0], while the

the asymptotic variance of the sample average of p◦[ςt(θ0),η0] will be

Ep(φ0) = Gp(φ0) +N ′p(φ0)C(φ0)Np(φ0).

For our purposes, though, it is more convenient to write q◦[ςt(θ),η] as the sum of two asymp-

totically orthogonal components, namely:

{q[ςt(θ),η]−Dq(φ0)B−1(φ0)sθ(θ,0)}+ {Dq(φ0)B−1(φ0)−Nq(φ0)A−1(φ0)}sθ(θ,0),

which yields

Eq(φ0) = Gq(φ0)−D′q(φ0)B−1(φ0)Dq(φ0)

+[Nq(φ0)−D′q(φ0)B−1(φ0)A(φ0)]
′C(φ0)[Nq(φ0)−D′q(φ0)B−1(φ0)A(φ0)].

In order to compare Gp(φ0) with Gq(φ0) − D′q(φ0)B−1(φ0)Dq(φ0) we exploit the fact that

p[ςt(θ),η] = Υ(φ)n[ςt(θ),η] while q[ςt(θ),η] − Dq(φ0)B−1(φ0)sθ(θ,0) = Υ(φ)m[ςt(θ),η],

where n[ςt(θ),η] and m[ςt(θ),η] are the residuals from the theoretical regressions of `t(θ,η)

on p1[ςt(θ),η] and sθt(θ0,0), respectively. Although the proof by induction of this statement

is rather tedious, intuitively the reason is once again that the coeffi cients used to recursively

construct q[ςt(θ),η] from `t(θ,η) are the same as the coeffi cients used to recursively construct

p[ςt(θ),η] from `t(θ,η) and p1[ςt(θ),η]. It is then possible to prove that

V {n[ςt(θ),η]|φ} = V [`t(θ,η)|φ]− cov{`t(θ,η), p1[ςt(θ),η]|φ}cov′{`t(θ,η), p1[ςt(θ),η]|φ}
g′(φ)B(φ)g(φ) + ψ(φ)

while

V {m[ςt(θ),η]|φ} = V [`t(θ,η)|φ]− cov{`t(θ,η), sθt(θ0,0)|φ}B−1(φ)cov{`t(θ,η), sθt(θ0,0)|φ}

= V [`t(θ,η)|φ]− cov{`t(θ,η), p1[ςt(θ),η]|φ}cov′{`t(θ,η), p1[ςt(θ),η]|φ}
g′(φ)B(φ)g(φ) + ψ(φ)

g′(φ)B(φ)g(φ)

g′(φ)B(φ)g(φ) + ψ(φ)
,

with g(φ) = cov{p1[ςt(θ),η], sθt(θ,0)|φ}B−1(φ) and ψ(φ) = V {p1[ςt(θ),η]|φ}−g′(φ)B(φ)g′(φ),

where we have used the fact that

sθt(θ,0) = [g′(φ)B(φ)g(φ) + ψ(φ)]−1B(φ)g(φ)p1[ςt(θ),η] + wt,
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with wt orthogonal to p1[ςt(θ),η], so that

cov{`t(θ,η), sθt(θ0,0)|φ} = cov{`t(θ,η), [g′(φ)B(φ)g(φ) + ψ(φ)]−1B(φ)g(φ)p1[ςt(θ),η]|φ}

= cov{`t(θ,η), p1[ςt(θ),η]|φ}[g′(φ)B(φ)g(φ) + ψ(φ)]−1g′(φ)B(φ).

As a result,

V {m[ςt(θ),η]|φ} ≥ V {n[ςt(θ),η]|φ},

with equality if and only if ψ(φ) = 0, in which case (ςt/N − 1) can be written as an exact linear

combination of sθt(θ0,0).

Hence,

Gp(φ0) = Υ(φ)V {n[ςt(θ),η]|φ}Υ′(φ)

≤ Υ(φ)V {m[ςt(θ),η]|φ}Υ′(φ) = Gq(φ0)−D′q(φ0)B−1(φ0)Dq(φ0).

Therefore, given that

N ′p(φ0)C(φ0)Np(φ0) = [Nq(φ0)−D′q(φ0)B−1(φ0)A(φ0)]
′C(φ0)[Nq(φ0)−D′q(φ0)B−1(φ0)A(φ0)]

if condition (B6) holds, the main result in the proposition follows.

Finally, the proof that condition (B6) is satisfied when ψ(φ) = 0 involves the following steps.

First, we can prove that in those circumstances

cov{o[ςt(θ),η], sθt(θ,0)|φ} =
cov{o[ςt(θ),η], p1[ςt(θ),η]|φ}

V {p1[ςt(θ),η]|φ} cov{p1[ςt(θ),η], sθt(θ,0)|φ}

for any influence function o[ςt(θ),η] which only depends on θ through ςt(θ). Second, given that

0 is trivially orthogonal to both sθt(θ0,0) and sθt(θ0,η), it is clear that the coeffi cients in the

IV regression of p1[ςt(θ),η] on sθt(θ0,0) using sθt(θ0,η) as instruments will coincide with the

coeffi cients in the least squares projection of p1[ςt(θ),η] on sθt(θ0,0) when (ςt/N − 1) can be

written as an exact linear combination of sθt(θ0,0), so that

cov{p1[ςt(θ),η], sθt(θ,η)|φ}A−1(φ) = cov{p1[ςt(θ),η], sθt(θ,0)|φ}B−1(φ).

Finally, we can prove by induction that

E[{qm[ςt(θ),η]− pm[ςt(θ),η]}sθt(θ,η)|φ]A−1(φ) = E{qm[ςt(θ),η]sθt(θ,0)|φ}B−1(φ)

when ψ(φ) = 0. �
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Proposition B5 If ε∗t |zt, It−1;φ0 is i.i.d. D(0, IN ,η0) with bounded fourth moments, then the
effi cient influence function is given by the effi cient parametric score of η:

sη|θt(θ,η) = sηt(θ,η)− I ′θη(φ0)I−1θθ (φ0)sθt(θ,η), (B7)

which is the residual from the theoretical regression of sηt(φ0) on sθt(φ0).

Proof. The first thing to note is that

cov[sηt(θ,η)− I ′θη(φ0)I−1θθ (φ0)sθt(θ,η), sθt(θ,η)] = 0,

which means that

E

[
∂sη|θt(θ,η)

∂θ

]
= 0

by virtue of the generalised information equality, which in turn implies that the asymptotic

distribution of the sample average of sη|θt(θ,η) will be invariant to parameter uncertainty in θ

(see Bontemps and Meddahi (2012) for further discussion of this point).

Following Newey and Powell (1998), if sη|θt(θ,η) is effi cient then it will satisfy

V
[
sη|θt(θ,η)

]
= −E

[
sη|θt(θ,η)

∂η

]
.

But

V
[
sηt(θ,η)− I ′θη(φ0)I−1θθ (φ0)sθt(θ,η)

]
= Iηη(φ0)− I ′θη(φ0)I−1θθ (φ0)I ′θη(φ0),

which coincides with

−E
[
sη|θt(θ,η)

∂η

]
= cov

[
sηt(θ,η), sηt(θ,η)− I ′θη(φ0)I−1θθ (φ0)sθt(θ,η)

]
. �

Proposition B6 If ε∗t |zt, It−1,φ0 is i.i.d. t(0, IN , ν0), with ν0 > 8, then
√
T (η̆T − η0) →

N
[
0, E`(φ0)/H2(φ0)

]
and

√
T (̊ηT − η0) → N

[
0, Ep(φ0)/H2(φ0)

]
, where η̆T and η̊T are the

sequential MM estimators of η based on the square of ςt and its second order polynomial, respec-
tively, while

E`(φ0) = G`(φ0) +N ′
`
(φ0)C(φ0)N`

(φ0)− 2N ′
`
(φ0)A−1(φ0)D`(φ0),

Ep(φ0) = Gp(φ0) +N ′p(φ0)C(φ0)Np(φ0),

D`(φ0) = cov[sθt(θ0, 0), `2t(θ0, η0)|φ0] =
4(ν0 − 2)(N + ν0 − 2)

N(ν0 − 4)(ν0 − 6)
Ws(φ0),

G`(φ0) = V [`2t(θ0, η0)|φ0] =
(ν0 − 2)2

(ν0 − 4)2

[
(N + 6)(N + 4)

