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Abstract

We derive the statistical properties of the SNP densities of Gal-
lant and Nychka (1987). We show that these densities, which are
always positive, are more flexible than truncated Gram-Charlier
expansions with positivity restrictions. We use the SNP den-
sities for financial derivatives valuation. We relate real and
risk-neutral measures, obtain closed-form prices for European
options, and analyse the semiparametric properties of our pric-
ing model. In an empirical application to S&P500 index op-
tions, we compare our model to the standard and Practitioner’s
Black-Scholes formulas, truncated expansions, and the Gener-
alised Beta and Variance Gamma models.
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1. INTRODUCTION

In recent years, many studies have attempted to overcome

the limitations of the popular normality assumption on the re-

turns of stocks and other financial assets, which is often re-

jected in the empirical finance literature even after controlling

for volatility clustering effects. Although this assumption may

still be reasonable if the interest focuses on the first two condi-

tional moments (see Bollerslev and Wooldridge 1992), in many

financial applications the features under study involve higher

order moments such as skewness and kurtosis. An important

example is option pricing theory. The Black and Scholes (1973)

pricing formula, which relies on the normality of returns, re-

mains the benchmark model due to its analytical tractability.

Unfortunately, this framework is unable to capture some im-

portant puzzles, such as smiles and smirks.

However, any successful generalisation of the Gaussian as-

sumption must satisfy two crucial requirements: modelling flex-

ibility and analytical tractability. Both needs are satisfied by the

Gram-Charlier expansions introduced in option pricing theory

by Jarrow and Rudd (1982), and more recently used by Corrado

and Su (1996, 1997), Capelle-Blanchard, Jurczenko, and Maillet

(2001), and Jurczenko, Maillet, and Negrea (2002a). As is well

known, many density functions can be expressed as a possibly

infinite expansion of the Gaussian density. In practice, however,

the expansion is usually truncated after the fourth power, even

though such truncated expansions often imply negative densities

over some interval of their domain of variation, as Jondeau and

Rockinger (2001) emphasize. This feature is particularly worry-

ing in option pricing applications because it allows for arbitrage

opportunities. For instance, the price of a butterfly spread with

positive payoff over an interval of negative density would neces-
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sarily be negative in those circumstances. As a solution to this

problem, Jondeau and Rockinger (2001) propose to restrict the

parameters of the expansion so that the density always remains

positive. Unfortunately, their approach is difficult to implement

even when the truncation order is low.

In this context, we propose the use of semi-nonparametric

distributions (SNP) as an alternative expansion of the Gaussian

density function that is always positive by construction. This

distribution was introduced by Gallant and Nychka (1987) for

nonparametric estimation purposes (see also Fenton and Gal-

lant 1996; Gallant and Tauchen 1999). However, it has not

been treated from a purely parametric point of view, that is, as

if it reflected the actual data generating process instead of an

approximating kernel. We assume that under the real measure

asset returns follow a SNP distribution conditional on the infor-

mation available at each point in time. We study first the sta-

tistical properties of this distribution, as well as its relationship

to the Gram-Charlier densities. Then, we combine it with an

exponentially affine assumption on the stochastic discount fac-

tor, which enable us to transform the real measure into the risk

neutral measure required for the valuation of derivative assets,

and obtain closed-form expressions for European option prices.

We also compare the SNP with two other popular distributions

in the option pricing literature: the Generalised Beta (GB) (see

Bookstaber and McDonald 1987; Liu et al. 2006, among oth-

ers); and the Variance Gamma (VG) model of Madan and Milne

(1991) and Madan, Carr, and Chang (1998). In addition, we use

the Marron and Wand (1992) test suite to assess the semipara-

metric properties of our option pricing model when the true

model is not SNP. We also assess the ability of our model to

fit the low frequency smiles generated by a high frequency SNP

process with stochastic volatility. Furthermore, we carry out an
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empirical application to the S&P 500 options data of Dumas,

Fleming, and Whaley (1998), in which we estimate the implied

volatilities and shape parameters of our model and evaluate the

performance of the SNP pricing formulas. Finally, we provide a

generalised version of the SNP distribution.

