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1 Introduction

Both academics and �nancial market participants are often interested in features of the

distribution of asset returns beyond its conditional mean and variance. In particular, the Basel

Capital Adequacy Accord forced banks and other �nancial institutions to develop models to

quantify all their risks accurately. In practice, most institutions chose the so-called Value at

Risk (VaR) framework in order to determine the capital necessary to cover their exposure to

market risk. As is well known, the VaR of a portfolio of �nancial assets is de�ned as the positive

threshold value V such that the probability of the portfolio su¤ering a reduction in wealth

larger than V over some �xed time interval equals some pre-speci�ed level � < 1=2. Similarly,

the recent �nancial crisis has highlighted the need for systemic risk measures that assess how

an institution is a¤ected when another institution, or indeed the entire �nancial system, is in

distress. Given that the probability of the joint occurrence of several extreme events is regularly

underestimated by the multivariate normal distribution, any such measure should de�nitely take

into account the non-linear dependence induced by the non-normality of �nancial returns.

A rather natural modelling strategy is to specify a parametric leptokurtic distribution for

the standardised innovations of the vector of asset returns, such as the multivariate Student t,

and to estimate the conditional mean and variance parameters jointly with the parameters char-

acterising the shape of the assumed distribution by maximum likelihood (ML) (see for example

Pesaran, Schleicher and Za¤aroni (2009) and Pesaran and Pesaran (2010)). Elliptical distribu-

tions such as the multivariate t are attractive in this context because they relate mean-variance

analysis to expected utility maximisation (see e.g. Chamberlain (1983) or Owen and Rabinovitch

(1983)). Moreover, they generalise the multivariate normal distribution but retain its analytical

tractability irrespective of the number of assets. However, non-Gaussian ML estimators often

achieve e¢ ciency gains under correct speci�cation at the risk of returning inconsistent parameter

estimators under distributional misspeci�cation (see Newey and Steigerwald (1997)). Unfortu-

nately, semiparametric estimators of the joint density of the innovations su¤er from the curse

of dimensionality, which severely limits their use. Another possibility would be semiparametric

methods that impose the assumption of ellipticity, which retain univariate nonparametric rates

regardless of the cross-sectional dimension of the data, but asymmetries in the true distribution

will again contaminate the resulting estimators of conditional mean and variance parameters.

Sequential estimators of shape parameters that use the Gaussian Pseudo ML estimators
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of the mean and variance parameters as �rst step estimators o¤er an attractive compromise

because they preserve the consistency of the �st two conditional moments under distributional

misspeci�cation as long as those moments are correctly speci�ed and the fourth moments are

bounded (see Bollerslev and Wooldridge (1992)), while allowing for more realistic conditional

distributions. From a more practical point of view, they also simplify the computations by

reducing the dimensionality of the optimisation problem at each stage, thereby increasing the

researcher�s con�dence that she has not found a local minimum. In this regard, it is worth

bearing in mind that most commercially available econometric packages have been �ne tuned to

the Gaussian case, which even leads to closed-form estimators in commonly used models.

The focus of our paper is precisely the econometric analysis of sequential estimators obtained

from the standardised innovations evaluated at the Gaussian PML estimators. Speci�cally, we

consider not only sequential ML estimators, but also sequential generalised method of moments

(GMM) estimators based on certain functions of the standardised innovations.

To keep the exposition simple we focus on elliptical distributions in the text, and relegate

more general cases to the supplemental appendix. We illustrate our results with several examples

that nest the normal, including the Student t and some rather �exible families such as scale

mixtures of normals and polynomial expansions of the multivariate normal density, both of

which could form the basis for a proper nonparametric procedure. We explain how to compute

asymptotically valid standard errors of sequential estimators, assess their e¢ ciency, and obtain

the optimal moment conditions that lead to sequential MM estimators as e¢ cient as their joint

ML counterparts. Although we consider multivariate conditionally heteroskedastic dynamic

regression models, our results apply in univariate contexts as well as in static ones.

We then analyse the use of our sequential estimators in the computation of commonly used

risk management measures such as VaR, and recently proposed systemic risk measures such

as Conditional Value at Risk (CoVaR) (see Adrian and Brunnermeier (2011)). In particular,

we compare our sequential estimators to nonparametric estimators, both when the parametric

conditional distribution is correctly speci�ed and also when it is misspeci�ed. Our analytical

and simulation results indicate that sequential ML estimators of �exible parametric families of

distributions o¤er substantial e¢ ciency gains, while incurring in small biases.

Finally, we illustrate our results with data for four Global Systematically Important Banks

from the eurozone. As expected, we �nd that their stock returns display considerable non-
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normality even after controlling for time-varying volatilities and correlations, which in turn

gives rise to the type of non-linear dependence that is relevant for systemic risk measurement.

The rest of the paper is as follows. In section 2, we describe the model, present the ellipti-

cal distributions we use as examples and introduce a convenient reparametrisation satis�ed by

most static and dynamic models. Then, in section 3 we discuss the sequential ML and GMM

estimators, and compare their e¢ ciency. In section 4, we study the e¤ect of those estimators on

risk measures under both correct speci�cation and misspeci�cation, and derive asymptotically

valid standard errors. A Monte Carlo evaluation of the di¤erent parameter estimators and risk

measures can be found in section 5, and the empirical application in section 6. Finally, we

present our conclusions in section 7. Proofs and auxiliary results are gathered in appendices.

2 Theoretical background
2.1 The dynamic econometric model

Discrete time models for �nancial time series are usually characterised by a parametric dy-

namic regression model with time-varying variances and covariances. Typically, theN dependent

variables, yt, are assumed to be generated as:

yt = �t(�0) +�
1=2
t (�0)"

�
t ;

�t(�) = �(zt; It�1;�); �t(�) = �(zt; It�1;�);

where �() and vech [�()] are N � 1 and N(N + 1)=2 � 1 vector functions known up to the

p� 1 vector of true parameter values �0, zt are k contemporaneous conditioning variables, It�1

denotes the information set available at t�1, which contains past values of yt and zt, �1=2t (�) is

some particular �square root�matrix such that �1=2t (�)�
1=20
t (�) = �t(�), and "�t is a martingale

di¤erence sequence satisfying E("�t jzt; It�1;�0) = 0 and V ("�t jzt; It�1;�0) = IN . Hence,

E(ytjzt; It�1;�0) = �t(�0); V (ytjzt; It�1;�0) = �t(�0): (1)

To complete the model, we need to specify the conditional distribution of "�t . We shall initially

assume that, conditional on zt and It�1, "�t is independent and identically distributed as some

particular member of the spherical family with a well de�ned density, or "�t jzt; It�1;�0;�0 � i:i:d:

s(0; IN ;�0) for short, where � are q additional shape parameters.

2.2 Elliptical distributions

A spherically symmetric random vector of dimension N , "�t , is fully characterised in Theorem

2.5 of Fang, Kotz and Ng (1990) as "�t = etut, where ut is uniformly distributed on the unit sphere

surface in RN , and et is a non-negative random variable independent of ut. The variables et and
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ut are referred to as the generating variate and the uniform base of the spherical distribution.

Often, we shall also use &t = "�0t "
�
t , which trivially coincides with e

2
t . Assuming that E(e

2
t ) <1,

we can standardise "�t by setting E(e
2
t ) = N , so that E("�t ) = 0 and V ("

�
t ) = IN . If we further

assume that E(e4t ) <1, then Mardia�s (1970) coe¢ cient of multivariate excess kurtosis

� = E(&2t )=[N(N + 2)]� 1 (2)

will also be bounded. The most prominent examples are the standardised multivariate Student

t, in which &t is proportional to an F random variable with N and � degrees of freedom, and the

limiting Gaussian case, when &t becomes a �2N . Since this involves no additional parameters,

we identify the normal distribution with �0 = 0, while for the Student t we de�ne � as 1=�,

which will always remain in the �nite range [0; 1=2) under our assumptions. Normality is thus

achieved as � ! 0 (see Fiorentini, Sentana and Calzolari (2003)). Other more �exible families

of spherical distributions that we will also use to illustrate our general results are:

Discrete scale mixture of normals: "�t =
p
&tut is distributed as a DSMN if and only if

&t = [st + (1� st){]=[�+ (1� �){] � �t

where st is an independent Bernoulli variate with P (st = 1) = �, { is the variance ratio of the

two components, which for identi�cation purposes we restrict to be in the range (0; 1], and �t is

an independent chi-square random variable with N degrees of freedom. E¤ectively, &t will be a

two-component scale mixture of �20Ns, with shape parameters � and {. Like all scale mixture of

normals (including the Student t), this distribution is necessarily leptokurtic but approaches the

multivariate normal when { ! 1, �! 1 or �! 0, although near those limits the distributions

can be rather di¤erent (see Amengual and Sentana (2011) for further details).1

Polynomial expansion: "�t =
p
&tut is distributed as a J th-order PE of the multivariate normal

if and only if &t has a density de�ned by h(&t) = ho(&t) �PJ(&t), where ho(&t) denotes the density

function of a �2 with N degrees of freedom, and

PJ(&t) = 1 +
XJ

j=2
cjp

g
N=2�1;j(&t)

is a J th order polynomial written in terms of the generalised Laguerre polynomial of order j and

parameter N=2� 1, pgN=2�1;j(:) (see Appendix C for some detailed expressions). As a result, the

J � 1 shape parameters will be given by c2; c3; : : : ; cJ . The problem with polynomial expansions

is that h(&t) will not be a proper density unless we restrict the coe¢ cients so that PJ(&) cannot

1Multiple component discrete scale mixtures of normals would be tedious but straightforward to deal with.
As is well known, they can arbitrarily approximate the more empirically realistic continuous mixtures of normals
such as symmetric versions of the hyperbolic, normal inverse Gaussian, normal gamma mixtures, Laplace, etc.
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become negative. For that reason, in Appendix D.1 we explain how to obtain restrictions on

the cj�s that guarantee the positivity of PJ(&) for all &. Figure 1 describes the region in (c2; c3)

space in which densities of a 3rd-order PE are well de�ned for all & � 0. PE reduce to the normal

when cj = 0 for all j, and while the distribution of "�t is leptokurtic for a 2
nd order expansion,

it is possible to generate platykurtic random variables with a 3rd order expansion.