N(N + 2)

(ν0 − 2)(ν0 − 4)

(ν0 − 6)(ν0 − 8)
− 1

]
,

Gp(φ0) = V {p2t[ςt(θ0), η0]|φ0} = G`(φ0)−
8(ν0 − 2)2(N + ν0 − 2)

N(ν0 − 6)2(ν0 − 4)
,

N
`
(φ0) = cov[sθt(θ0, η0), `2t(θ0, η0)|φ0] =

4(ν0 − 2)

N(ν0 − 4)
Ws(φ0),

Np(φ0) = cov{sθt(θ0, η0), p2t[ςt(θ0), η0]|φ0} = − 8(ν0 − 2)

N(ν0 − 4)(ν0 − 6)
Ws(φ0),

H(φ0) = cov[sηt(θ0, η0), `2t(θ0, η0)|φ0] = cov{sηt(θ0, η0), p2t[ςt(θ0), η0]|φ0} =
2ν20

(ν0 − 4)2
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and

Ws(φ0) = Zd(φ0)[0
′, vec′(IN )]′ = E[Zdt(θ0)|φ0][0′, vec′(IN )]′

= E

{
1

2
∂vec′ [Σt(θ0)] /∂θ·vec[Σ−1t (θ0)]

∣∣∣∣φ0} = E[Wst(θ0)|φ0] = −E {∂dt(θ)/∂θ|φ0} . (B8)

Proof. The linearised influence functions corresponding to η̆T and η̊T are

`2t(θ0, η)−N ′`(φ0)A−1(φ0)sθt(θ0, 0),

and

p2[ς(θ0), η]−N ′p(φ0)A−1(φ0)sθt(θ0, 0),

respectively, whence we can directly obtain the formulae for E`(φ0) and Ep(φ0). Therefore,

the only remaining task is to obtain closed-form expressions for the required moments. In this

respect, we can use the law of iterated expectations to show that

cov[sθt(θ0, 0), `2t(θ0, η0)|φ0] = Zd(φ0) · E{E[edt(θ0, 0) · `2t(θ0, η0)|ςt;φ0]|φ0}

= Ws(φ0)E
[( ςt
N
− 1
)
`2t(θ0, η0)

∣∣∣φ0]
and

cov[sθt(θ0, η0), nηt(θ0, η0)|φ0] = Zd(φ0) · E{E[edt(θ0, η0) · nηt(θ0, η0)|ςt;φ0]|φ0}

= Ws(φ0)E

[(
N + ν0

ν0 − 2 + ςt

ςt
N
− 1

)
nηt(θ0, η0)

∣∣∣∣φ0] .
Then, we can use the properties of the beta distribution to show that

E

[(
ς2t

N(N + 2)
− ν0 − 2

ν0 − 4

)2]
=

(ν0 − 2)2

(ν0 − 4)2

[
(N + 6)(N + 4)

N(N + 2)

(ν0 − 2)(ν0 − 4)

(ν0 − 6)(ν0 − 8)
− 1

]
,

E

[( ςt
N
− 1
)( ς2t

N(N + 2)
− ν0 − 2

ν0 − 4

)]
=

4(ν0 − 2)(N + ν0 − 2)

N(ν0 − 4)(ν0 − 6)
,

and

E

[(
N + ν0

ν0 − 2 + ςt

ςt
N
− 1

)(
ς2t

N(N + 2)
− ν0 − 2

ν0 − 4

)]
=

4(ν0 − 2)

N(ν0 − 4)
.

On the other hand, since p2[ς(θ0), η0] is the residual from the least squares projection of

`2t(θ0, η0) on ςt/N − 1, we can obtain the relevant expressions for p2[ς(θ0), η0] from those of

`2t(θ0, η0) by using the fact that

E

[( ςt
N
− 1
)2]

=
2(N + ν0 − 2)

N(ν0 − 4)

and

E

[(
N + ν0

ν0 − 2 + ςt

ςt
N
− 1

)( ςt
N
− 1
)]

=
2

N
.

�
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Proposition B7 If ε∗t |zt, It−1;ϕ0, is i.i.d. s(0, IN ), where ϕ includes θ and the true shape
parameters, but the spherical distribution assumed for estimation purposes does not necessarily
nest the true density, then the asymptotic distribution of the sequential ML estimator of η, η̃T ,
will be given by

√
T (η̃T − η∞)→ N

{
0,H−1rr (φ∞;ϕ0)Er(φ∞;ϕ0)H−1rr (φ∞;ϕ0)

}
,

where φ∞ = (θ0,η
′
∞)′, η∞ solves E[ ert(θ0,η∞)|ϕ0] = 0, Hrr(φ;ϕ) = −E[ ∂ert(φ)/∂η′|ϕ],

Er(φ∞;ϕ0) = [Orr(φ∞;ϕ0)]
−1

+[Orr(φ∞;ϕ0)]
−1O′sr(φ∞;ϕ0)C(ϕ0)Osr(φ∞;ϕ0)[Orr(φ∞;ϕ0)]

−1,

Osr(φ;ϕ) = E[−∂ert(θ0,η∞)/∂θ′
∣∣ϕ] and Orr(φ;ϕ) = V [ ert(φ)|ϕ].

Proof. To obtain the variance of the elliptically symmetric score of η under misspecification,

we can follow exactly the same steps as in the proof of Proposition 10 in Fiorentini and Sentana

(2010) by exploiting that E[ ert(φ)|ϕ0] = 0 holds at the pseudo-true parameter values φ∞ =

(θ0,η
′
∞)′. Specifically, under standard regularity conditions

√
T

T

∑T

t=1
ert(θ̃T ,η∞) =

√
T

T

∑T

t=1
ert(θ0,η∞) +

1

T

∑T

t=1

∂ert(θ0,η∞)

∂θ′

√
T

T
(θ̃T − θ0) + op(1).

Finally, the same steps used in the proof of Proposition 3 yield the expression for Er(φ∞;ϕ0).�

C Orthogonal polynomials

The mth orthogonal polynomial associated to a spherical distribution for ε∗t is given by

psm[ςt(θ),η] =
m∑
h=0

ash(η)ςht (θ),

where ςt(θ) = ε∗′t (θ)ε∗t (θ) and η are the shape parameters. The first two non-normalised

polynomials are always p0[ςt(θ)] = 1 and

p1[ςt(θ)] =
ςt(θ)

N
− 1,

which do not depend on η. Subsequent polynomials can be obtained by recursively regressing

`mt(θ,η) in (8) on pj [ςt(θ),η] for j = 0, 1, . . . ,m− 1. Specifically,

pm[ςt(θ),η] = `mt(θ,η)−
m−1∑
j=1

cov{`mt(θ,η), pj [ςt(θ),η]}
V {pj [ςt(θ),η]} pj [ςt(θ),η]. (C9)

As a result, the polynomials have zero mean and are orthogonal to each other by construction,

although not orthonormal unless we standardise them by their respective standard deviations.

Next, we present the coeffi cients for the second and third orthogonal polynomials of the

distributions we use in Sections 3, 4 and 5 to illustrate our results.
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C.1 Orthogonal Laguerre polynomials for the standard normal distribution

The coeffi cients of the second order polynomial are

ag0 =
1

2
,

ag1 = − 1

N

and

ag2 =
1

2N (N + 2)
;

while the third order polynomial coeffi cients become

ag0 =
1

2
,

ag1 = − 3

2N
,

ag2 =
3

2N(N + 2)

and

ag3 = − 1

2N (N + 2) (N + 4)
.