The paper is structured as follows. In the next section, we

study the statistical properties of SNP densities, and compare

them with those of Gram-Charlier expansions. In section 3., we

first relate the real and risk neutral measures, and then focus

on pricing European options. Section 4. studies the semipara-

metric properties of our methodology, while section 5. presents

the empirical application. Finally, in section 6. we present our

generalised SNP density, followed by our conclusions in section

7.. Proofs and auxiliary results can be found in appendices.

2. DENSITY DEFINITION

We want to analyse the statistical properties of the affine

transformation z = a + bx, when the density of x belongs to

the semi-nonparametric class introduced by Gallant and Nychka

(1987). Specifically,

f(x; ν) =
φ (x)

ν ′ν

(
m∑

i=0

νiHi (x)

)2

, (1)

where ν = (ν0, ν1, · · · , νm)′ ∈ Rm+1, φ (·) denotes the probabil-

ity density function (pdf) of a standard normal random vari-

able, and Hi (x) is the normalised Hermite polynomial of order

i. These polynomials can be defined recursively for i ≥ 2 as

Hi (x) =
xHi−1 (x) −

√
i− 1Hi−2 (x)√
i

, (2)

with initial conditions H0 (x) = 1 and H1 (x) = x. Importantly,

{Hi (x)}i∈N constitutes an orthonormal basis with respect to the

weighting function φ (x), as illustrated by the following condi-
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tion: ∫ +∞

−∞
Hi (x)Hj (x)φ (x) dx = 1(i = j)

where 1(·) is the usual indicator function. The change of vari-

able formula implies that the density function of z will be

g (z; ν, a, b) =
1

b

1

ν ′ν
φ

(
z − a

b

)[ m∑

i=0

νiHi

(
z − a

b

)]2

, (3)

where we could interpret a as a location parameter and b as a

scale parameter. Note that both (1) and (3) are homogeneous

of degree zero in ν, which implies that there is a scale inde-

terminacy that we must solve by imposing a single normalising

restriction on these parameters, such as ν0 = 1, or preferably

ν
′
ν = 1, which we can ensure by working with hyperspherical

coordinates (see e.g. Fang, Kotz, and Ng 1990, Theorem 2.11).

If we expand the squared expression in (1), we can obtain

the following result:

Proposition 1 Let x be a SNP random variable with density
f(x; ν) given by (1). Then:

f(x; ν) = φ (x)
2m∑

k=0

γk (ν)Hk (x) , (4)

where γ0 (ν) = 1,

γk (ν) =
ν
′Akν

ν ′ν
, k ≥ 1 (5)

and Ak is a (m+ 1) × (m+ 1) symmetric matrix whose typical
element is

aij,k =
(i!j!k!)1/2

(
i+j−k

2

)
!
(

i+k−j
2

)
!
(

k+j−i
2

)
!

if k ∈ Γ and zero otherwise, with

Γ =

{
k ∈ N : |i− j| ≤ k ≤ i+ j;

i− j + k

2
∈ N

}
.

For instance, the values of γk (ν) when m = 2 are:

γ1 (ν) =
2ν1(ν0+

√
2ν2)

ν
′
ν

, γ2 (ν) =
√

2(ν2

1
+2ν2

2
+
√

2ν0ν2)
ν
′
ν

,

γ3 (ν) = 2
√

3ν1ν2

ν
′
ν

, γ4 (ν) =
√

6ν2

2

ν
′
ν
.
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2.1 Moments of x and z

The first four non-central moments of x, µ′
x (k), can be ob-

tained by using the relationship between the powers of x and

the Hermite polynomials:

µ′
x (1) ≡ Ef (x) = Ef [H1 (x)] ,

µ′
x (2) ≡ Ef (x2) =

√
2Ef [H2 (x)] + 1,

µ′
x (3) ≡ Ef (x3) =

√
3!Ef [H3 (x)] + 3Ef [H1 (x)] ,

µ′
x (4) ≡ Ef (x4) =

√
4!Ef [H4 (x)] + 6

√
2Ef [H2 (x)] + 3,

(6)

where the operator Ef [·] takes the expectation of its argument

with respect to the density function f(x; ν) in (1). Then, from

the previous non-central moments, the corresponding central

ones, µx (k), can be easily obtained (see e.g. Stuart and Ord

1977). Finally, we can also compute the skewness and kurtosis

coefficients, denoted by sk and ku, respectively. But since µ′
x (k)

in (6) depends on {Ef [Hi (x)]}i∈N
, we first need to find these

moments:

Proposition 2 Let x denote the SNP random variable x with
density function (1). Then, the expected value of the k−th order
Hermite polynomial are given by:

Ef [Hk (x)] = γk (ν) , (7)

if k ≤ 2m, and zero otherwise, where γk (ν) is defined in (5).

On this basis, we can easily compute the first four non-

centred moments of x for the important special case of m = 2:

Lemma 1 If the density function of the random variable x is
given by (1) with m = 2, then

µ′
x (1) =

2ν1(ν0+
√

2ν2)
ν
′
ν

, µ′
x (2) =

2(ν2

1
+2ν2

2
+
√

2ν2ν0)
ν
′
ν

+ 1,

µ′
x (3) =

6ν1(ν0+2
√

2ν2)
ν
′
ν

, µ′
x (4) =

12(ν2

1
+3ν2

2
+
√

2ν2ν0)
ν
′
ν

+ 3.

More generally, we can show that:

Proposition 3 The moment generating function of the SNP
density (1) is Ef [exp(tx)] = exp (t2/2) Λ(ν, t), while its char-
acteristic function is ψSNP (it) = exp (−t2/2) Λ(ν, it), where

Λ(ν, t) =
2m∑

k=0

γk (ν)
tk√
k!
, (8)

γk (ν) is defined in (5), and i is the usual imaginary unit.
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Since z is an affine transformation of x, it is trivial to find

the non-central moments of z, µ′
z (k), as a function of those of

x. Specifically,

µ′
z (n) ≡ Ef [(a+ bx)n] =

n∑

i=0

(
n
i

)
an−ibiµ′

x (i) .

In addition, we can always choose the location and dispersion

coefficients a and b such that z has zero mean and unit variance.

In particular, if we denote by z∗ the standardised variable

z∗ =
x− µ′

x (1)√
µx (2)

, (9)

then its density function can be directly obtained from (3) with

a(ν) = −µ′
x (1) /

√
µx (2), b(ν) = 1/

√
µx (2). (10)

We can also use Proposition 3 to derive the distribution of

linear combinations of SNP variables. In particular, we can

show that the distribution of the sum of n iid SNP variables

of order m can be expressed as a Gram-Charlier expansion of

order nm that is always positive by construction.

Proposition 4 Define q =
∑n

k=1 pkxk, where {xk}k=1,··· ,n are
iid random variables whose distribution is a SNP of order m
with shape parameters ν. Then, the distribution of q is a Gram-
Charlier expansion of order 2mn whose density function can be
expressed as

ϕ (q) =
φ
(

q
‖p‖

)

‖p‖

2mn∑

j=0

dj(ν,p)Hj

(
q

‖p‖

)
, (11)

where p = (p1, · · · , pn)′ , ‖p‖ =
√∑n

k=1 p
2
k and

dj(ν,p) =
√
j
dj

dxj

{
k∏

i=1

[
2m∑

k=0

γk (ν)√
k!

(pix)
k

]}∣∣∣∣∣
x=0

(12)

We will exploit this property to analyse the effect of time

aggregation on SNP returns.
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2.2 Gram-Charlier expansion of the semi-

nonparametric density

Under certain regularity conditions (see e.g. Stuart and Ord

1977, p. 234), a density function h (y) can be expressed as the

product of a standard normal density times an infinite series of

Hermite polynomials:

h (y) = φ (y)
∞∑

k=0

ckHk (y) , (13)

ck =

∞∫

−∞

Hk (y)h (y) dy = Eh (Hk (y)) . (14)

This is the so-called Gram-Charlier series of Type A.