In Figure F1 in the supplemental appendix we plot the densities of a normal, a Student t,

a DSMN and a 3rd-order PE in the bivariate case. Although they all have concentric circular

contours because we have standardised and orthogonalised the two components, their densities

can di¤er substantially in shape, and in particular, in the relative importance of the centre

and the tails. They also di¤er in the degree of cross-sectional �tail dependence� between the

components, the normal being the only example in which lack of correlation is equivalent to

stochastic independence. In this regard, Figure 2 plots the so-called exceedance correlation (see

Longin and Solnik, 2001) for those uncorrelated marginal components. As can be seen, the

distributions we consider have the �exibility to generate very di¤erent exceedance correlations,

which will be particularly important for systemic risk measures.

2.3 A convenient reparametrisation

Throughout this paper we assume that the regularity conditions A.1 in Bollerslev and

Wooldridge (1992) are satis�ed because we want to leave unspeci�ed the conditional mean vector

and covariance matrix to maintain full generality.2 But for the sake of brevity in the main text

we focus in the class of models for which the following reparametrisation is admissible:

Reparametrisation 1 A homeomorphic transformation r(:) = [r01(:); r
0
2(:)]

0 of the conditional
mean and variance parameters � into an alternative set of parameters # = (#01; #

0
2)
0, where

#2 is a scalar, and r(�) is twice continuously di¤erentiable with rank[@r0 (�) =@�] = p in a
neighbourhood of �0, such that

�t(�) = �t(#1); �t(�) = #2�
�
t (#1) 8t; (3)

with E[ln j��t (#1)jj�0] = k 8#1: (4)

Expression (3) simply requires that one can construct pseudo-standardised residuals

"�t (#1) = �
��1=2
t (#1)[yt � ��t (#1)]

which are i:i:d: s(0; #2IN ;�), where #2 is a global scale parameter, a condition satis�ed by most

static and dynamic models. The only exceptions would be restricted models in which the overall

scale is e¤ectively �xed, or in which it is not possible to exclude #2 from the mean. In the �rst

2Primitive conditions for speci�c multivariate models can be found for instance in Ling and McAleer (2003).
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case, the information matrix will be block diagonal between � and �, while in the second case

the general expressions we provide in Appendix B apply.

Given that we can multiply #2 by some scalar positive smooth function of #1, k(#1) say,

and divide ��t (#1) by the same function without violating (3), condition (4) simply provides a

particularly convenient normalisation.

As we shall see, it turns out that under reparametrisation 1 the asymptotic dependence

between estimators of the conditional mean and variance parameters and estimators of the shape

parameters is generally driven by a scalar parameter. As a result, the asymptotic variances of

the estimators of � we consider next will not depend on the functional form of �t(�) or �t(�).
3

3 Sequential estimators of the shape parameters
3.1 Sequential ML estimator of �

Let LT (�) denote the sample log-likelihood function of a sample of size T , so that �̂T =

argmax� LT (�) is the joint ML estimator of �0 = (�0;�0) and ~�T = argmax� LT (~�T ;0) the

Gaussian pseudo MLE of �. We can use ~�T to obtain a sequential ML estimator of � as

~�T = argmax� LT (~�T ;�).
4 Interestingly, these sequential ML estimators can be given a rather

intuitive interpretation. If �0 were known, then the squared Euclidean norm of the standardised

innovations, &t(�0), would be i:i:d: over time, with density function

h(&t;�) = �N=2=�(N=2) � &N=2�1t exp[c(�) + g(&t;�)]; (5)

where g(&t;�) is the kernel and c(�) the constant of integration of the (log) density of "�t (see

expression (2.21) in Fang, Kotz and Ng (1990)). Thus, we could obtain the infeasible ML estima-

tor of � by maximising the log-likelihood function of the observed &t(�0)0s,
PT
t=1 lnh [&t(�0);�].

Although in practice the standardised residuals are usually unobservable, it is easy to prove from

(5) that ~�T is the estimator so obtained when we treat &t(~�T ) as if they were really observed.

Durbin (1970) and Pagan (1986) are two classic references on the properties of sequential

ML estimators. A straightforward application of their results to our problem allows us to obtain

the asymptotic distribution of ~�T , which re�ects the sample uncertainty in ~�T :

Proposition 1 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1 and reparametrisation (1) is
admissible, then the asymptotic variance of the sequential ML estimator of �, ~�T , is

F(�0) = I�1�� (�0) + I�1�� (�0)m0sr(�0)msr(�0)I�1�� (�0) � [N=(2#20)]2C#2#2(#0;�0); (6)

3Bickel (1982) exploited parametrisation (1) in his study of adaptive estimation in the iid elliptical case, and so
did Linton (1993) and Hodgson and Vorkink (2003) in univariate and multivariate Garch-M models, respectively.
As Fiorentini and Sentana (2010) show, in multivariate dynamic models with elliptical innovations (3) provides a
general su¢ cient condition for the partial adaptivity of the ML estimators of #1 under correct speci�cation, and
for their consistency under misspeci�cation of the elliptical distribution.

4Often there will be inequality constraints on �, but we postpone the details to Appendix D.1.
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where I��(#;�) denotes the information matrix, C#2#2(#;�) the asymptotic variance of the PML
estimator of #2 given in (A4), msr(�) = �E

�
N�1&t(�)@�[&t(�);�]=@�0

���	 and �[&t(�);�] =
�2@g[&t(�);�]=@&, while the asymptotic variance of the feasible ML estimator of �, �̂T , is

I��(�0) = I�1�� (�0) + I�1�� (�0)m0sr(�0)msr(�0)I�1�� (�0) � [N=(2#20)]2I#2#2(�0); (7)

where I#2#2(�0) is the asymptotic variance of the feasible ML estimator of #2 given in (A5).

In general, #1 or #2 will have no intrinsic interest. Therefore, given that ~�T is numerically

invariant to the parametrisation of conditional mean and variance, it is not really necessary to

estimate the model in terms of those parameters for the above expressions to apply as long as

it would be conceivable to do so. In this sense, it is important to stress that neither (6) nor (7)

e¤ectively depend on #2, which drops out from those formulas.

It is easy to see from (6) and (7) that I�1�� (�0) � I��(�0) � F(�0) regardless of the

distribution, with equality between I�1�� (�0) and F(�0) if and only if msr(�0) = 0, in which

case the sequential ML estimator of � will be �-adaptive, or in other words, as e¢ cient as the

infeasible ML estimator of � that we could compute if the &t(�0)0s were directly observed.

A more interesting question in practice is the relationship between I��(�0) and F(�0). The

following result gives us the answer by exploiting Theorem 5 in Pagan (1986):

Proposition 2 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1 and reparametrisation (1) is
admissible, then I��(�0) � F(�0), with equality if and only if

m0sr(�0)
h
C#2#2(�0)� I#2#2(�)

i
msr(�0) = 0:

Hence, the scalar nature of #2 implies that the only case in which I��(�0) = F(�0) with

msr(�0) 6= 0 will arise when the Gaussian PMLE of #2 is as e¢ cient as the joint ML.5

Finally, note that since the asymptotic variance of the Gaussian PML estimator of � will

become unbounded as �0 ! 1, if msr(�0) 6= 0 the asymptotic distribution of ~�T will also be

non-standard in that case, unlike that of the joint ML estimator �̂T .

3.2 Sequential GMM estimators of �

If we can compute the expectations of L � q functions of &t, �(:) say, then we can also com-

pute a sequential GMM estimator of � by minimising the quadratic form �n0T (
~�T ;�)
�nT (

~�T ;�),

where 
 is a positive de�nite weighting matrix, and nt(�;�) = �[&t(�)]�Ef�[&t(�)]j�g. When

L > q, Hansen (1982) showed that if the long-run covariance matrix of the sample moment con-

ditions has full rank, then its inverse will be the �optimal�weighting matrix, in the sense that

5The original Kotz (1975) distribution provides an example in which msr(�0) = 0 and C#2#2(�0) = I#2#2(�0).
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the di¤erence between the asymptotic covariance matrix of the resulting GMM estimator and

an estimator based on any other norm of the same moment conditions is positive semide�nite.