C.2 Orthogonal polynomials for the standardised Student t distribution

In this case the coeffi cients of the second order polynomial are

at0(η) =
N (N + 2) (ν − 2)3

4 (ν − 4) (ν − 6)
,

at1(η) = −(N + 2) (ν − 2)

2 (ν − 6)

and

at2(η) =
1

4
,

while the third order polynomial coeffi cients become

at0(η) = −N (N + 2) (N + 4) (ν − 2)2

8 (ν − 6) (ν − 8) (ν − 10)
,

at1(η) =
(N + 2) (N + 4) (ν − 2)

8 (ν − 8) (ν − 10)
,

at2(η) = −(N + 4) (ν − 2)

8 (ν − 10)
,

and

at3(η) =
1

24
.
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C.3 Orthogonal polynomials for the standardised DSMN distribution

In this case the coeffi cients of the second order polynomial are

ads0 (α,κ) =
N(N + 2)

8

1

[α(1− κ) + κ]4
{

2(1− α)κ4 + (N + 4)(1− α)ακ3

−2(N + 2)(1− α)ακ2 + (N + 4)(1− α)ακ + 2α2
}
,

ads1 (α,κ) = −N + 2

8

1

[α(1− κ) + κ]3
{

2(1− α)(4 +Nα)κ3

−N(1− α)ακ2 −N(1− α)ακ + α [N(1− α) + 4]
}
,

and

ads2 (α,κ) =
1

8

1

[α(1− κ) + κ]2
{

(1− α)(2 +Nα)κ2 − 2N(1− α)ακ + [2 +N(1− α)]α
}
.

Similarly, the coeffi cients of the third order polynomial are

ads0 (α,κ) = −N(N + 2)(N + 4)

192

1

[(α(1− κ) + κ]6

×
{

8(1− α)3κ9 + (N + 4)(N + 6)(1− α)2ακ8

−4(N + 2)(N + 6)(1− α)2ακ7 + 6(N + 4)2(1− α)2ακ6

+(N + 6)(1− α)α [(5N + 24)α− 4(N + 4)]κ5

−(N + 6)(1− α)α [24α+N(5α− 1)− 8]κ4

+6(N + 4)2(1− α)α2κ3 − 4(N + 2)(N + 6)(1− α)α2κ2

+(N + 4)(N + 6)(1− α)α2κ + 8α3
}
,

ads1 (α,κ) =
(N + 2)(N + 4)

192

1

[(α(1− κ) + κ]5

×
{

(1− α)2 [N(N + 10)α+ 24]κ8 − 2N(N + 6)(1− α)2ακ7

−2N(N + 8)(1− α)2ακ6

+2(1− α)α [4N(N + 7)−N(3N + 14)α+ 48]κ5

−(N + 6)(7N + 24)(1− α)ακ4

+2(1− α)α [N(3αN +N + 14(α+ 1)) + 48]κ3

−2N(N + 8)(1− α)α2κ2 − 2N(N + 6)(1− α)α2κ

+ [24−N(N + 10)(α− 1)]α2
}
,
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ads2 (α,κ) = −N + 4

192

1

[(α(1− κ) + κ]4

×
{

2(1− α)2 [N(N + 8)α+ 12]κ7 −N(7N + 38)(1− α)2ακ6

+(1− α)α [8(N + 2)(N + 3)−N(7N + 26)α]κ5

−2(N + 2)(N + 6)(1− α)ακ4 − 2(N + 2)(N + 6)(1− α)ακ3

+(1− α)α [N(7αN +N + 26α+ 14) + 48]κ2

−N(7N + 38)(1− α)α2κ + 2 [12 +N(N + 8)(1− α)]α2
}

and

ads3 (α,κ) =
1

192

1

[(α(1− κ) + κ]3

×
{

(1/α)2 [N(N + 6)α+ 8]κ6 − 4N(N + 4)(1− α)2ακ5

+(1− α)α
[
6(N + 2)2 −N(5N + 14)α

]
κ4

−4(N + 2)(N + 4)(1− α)ακ3

+(1− α)α [N(5αN +N + 14α+ 10) + 24]κ2

−4N(N + 4)(1− α)α2κ + [8−N(N + 6)(α− 1)]α2
}
.

C.4 Orthogonal polynomials for the standardised 3rd-order PE distribution

The coeffi cients of the second order polynomial are

ape0 (c2, c3) =
1

4

(
−8c22 + 2N(N + 8)c2 +N (N(N + 2)− 12c3)

)
,

ape1 (c2, c3) = −1

2
[N(N + 2) + (N + 6)c2 − 3c3] ,

and

ape2 (c2, c3) =
1

4
(N + 2c2) .

In turn, the coeffi cients of the third order one are

ape0 (c2, c3) = − 1

24

{
(N + 2)2(N + 4)N3 − 4

(
N3 + 32N + 192

)
c32

+6c22 [N(N + 4)(N(N + 2) + 48) + 4((N − 4)N + 48)c3]

−12c3
[
(N + 2)(7N + 48)N2 + 3(N(N + 6) + 24)c3N − 72c23

]
−6c2N

2(N + 2)(N + 4)(N + 12)

+24c2c3 [N(N(N + 14) + 120) + 6(N − 12)c3]} ,
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ape1 (c2, c3) =
1

8

{
N2(N + 4)(N + 2)2 − 12 [3(N(N + 10) + 32) + 4c2] c

2
3

+2(N + 4)c2 [N(N + 2)(3N + 32) + c2 (N(3N + 14)− 2Nc2 + 96)]

−8 [3N(N + 2)(3N + 20) + 2c2 (N(N + 14)−Nc2 + 96)] c3} ,

ape2 (c2, c3) =
1

8

{
(N + 2)(N + 4)N2 − 36(N + 8)c23

+2(N + 4)c2 [N(3N + 26) + (3N − 2c2 + 8) c2]

−4 [15N(N + 6) + 2 (N − c2 + 12) c2] c3} ,

and

ape3 (c2, c3) =
1

24

[
N2(N + 2)− 4c32 + 6Nc22 + 6N(N + 6)c2 − 12c3 (4N + 3c3)

]
.

D Auxiliary results

D.1 Positivity of Laguerre expansions

To identify the region in the parameter space for which PJ(ς) = 1 +
∑J

j=2 cj · pj(ς,N) ≥ 0

it is convenient to reparametrise PJ(ς) as P̊J(c2, c3, t), with t =(ς, c4, ..., cJ). For each value of

t ∈RJ−2, the equation P̊J(c2, c3, t) = 0 defines a straight line in the t-hyperplane. To determine

the set of η’s as a function of t such that P̊J(c2, c3, t) remains zero for small variations of t,

we should also impose ∂P̊J(c2, c3, t)/∂t = 0. Finally, once this bound is found, we need to

determine the subregion in which PJ(ς) ≥ 0 for ς ≥ 0.

D.1.1 Second order expansion

In this simple case the positivity region corresponds to those values of c2 for which the

polynomial 1 + c2 · p2(t,N) is positive. Since the vertex of this quadratic function occurs at

t = N + 2 > 0, positivity requires that its roots are either complex or double, which holds for

0 ≤ c2 ≤ N .

D.1.2 Third order expansion

For a given ς, the 3rd order polynomial frontier that guarantees positivity must satisfy the

following two equations in two unknowns{
1 + c2 · p2(t,N) + c3 · p3(t,N) = 0

c2 · ∂p2(t,N)/∂t− c3 · ∂p3(t,N)/∂t = 0

12



whose solution is

c2(t) =
8 + 6N +N2 − 8t− 2Nt+ t2

8A(N, t)
and c3(t) =

N + 2− t
2A(N, t)

with

A(N, t) =
N3t+Nt3 − 5N2

24
+
t3 −N3

12
− N4 + t4

96

+
Nt− 2N

3
+
N2t−Nt2 − t2

4
− N2t2

16
.

The solid (dashed) black line in Figure 1 represents the frontier defined by positive (negative)

values of ς. Notice that if we imposed the above conditions for all ς ∈ R, then c3 = 0 and

0 ≤ c2 ≤ N . Such a frontier, however, is overly restrictive because it does not take into account

the non-negativity of ς. In this sense, the blue line represents the tangent of P3(ς) at ς = 0

while the red line is the tangent of P3(ς) when ς → +∞. The grey area, therefore, defines the

admissible set in the (c2, c3) space. Focusing on ς ∈ R+ only allows for a larger range of (c2, c3)

with c3 < 0, which is given by the difference between the dashed black line and the blue one.

D.2 Higher order moments

The higher order moment parameter of spherical random variables defined in (E10) for the

four distributions that we use to illustrate our results are:

(a) Student t distribution with ν = 1/η degrees of freedom:

1 + τ tm(η) = (1− 2η)m−1
m∏
j=2

1

(1− 2jη)
when η < (2m)−1.

(b) Discrete scale mixture of normals distribution with mixing probability α and variance

ratio κ:

1 + τdsm (α,κ) =
α+ (1− α)κm

[α+ (1− α)κ]m
.