With this in mind, we will first determine the Gram-Charlier

expansion of the SNP density of z, and then we will particularise

it for the standardised random variable z∗ in (9). In the case of

z, we will use the fact that, according to (3) and (4), its density

can be written as

g (z; ν, a, b) =
1

b
φ

(
z − a

b

) 2m∑

i=0

γi (ν)Hi

(
z − a

b

)
, (15)

where γi(ν) is defined in (5). Then, if we compare (14) and

(15), we can write ck for z as

ck(ν) =
1

b

2m∑

i=0

γi(ν)

∞∫

−∞

φ

(
z − a

b

)
Hi

(
z − a

b

)
Hk (z) dz,∀k ≥ 0,

which, with the simple change of variable x = (z − a) /b, be-

comes

ck(ν) =
2m∑

i=0

γi(ν)Eφ [Hi (x)Hk (a+ bx)] , ∀ k ≥ 0, (16)

where Eφ [·] is an expectation with respect to the standard nor-

mal density. The following proposition gives a general formula

for these expectations:

Proposition 5 Let x ∼ N(0, 1) with density φ(x). Then:

Eφ [Hi (x)Hk (a+ bx)] =

√
k!

i!

⌊ k−i

2
⌋∑

j=0

Hk−i−2j (a)

j!
√

(k − i− 2j)!2j
bi+2j
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for i ≤ k and zero otherwise, where Hi (·) is the i-th order stan-
dardised Hermite polynomial in (2) and ⌊·⌋ rounds its argument
to the nearest integer toward zero.

In consequence, the coefficients of z defined in (16) will be

ck(ν) =

min(k,2m)∑

i=0

⌊ k−i

2
⌋∑

j=0

[
γi (ν)

j!2j

√
k!

(i!) (k − i− 2j)!

×Hk−i−2j (a) bi+2j

]
. (17)

Finally, we can easily find the coefficients of the Gram-Charlier

expansion of z∗ by substituting a and b by their respective values

in (10). This expansion will generally be infinite except for one

particular case. Specifically, if ν1 = ν2 = 0 and m > 2, then it

can be shown that ck(ν) = 0 for k > 2m, since a(ν) = 0 and

b(ν) = 1 in that case. Lim, Martin, and Martin (2005) have

explored this restricted parametrisation with m = 4 for option

pricing purposes. In this paper, though, we will not impose any

restrictions on the parameters of the SNP density.

2.3 Comparison with other distributions

Consider a truncated Gram-Charlier expansion of the form

h
(
z+
)

= φ
(
z+
)
[
1 +

n∑

i=3

ciHi

(
z+
)
]
. (18)

The moments of this distribution can be obtained by using the

relationships given in (6) and exploiting the orthonormality of

Hermite polynomials. In this sense, notice that (18) does not in-

clude the first and second Hermite polynomials (i.e. c1 = c2 = 0)

to ensure that this density has zero mean and unit variance by

construction. In addition, if n = 2m, (18) involves exactly the

same number of parameters as our standardised SNP variable

z∗. However, as Jondeau and Rockinger (2001) point out, it

is necessary to impose further restrictions on the parameters ci

(i = 3, 4, · · · , n) to ensure that the pdf in (18) is non-negative
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for all values of z+ ∈ (−∞,∞). Unfortunately, they only de-

termined those restrictions for n = 4, because it becomes ex-

ceedingly difficult to find them for higher n. In contrast, we

can leave the vector of parameters ν free, except for a scale re-

striction, because positivity is always satisfied by a SNP density

regardless of the expansion order.