This optimal estimator is infeasible unless we know the optimal matrix, but under additional

regularity conditions, we can de�ne an asymptotically equivalent but feasible two-step optimal

GMM estimator by replacing it with an estimator evaluated at some initial consistent estimator

of �. An alternative way to make the optimal GMM estimator feasible is by explicitly taking

into account in the criterion function the dependence of the long-run variance on the parameter

values, as in the single-step Continuously Updated (CU) GMM estimator of Hansen, Heaton

and Yaron (1996). As we shall see below, in our parametric models we can often compute

these GMM estimators using analytical expressions for the optimal weighting matrices, which

we would expect a priori to lead to better performance in �nite samples.

Following Newey (1984, 1985) and Tauchen (1985), we can obtain the asymptotic covariance

matrix of the sample average of the in�uence functions evaluated at the Gaussian PML estimator,

~�T , using a standard �rst-order expansion. In those cases in which reparametrisation (1) is

admissible, a much simpler equivalent procedure is as follows:6

Proposition 3 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1 and reparametrisation (1) is
admissible, then the optimal sequential GMM estimator of � based on nt(~�T ;�) will be asymp-
totically equivalent to the optimal sequential GMM estimator based on n�t (~�T ;�), where

n�t (�;�) = nt(�;�)� (N=2)|n(�) [&t(�)=N � 1] ;

with |n(�) = cov [nt(�;�); �[&t(�);�]&t(�)=N j�] ;
are the residuals from the theoretical IV regression of nt(�;�) on &t(�)=N�1 using as instrument
�[&t(�);�]&t(�)=N � 1.

Finally, it is worth mentioning that when the number of moment conditions L is strictly

larger than the number of shape parameters q, one could use the overidentifying restrictions

statistic to test if the distribution assumed for estimation purposes is the true one.

3.2.1 Higher order moments and orthogonal polynomials

It seems natural to use powers of &t to estimate �. Speci�cally, we can consider:

`mt(�;�) = &mt (�)=
h
2m
Ym

j=1
(N=2 + j � 1)

i
� [1 + �m(�)]; (8)

where �m(�) are the higher order moment parameter of spherical random variables introduced

by Berkane and Bentler (1986) (see also Maruyama and Seo (2003)).7 But given that for m = 1,

expression (8) reduces to `1t(�) = &t(�)=N � 1 irrespective of �, we have to start with m � 2.
6See Bontemps and Meddahi (2012) for alternative approaches in moment-based speci�cation testing.
7We derive expressions for �m(�) for our examples of elliptical distributions in Appendix D.2. A noteworthy

property of those examples is that their moments are always bounded, with the exception of the Student t.
Appendix D.3 contains the moment generating functions for the DSMN and the 3rd-order PE.
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An alternative is to consider in�uence functions de�ned by the relevant mth order orthogonal

polynomial pm[&t(�);�] =
Pm
h=0 ah(�)&

h
t (�).

8 Again, we have to consider m � 2 because the

�rst two non-normalised polynomials are always p0(&t) = 1 and p1(&t) = `1t(�) for all �.

Given that fp1[&t(�)]; p2[&t(�);�]; :::; pM [&t(�);�]g is a full-rank linear transformation of

[`1t(�); `2t(�;�); :::; `Mt(�;�)], the optimal joint GMM estimator of � and � based on the �rst

M polynomials would be asymptotically equivalent to the corresponding estimator based on

the �rst M higher order moments. The following proposition extends this result to optimal

sequential GMM estimators that keep � �xed at its Gaussian PML estimator, ~�T :

Proposition 4 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with E[&2Mt j�0] < 1 and reparametri-
sation (1) is admissible, then the optimal sequential estimator of � based on p0[&t(�);�] =
fp2[&t(�);�]; :::; pM [&t(�);�]g and `0t(�;�) = [`2t(�;�); :::; `Mt(�;�)] are asymptotically equiva-
lent, with an asymptotic variance that re�ects the sample uncertainty in ~�T given by

JM (�0) =
�
H0p(�0)

�
Gp(�0) + f(N=2) + [N(N + 2)�0=4]g|p(�0)|p(�0)0

��1Hp(�0)��1 ;
where Hp(�) is an (M � 1) � q matrix with representative row Efpm[&t(�);�]s0�t(�)]j�g and
Gp(�) is a diagonal matrix of order M � 1 with representative element V fpm[&t(�);�]j�g.

Importantly, these sequential GMM estimators will be not only asymptotically equivalent

but also numerically equivalent if we use single-step GMM methods such as CU-GMM. By using

additional moments, we can in principle improve the e¢ ciency of the sequential MM estimators,

although the precision with which we can estimate �m(�) rapidly decreases with m.

3.2.2 E¢ cient sequential GMM estimators of �

Our previous GMM optimality discussion applies to a �xed set of moments involving powers

of &t. But there are many other alternative estimating functions that one could use, including

the rational functions advocated by Bontemps and Meddahi (2012) for testing the univariate

Student t or (smoothed versions of) the check functions used in quantile estimation (see Koenker

(2005)), which are well de�ned even if the higher order moments are unbounded (see Dominicy

and Veredas (2010) for a closely related approach). Therefore, it seems relevant to ask which

estimating functions would lead to the most e¢ cient sequential estimators of � taking into

account the sampling variability in ~�T . The following result answers this question by exploiting

the characterisation of e¢ cient sequential estimators in Newey and Powell (1998):

Proposition 5 If "�t jzt; It�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1 and reparametrisation (1) is
admissible, then the e¢ cient in�uence function is given by the e¢ cient parametric score of �:

s�j�t(�;�) = s�t(�;�)� [(1 + 2=N)mss(�)� 1]�1m0sr(�) [�[&t(�);�]&t(�)=N � 1] ; (9)

8Appendix C contains the expressions for the coe¢ cients of the second and third order orthogonal polynomials
of the di¤erent examples we consider.
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which is the residual from the theoretical regression of s�t(�0) on �[&t(�);�]&t(�)=N � 1.

Importantly, the resulting sequential MM estimator of � will achieve the e¢ ciency of the

feasible ML estimator, which is the largest possible, because (i) the variance of the e¢ cient

parametric score s�j�t(�0) in (9) coincides with I��(�0) in (7); and (ii) I��(�0) is also the

expected value of the Jacobian matrix of (9) with respect to �.

3.3 E¢ ciency comparisons

3.3.1 An illustration in the case of the Student t

In view of its popularity, it is convenient to illustrate our previous analysis with the mul-

tivariate Student t. Given that when reparametrisation (1) is admissible Proposition 4 implies

the asymptotic equivalence between the sequential MM estimators of � based on the fourth

moment and the second order polynomial, the following proposition compares the e¢ ciency of

these estimators to the sequential ML estimator of �:

Proposition 6 If "�t jzt; It�1;�0 is i:i:d: t(0; IN ; �0) with �0 > 8, then F(�0) � J2(�0).

This proposition shows that sequential ML is always more e¢ cient than sequential MM based

on the second order polynomial. Nevertheless, Proposition 5 implies that there is a sequential

MM procedure that is more e¢ cient than sequential ML.

Given that I��(�0) = 0 under normality from Proposition E1, it is clear that, asymptotically,

~�T will be as e¢ cient as the feasible ML estimator �̂T when �0 = 0, which in turn is as e¢ cient

as the infeasible ML estimator in that case. Moreover, the restriction � � 0 implies that these

estimators will share the same half normal asymptotic distribution under conditional normality,

although they would not necessarily be numerically identical when they are not zero. Similarly,

the asymptotic distribution of the sequential MM estimator��T will also tend to be half normal

as the sample size increases when �0 = 0, since ��T (~�T ) is root-T consistent for �, which is 0

in the Gaussian case. In fact, ��T will be as e¢ cient as �̂T under normality because p2[&t(�); �]

is proportional to s�t(�0; 0). In contrast, ��T will not be root-T consistent when 4 � �0 � 8

because J2(�0) will diverge to in�nity as �0 converges to 8 from above. Moreover, since � is

in�nite for 2 < �0 � 4,��T will not even be consistent in the interior of this range.

3.3.2 Asymptotic standard errors and relative e¢ ciency

Under the maintained assumption that reparametrisation (1) is admissible, which covers

most static and dynamic models, we have used the results in Propositions 1 and 4 to compute
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the asymptotic standard deviations and relative e¢ ciency of the joint MLE and e¢ cient sequen-

tial MM estimator, the sequential MLE, and �nally the sequential GMM estimators based on

orthogonal polynomials.

In the case of the Student t distribution, all estimators behave similarly for slight departures

from normality (� < :02 or � > 50). As � increases, the GMM estimators become relatively

less e¢ cient, with the exactly identi�ed GMM estimator being the least e¢ cient, as expected

from Proposition 6. When � approaches 12 the GMM estimator based on the second and third

orthogonal polynomials converges to the GMM estimator based only on the second one since

the variance of the third orthogonal polynomial increases without bound. In turn, the variance

of the estimator based on the second order polynomial blows up as � converges to 8 from above,

as we mentioned at the end of the previous subsection. Until roughly that point, the sequential

ML estimator performs remarkably well, with virtually no e¢ ciency loss with respect to the

benchmark given by either the joint MLE or the e¢ cient sequential MM. For smaller degrees

of freedom, though, di¤erences between the sequential and the joint ML estimators become

apparent, especially for values of � between 5 and 4.