(c) 3rd-order polynomial expansion distribution with parameters c2 and c3:

1 + τpem(α,κ) = 1 +
2m(m− 1)

N(N + 2)
c2 −

4m [2 +m(m− 3)]

N(N + 2)(N + 4)
c3.

Derivation of the results:

(a) If ζt is a chi-square random variable with N degrees of freedom, and ξt is a Gamma

variate with mean ν and variance 2ν, with ζt and ξt mutually independent, then the uncentred

moments of integer order r of (ν/N)× (ζt/ξt) are given by

E

[(
ζt/N

ξt/ν

)r]
=
( ν
N

)r r − 1 +N/2

−1 + ν/2

r − 2 +N/2

−2 + ν/2
× · · · × 1 +N/2

−(r − 1) + ν/2

N/2

−r + ν/2
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(Mood, Graybill and Boes, 1974). Given that ςt = (ν − 2)ζt/ξt, it is straightforward to see that

E

{[
(ν − 2)

ζt
ξt

]m}
=
N

2

[
2(ν − 2)

ν

]m−1 m∏
j=2

(N/2 + j − 1)ν

ν − 2j

from where the result follows directly.

(b) When ε∗t is distributed as a DSMN, ςt is a two-component scale mixture of χ
2′
Ns, so that

conditioning on the mixing variate s,

E[ςmt |s = 1] =

[
1

α+ (1− α)κ

]m
E(ζmt ) and E[ςmt |s = 0] =

[
κ

α+ (1− α)κ

]m
E(ζmt )

where ζt is a χ
2
N variate. Then, the required expression follows directly from the law of iterated

expectations.

(c) Since E[ςmt pN/2−1,j(ςt)|0] = 0 form < j, we only need to compute E[ςmt pN/2−1,j(ςt)|0] for

m ≥ j, which can be written in terms of the higher order moments of the Gaussian distribution.

For the 2nd-order Laguerre polynomial we have

E[ςmt pN/2−1,2(ςt)|0] =
1

2
E[ςmt |0]− 1

N
E[ςm+1t |0] +

1

2N (N + 2)
E[ςm+2t |0]

=

[
1

2
− 2(N/2 +m+ 1)

N
+

4(N/2 +m+ 1)(N/2 +m+ 2)

2N (N + 2)

]
E[ςmt |0]

=
2m(m− 1)

N(N + 2)
E[ςmt |0].

The same procedure applied to the 3rd-order Laguerre polynomial yields the required result.

D.3 Moment generating functions

Not surprisingly, the moment generating function of a spherical random variable ε∗t depends

only on ς. Although it cannot be defined for the Student t distribution, it takes the following

forms for the remaining distributions that we consider:

(a) Discrete scale mixture of normals distribution with mixing probability α and variance

ratio κ:

Υds(t|α,κ) ≡ E[etςt |(α,κ)′] = α

[
1− 2t

α+ (1− α)κ

]−N/2
+ (1− α)

[
1− 2κt

α+ (1− α)κ

]−N/2
.

(b) 3rd-order polynomial expansion with parameters c2 and c3:

ΥJ=3
pe (t|c2, c3) ≡ E[etςt |(c2, c3)′] = (1− 2t)−N/2

[
1 +

2t2

(1− 2t)2
c2 −

4t3

(1− 2t)3
c3

]
.

Derivation of the results:
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(a) Since ςt is a two-component scale mixture of χ2′Ns, we can compute E[etςt |α,κ, s] for

s = 1 and s = 0 by exploiting the fact that the relevant conditional distribution are Gamma

with shape parameter N/2 and scale parameters

2

α+ (1− α)κ
and

2κ
α+ (1− α)κ

respectively. Finally, the law of iterated expectation yields the desired result.

(b) The moment generating function of the polynomial expansion distribution can be easily

obtained by applying Lemma 1 in Amengual and Sentana (2011). For the 2nd-order Laguerre

polynomial we have

E[etςtpN/2−1,2(ςt)|0] =
1

2
E[etςt |0]− 1

N
E[ςte

tςt |0] +
1

2N (N + 2)
E[ς2t e

tςt |0]

=
1

2

(
1

1− 2t

)N/2
−
(

1

1− 2t

)N/2+1
+

1

2

(
1

1− 2t

)N/2+2
= (1− 2t)−N/2

[
(1− 2t)2 − 2(1− 2t) + 1

2(1− 2t)2

]
= (1− 2t)−N/2

2t2

(1− 2t)2
.

The same procedure applied to the 3rd-order Laguerre polynomial yields the required result.

D.4 Marginal and conditional distributions required for VaR and CoVaR
calculations

Theorem 2.6 in Fang, Kotz and Ng (1990) characterises the marginal distribution of a

partition of ε∗t into n components. In particular, if we split ε
∗
t into its first n elements, ε

∗
1t, and

the remaining N − n ones, ε∗2t say, this theorem implies that[
ε∗1t
ε∗2t

]
=

[
etdtu1t

et(1− dt)u2t

]
,

where et is the generating variate, dt ∼ Beta[n/2, (N−n)/2] and u1t and u2t are two independent

vectors which are uniformly distributed on the unit sphere surface in Rn and RN−n, respectively.

D.4.1 Marginal densities and CDFs of z1t = [ε∗1t(θ)]2

In the particular case of univariate marginals, it is easy to obtain the marginal probability

density function of ε∗2it (see Mood, Graybill, and Boes, 1974) by computing

hs1(z,η) =

√
πΓ(N/2− 1/2)

Γ(N/2)

∫ ∞
0

hs
(
z

y
,η, N

)
× (1− y)

N
2
− 3
2

√
y

dy.

>From here, we can easily obtain fs1 (ε,η) using the change of variable formula as hs1(ε
2,η) · |z|.
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Student t For the N -variate standardised Student t distribution with ν = 1/η degrees of

freedom, the univariate marginal probability density function of z = ε2 is

ht1(z, η) =
Γ[1/2(1 + η−1)]√

πΓ[(2η)−1]

1√
z(z + η−1 − 2)

[
1− 2η

1− 2η + ηz

] 1
2η

,

while its cumulative distribution function is

Ht
1(z, η) =

Γ[1/2(1 + η−1)]√
πΓ[(2η)−1]

· i ·Beta
(
− ηz

1− 2η
,
1

2
,
η − 1

2η

)
,

where i =
√
−1 and Beta(z, a, b) is the incomplete beta function, defined by

Beta (z, a, b) =

∫ z

0
ua−1(1− u)b−1du.

Discrete scale mixture of normals For the N -variate standardised DSMN distribution with

mixing probability α and variance ratio κ:

hds1 (z, α,κ) =
1

√
z
√

2π

{
α

√
1

$
exp

(
− 1

2$
z

)
+

(
1− α
κ

)√
1

$κ
exp

(
− 1

2$κ
z

)}
,

where $ = [α+ (1− α)κ]−1, while its cumulative distribution function is

Hds
1 (z, α,κ) = (1− α) erf

( √
z√

2$κ

)
+ α erf

( √
z√

2$

)
,

where erf (x) is the standard “error function”defined by erf (x) = 2√
π

∫ x
0 exp(−t2)dt.

3rd-order polynomial expansion For the N -variate standardised 3rd-order PE with para-

meters c2 and c3

hpe1 (z, c2, c3) =

{
1 +

[z(z − 6) + 3]

2N(N + 2)
c2 −

[z(45 + z(z − 15))− 15]

2N(N + 2)(N + 4)
c3

}
1

√
z
√

2π
exp

(
−z

2

)
,

while its cumulative distribution function is

Hpe
1 (z, c2, c3) =

[15 + (z − 10)z] c3 − (N + 4)(z − 3)c2

N(N + 2)(N + 4)
√

2π

√
z exp

(
−z

2

)
+ erf

(√
z√
2

)
.

D.4.2 Cumulative density functions of conditionals (ε∗1t(θ)|ε∗2t(θ))

Using again Theorem 2.6 in Fang, Kotz and Ng (1990) we can obtain the marginal bivariate

distribution f s1,2(ε1, ε2,η), which together with fs1 (ε,η) = hs1(ε
2,η) · |z|, allow us to obtain the

conditional pdfs. In this way,
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Student t

F t1|2(ε1, ε2, η) =
1

2

{
1 +

Γ[1 + (2η)−1]√
πΓ[(1 + η)(2η)−1]

Beta

(
− ηε21

1 + (ε22 − 2)η
,
1

2
,− 1

2η

)}
.