Given that both z∗ and z+ have zero mean and unit variance,

one may ask which of them leads to more general higher order

moments. We will initially answer this question in terms of the

third and fourth moments that these distributions can generate

by plotting in Figure 1 the envelope of all the combinations of

skewness and kurtosis for m = 2, 3 and 4 and n = 4. We have

used the procedure devised by Jondeau and Rockinger (2001)

to obtain the frontier for a positive Gram-Charlier distribution

with n = 4, while we rely on (6) to represent the frontier of SNP

densities with m = 2, 3 and 4. To allow for ν0 = 0, we simulate

10 million parameters ν in the unit sphere and compute the

envelope of the values of skewness and kurtosis obtained from

the simulated parameters. In addition, we have computed the

regions of skewness and kurtosis generated by the VG distribu-

tion and the log of a GB variate. Finally, we also represent the

skewness-kurtosis frontier that no density function can surpass

(see e.g. Stuart and Ord 1977). The advantage of the density

in (18) is that the skewness and kurtosis coefficients can be di-

rectly obtained from c3 and c4. Nevertheless, the combinations

of skewness and kurtosis that the variable z+ can generate are

well within the combinations spanned by the SNP standardised

variable z∗ with exactly the same number of free parameters, as

we can see in Figure 1. For instance, while z+ could never be

platykurtic, z∗ can indeed have kurtosis coefficients lower than

3. More importantly, the differences in minimum and maximum

skewness are also substantial. Of course, by using the SNP in-
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stead of the Gram-Charlier expansion, we lose the direct inter-

pretation of the parameters as skewness and kurtosis. However,

this is also the case with many other non-Gaussian distributions,

such as symmetric and asymmetric Student t distributions, and

even the GB or VG ones. Finally, it is worth recalling that the

SNP distribution guarantees positive densities regardless of m.

In this sense, Figure 1 shows that we could achieve much more

flexibility with just one or two additional parameters. As for the

other two models, we can observe that neither the GB nor the

VG distributions can generate kurtosis below 3. It is also worth

remarking that although the VG can generate infinite kurtosis,

it cannot yield as high a skewness as the SNP for empirically

relevant levels of kurtosis. In this sense, it can be shown that the

frontier of the VG is obtained when this distribution converges

to a Gamma. The GB also has limited flexibility, although it

allows for higher skewness than Gram-Charlier expansions once

positivity restrictions are imposed. In this case, it can be shown

that the upper border of its frontier is obtained when the dis-

tribution of the log of a GB variate converges to an asymmetric

double exponential, which becomes a single exponential at the

two points of highest absolute skewness.

To get a clearer sense of the underlying differences between

the distributions of z+ and z∗, we can compare the Gram-

Charlier expansion of z∗ with (18). Since both variables are

standardised, both have c0 = 1 and c1 = c2 = 0. The third and

fourth coefficients are functions of the skewness and kurtosis of

the distributions, which we have already compared in the pre-

vious paragraph. Still, the main difference between z∗ and z+

is found in the higher order coefficients. In particular, whereas

(18) imposes that ck = 0 for all k > n, such a restriction no

longer holds for z∗.
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3. OPTION VALUATION

3.1 From the real to the risk neutral mea-

sure, and vice versa

Consider a frictionless market with a risk free asset and a

risky asset with price St at time t. For any T > t, we can

always express ST in terms of St under the real measure P as:

ST ≡ St exp
[(
µt − σ2

t /2
)
τ + σt

√
τz∗
]
, (19)

where τ = T−t and z∗ is a random variable with zero mean and

unit variance conditional on the information available at time t.

In this context, µt and σt, which in general will be functions of

the information known at t, represent the conditional mean and

volatility per unit of time of log(ST/St). In what follows, we will

assume that z∗ = a (νt) + b (νt)x
P, where a (νt) and b (νt) are

defined in (10), and xP is a SNP variate with shape parameters

νt. With this notation, we can write the log-return as yT =

log(ST/St) = δPt+λPtx
P, where δPt = (µt − σ2

t /2) τ+σt

√
τa (νt)

and λPt = σt

√
τb (νt).