Since the DSMN distribution has two shape parameters, we consider the two following ex-

ercises: �rst, we maintain the scale ratio parameter { equal to .5 and report the asymptotic

e¢ ciency as a function of the mixing probability parameter �; secondly, we look at the asymp-

totic e¢ ciency of the di¤erent estimators �xing the mixing probability at � = :05. Interestingly,

we �nd that, broadly speaking, the asymptotic standard errors of the sequential MLE and the

joint MLE are indistinguishable, despite the fact that the information matrix is not diagonal

and the Gaussian PML estimators of � are ine¢ cient. As for the GMM estimators, which in

this case are well de�ned for every combination of parameter values, we �nd that the use of the

fourth order orthogonal polynomial enhances e¢ ciency except for some isolated values of �.

The same general pattern emerges in the case of the PE distribution for which we also consider

two situations, maintaining one of the parameters �xed to 0 while reporting the asymptotic

e¢ ciency as a function of the remaining parameter. Again sequential MLE shows virtually no

e¢ ciency loss with respect to the benchmark. The GMM estimators are less e¢ cient, but the

use of the fourth order polynomial is very useful in estimating c2 when c3 = 0 and c3 when

c2 = 0.

For more detailed results, see Figures F2 to F4 in the supplemental appendix, which display
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the asymptotic standard deviation (top panels) and the relative e¢ ciency (bottom panels).

3.4 Misspeci�cation analysis

Although distributional misspeci�cation will not a¤ect the Gaussian PML estimator of �,

the sequential estimators of � will be inconsistent if the true distribution of "�t given zt and It�1

does not coincide with the assumed one. To focus our discussion on the e¤ects of distributional

misspeci�cation, in the remaining of this section we shall assume that (1) is true.

Let us consider a situation in which the true distribution is i:i:d: elliptical but di¤erent from

the parametric one assumed for estimation purposes, which will often be chosen for convenience

or familiarity. For simplicity, we de�ne the pseudo-true values of � as consistent roots of the ex-

pected pseudo log-likelihood score, which under appropriate regularity conditions will maximise

the expected value of the pseudo log-likelihood function. We can then prove that:

Proposition 7 If "�t jzt; It�1;'0, is i:i:d: s(0; IN ), where ' includes # and the true shape para-
meters, but the spherical distribution assumed for estimation purposes does not necessarily nest
the true density, and reparametrisation (1) is admissible, then the asymptotic distribution of the
sequential ML estimator of �, ~�T , will be given by

p
T (~�T � �1)! N

�
0;H�1rr (�1;'0)Er(�1;'0)H�1rr (�1;'0)

	
;

where �1 = (#0;�1), �1 solves E[ ert(#0;�1)j'0] = 0, Hrr(�;') = �E[ @ert(�)=@�0j'],

Er(�;') = O�1rr (�;') + (N=4)[2(�+ 1) +N�]O�1rr (�;')mO0sr (�;')mOsr(�;')O�1rr (�;');

mOsr(�;') = E [f�[&t(#);�] � [&t(#)=N ]� 1g ert(�)j'] and Orr(�;') = V [ ert(�)j'].

In section 4.3 we will use this result to obtain robust standard errors.

4 Application to risk measures

Most institutional investors use risk management procedures based on the ubiquitous VaR

to control for the market risks associated with their portfolios. Furthermore, the recent �nancial

crisis has highlighted the need for systemic risk measures that point out which institutions

would be most at risk should another crisis occur. In that sense, Adrian and Brunnermeier

(2011) propose to measure the systemic risk of individual institutions by means of the so-called

Exposure CoVaR, which they de�ne as the VaR of �nancial institution i when the entire �nancial

system is in distress. To gauge the usefulness of our results in practice, in this section we focus

on the role that the shape parameter estimators play in the reliability of those risk measures.9

9Acharya et al. (2010) and Brownlees and Engle (2011) consider instead the Marginal Expected Shortfall,
de�ned as the expected loss an equity investor in a �nancial institution would experience if the overall market
declined substantially. It would be tedious but straightforward to extend our analysis to that measure.
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For illustrative purposes, we consider a dynamic market model, in which reparametrisation

(1) is admissible. Speci�cally, if rMt and rit denote the excess returns on the market portfolio

and asset i (i = 2; : : : ; N), respectively, we assume that rt = (rMt; r2t; :::; rNt) is generated as

�
�1=2
t (�)[rt � �t(�)]jzt; It�1;�0;�0 � i:i:d: s(0; IN ;�);

�t(�) =

��
�Mt

at(�) + bt(�)�Mt

��
, �t(�) =

�
�2Mt �Mtb

0
t(�)

�Mtbt(�) �2Mtbt(�)b
0
t(�) +
t(�)

�
(10)

and �2Mt = �2M + ("2Mt�1 � �2M ) + �(�2Mt�1 � �2M ). In this model, �Mt and �
2
Mt denote the

conditional mean and variance of rMt, while at(�) and bt(�) are respectively the alpha and beta

of the other N�1 assets with respect to the market portfolio and 
t(�) their residual covariance

matrix. Given that the portfolio of �nancial institutions changes every day, a multivariate

framework such as this one o¤ers important advantages over univariate procedures because we

can compute the di¤erent risk management measures in closed form from the parameters of the

joint distribution without the need to re-estimate the model.10

4.1 VaR and Exposure CoVaR

LetWt�1 > 0 denote the initial wealth of a �nancial institution which can invest in a safe as-

set with gross returns R0t, and N risky assets with excess returns rt. Letwt = (wMt; w2t; :::wNt)
0

denote the weights on its chosen portfolio. The random �nal value of its wealth over a �xed

period of time, which we normalise to 1, will be

Wt�1Rwt =Wt�1(R0t + rwt) =Wt�1(R0t +w
0
trt).

This value contains both a safe component,Wt�1R0t, and a random component,Wt�1rwt. Hence,

the probability that this institution su¤ers a reduction in wealth larger than some �xed positive

threshold value Vt will be given by the following expression

Pr [Wt�1(1�R0t)�Wt�1rwt � Vt] = Pr (rwt � 1�R0t � Vt=Wt�1)

= Pr

�
rwt � �wt
�wt

� 1�R0t � Vt=Wt�1 � �wt
�wt

�
= F

�
1�R0t � Vt=Wt�1 � �wt

�wt

�
;

where �wt = w
0
t�t and �

2
wt = w

0
t�twt are the expected excess return and variance of rwt, and

F (:) is the cumulative distribution function of a zero mean - unit variance random variable

within the appropriate elliptical class.11

10An attractive property of using parametric methods for VaR and CoVaR estimation is that it guarantees
quantiles that do not cross.
11Due to the properties of the elliptical distributions (see theorem 2.16 in Fang et al (1990)), the cumulative

distribution function F (:) does not depend in any way on �, � or the vector of portfolio weights, only on the
vector of shape parameters �.

13



The value of Vt which makes the above probability equal to some pre-speci�ed value �

(0 < � < 1=2) is known as the 100(1� �)% VaR of the portfolio Rwt. For convenience, though,

the portfolio VaR is often reported in fractional form as �Vt=Wt�1. Consequently, if we de�ne

q1(�;�) as the �th quantile of the distribution of standardised returns, which will be negative

for � < 1=2, the reported �gure will be given by

Vt=Wt�1 = 1�R0t � �wt � �wtq1(�;�).

By de�nition, the Exposure CoVaR of a �nancial institution will be very much in�uenced

by the market beta of its portfolio. To isolate tail dependence from the linear dependence

induced by correlations, in what follows we focus on the CoVaR of an institution after hedging

its market risk component. More formally, if rht = rwt� [covt�1(rwt; rMt)V
�1
t�1(rMt)]rMt denotes

the idiosyncratic risk component of portfolio Rwt, we look at the Exposure CoVaR of rht. To

simplify the exposition, we assume that at(�) = 0, bt(�) = b and 
t(�) = 
, so that the

conditional mean of rht is 0 and its variance �2h =
PN
j=2w

2
jt!j . In this context, the speci�c

Exposure CoVaR, CVt, will be implicitly de�ned by

q2j1(�2; �1;�) =
1

�hw

"
1�R0t �

CVt

Wt�1
PN
j=2wjt

#
;

where q2j1(�2; �1;�) denotes the �
th
2 quantile of the (standardised) distribution of rht conditional

on the market return rMt being below its �th1 quantile.12 More formally,

�2 = Pr
�
"�
ht
� q2j1(�2; �1;�) j"�Mt � q1(�1;�)

�
=

Z q1(�1;�)

�1
f1("

�
1t;�)

"Z q2j1(�2;�1;�)

�1
f2j1("

�
2t; "

�
1t;�)d"

�
2t

#
d"�1t;

q1(�;�) =
1

�Mt

�
1�R0 � �Mt �

Vt
wMWt�1

�
:

In Appendix D.4 we provide the conditional and marginal cumulative distribution functions

required to obtain q1(�;�) and q2j1(�2; �1;�) for the multivariate Student t, DSMN and 3rd-order

PE, on the basis of which we compute the parametric VaR and CoVaR measures.