Discrete scale mixture of normals

F ds1|2(ε1, ε2, α,κ) =

{
(1− α) exp

(
2α+ κ

2
ε22

)√
1

$κ
+ α exp

(
α+ κ + ακ2

2κ
ε22

)√
1

$

}−1
1

2
√
$κ

{
(1− α) exp

(
2α+ κ

2
ε22

)[
1 + erf

(√
1

2$κ
ε1

)]

+ α exp

(
α+ κ + ακ2

2κ
ε22

)√
κ

[
1 + erf

(√
1

2$
ε1

)]}
,

where $ = [α+ (1− α)κ]−1.

3rd-order polynomial expansion

F pe1|2(ε1, ε2, c2, c3, N) =
1

2
+

1

2
√
π

[
2 +

ε42 − 6ε22 + 3

N(N + 2)
c2 −

ε62 − 15ε42 + 45ε22 − 15

N(N + 2)(N + 4)
c3

]−1
× exp

(
−ε

2
1

2

){
exp

(
−ε

2
1

2

)√
π erf

(
ε1√

2

)
×
(

2 +
ε42 − 6ε22 + 3

N(N + 2)
c2 −

ε66 − 15ε42 + 45ε22 − 15

N(N + 2)(N + 4)
c3

)
+
√

2ε1

((
ε41 − 13ε21 + 3ε42 + 3

(
ε21 − 9

)
ε22 + 33

)
N(N + 2)(N + 4)

c3 −
ε21 + 2ε22 − 5

N(N + 2)
c2

)}
.

D.5 Standard errors for parametric VaR and CoVaR

Given that q1 (λ,η) satisfies

λ = F [q1 (λ,η) ,η] =

∫ q1(λ,η)

0
f1 (ε∗1t;η) dε∗1t,

if we differentiate this expression with respect to η we obtain

0 = f1 [q1 (λ,η) ;η]
∂q1 (λ,η)

∂η
+

∫ q1(λ,η)

0

∂f1 (ε∗1t;η)

∂η
dε∗1t,

whence
∂q1 (λ,η)

∂η
= − 1

f1 [q1 (λ,η) ;η]

∫ q1(λ,η)

0

∂f1 (ε∗1t;η)

∂η
dε∗1t.

To relate this expression to the asymptotic variances of the non-parametric quantile estimators,

it is convenient to write∫ q1(λ,η)

0

∂f1 (ε∗1t;η)

∂η
dε∗1t =

∫ q1(λ,η)

0

∂ ln f1 (ε∗1t;η)

∂η
f1 (ε∗1t;η) dε∗1t

= Pr [ε∗1t ≤ q1 (λ,η)]E [sηt(φ) |ε∗1t ≤ q1 (λ,η) ] ,
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where, importantly, the distribution used to compute the foregoing expectation is the same as

the distribution used for estimation purposes. Hence, we will have that

V [q1(λ, η̂T )] =
λ2

f21 [q1 (λ,η) ;η0]
E [sηt(φ) |ε∗1t ≤ q1 (λ,η) ,η0 ]V [η̂ |η0 ]E

[
s′ηt(φ) |ε∗1t ≤ q1 (λ,η) ,η0

]
.

Further, given that

0 = E [sηt(φ) |η0 ] = λE [sηt(φ) |ε∗1t ≤ q1 (λ,η) ,η0 ] + (1− λ)E
[
s′ηt(φ) |ε∗1t ≥ q1 (λ,η) ,η0

]
,

we can finally write

V [q1(λ, η̂T )] =
λ(1− λ)

f2 [q1 (λ,η) ;η0]
E [sηt(φ) |ε∗1t ≤ q1 (λ,η) ,η0 ]V [η̂ |η0 ]E

[
s′ηt(φ) |ε∗1t ≥ q1 (λ,η) ,η0

]
.

Let f1,2 denote the joint bivariate distribution of ε∗1t and ε
∗
2t. By definition, we know that

q2|1 (λ2, λ1,η) satisfies

λ2|1 =

∫ q1(λ1,η)

−∞
f1(ε

∗
1t;η)

(∫ q2|1(λ2,λ1,η)

−∞
f2|1(ε

∗
2t, ε

∗
1t;η)dε∗2t

)
dε∗1t

=

∫ q1(λ1,η)

−∞

∫ q2|1(λ2,λ1,η)

−∞
f1,2(ε

∗
1t, ε

∗
2t;η)dε∗2tdε

∗
1t

=

∫ 0

−∞

∫ 0

−∞
f1,2(ε

∗
1t + q1(λ1,η), ε∗2t + q2|1 (λ2, λ1,η) ;η)dε∗2tdε

∗
1t,

where we have achieved constant limits of integration in the last expression by means of the

change of variable

u(ε∗1t, ε
∗
2t) = ε∗1t + q1(λ1,η), and v(ε∗1t, ε

∗
2t) = ε∗2t + q2|1 (λ2, λ1,η) ,

whose Jacobian is 1. Differentiating the previous expression with respect to η yields

0 =

∫ 0

−∞

∫ 0

−∞

f1,2(ε
∗
1t + q1(λ1,η), ε∗2t + q2|1 (λ2, λ1,η) ;η)

∂η
dε∗2tdε

∗
1t

+
∂q1(λ1,η)

∂η

∫ 0

−∞

∫ 0

−∞

∂f1,2(ε
∗
1t + q1(λ1,η), ε∗2t + q2|1 (λ2, λ1,η) ;η)

∂ε∗1t
dε∗2tdε

∗
1t

+
∂q2|1 (λ2, λ1,η)

∂η

∫ 0

−∞

∫ 0

−∞

∂f1,2(ε
∗
1t + q1(λ1,η), ε∗2t + q2|1 (λ2, λ1,η) ;η)

∂ε∗2t
dε∗2tdε

∗
1t.

Finally, undoing the change of variable we obtain

∂q2|1(λ2, λ1,η)

∂η
= −

(∫ q1(λ1,η)

−∞

∫ q2|1(λ2,λ1,η)

−∞

∂f1,2(ε
∗
1t, ε

∗
2t;η)

∂ε∗2t
dε∗2tdε

∗
1t

)−1

×
{∫ q1(λ1,η)

−∞

∫ q2|1(λ2,λ1,η)

−∞

∂f1,2(ε
∗
1t, ε

∗
2t;η)

∂ε∗1t
dε∗2tdε

∗
1t

× 1

f1 [q1(λ1,η);η]

∫ q1(λ1,η)

−∞

∂f1(ε
∗
1t;η)

∂η
dε∗1t

−
∫ q1(λ1,η)

−∞

∫ q2|1(λ2,λ1,η)

−∞

f1,2(ε
∗
1t, ε

∗
2t;η)

∂η
dε∗2tdε

∗
1t

}
.
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E Inference with elliptical innovations

Some useful distribution results

It is easy to combine the representation of elliptical distributions with the higher order

moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the third

and fourth moments of a spherically symmetric distribution with V (ε◦t ) = IN are given by

E(ε◦tε
◦
t
′ ⊗ ε◦t ) = 0,

and

E(ε◦tε
◦
t
′ ⊗ ε◦tε◦t ′) = E[vec(ε◦tε

◦
t
′)vec′(ε◦tε

◦
t )] = (κ0 + 1)[(IN2 + KNN ) + vec (IN ) vec′ (IN )],

respectively. In this regard, note that since E(e4t ) ≥ E2(e2t ) = N2 by the Cauchy-Schwarz

inequality, with equality if and only if et =
√
N so that ε◦t is proportional to ut, then κ0 ≥

−2/(N + 2), the minimum value being achieved in the uniformly distributed case. For example,

κ0 = 2/(ν0 − 4) in the Student t case with ν0 > 4, and κ0 = 0 under normality.

An alternative characterisation can be based on the higher order moment parameter of

spherical random variables introduced by Berkane and Bentler (1986), τm(η), which Maruyama

and Seo (2003) relate to higher order moments as

E[ςmt |η] = [1 + τm(η)]E[ςmt |0] where E[ςmt |0] = 2m
m∏
j=1

(N/2 + j − 1). (E10)

For the elliptical examples mentioned above, we derive expressions for τm(η) in Appendix D.2.