Our solution to the option pricing problem will be based on

the use of a stochastic discount factor with an exponential affine

form:

Mt,T = exp(αtyT + βtτ). (20)

where again αt and βt can be functions of the information known

at time t. Such a specification corresponds to the Esscher trans-

form used in insurance (see Esscher 1932). In option pricing

applications, this approach was pioneered by Gerber and Shiu

(1994), and has also been followed by Buhlman, Delbaen, Em-

brechts, and Shyraev (1996, 1998), Gourieroux and Monfort

(2006a,b) and Bertholon, Monfort, and Pegoraro (2003) among

others. The following result provides the conditions for absence

of arbitrage.
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Proposition 6 Let rt be the risk-free rate and It the informa-
tion set at time t. If the conditional distribution of the log-return
of the risky asset is a SNP of order m, then the stochastic dis-
count factor (20) satisfies the arbitrage free conditions,

EP [Mt,T exp(rtτ)| It] = 1, EP [Mt,T exp(yT )| It] = 1, (21)

if and only if

2m∑

k=0

γk (νt) (αtλPt)
k

√
k!

=

exp

[
−αtδPt −

1

2
α2

tλ
2
Pt − βtτ − rtτ

]
, (22)

2m∑

k=0

γk (νt) (1 + αt)
k λk

Pt√
k!

=

exp

[
− (1 + αt) δPt −

1

2
(1 + αt)

2 λ2
Pt − βtτ

]
. (23)

From these two constraints, we can easily express βt as a

function of αt. Hence, αt can be obtained by solving a single

non-linear equation, which is an implicit function of the remain-

ing parameters of the model.

In this context, if Q denotes the risk neutral measure whose

numeraire is the risk free asset, the real and risk-neutral mea-

sures can be easily related by means of the Radon-Nykodym

derivative, which in this case is proportional to the discount

factor
dQ

dP
=

Mt,T

EP (Mt,T )
.

Hence

EQ [̥ (ST ) |It] = EP

[
dQ

dP
̥ (ST ) |It

]
, (24)

where ̥ (·) is an arbitrary function and EP (Mt,T |It) =

exp(−rtτ), so that the discount factor correctly prices the risk-

free asset. As a result, we can obtain the risk-neutral density

from (24) as

fQ (yT |It) = exp(rtτ)Mt,Tf
P (yT |It) . (25)

On this basis, we can fully characterise the risk-neutral mea-

sure as follows:
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Proposition 7 If the asset price ST is given by (19) under the
real measure P, where the conditional distribution of its log re-
turn between t and T is a SNP of order m with shape parameters
νt, then it can be written under the risk neutral measure Q as

ST = St exp

[(
µQ

t −
(
σQ

t

)2

2

)
τ + σQ

t

√
τκ∗

]
, (26)

where

µQ
t = µt +

σ2
t

2

[(
b (νt)

b (θt)

)2

− 1

]

+
σt√
τ

[
a (νt) − a (θt)

b (νt)

b (θt)

]
+ αtσ

2
t b

2 (νt) , (27)

σQ
t = σtb (νt) /b (θt) , (28)

and κ∗ is a standardised SNP variable of order m with shape
parameters
θt = (θ0t, θ1t, · · · , θmt)

′, such that

θit =
m∑

k=i

νkt

(k − i)!

√
k!

i!
(αtλPt)

k−i . (29)

Therefore, in a SNP context the change of measure affects

not only the mean and the variance of the log price, but also the

higher moments, as can be seen from the differences between θt

and νt. For the case ofm = 2, for instance, we can show that the

relation between θt and νt is θ0t = ν0t +ν1tαtλPt +ν2tα
2
tλ

2
Pt/

√
2,

θ1t = ν1t + ν2t

√
2αtλPt and θ2t = ν2t. However, note that the

SNP distribution is shared by the real and risk-neutral mea-

sures. Also, it is important to emphasise that this change of

measure is always feasible because there are no restrictions on

the shape parameters of the SNP distribution. Our results can

be extended to more complicated specifications of the stochas-

tic discount factor. For instance, an exponential quadratic form

would also yield a SNP distribution of the same order under

the risk-neutral distribution (the details are available upon re-

quest). In those cases, though, we would need to consider a

larger number of assets in order to identify the parameters of

the pricing kernel.
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Obviously, our framework also allows us to value derivative

assets by focusing on the risk-neutral measure directly without

any reference to its relationship with the real measure, as in

Jondeau and Rockinger (2001) or Jurczenko, Maillet, and Ne-

grea (2002a,b). To follow this second approach, we just have to

regard θt, µ
Q
t and σQ

t as the structural parameters. The follow-

ing proposition gives the expression that the risk-neutral drift

must have to satisfy the martingale restriction (see Longstaff

1995):