4.2 The e¤ect of sampling uncertainty on parametric VaR and CoVaR

In practice, the above expressions will be subject to sampling variability in the estimation

of means, standard deviations, correlations and quantiles. Given that our main interest lies in

the sequential estimators of the shape parameters, in the rest of this section we shall focus on

the sampling variability in estimating q1(�;�) and q2j1(�2; �1;�).

12Adrian and Brunnermeier (2011) condition instead on the market return rMt being at its �th1 quantile.
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In parametric models, these quantiles would be known with certainty for all values of � if

we assumed we knew the true value of �, �0. More generally, though, we have to take into

account the variability in estimating �. Asymptotic valid standard errors for those quantiles

can be easily obtained by a direct application of the delta method. Appendix D.5 contains the

required expressions for @q1(�;�)=@� and @q2j1(�2; �1;�)=@�. On the basis of those expressions,

Figure 3 displays con�dence bands for parametric VaR and CoVaR computed with the Student t

(3a-b), DSMN (3c-d) and PE (3e-f) distributions. To save space, we only look at the 1% and 5%

signi�cance levels for the case in which �1=�2. The dotted lines represent the 95% con�dence

intervals based on the asymptotic variance of the sequential ML estimator for a hypothetical

sample size of T = 1; 000 and N = 5. As expected, the con�dence bands are larger for CoVaR

than for VaR, the intuition being that the number of observations e¤ectively available is smaller.

These �gures also illustrate that the assumption of Gaussianity could be rather misleading even

in situations where the actual DGP has moderate excess kurtosis. This is particularly true for

the VaR �gures at the 99% level, and especially for the CoVaR numbers at both levels.

4.3 A comparison of parametric and nonparametric VaR �gures under cor-
rect speci�cation and under misspeci�cation

The so-called historical method is a rather popular way of computing VaR �gures employed

by many �nancial institutions all over the world. Some of the most sophisticated versions of

this method rely on the empirical quantiles of the returns to the current portfolio over the last

T observations after correcting for time-varying expected returns, volatilities and correlations

(see Gouriéroux and Jasiak (2009) for a recent survey). Since this is a fully non-parametric

procedure, the asymptotic variance of the �th empirical quantile of the standardised return

distribution will be given by
�(1� �)=f2 [q1(�)] ; (11)

where f(:) denotes the true density function (see p. 72 in Koenker (2005)).

By construction, the empirical quantile ignores any restriction on the distribution of stan-

dardised returns. The most e¢ cient estimator of q1(�) that imposes symmetry turns out to be

the (1 � 2�)th quantile of the empirical distribution of the absolute values of the standardised

returns. It is easy to prove that the asymptotic variance of this quantile estimator will be

�(1� 2�)=f2f2 [q1(�)]g:

It is interesting to relate the asymptotic variances of these non-parametric quantile estimators

to the asymptotic variance implied by parametric models. In Appendix D.5 we show that the
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asymptotic variance of q1(�; ~�T ) can be written as

�(1� �)=f2 [q1 (�;�) ;�]E [s�t(�)j"�1t � q1 (�;�) ;�]V (~�T j�)E
�
s0�t(�)j"�1t � q1 (�;�) ;�

�
(12)

which coincides with (11) multiplied by a damping factor. Importantly, the distribution used to

compute the foregoing expectation is the same as the distribution used for estimation purposes.

Hence, this expression continues to be valid under misspeci�cation of the conditional distribution,

although in that case we must use a robust (sandwich) formula to obtain V [~�T j'0]. Speci�cally,

if "�t jzt; It�1;'0, is i:i:d: s(0; IN ), where ' includes � and the true shape parameters, but the

spherical distribution assumed for estimation purposes does not necessarily nest the true density,

then the asymptotic variance of the sequential ML estimator of q1(�; ~�T ) will still be given by

(12), but with �0 replaced by the pseudo-true value of � de�ned in Proposition 7, �1.

The left panels of Figure 4 display the 99% VaR numbers corresponding to the Student t,

DSMN and PE distributions obtained with the di¤erent sequential ML estimators both under

correct speci�cation and under misspeci�cation. Asymptotic standard errors for the parametric

estimators are shown in the right panels. Those �gures also contain standard errors for the

�th empirical quantile of the standardised return distribution, and the (1� 2�)th quantile of the

empirical distribution of the absolute values of the standardised returns, which are labeled as NP

and SNP, respectively. As can be seen, the two non-parametric quantile estimators are always

consistent but largely ine¢ cient. In contrast, the parametric estimators have fairly narrow

variation ranges, but they can be sometimes noticeably biased under misspeci�cation, especially

when they rely on the Student t. In contrast, the biases due to distributional misspeci�cation

seem to be small when one uses �exible distributions such as DSMNs and PEs.

5 Monte Carlo Evidence
5.1 Design and estimation details

In this section, we assess the �nite sample performance of the di¤erent estimators and risk

measures discussed above by means of an extensive Monte Carlo exercise, with an experimental

design based on (10) calibrated to the empirical application in section 6. Speci�cally, we simulate

and estimate a model in which N = 5, �M = 0:07=52, �M = :24=
p
52; a = 0, b =(1:2; 1:2; 1; 1),

vecd(
) = (6; 12; 24; 48),  = 0:1 and � = 0:85. As for "�t , we consider a multivariate Student

t with 10 degrees of freedom, a DSMN with the same kurtosis and � = 0:05, and a 3rd-order

PE also with the same kurtosis and c3 = �1. Finally, we also simulate data from a spherical

distribution whose generating variable et is independently drawn from the empirical distribution
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function of &t(�) evaluated at the Gaussian PML estimates obtained from the eurozone bank

data described in section 6. The computational advantages of the sequential estimators are

particularly noticeable for model (10), which under normality can be estimated by means of

four linear regressions and a single univariate Garch model. Although we have considered

other sample sizes, for the sake of brevity we only report the results for T = 1; 000 observations

(plus another 100 for initialisation) based on 1,600 Monte Carlo replications. This sample size

corresponds roughly to 4 years of daily data or 20 years of weekly data. The numerical strategy

employed by our estimation procedure is described in Appendix E.3. Given that the Gaussian

PML estimators of � are unbiased, and they share the same asymptotic distribution under the

di¤erent distributional assumptions because of their common kurtosis coe¢ cient, we do not

report results for ~�T in the interest of space.

5.2 Sampling distribution of the di¤erent estimators of �

Table 1 presents means and standard deviations of the sampling distributions for four di¤er-

ent estimators of the shape parameters under correct speci�cation, as well as (the square root

of) the mean across simulations of the estimates of their asymptotic variances. Speci�cally, we

consider joint ML (ML), sequential ML (SML), e¢ cient sequential MM (ESMM), and orthogonal

polynomial-based MM (SMM) estimators that use the 2nd polynomial in the case of the Student

t, and the 2nd and 3rd for the other two. The top panel reports results for the Student t, while

the middle and bottom panels contain statistics for DSMN and the 3rd-order PE, respectively.

The behavior of the di¤erent estimators is in line with the results in Section 3.4. The

standard deviations of ESMM and SML essentially coincide, as expected from Figures F2-F4.

In contrast, the exactly identi�ed orthogonal polynomials-based estimator is clearly ine¢ cient

relative to the others, which is also in line with the asymptotic standard errors in Figures F2-F4.

This is particularly noticeable in the case of the PE, as the sampling standard deviation of the

SMM-based estimator of c3 more than doubles those of ESMM and SML.

Another thing worth noting is that the estimators of the DSMN parameters � and { seem to

be slightly upward biased, and that the bias increases when using MM orthogonal polynomials.

The same comment applies to the 3rd-order PE parameters c2 and c3. In that case, however,

the estimators tend to underestimate the true magnitude of the parameters.

Finally, the sample analogues of the asymptotic variance covariance matrices are in general

reliable, which probably re�ects the fact that we use the theoretical expressions in section 3.
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Speci�cally, the mean across simulations of the asymptotic variance estimates are very close

to the Monte Carlo variances of the estimators, with the exception of the SMM estimator, for

which they tend to overestimate the sampling variablility of the shape parameters.

5.3 Sampling distribution of VaR and CoVaR measures

We used the ML and SML estimators of the shape parameters to compute parametric VaR

and CoVaR measures using the conditional and marginal CDFs in Appendix D.4. As for the

historical VaR and CoVaR, we focus on the �th empirical quantile of the relevant standardised

distribution, which we estimate by linear interpolation in order to reduce potential biases in

small samples.13 The objective of our exercise is twofold: 1) to shed some light on the �nite

sample performance of parametric and non-parametric VaR and CoVaR estimators; and 2) to

assess the e¤ects of distributional misspeci�cation on the latter.

The left panels of Figure 5 summarise the sampling distribution of the di¤erent estimates of

q1(�1;�) for �1 = :99 by means of box-plots for the di¤erent DGPs. As usual, the central boxes

describe the �rst and third quartiles of the sampling distributions, as well as their median, and

we set the maximum length of the whiskers to one interquartile range. Each panel contains seven

rows with the true joint ML and three SML-based measures, as well as the two non-parametric

ones (denoted by NP and SNP) and the Gaussian quantile as a reference.

