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I’ll do my best, but don’t hold your breath

You should’ve known better!
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Motivation

• Nowadays, economic or finance theorists know more parametric
distribution theory than either theoretical or empirical
econometricians, unless they are Bayesian.

• A typical graduate student in a top PhD programme knows the
univariate normal distribution, possibly the multivariate one, and
the chi-square distribution, mostly because of their role in
asymptotic theory.

• This is even worse than when I was a undergraduate student
twenty years ago, because we also knew the t and F distributions.

• But these two distributions have long been forgotten because
nobody believes any longer in the assumptions underlying the
classical regression model.

• In fact, these days one doesn’t use OLS in public any more.
Instead, one applies GMM to the normal equations.



Motivation

• In contrast, economic theorists, especially those working in
information economics or learning, know the gamma distribution,
the beta distribution, and even the generalised inverse Gaussian
distribution.

• Similarly, many applied statisticians, including actuarial
scientists and those working on quality control, marketing, or
credit scoring, regularly use parametric models based on those
distributions.

• Moreover, they unashamedly use maximum likelihood methods
to estimate their parameters.

Why is this?



Motivation

• Certainly not because of computational issues:

1. From a numerical point of view, likelihoods are usually better
behaved than generalised minimum distance objective functions.

2. Besides, our laptops are far more powerful than the mainframes
the Apollo programme used to put the first man on the Moon.

• The main reason is that we want our empirical analysis to be
‘robust to misspecification’ at any cost, because economic
theory is usually silent about distributional characteristics.

• As a result, we use either semiparametric methods such as GMM
when we are interested in specific features of a distribution, or
fully non-parametric ones when we are interested in a functional.

But is this really the right thing to do? I’m not sure



Motivation

• Robust to influential observations is another sense of the same
word, but which is often incompatible with the previous one
because sample means are particularly sentitive to outliers.

• The usual asymptotic theory of semiparametric and
non-parametric estimators is often unreliable in finite samples.

• In fact, there are circumstances in which it simply doesn’t apply
because the required regularity conditions don’t hold.

• In any case, given that our datasets are finite, I don’t know that
we should have lexicographic preferences over consistent
estimators regardless of how inefficient they may be.



Motivation

Sampling distributions: Inconsistent vs. consistent estimator
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Motivation

Sampling distributions: Inconsistent vs. consistent estimator (100×T)
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How profitable is your personal equity plan?

• It’s the end of the year, and those of us who’re not looking for
our first job may wonder how much we should invest in personal
equity plans, if at all.

• Those who invested in a plan that tracked the Spanish stock
market over the last year should be very happy after seeing their
entitlement increased by 30%

• In contrast, those who invested in a guaranteed (i.e. riskless)
pension plan may be regretting not having invested in an equity
plan.

• But in a standard mean-variance framework it all depends on
one’s risk preferences and the expected return per unit of risk of
equities.



How profitable is your personal equity plan?
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How profitable is your personal equity plan?
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How profitable is your personal equity plan?

Optimal portfolio choice
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How profitable is your personal equity plan?

• While we should know our own risk preferences, we don’t really
know with certainty the true Sharpe ratio of the Spanish stock
market sm = µm/σm.

• Arguably, the most natural estimator is

ŝmT =
µ̂mT

σ̂mT
,

where:

µ̂mT =
1
T

T∑
t=1

rmt,

σ̂2
mT =

1
T

T∑
t=1

(rmt − µ̂mT )2.

• ŝmT is a consistent estimator of sm = µm/σm, with an
asymptotically normal distribution under weak assumptions.



How profitable is your personal equity plan?

• This is not surprising since it is a GMM estimator.

• In fact, it’s also both the Gaussian Pseudo-ML estimator and the
Semiparametric ML estimator. Therefore, it achieves the
semiparametric efficiency bound.

• But unfortunately, it’s not very precise.

• To give you an idea of how imprecise it is, I’ve conducted the
following experiment.

• I’ve assumed that rmt is i.i.d. with annual mean 7% and annual
standard deviation 14%, so that the true Sharpe ratio is .5 at an
annual frequency.