A noteworthy property of these examples is that their moments are always bounded, with the

exception of the Student t. Appendix D.3 contains the moment generating functions for the

Kotz, the DSMN and the 3rd-order PE.

E.1 The log-likelihood function, its score and information matrix

Let φ = (θ′,η)′ denote the p + q parameters of interest, which we assume variation free.

Ignoring initial conditions, the log-likelihood function of a sample of size T for those values of θ

for which Σt(θ) has full rank will take the form LT (φ) =
∑T

t=1 lt(φ), with lt(φ) = dt(θ)+c(η)+

g [ςt(θ),η], where dt(θ) = −1/2 ln |Σt(θ)| corresponds to the Jacobian, c(η) to the constant of
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integration of the assumed density, and g [ςt(θ),η] to its kernel, where ςt(θ) = ε∗′t (θ)ε∗t (θ),

ε∗t (θ) = Σ
−1/2
t (θ)εt(θ) and εt(θ) = yt − µt(θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. Then, it is straightforward

to show that if µt(θ), Σt(θ), c(η) and g [ςt(θ),η] are differentiable

sθt(φ) =
∂dt(θ)

∂θ
+
∂g [ςt(θ),η]

∂ς

∂ςt(θ)

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ),

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ), (E11)

where
∂dt(θ)/∂θ = −Zst(θ)vec(IN )

∂ςt(θ)/∂θ = −2{Zlt(θ)ε∗t (θ) + Zst(θ)vec
[
ε∗t (θ)ε∗′t (θ)

]
},

Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′t (θ),

Zst(θ) =
1

2
∂vec′ [Σt(θ)] /∂θ·[Σ−1/2′t (θ)⊗Σ

−1/2′
t (θ)],

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ), (E12)

est(θ,η) = vec
{
δ[ςt(θ),η] · ε∗t (θ)ε∗′t (θ)− IN

}
, (E13)

∂µt(θ)/∂θ′ and ∂vec [Σt(θ)] /∂θ′ depend on the particular specification adopted, and

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς (E14)

can be understood as a damping factor that reflects the kurtosis of the specific distribution

assumed for estimation purposes (see Appendix E.3.1 for further details). But since δ[ςt(θ),η]

is equal to 1 under Gaussianity, it is straightforward to check that sθt(θ,0) reduces to the

multivariate normal expression in Bollerslev and Wooldridge (1992), in which case:

edt(θ,0) =

[
elt(θ,0)
est(θ,0)

]
=

{
ε∗t (θ)

vec [ε∗t (θ)ε∗′t (θ)− IN ]

}
.

Given correct specification, the results in Crowder (1976) imply that et(φ) = [e′dt(φ), ert(φ)]′

evaluated at φ0 follows a vector martingale difference, and therefore, the same is true of the score

vector st(φ). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the feasible, joint ML estimator will be
√
T (φ̂T − φ0) → N

[
0, I−1(φ0)

]
, where

I(φ0) = E[It(φ0)|φ0],

It(φ) = V [st(φ)|zt, It−1;φ] = Zt(θ)M(φ)Z′t(θ) = −E [ht(φ)|zt, It−1;φ] ,

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,
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ht(φ) denotes the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′ andM(φ) = V [et(φ)|φ].

The following result, which reproduces Proposition 2 in Fiorentini and Sentana (2010), con-

tains the required expressions to compute the information matrix of the ML estimators:

Proposition E1 If ε∗t |zt, It−1;φ is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)], then

M(η) =

 Mll(η) 0 0
0 Mss(η) Msr(η)
0 M′sr(η) Mrr(η)

 ,

Mll(η) = V [elt(φ)|φ] = mll(η)IN ,

Mss(η) = V [est(φ)|φ] = mss(η) (IN2 + KNN ) + [mss(η)− 1]vec(IN )vec′(IN ),

Msr(η) = E[est(φ)e′rt(φ)
∣∣φ] = −E

{
∂est(φ)/∂η′

∣∣φ} = vec(IN )msr(η),

Mrr(η) = V [ ert(φ)|φ] = −E[∂ert(φ)/∂η′
∣∣φ],

mll(η) = E

{
δ2[ςt(θ),η]

ςt(θ)

N

∣∣∣∣φ} = E

{
2∂δ[ςt(θ),η]

∂ς

ςt(θ)

N
+ δ[ςt(θ),η]

∣∣∣∣φ} ,
mss(η) =

N

N + 2

[
1 + V

{
δ[ςt(θ),η]

ςt
N

∣∣∣φ}] = E

{
2∂δ[ςt(θ),η]

∂ς

ς2t (θ)

N(N + 2)

∣∣∣∣φ}+ 1,

msr(η) = E

[{
δ[ςt(θ),η]

ςt(θ)

N
− 1

}
e′rt(φ)

∣∣∣∣φ] = −E
{
ςt(θ)

N

∂δ[ςt(θ),η]

∂η′

∣∣∣∣φ} .
Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate

standardised Student t, while the expressions for the Kotz distribution and the DSMN are given

in Amengual and Sentana (2010).16

E.2 Gaussian pseudo maximum likelihood estimators of θ

If the interest of the researcher lied exclusively in θ, which are the parameters characterising

the conditional mean and variance functions, then one attractive possibility would be to estimate

a restricted version of the model in which η is set to zero. Let θ̃T = arg maxθ LT (θ,0) denote

such a PML estimator of θ. As we mentioned in the introduction, θ̃T remains root-T consistent

for θ0 under correct specification of µt(θ) and Σt(θ) even though the conditional distribution of

ε∗t |zt, It−1;φ0 is not Gaussian, provided that it has bounded fourth moments. The proof is based

on the fact that in those circumstances, the pseudo log-likelihood score, sθt(θ,0), is a vector

martingale difference sequence when evaluated at θ0, a property that inherits from edt(θ,0).

The asymptotic distribution of the PML estimator of θ is stated in the following result, which

reproduces Proposition 3.2 in Fiorentini and Sentana (2010):

16The expression for mss(κ) for the Kotz distribution in Amengual and Sentana (2010) contains a typo. The
correct value is (Nκ+ 2)/[(N + 2)κ+ 2].
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Proposition E2 If ε∗t |zt, It−1;φ0 is i.i.d. s(0, IN ,η0) with κ0 < ∞, and the regularity con-
ditions in Bollerslev and Wooldridge (1992) are satisfied, then

√
T (θ̃T − θ0) → N [0, C(φ0)],

where

C(φ) = A−1(φ)B(φ)A−1(φ),

A(φ) = −E [hθθt(θ,0)|φ] = E [At(φ)|φ] ,

At(φ) = −E[hθθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(0)Z′dt(θ),

B(φ) = V [sθt(θ,0)|φ] = E [Bt(φ)|φ] ,

Bt(φ) = V [sθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(κ)Z′dt(θ),

and K (κ) =V [edt(θ,0)| zt, It−1;φ] =

[
IN 0
0 (κ+1) (IN2 +KNN )+κvec(IN )vec′(IN )

]
,

which only depends on η through the population coeffi cient of multivariate excess kurtosis.

But if κ0 is infinite then B(φ0) will be unbounded, and the asymptotic distribution of some

or all the elements of θ̃T will be non-standard, unlike that of θ̂T (see Hall and Yao (2003)).

E.3 Computational details

E.3.1 Scores and first order conditions

The damping factor (E14) reduces to

δt[ςt(θ), η] = (Nη + 1)/[1− 2η + ηςt(θ)]

for the Student t,

δds[ςt(θ), α,κ] = [α+ (1− α)κ] ·
α+ (1− α)κ−(N/2+1) exp

[
− [α+(1−α)κ](1−κ)2κ ςt(θ)

]
α+ (1− α)κ−N/2 exp

[
− [α+(1−α)κ](1−κ)2κ ςt(θ)

]
for the DSMN, and

δpe[ςt(θ), c2, c3] = 1−
∑J

j=1 cjpN/2,j [ςt(θ)]

1 +
∑J

j=1 cjpN/2−1,j [ςt(θ)]

for the PE.