When the true distribution is Student t, all the parametric VaR measures perform well, in

the sense that their sampling distributions are highly concentrated around the true value. In

contrast, the sampling uncertainty of the 1% non-parametric quantile is much bigger. The same

comments apply when the DGPs are either DSMN or PE distributions, although in those cases,

the bias of the misspeci�ed Student t-based quantile is pronounced.

The same general pattern emerges in the right panels of Figure 5, which compares the

di¤erent estimates of q2j1(�2; �1;�) for �2 = �1 = :95. For the distributions we use as examples,

the e¤ects of distributional misspeci�cation seem to be minor compared to the potential e¢ ciency

gains from using a parametric model for estimating the quantiles. This is particularly true when

we use �exible distributions such as DSMNs or PEs to conduct inference.

Finally, the results in Figures 5g-h, which are based on data generated from the empirical

distribution of the eurozone banks in section 6, indicate that the parametric procedures based

on the Student t distribution and the DSMN provide rather accurate estimates of the �true�

13Alternatively, we could obtain estimates of the CDF by integrating a kernel density estimator, but the �rst-
order asymptotic properties of the associated quantiles would be the same (see again Koenker (2005)).
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VaR and CoVaR, which we compute by using a single path simulation of size 5 million.

6 Empirical application to G-SIBs eurozone banks

The Financial Stability Board (FSB) has recently updated its list of globally systematically

important banks (G-SIBs), allocating them to four buckets corresponding to their required level

of common equity as a percentage of risk-weighted assets on top of the 7% baseline in the Basel

III Accord.14 Despite the lack of a formal de�nition, G-SIBS are deemed fundamental players in

any future global �nancial crisis. Given that the ongoing negative feedback loop between banks

and weak sovereigns in several peripheral euro area countries might end up triggering such a

crisis, it seems particularly relevant to illustrate our procedures with some eurozone G-SIBS.

Speci�cally, we look at the �agship commercial banks from Germany (Deutsche Bank), France

(BNP Paribas), Spain (Banco Santander) and Italy (Unicredit Group). Interestingly, the FSB

has classi�ed Deutsche and BNP Paribas in the fourth and third buckets (2.5% and 2% capital

surcharges, respectively), but Santander and Unicredit in the �rst one (1% surcharge), in marked

contrast with the credit ratings of the sovereign debt of their countries of origin.

We use a capitalisation weighted total return index of the 80 most important commercial

banks domiciled in the eurozone as representative of the banking sector in the European Mon-

etary Union. We also adopt the perspective of a German investor, and convert all the di¤erent

stock indices to D-Marks prior to January 1st, 1999, when the euro became the o¢ cial nu-

meraire.15 Figure 6a shows the recent evolution of the total return indices for each of the four

aforementioned banks and the whole sector normalised to 100 at the end of 2006 to facilitate

comparisons. The temporal pattern of these price series through the di¤erent phases of the

2007-09 global credit crisis is fairly homogeneous, and the same is by and large true during the

European sovereign debt crisis that started in 2010 when investors shifted their attention to

the size of the �scal imbalances in Greece. As we shall see below, though, there are important

14The new regulation has introduced a 2.5% mandatory capital conservation bu¤er in addition to a minimum
common equity requirement of 4.5%; see Basle Committe on Banking Supervision (2011) for further details. There
will also be a countercyclical bu¤er imposed within a range of 0-2.5%.
15The Datastream codes of the total return indices used are D:DBKX(RI) (Deutsche Bank), F:BNP(RI) (BNP

Paribas), E:SCH(RI) (Banco Santander), I:UCG(RI) (Unicredit) and �nally BANKSEM(RI) for the EMU com-
mercial bank index. The �rst four series are reported in local currency, while the last one is denominated in
US $. We then convert them to DM/Euro by crossing the relevant exchange rates against the British pound
(DMARKER, FRENFRA, ITALIRE, SPANPES and USDOLLR). We de�ne weekly returns as Wednesday to
Wednesday log index changes in order to minimise the incidence of �lled forward prices due to public holidays
and other gaps. Finally, we work with excess returns by subtracting the continuously compounded rate of re-
turn on the one-week Eurocurrency rate in DM/Euros (ECWGM1W). Our �nal balanced panel includes 984
observations from the second half of October 1993 to the end of August 2012.
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di¤erences across institutions from a risk perspective.

But �rst, in Figure 6b we compare the one-week ahead 99% Value at Risk estimates (in

percentage terms) for the eurozone banking portfolio that the di¤erent estimation procedures

previously discussed generate. Despite the massive rejection of the multivariate normality as-

sumption using the LM test based on the second order Laguerre polynomial put forward by

Fiorentini, Sentana and Calzolari (1983), the e¤ect of using a non-normal distribution seems

relatively minor, although the Gaussian values are systematically lower than the rest (see Ta-

bles F1 and F2 in the supplemental appendix for parameter estimates and the quantiles that

they imply). The only other di¤erence worth mentioning is the fact that the non-Gaussian

MLEs of the Arch (Garch) parameter  (�) tend to be lower (higher) than the corresponding

Gaussian PMLEs. As a result, the VaR spikes that the joint estimators generate are somewhat

lower but last a bit longer than the ones obtained with the sequential estimators. In order to

increase the realism of our model, we have considered a generalised version of (10) in which we

allow both systematic and idiosyncratic variances to evolve over time as Gqarch(1,1) processes

(see Sentana (1995)), and do not impose the CAPM restrictions on the intercepts.

Figures 6c-6f depict the di¤erent estimates of the one-week ahead speci�c exposure CoVaR

(in percentage terms) at the 5% level of each of the four banks when the fall in the euro area bank

index exceeds its 5th percentile. Not surprisingly, the Gaussian CoVaR estimates are signi�cantly

lower than the rest. As in the case of the VaR �gures, the di¤erences between the non-Gaussian

and Gaussian estimates of the Garch parameters are once again noticeable. But the most strik-

ing feature of those pictures is the marked heterogeneity across banks, which is patently visible

regardless of distributional assumptions. Although all four institutions were a¤ected in varying

degrees by the turmoil in �nancial markets after the Lehman Brothers collapse, the e¤ects of

the European sovereign debt crisis is far more heterogeneous. While so far Deutsche Bank and

Banco Santander have su¤ered relatively minor contagion e¤ects from increases in the riskiness

of the eurozone banking sector, BNP Paribas and especially Unicredit have been substantially

more sensitive. This is particularly true in the second half of 2011, as the international alarm

over the eurozone crisis grew, and the Spanish and Italian governments�borrowing costs rock-

eted. Although there is no reliable weekly data on the banks balance sheet structure, many

commentators have attributed such di¤erences to the extent �nancial institutions were stricken

with sovereign debt from peripheral countries.
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7 Conclusions

In the context of the general multivariate dynamic regression model with time-varying vari-

ances and covariances considered by Bollerslev and Wooldridge (1992), we study the statistical

properties of sequential estimators of the shape parameters of the innovations distribution, which

can be easily obtained from the standardised innovations evaluated at the Gaussian PML es-

timators. We consider both sequential ML estimators and sequential GMM estimators. The

main advantage of such estimators is that they preserve the consistency of the conditional mean

and variance functions, but at the same time allow for a more realistic conditional distribution.

These results are important in practice because empirical researchers as well as �nancial market

participants often want to go beyond the �rst two conditional moments, which implies that one

cannot simply treat the shape parameters as if they were nuisance parameters.

We explain how to compute asymptotically valid standard errors of sequential estimators,

assess their e¢ ciency and obtain the optimal moment conditions that lead to sequential MM

estimators as e¢ cient as their joint ML counterparts. Our theoretical calculations indicate that

the e¢ ciency loss of sequential ML estimators is usually very small. From a practical point of

view, we also provide simple analytical expressions for the asymptotic variances by exploiting

a reparametrisation of the conditional mean and variance functions which covers most dynamic

models. Obviously, our results also apply in univariate contexts as well as in static ones.

We then analyse the use of our sequential estimators in the calculation of commonly used

risk management measures such as VaR, and recently proposed systemic risk measures such

as CoVaR. Speci�cally, we provide analytical expressions for the asymptotic variances of the

required quantiles. Not surprisingly, our results indicate that the standard errors are larger for

CoVaR than for VaR. Our �ndings also con�rm that the assumption of Gaussianity could be

rather misleading even in situations where the actual DGP has moderate excess kurtosis. This

is particularly true for the VaR �gures at low signi�cance levels, and especially for the CoVaR

numbers. We also compare our sequential estimators to nonparametric estimators, both under

correct speci�cation of the parametric distribution, and also under misspeci�cation. In this

sense, our analytical and simulation results indicate that the use of sequential ML estimators

of �exible parametric families of distributions o¤er substantial e¢ ciency gains for those risk

measures, while incurring in small biases.

Given that Gaussian PMLEs are sensitive to outliers, it seems relevant to explore other
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consistent but more �robust�estimators of the conditional mean and variance parameters. For

example, when reparametrisation 1 is admissible, Fiorentini and Sentana (2010) suggest combin-

ing a likelihood-based estimator of #1, which remains consistent when the elliptical distribution

has been misspeci�ed, with a consistent closed-form estimator of the overall scale parameter #2.