• Then I simulate 10 years of daily data many times, and in each
of those parallel universes I compute ŝmT , and draw the
corresponding mean-variance frontier.



How profitable is your personal equity plan?

Empirical mean-variance frontier
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How profitable is your personal equity plan?

GMM estimator of Sharpe ratio (ν = 8)
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How profitable is your personal equity plan?

• To reduce sample variability, I’ve considered two alternative
estimators:

1. Maximum likelihood based on the t distribution

2. Symmetric semiparametric estimator

• The MLE of µm is efficient when the return distribution is t,
consistent when it’s symmetric, converges to the GMME when
it’s platykurtic, and is inconsistent otherwise.

• The SSPE of µm is efficient when the return distribution is
symmetric, and inconsistent otherwise.

• The MLE of σ2
m is efficient when the return distribution is t,

converges to the GMME when it’s platykurtic, and is inconsistent
otherwise, although it can be bias-corrected under symmetry.

• The SSPE of σ2
m converges to the GMME when the return

distribution is symmetric, and is inconsistent otherwise.



How profitable is your personal equity plan?

Sharpe ratio estimators (ν = 8)
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How profitable is your personal equity plan?

Sharpe ratio estimators (ν = 4)
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How profitable is your personal equity plan?

Sharpe ratio estimators (normal-gamma)
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How profitable is your personal equity plan?

Sharpe ratio estimators (asymmetric t)
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Should you also invest in emerging markets?

• You’ve now decided to invest in a personal equity plan, but when
you go to your bank, your investment advisor, noticing your good
disposition, tries to convince you to invest in BRIC equities.
(Note: BRIC ≡ Brasil, Russia, India, China)

• She tells you that despite their higher volatility, they are sound
investments because:

1. they offer a commensurate expected rate of return,

2. they provide huge diversification benefits because they are
uncorrelated with the Spanish stock market.

• But is it really true?

• You go home and download data from the internet.
Unfortunately, you can only get the last two years of daily data.

• What can you do to decide?



Should you also invest in emerging markets?

• The first thing to note is that you shouldn’t simply look at
whether the slope of the empirical mean-variance frontier
increases, because it always does, even if the theoretical frontier
is unaffected.

• To convince you that what I’m saying is true I’ve conducted the
following experiment:

• I’ve assumed that you can invest in rmt and in three additional
assets, r1t, r2t, and r3t, which are i.i.d. with an annual mean of
0% and annual standard deviation of 28%, uncorrelated among
themselves and with the original asset, so that the true Sharpe
ratio doesn’t increase.

• Then I simulate 2 years of daily data many times, and compute
the original and augmented mean-variance frontiers, as well as
the incremental one, which corresponds to the differences between
r1t, r2t, and r3t and their best tracking portfolios based on rmt.



Should you also invest in emerging markets?

Empirical mean-variance frontier
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Should you also invest in emerging markets?

GMM estimator of incremental Sharpe ratio (ν = 8)
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Should you also invest in emerging markets?

• Instead, you should look at the means of the hedged portfolios

αi = µi −
σim

σ2
m

µm = µi − βimµm,

where
µi = E(rit),

σim = cov(rit, rmt),

and test whether H0 : αi = 0, (i = 1, 2, 3).

• You could do this with GMM by writing down the multivariate
version of the normal equations (f.o.c.) as moment conditions:

E


 1

rmt

⊗




r1t

r2t

r3t

−


α1

α2

α3

−


β1m

β2m

β3m

 rmt


 = 0.



Should you also invest in emerging markets?

• But there are other, potentially more efficient, alternatives:

1. Maximum likelihood tests based on the assumption that the
distribution of r1t, r2t and r3t conditional on rmt is a multivariate
student t, which can be easily robustified when the true
distribution is elliptical.

2. Symmetric semiparametric tests based on the assumption that
this conditional distribution is elliptical.

• Elliptical distributions generalise the multivariate normal
distribution, but at the same time they retain its analytical
tractability irrespective of the number of assets.

• Moreover, they guarantee that mean-variance analysis is fully
compatible with expected utility maximisation regardless of
investors’ preferences.



Should you also invest in emerging markets?