As for ert(θ,η), Fiorentini Sentana and Calzolari (2003) show that in the multivariate Stu-

dent t case it becomes

stηt(θ, η) =
N

2η(1− 2η)
− 1

2η2

[
ψ

(
Nη + 1

2η

)
− ψ

(
1

2η

)]
− Nη + 1

2η(1− 2η)

ςt(θ)

1− 2η + ηςt(θ)
+

1

2η2
ln

(
1 +

η

1− 2η
ςt(θ)

)
.

For the multivariate discrete scale mixture of normals, we can use (E11) to write the score

with respect to the mixing parameter α as

sdsα (θ, α,κ) =
N

2

1− κ
[α+ κ(1− α)]

+
∂g[ςt(θ),η]

∂α
,
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where

∂g[ςt(θ),η]

∂α
=

1

exp (g[ςt(θ),η])

{
exp

(
− 1

2$
ςt(θ)

)
− κ−N/2 exp

(
− 1

2$κ
ςt(θ)

)}
− 1

exp (g[ςt(θ),η])

1− κ
[α+ κ(1− α)]2

1

2$2
ςt(θ)

×α exp

(
− 1

2$
ςt(θ)

)
+ (1− α)κ−N/2−1 exp

(
− 1

2$κ
ςt(θ)

)
,

and the score with respect to the relative scale parameter κ as

sdsκ (θ, α,κ) =
N

2

1− α
[α+ κ(1− α)]

+
∂g[ςt(θ),η]

∂κ
,

where

∂g[ςt(θ),η]

∂κ
=

1

exp (g[ςt(θ),η])

{
−N

2
(1− α)κ−N/2−1 exp

(
− 1

2$κ
ςt(θ)

)
−ςt(θ)

1− α
2

α exp

(
− 1

2$
ςt(θ)

)
+(1− α)α

ςt(θ)

2κ2
κ−N/2 exp

(
− 1

2$κ
ςt(θ)

)}
.

Finally, the scores of the 3rd order PE distribution with respect to c2 and c3 will be

spec2t(θ,c2, c3) =
pN/2,2[ςt(θ̃T )]

1 +
∑J

j=1 cjpN/2−1,j [ςt(θ̃T )]

and

spec3t(θ̃T ,c2, c3) =
pN/2,3[ςt(θ̃T )]

1 +
∑J

j=1 cjpN/2−1,j [ςt(θ̃T )]
.

We can then use θ̃T to obtain a sequential ML estimator of η as η̃T = arg maxη LT (θ̃T ,η),

possibly subject to some inequality constraints on η. For example, in the Student t case η̃T will

be characterised by the first-order Kuhn-Tucker (KT) conditions

s̄ηT (θ̃T , η̃T ) + υ̃T = 0; η̃T ≥ 0; υ̃T ≥ 0; υ̃T · η̃T = 0,

where s̄ηT (θ, η) is the sample mean of sηt(θ, η), and υ̃T the KT multiplier associated to the

constraint η ≥ 0.

Fiorentini, Sentana and Calzolari (2003) show that in the multivariate Student t case sηt(θ, 0)

is proportional to the second generalised Laguerre polynomial. Similarly, Amengual and Sentana

(2011) show that this is also the case for the score of the scale parameter of a DSMN. Therefore,

stηt(θ, 0) = sdsκt(θ, 0) = pgN/2−1,2[ςt(θ)].
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Amengual and Sentana (2011) also provide the corresponding expressions for the α-component

of eDSMN
rt (θ, 0) in the case of “outliers”, which is given by

lim
α→0+

sdsαt(θ,α,κ) = κN/2 exp

(
1− κ

2
ςt(θ)

)
− 1− 1− κ

2κ
(ςt(θ)−N).

In contrast, in the case of “inliers”it will be given by

lim
α→1−

sdsαt(θ,α,κ) = 1− κ−N/2 exp

(
κ − 1

2κ
ςt(θ)

)
− 1− κ

2
(ςt(θ)−N).

As for the polynomial expansion, we saw in Appendix D.1 that the shape parameters are

also inequality constrained. Not surprisingly, Amengual and Sentana (2011) also show that

epert (θ,0) = {pgN/2−1,2[ςt(θ)], pgN/2−1,3[ςt(θ)]}′.

E.3.2 Numerical issues

Random number generation We sample Student t and DSMN exploiting the decom-

position presented in section 2.1. Specifically, we simulate standardised versions of all these

distributions by appropriately mixing a N -dimensional spherical normal vector with a univari-

ate gamma random variable, and, in the case of DSMN, a draw from a scalar uniform, which

we obtain from the NAG Fortran 77 Mark 19 library routines G05DDF, G05FFF and G05CAF,

respectively (see Numerical Algorithm Group (2001) for details). To draw innovations from a

PE, we use a modification of the inversion method. Specifically, we first compute the square

Euclidean norm of the N -dimensional spherical normal vector, ζ say, which is distributed as a

χ2 with N degrees of freedom. We then use the G05NCF routine to find the solution to the

equation F (ς, c2, c3, N) = Fχ2N
(ζ), where

F (ς, c2, c3, N) = 1− Γ(N/2, ς/2)

Γ(N/2)
− c2 ×

ςN/2e−ς/2

2N/2+2Γ(N/2 + 2)
(ς − 2−N)

+c3 ×
ςN/2e−ς/2

2N/2+3Γ(N/2 + 3)

[
ς2 − 2d(N + 4) + (N + 2)(N + 4)

]
,

with ς = ζ as starting value. In this way, we make sure that the three distributions that we

simulate share the random draws from the underlying N × 1 uniform vector, which minimises

Monte Carlo variability.

Estimation strategy Our estimation procedure employs the following numerical strat-

egy. First, we estimate the conditional mean and variance parameters θ under normality with

a scoring algorithm that combines the E04LBF routine with the analytical expressions for the
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score and the A(φ0) matrix in Proposition E2. Then, we compute consistent estimators of η

using the expressions in the next subsection, which we use as initial values for the optimisation

procedure that obtains the sequential ML estimator η̃T with the E04JYF routine. This estima-

tor is then used as initial value for the effi cient sequential MM estimator, which is obtained with

the C05NCF routine. Since our model admits reparametrisation (1), we use expression (9) with

mss and msr computed either analytically, or by Monte Carlo integration or quadrature. We use

again η̃T as initial value for the sequential GMM estimators based on orthogonal polynomials

using the E04JYF routine. As for the joint ML estimators, we employ the E04JBF routine with

numerical derivatives starting from the PML estimators of θ and the sequential ML estimators

of η.

Initial consistent estimators of shape parameters

Student t The initial value of η is the moment estimator proposed by Fiorentini, Sentana

and Calzolari (2003):

ηinit = max

[
τ̂ t2

(4τ̂ t2 + 2)
, 0

]
where τ̂ t2 =

1
T

∑T
t=1 ς

2
t (θ̃T )

(N + 2)N
− 1.

Discrete scale mixture of normals The initial values for α and κ are obtained by

running a standard EM algorithm that does not impose E[ςt(θ̃T )] = N .

3rd-order polynomial expansion The initial values for c2 and c3 are moment estimators

obtained as

c2:init =

∑T
t=1 ς

2
t (θ̃T )

4T
− N(N + 2)

4

and

c3:init =
N + 4

2
c2:init +

N(N + 2)(N + 4)

24
−
∑T

t=1 ς
3
t (θ̃T )

24T
.
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F Supplemental tables and figures

Table F1: Maximum likelihood estimates of mean and variance parameters

Asset Parameter Gaussian Student t DSMN PE

EMU commercial bank index
µM 0.136 0.202 0.187 0.168
σ2M 11.290 9.089 8.595 10.848
γM 0.152 0.106 0.109 0.132
βM 0.834 0.882 0.880 0.854
ψM −0.040 −0.026 −0.028 −0.038

Deutsche Bank
aDEU −0.070 −0.037 −0.0375 −0.0520
bDEU 1.197 1.147 1.1529 1.1835
ωDEU 7.559 6.551 6.800 8.910
γDEU 0.089 0.061 0.063 0.072
βDEU 0.894 0.930 0.928 0.917
ψDEU 0.000 −0.022 −0.026 −0.010

BNP Paribas
aBNP 0.061 −0.004 0.016 0.025
bBNP 1.193 1.194 1.185 1.186
ωBNP 10.150 13.400 12.814 14.649
γBNP 0.113 0.096 0.098 0.104
βBNP 0.870 0.899 0.898 0.889
ψBNP 0.039 −0.028 −0.021 0.024