Similarly, the sequential estimation approach that we have studied could be applied to models

with non-spherical innovations, which would be particularly relevant from an empirical perspec-

tive given that tail dependence seems to be stronger for falls in prices than for increases. In

principle, most of the theoretical results in sections 3 and 4 will survive (see e.g. Propositions

B1, B2, B3 or B5), but in practice it might be necessary to focus on parsimonious multivariate

distributions, such as the location-scale mixtures of normals in Mencía and Sentana (2009).

It might also be interesting to introduce dynamic features in higher-order moments. In this

sense, at least two possibilities might be worth exploring: either time varying shape parameters,

as in Jondeau and Rockinger (2003), or a regime switching process, following Guidolin and

Timmermann (2007). It would also be worth extending the tools used to evaluate value at risk

models (see e.g. Lopez (1999) and the references therein) to cover systemic risk measures such as

CoVar accounting for sampling variability in the estimation of both the conditioning set and the

quantile of the relevant conditional distribution. All these topics constitute interesting avenues

for future research.
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Appendix

A Proofs

A.1 Preliminary results for reparameterisation 1

Given our assumptions on r(:), we can directly work in terms of the # parameters. Since

the conditional covariance matrix of yt is of the form #2�
�
t (#1), it is straightforward to show

that the score vector for # will be�
s#1t(#;�)
s#2t(#;�)

�
=

�
Z#1lt(#)elt(#;�) + Z#1st(#)est(#;�)

Z#2s(#)est(#;�)

�
;�

Z#1lt(#) Z#1st(#)
0 Z#2s(#)

�
=

(
#
�1=2
2 [@�0t(#1)=@#1]�

��1=20
t (#1)

0

1
2f@vec

0[��t (#1)]=@#1g[�
��1=20
t (#1)
���1=20t (#1)]

1
2#
�1
2 vec0(IN )

)
; (A1)

with elt(#;�) and est(#;�) given in (E12) and (E13), respectively. As a result,

s#2t(#;�) =
N

2#2

h
�(&t;�)

&t
N
� 1
i
: (A2)

It is then easy to see that the unconditional covariance between s#1t(#;�) and s#2t(#;�) is

E

��
Z#1lt(#) Z#1st (#)

� � Mll(�) 0
0 Mss(�)

� �
0

Z0#2s(#)

�����#;��
=

f2mss(�) +N [mss(�)� 1]g
2#2

Z#1s(#;�)vec(IN ) =
f2mss(�) +N [mss(�)� 1]g

2#2
W#1(#;�);

where mss(�) = E
�
2[N(N + 2)]�1&2t (�)@�[&t(�);�]=@&

���	 and Z#1s(#;�) = E[Z#1st(#)j#;�],

where we have exploited the serial independence of "�t , as well as the law of iterated expectations,

together with the results in Proposition E1. In this context, condition (4) implies thatW#1(#;�)

will be 0, so that (B8) reduces toWs(�0) =
�
0 � � � 0 N=(2#2)

�0
:

This condition also implies that the unconditional covariance between s#1t(#;�) and s�t(#;�)

will be 0 too, so that the information matrix will be block diagonal between #1 and (#2;�). As

for the unconditional variance of s#2t(#;�), it will be given by

E

��
0 Z#2st(#)

� � Mll(�) 0
0 Mss(�)

� �
0

Z0#2st(#)

�����#;��
=

1

4#22
vec0(IN )[mss(�) (IN2 +KNN ) + [mss(�)� 1])vec(IN )vec0(IN )]vec(IN )

= f2mss(�) +N [mss(�)� 1]g
N

4#22
;

while its covariance with s�t(#;�) will be msr(�0)N=(2#2).
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Analogous algebraic manipulations that exploit the block-triangularity of (A1) and the con-

stancy of Z#2st(#) show that A(�0) and B(�0), and therefore C(�0), will also be block diagonal

between #1 and #2 when (4) holds. In particular, we can show that

A#2#2(#;�) =
N2

4#22
E
nh
�(&t;�])

&t
N
� 1
i � &t

N
� 1
�����;�o = N

2#22
(A3)

and

C#2#2(#;�) =
f2(�+1) +N�g

4

4#22
N

: (A4)

Finally, given a vector nt(#;�) of in�uence functions that only depend on # through &t(#):

cov [nt(#;�); s#1t(#;�)j#;�] = E
�
nt(#;�)

�
e0lt(#;�)Z

0
#1lt(#) + e

0
st(#;�)Z

0
#1st(#)

���#;�	
= E

�
nt(#;�)

�
&t(�)

N
� 1
�����#;��W#1(#;�):

But sinceW#1(#;�) is 0, then cov [nt(#;�); s#1t(#;�)j#;�] = 0 for the same reasons as before.

Proposition 1

Proposition B1 together with the results in Section A.1 imply that the asymptotic variance

of the sequential ML estimator will be given by (6). As for �̂T , the results in Appendix E

combined with the partioned inverse formula imply that I��(�0) can be written as either

I��(�0) =
�
Mrr(�0)�m0sr(�0)msr(�0)

N

f2mss(�0) +N [mss(�0)� 1]g

��1
or (7), with

I#2#2(�0) =
1

2mss(�0) +N [mss(�0)� 1�msr(�0)M�1
rr (�0)m0sr(�0)]

4#22
N

: � (A5)

Proposition 2

It follows directly by combining Proposition B2 with the results in Section A.1. �

Proposition 3

If we combine Proposition B3 with the results in Section A.1, we can prove that

cov [nt(#;�); s#2t(#;�)j�] =
N

2#2
cov

�
nt(#;�); �(&t;�)

&t(#)

N
� 1
������ = N

2#2
|n(�)

in view of (A2). Further, using (A3) it immediately follows that

n?t (�;�) = nt(#;�)� cov [nt(#;�); s#t(#;�)j�] cov�1 [s#t(#;0); s#t(#;�)j�] s#t(#;0)

= nt(#;�)�
cov [nt(#;�); s#2t(#;�)j�]
cov [s#2t(#;0); s#2t(#;�)j�]

s#2t(#;0) = nt(#;�)�
N

2
|n(�)

�
&t(�)

N
� 1
�
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regardless of the original model. But this expression coincides with

n�t (�;�) = nt(�;�)�
cov [nt(�;�); �(&t;�)&t=N j�]
cov [�(&t;�)&t=N; &t=N j�]

�
&t(�)

N
� 1
�

by de�nition of |n(�) since E f [�(&t;�)&t=N � 1] (&t=N � 1)j�g = 2=N (see Fiorentini and Sen-

tana (2010) for a proof). On this basis, we can use Proposition B3 to show that the asymptotic

variance of the sample average of n�t (~�T ;�) will be

V [n�t (#;�)j�] = V [nt(#;�)j�]�
N

2
|n(�)cov0

h
nt(�;�);

&t
N

����i
�N
2
cov

h
nt(�;�);

&t
N

����i |0n(�) + N2

4
|n(�)|n(�)0V

� &t
N
� 1
�����

= V [nt(#;�)j�]�
N

2

h
|n(�)�|0n(�) + �|n(�)|0n(�)

i
+

�
N

2
+
N(N + 2)�

4

�
|n(�)|0n(�);

with �|n(�) = cov [nt(�;�); &t=N j�], where we have used the fact that V (&t=N) = (N +

2)�=N + 2=N , which follows from (2). Finally, given that @n�t (�;�)=@�
0 = @n?t (�;�)=@�

0 =

@nt(�;�)=@�
0, the optimal sequential GMM estimators based on nt(~�T ;�) and n�t (~�T ;�) will

be asymptotically equivalent. �

Proposition 4

In view of Proposition 3, we can easily create moments that are invariant to the sampling

uncertainty surrounding ~�T . Speci�cally, for m � 1 we get

`�mt(�;�) = `mt(�;�)�
covf`mt(�;�); �[&t(�);�]&t(�)=N � 1g
covfp1t[&t(�)]; �[&t(�);�]&t(�)=N � 1gp1t[&t(�)];

p�m[&t(�);�] = pm[&t(�);�]�
covfpm[&t(�);�]; �[&t(�);�]&t(�)=N � 1g
covfp1t[&t(�)]; �[&t(�);�]&t(�)=N � 1g p1t[&t(�)];

which are such that `�1t(�) = p�1t[&t(�)] = 0. The bilinearity of the covariance operator applied

to (C9) implies that

p�m[&t(�);�] = `�mt(�;�)�
m�1X
j=1

covf`mt(�;�); pj [&t(�);�]g
V fpj [&t(�);�]g

p�j [&t(�);�]:

As a result, we can write fp�2[&t(�);�]; :::; p�M [&t(�);�]g as a full-rank linear transformation of

[`�2t(�;�); :::; `
�
Mt(�;�)], which con�rms the asymptotic equivalence in the case of two-step GMM

procedures, and the numerical equivalence for single-step ones. In addition, the expression for

V fpm[&t(�);�]j�g follows directly from the expression for the polynomials. Speci�cally, Gp is a

diagonal matrix of order M � 1 with representative element

V [pm[&t(�);�]j�] =
mX
h=0

mX
k=0

8<:ah(�)ak(�)[1 + �h+k(�)]2h+k
h+kY
j=1

(N=2 + j � 1)