Elliptical densities
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Should you also invest in emerging markets?

Trivariate student t (ν = 8)
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Should you also invest in emerging markets?

Trivariate student t (ν = 4)
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Should you also invest in emerging markets?

Trivariate normal inverse Gaussian

0 5 10 15 20

−6

−4

−2

0

2

4

6

Nominal Size (%)

A
ct

ua
l S

iz
e 

−
 N

om
in

al
 S

iz
e 

(%
)

Trivariate Normal Inverse Gaussian distribution

t−ML
t−ML robust
GMM
SSP

0 5 10 15 20
0

10

20

30

40

50

Actual Size (%)

P
ow

er
 (

%
)

Trivariate Normal Inverse Gaussian distribution

t−ML
t−ML robust
GMM
SSP



Should you also invest in emerging markets?

Trivariate asymmetric t
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What happens when things go wrong?

• Imagine that you’ve now decided to invest in one of the BRIC
countries.

• Unfortunately, financial markets that show little correlation in
normal periods have a tendency to fall together during crisis
periods.

• For instance, when Russia defaulted in August 1998, most stock
markets around the world fell at unison.

• This is really terrible if you thought that you could eliminate
most of the risk of your portfolio by holding assets that are
seemingly independent (i.e. uncorrelated).

• Of course, there are several ways in which one could model ‘tail
dependence’.

• But in any case, such a phenomenon is something that the
multivariate normal distribution cannot account for, and
elliptical distributions struggle with.



What happens when things go wrong?

The Generalised Hyperbolic distribution is a multivariate infinitely
divisible distribution that nests as particular cases:

• Gaussian,

• Student t,

• Asymmetric Student t,

• Normal-Gamma mixture,

• Normal Inverse Gaussian,

and several other popular distributions.



What happens when things go wrong?

It can be generated as the following location-scale mixture of normals

ε∗=α + Υβξ−1 + ξ−
1
2 Υ

1
2 z,

where

z ∼ N(0, IN ),

ξ ∼ GIG (−ν, γ, δ),

so that

ε∗|ξ ∼ N(α + Υβξ−1,Υξ−1).

• α: location parameter,

• Υ: dispersion matrix,

• δ: scale parameter,

• ν and γ: tail shape parameters,

• β: skewness parameter.



What happens when things go wrong?

• I can always choose α and Υ so that the elements of ε∗ are
uncorrelated but not independent, with zero means and unit
variances.

• In general, the GH distribution induces “tail dependence”
through ξ, which can be asymmetrically calibrated with β.

• In this way, we can capture the empirically observed higher tail
dependence across stock returns in market downturns.



What happens when things go wrong?

GH densities
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What happens when things go wrong?
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κ

Definition: ρ̄(κ) =

 corr(ε∗1, ε
∗
2| ε∗1 > κ, ε∗2 > κ) if κ ≥ 0

corr(ε∗1, ε
∗
2| ε∗1 < κ, ε∗2 < κ) if κ < 0



What happens when things go wrong?

• In principle, we could be fully semi-parametric, and estimate

corr(ε∗1, ε
∗
2|ε∗1 < κ, ε∗2 < κ)

by computing the sampling analogue to this definition after
having estimated the means and standard deviations of the
observed variables.

• The problem is that for |κ| relatively large, say 2.5 standard
deviations, there are very few observations in the appropriate
region, as severe crises are rare (.37% in the case of the
asymmetric t, .0038% for the normal).

• In those circumstances, a flexible distribution such as the GH
offers a very useful alternative.



Conclusions

• Semiparametric methods such as GMM, together with fully
nonparametric procedures, have revolutionised the practice of
Econometrics.

• However, standard (i.e. T
1
2 ) asymptotic theory is often not very

reliable as an approximation to their finite sample behaviour.

• Maximum likelihood procedures based on a flexible parametric
distribution can provide useful alternatives if judiciously chosen.

• We need an alternative limiting theory to analyse the
consistency-efficiency trade-offs that they offer.

• In addition, there are situations in which we are interested in
characteristics of a distribution that go beyond its moments.

• In those cases, a flexible parametric distribution can also prove
very useful.
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