Banco Santander
aSAN 0.066 0.092 0.074 0.072
bSAN 1.049 1.033 1.031 1.047
ωSAN 24.367 27.659 29.889 38.566
γSAN 0.153 0.077 0.077 0.115
βSAN 0.839 0.921 0.921 0.881
ψSAN 0.074 0.007 0.020 0.033

Unicredit Group
aUNI −0.109 −0.152 −0.134 −0.124
bUNI 1.036 1.049 1.054 1.045
ωUNI 51.005 42.404 40.377 53.926
γUNI 0.092 0.071 0.073 0.081
βUNI 0.906 0.927 0.926 0.917
ψUNI −0.190 −0.148 −0.138 −0.169

Notes: The balanced panel includes 984 weekly observations from mid October 1993 to the end of
August 2012. Excess returns are computed by subtracting the continuously compounded rate of return
on the one-week Eurocurrency rate in DM/Euros applicable over the relevant week. ML and SML denote
joint and sequential maximum likelihood estimator, respectively. We consider a generalised version of
(10) in which we allow both systematic and idiosyncratic variances to evolve over time as Gqarch(1,1)
processes i.e. σ2Mt = σ2M +γM (ε2Mt−1−σ2M ) +ψMεMt−1+βM (σ2Mt−1−σ2M ) for the variance of the bank
index and ωit = ωi + γi(ε

2
it−1 − ωi) + ψiεit−1 + βi(ωit−1 − ωi) for the idiosyncratic variance of bank i.
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Table F2: Maximum likelihood estimates of shape parameters

Student DSMN PE
ML SML ML SML ML SML

Student t
η 0.154 0.148

DSMN
α 0.159 0.173
κ 0.260 0.275

PE
c2 2.412 2.262
c3 −0.708 −0.619

VaR and CoVaR quantities
VaR (1%) 2.549 2.538 2.563 2.556 2.538 2.524
CoVaR (5%) 2.121 2.094 2.171 2.141 2.031 2.006

Notes: The balanced panel includes 984 weekly observations from mid October 1993 to the end
of August 2012. For model specification see Section 6. Excess returns are computed by subtracting the
continuously compounded rate of return on the one-week Eurocurrency rate in DM/Euros applicable over
the relevant week. ML and SML denote joint and sequential maximum likelihood estimator, respectively.
For Student t innovations with ν degrees of freedom, η = 1/ν. For DSMN innovations, αdenotes the
mixing probability and κ is the variance ratio of the two components. In turn, c2 and c3 denote the
coeffi cients associated to the 2nd and 3rd Laguerre polynomials with parameter N/2 − 1 in the case of
PE innovations.
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Figure F1: Densities and contours of bivariate elliptical distributions

(a) Standardised bivariate normal density (b) Contours of a standardised bivariate normal
density
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(c) Standardised bivariate Student t density (d) Contours of a standardised bivariate Student t
with 8 degrees of freedom (η = 0.125) density with 8 degrees of freedom (η = 0.125)
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(e) Standardised bivariate DSMN density (f) Contours of a standardised bivariate DSMN
with multivariate excess kurtosis density with multivariate excess kurtosis
κ = 0.125 (α = 0.5) κ = 0.125 (α = 0.5)
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(g) Standardised bivariate 3rd-order PE with (h) Contours of a standardised 3rd-order PE
parameters c2 = 0 and c3 = −0.2 with parameters c2 = 0 and c3 = −0.2
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Figure F2: Asymptotic effi ciency of Student t estimators

Asymptotic standard errors of η estimators
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Notes: N = 5. For Student t innovations with ν degrees of freedom, η = 1/ν.
Expressions for the asymptotic variances of the different estimators are given in Section
3.
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Figure F3: (a) Asymptotic effi ciency of DSMN estimators (κ = 0.5)

Asymptotic standard errors of α estimators
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Notes: N = 5 and κ = 0.5. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.
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Figure F3: (b) Asymptotic effi ciency of DSMN estimators (κ = 0.5)

Asymptotic standard errors of κ estimators
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Notes: N = 5 and κ = 0.5. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.
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Figure F3: (c) Asymptotic effi ciency of DSMN estimators (α = 0.05)

Asymptotic standard errors of α estimators
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Notes: N = 5 and α = 0.05. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.
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Figure F3: (d) Asymptotic effi ciency of DSMN estimators (α = 0.05)

Asymptotic standard errors of κ estimators
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Notes: N = 5 and α = 0.05. For DSMN innovations, α denotes the mixing probability
and κ is the variance ratio of the two components. Expressions for the asymptotic
variances of the different estimators are given in Section 3.
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Figure F4: (a) Asymptotic effi ciency of PE estimators (c2 = 0)

Asymptotic standard errors of c2 estimators
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Notes: N = 5 and c2 = 0. For PE innovations, c2 and c3 denote the coeffi cients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.
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Figure F4: (b) Asymptotic effi ciency of PE estimators (c2 = 0)

Asymptotic standard errors of c3 estimators
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Notes: N = 5 and c2 = 0. For PE innovations, c2 and c3 denote the coeffi cients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.
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Figure F4: (c) Asymptotic effi ciency of PE estimators (c3 = 0)

Asymptotic standard errors of c2 estimators
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Notes: N = 5 and c3 = 0. For PE innovations, c2 and c3 denote the coeffi cients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.
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Figure F4: (d) Asymptotic effi ciency of PE estimators (c3 = 0)

Asymptotic standard errors of c3 estimators
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Notes: N = 5 and c3 = 0. For PE innovations, c2 and c3 denote the coeffi cients
associated to the 2nd and 3rd Laguerre polynomials with parameter N/2−1, respectively.
Expressions for the asymptotic variances of the different estimators are given in Section
3.

37



References

Amengual, D. and Sentana, E. (2010): “A comparison of mean-variance effi ciency tests”,

Journal of Econometrics 154, 16-34.

Amengual, D. and Sentana, E. (2011): “Inference in multivariate dynamic models with

elliptical innovations”, mimeo, CEMFI.

Balestra, P. and Holly, A. (1990): “A general Kronecker formula for the moments of the

multivariate normal distribution”, DEEP Cahier 9002, University of Lausanne.

Berkane, M. and Bentler, P.M. (1986): “Moments of elliptically distributed random variates”,

Statistics and Probability Letters 4, 333-335.

Bollerslev, T. and Wooldridge, J. M. (1992): “Quasi maximum likelihood estimation and

inference in dynamic models with time-varying covariances”, Econometric Reviews 11, 143-172.

Crowder, M.J. (1976): “Maximum likelihood estimation for dependent observations”, Jour-

nal of the Royal Statistical Society B, 38, 45-53.

Fang, K.T., Kotz, S. and Ng, K.W. (1990): Symmetric multivariate and related distributions,

Chapman and Hall.

Fiorentini, G. and Sentana, E. (2010): “On the effi ciency and consistency of likelihood

estimation in multivariate conditionally heteroskedastic dynamic regression models”, mimeo,

CEMFI.

Hall, P. and Yao, Q. (2003): “Inference in Arch and Garch models with heavy-tailed

errors”, Econometrica 71, 285-317.

Maruyama, Y. and Seo, T. (2003): “Estimation of moment parameter in elliptical distribu-

tions”, Journal of the Japan Statistical Society 33, 215-229.

Mood, A.M., Graybill, F.A., and Boes, D.C. (1974): Introduction to the theory of Statistics,

(3rd ed.), McGraw Hill.

NAG (2001): NAG Fortran 77 Library Mark 19 Reference Manual.

Newey, W.K. (1984): “A method of moments interpretation of sequential estimators”, Eco-

nomics Letters 14, 201-206.

Newey, W.K. (1985): “Maximum likelihood specification testing and conditional moment

tests”, Econometrica 53, 1047-1070.

Newey, W.K. and McFadden, D.L. (1994): “Large sample estimation and hypothesis testing”,

in R.F. Engle and D.L. McFadden (eds.) Handbook of Econometrics vol. IV, 2111-2245, Elsevier.

38



Newey, W.K. and Powell, J.L. (1998): “Two-step estimation, optimal moment conditions,

and sample selection models”, mimeo, MIT.

Tauchen, G. (1985): “Diagnostic testing and evaluation of maximum likelihood models”,

Journal of Econometrics 30, 415-443.

39