9=;
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Similarly, the orthogonality of the polynomials implies that |p(0) = covfpm[&t(�);�];&t(�)=N j�g =

0. Finally, in order to derive expressions for Covfpm[&t(�);�];�[&t(�);�]&t(�)=N j�g, we can use

Lemma 1 in Fiorentini and Sentana (2010) to show that

E
n
pm[&t(�);�]

h
�(&t;�)

&t
N
� 1
i����o = � 2

N
E

�
pm[&t(�);�] � &t �

@ lnh (&t;�)

@&

������
=

2

N
E

�
@pm[&t(�);�]

@&
� &t
������ :

Hence, we obtain |p(�), an M � 1 vector, with representative element

Cov

�
pm[&t(�);�];�[&t(�);�]

&t(�)

N

������ = mX
h=1

hah(�)[1+�h(�0)]
2h+1

N

hY
j=1

(N=2+ j�1): �

Proposition 5

It follows by combining Proposition B5 and the results in Section A.1. �

Proposition 6

Both sides of the inequality can be decomposed into a component that re�ects the asymptotic

variance of the estimators of � if �0 were known, plus a second component that re�ects the

sample variability in the PML estimator ~�T . With respect to the �rst component, it is clear

that I�1�� (�0) � Gp(�0)=H2p(�0), where Hp(�) = �E[@p2[&t(�); �]=@�j�]. As for the second

component, we must compare I 0��(�0)C(�0)I��(�0)=I2��(�0) with N 0
p(�0)C(�0)Np(�0)=H2(�0),

where Np(�0) = �E[@p2[&t(�); �]=@�0j�]. Using the results in Proposition B6, it is easy to see

that the second expression will be larger than the �rst one if and only if

I��(�0)�
(N + 2)N�4 (� � 6)

2 (� � 2)2 (� � 4) (N + �) (N + � + 2)
� 0:

We can then show that this inequality will be true for N + 2 if it is true for N by using the

recursion  0(�=2) �  0(1 + �=2) = �4�2 (see Abramowitz and Stegun (1964)), which reduces

the problem to proving the inequality for N = 1 and N = 2. The proof for N = 2 immediately

follows from the same recursion. The proof for N = 1 is more tedious, as it involves the

asymptotic expressions for  0(:) in Abramowitz and Stegun (1964). �

Proposition 7

It follows directly from Proposition B7 and the fact that under reparametrisation (1),

Osr(�1;'0) =
N

2#2
mOsr(#0;�1;'0);

where mOsr(�;') = E [f�[&t(#);�] � &t(#)=N � 1g ert(�)j'] : �
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Table 1: Finite sample properties of sequential estimators of shape parameters

ML ESMM SML SMM

Student t (�0 = 0:1)
Mean 0.0992 0.0982 0.0981 0.0954

� MC Std.Dev. 0.0114 0.0113 0.0113 0.0196
MC Av. Std.Err. 0.0112 0.0112 0.0112 0.0300*

DSMN (�0 = 0:05, {0 = 0:246)
Mean 0.0526 0.0537 0.0537 0.0620

� MC Std. Dev. 0.0148 0.0152 0.0152 0.0213
MC Av. Std. Err. 0.0154 0.0160 0.0161 0.0318

Mean 0.2518 0.2574 0.2574 0.2697
{ MC Std. Dev. 0.0349 0.0352 0.0352 0.0438

MC Av. Std. Err. 0.0362 0.0370 0.0372 0.0557

PE (c20 = 2:916, c30 = �1)
Mean 2.9137 2.8663 2.8673 2.8508

c2 MC Std. Dev. 0.2019 0.1995 0.1997 0.2630
MC Av. Std. Err. 0.1953 0.1956 0.1963 0.2718

Mean -1.0013 -0.9605 -0.9588 -0.9153
c3 MC Std. Dev. 0.3037 0.2963 0.2972 0.5942

MC Av. Std. Err. 0.2957 0.2951 0.2960 0.7859

Notes: 1,600 replications, T = 1; 000, N = 5. ML is the joint ML estimator while ESMM and
SML refer to the e¢ cient sequential MM and sequential ML estimators, respectively. The orthogonal
polynomial MM estimator is labeled SMM. MC Std. Dev. refers to the standard deviation of estimated
shape parameters across replications. MC Av. Std. Err is the square root of the mean across simulated
samples of the estimated variances of the shape parameters. For Student t innovations with � degrees of
freedom, � = 1=�. For DSMN innovations, � denotes the mixing probability and { is the variance ratio
of the two components. In turn, c2 and c3 denote the coe¢ cients associated to the 2nd and 3rd Laguerre
polynomials with parameter N=2� 1 in the case of PE innovations. See Section 5.1 and Appendix F for
a detailed description of the Monte Carlo study.

*This excludes 63 samples whose parameter estimates were below 8 degrees of freedom.
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Figure 1: Positivity region of a 3rd-order PE
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Notes: The solid (dotted) black line represents the frontier defined by positive (negative)
values of ς . The blue (dotted-dashed) line represents the tangent of P3(ς) at ς = 0 while the
red (dashed) line is the tangent of P3(ς) when ς → +∞. The grey area defines the admissible
set in (c2, c3) space.

Figure 2: Exceedance correlation
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Notes: The exceedance correlation between two variables ε∗1 and ε
∗
2 is defined as corr(ε

∗
1, ε

∗
2|ε∗1 >

%, ε∗2 > %) for positive % and corr(ε∗1, ε
∗
2|ε∗1 < %, ε∗2 < %) for negative % (see Longin and Solnik,

2001). Horizontal axis in standard deviation units. Because all the distributions we consider
are elliptical, we only report results for % < 0. Student t distribution with 10 degrees of
freedom, Kotz distribution with the same kurtosis, DSMN with parameters α = 0.05 and the
same kurtosis and 3rd-order PE with the same kurtosis and c3 = −1.
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Figure 3: VaR, CoVaR and their 95% confidence intervals
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Notes: For Student t innovations with ν degrees of freedom, η = 1/ν. For DSMN in-
novations, α denotes the mixing probability, while the variance ratio of the two components
κ remains fixed at 0.25. For PE innovations, c2 and c3 denote the coeffi cients associated to
the 2nd and 3rd Laguerre polynomials with parameter N/2− 1, with c3 = −c2/3. Dotted
lines represent the 95% confidence intervals based on the asymptotic variance of the sequential
ML estimator for a hypothetical sample size of T = 1, 000 and N = 5. The horizontal line
represents the Gaussian VaR and CoVaR, which have zero standard errors.
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Figure 4: VaR (99%) estimators and confidence intervals
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Notes: For Student t innovations with ν degrees of freedom, η = 1/ν. For DSMN inno-
vations, α denotes the mixing probability, while the variance ratio of the two components κ
remains fixed at 0.25. For PE innovations, c2 and c3 denote the coeffi cients associated to the
2nd and 3rd Laguerre polynomials with parameter N/2− 1, with c3 = −c2/3. Confidence in-
tervals are computed using robust standard errors for a hypothetical sample size of T = 1, 000
and N = 5. SML refers to sequential ML, NP refers to the fully nonparametric procedure
based on the 1% empirical quantile of the standardised return distribution, while SNP denotes
the nonparametric procedure that imposes symmetry of the return distribution (see Section
4.3 for details). The blue solid line is the true VaR.
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Figure 5: Monte Carlo distributions of VaR and CoVaR estimators

True DGP: Student t with η0 = 0.1
(a) 99% VaR estimators (b) 95% CoVaR estimators
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True DGP: DSMN with α = 0.05 and κ = 0.2466
(c) 99% VaR estimators (d) 95% CoVaR estimators
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True DGP: PE with c2 = 2.9166 and c3 = −1
(e) 99% VaR estimators (f) 95% CoVaR estimators
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True DGP: Random sampling from empirical application data
(g) 99% VaR estimators (h) 95% CoVaR estimators
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Notes: 1,600 replications, T = 1, 000, N = 5. The central boxes describe the 1st and
3rd quartiles of the sampling distributions, and their median. The length of the whiskers is
one interquartile range. For Student t innovations with ν degrees of freedom, η = 1/ν. For
DSMN innovations, α and κ denote the mixing probability and the variance ratio of the two
components, respectively. For PE innovations, c2 and c3 denote the coeffi cients associated
to the 2nd and 3rd Laguerre polynomials with parameter N/2− 1. ML and SML denote
joint and sequential maximum likelihood estimator, respectively, while NP and SNP refers to
the nonparametric estimators. Vertical lines represent the true values. See Section 5.1 and
Appendix E.2 for a detailed description of the Monte Carlo study.
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Figure 6: Application to G-SIBS Euro zone banks

(a) The Data (b) EMU Bank Index, VaR (%)
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Notes: Sample: October 27, 1993 —August 29, 2012. For model specification see Section
6. Excess returns are computed by subtracting the continuously compounded rate of return
on the one-week Eurocurrency rate in DM/Euros applicable over the relevant week. Exposure
CoVaR figures (in percentage terms) are at the 5% level when the fall in the euro area bank
index exceeds its 5th percentile. ML and SML denote joint and sequential maximum likelihood
estimates, respectively.
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