Proposition 8 If asset price ST is given by (26) under the risk-
neutral measure Q, where the conditional distribution of its log
return between t and T is a SNP of order m with shape parame-
ters θt, then the drift µQ

t will satisfy the martingale restriction
if and only if:

µQ
t = rt − (1/τ) log Λ(θt, λQt)

−(1/τ)
[
σQ

t

√
τa (θt) + (1/2)

(
σQ

t

)2
τ
(
b2 (θt) − 1

)]
, (30)

where λQt = σQ
t

√
τb (θt) and Λ (·, ·) is defined in (8).

Not surprisingly, we show in appendix C that (27) and (30)

coincide, which confirms that both strategies are indeed equiv-

alent. This equivalence result has important computational ad-

vantages in empirical applications such as ours that only use

option price data, because it allows one to estimate the option

values from the risk neutral parameters without having to solve

the nonlinear equations (22) and (23) within the optimisation

algorithm. At the same time, if we had data on the underly-

ing we could obtain the implied real-measure parameters. In

particular, for a given drift µt, risk-free rate rt and risk neutral

parameters σQ
t and θt, we can recover the parameters of the real

measure σt and νt, together with the coefficient of relative risk

aversion αt, from the following system of equations

(
µt − σ2

t /2
)
τ + σt

√
τa (νt) = δQt − αtλ

2
Qt,

σt

√
τb (νt) = λQt,

14



νit =
m∑

k=i

θit

(k − i)!

√
k!

i!
(−1)k−i (λQtαt)

k−i , (31)

where δQt =
(
µQ

t − σQ 2
t /2

)
τ+σQ

t

√
τa (θt). Finally, the discount

factor βt can be obtained from either (22) or (23).

3.2 Option pricing

Let Ct be the value at time t of a European call option with

strike price K and expiration at time T , and let St denote the

underlying asset value. We can express Ct as

Ct = exp(−rtτ)EQ

[
(ST −K)+

∣∣ It
]
, (32)

where (·)+ = max (·, 0). It is important to emphasise again the

conditional nature of (32), which implies that all the parameters

of the model can potentially depend on the information available

at time t. If define the region A = {ST > K} we can rewrite

(32) as

Ct = exp(−rtτ)EQ [ST1(A)| It]

−K exp(−rtτ)EQ [1(A)| It] . (33)

Following Geman, Karouri, and Rochet (1995), we can fur-

ther simplify the calculations by changing the numeraire to the

ratio of the risky asset prices ST/St, which gives an alternative

risk-neutral measure Q1. Then, if we use the Radon-Nikodym

derivative:
dQ

dQ1

=
BT

Bt

St

ST

= exp(rtτ)
St

ST

, (34)

we can easily express any expectation under Q in terms of Q1.

Specifically, we will have that

EQ [ST1(A)| It] = EQ1

[
dQ

dQ1

ST1(A)

∣∣∣∣ It
]

= St exp(rtτ)EQ1
[1(A)| It] ,

which, once introduced in (33), gives us the general formula

Ct = StEQ1
[1(A)| It] −K exp(−rtτ)EQ [1(A)| It]

= St PrQ1
[ST > K| It] −K exp(−rtτ) PrQ [ST > K| It] . (35)
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The analytical tractability of the SNP distribution allows us

to obtain closed form expressions for the probabilities in (35):

Proposition 9 The price at time t of a European call option
with strike K written on the stock ST defined by (26) under the
risk-neutral measure can be expressed as:

CSNP
t = St PrQ1

[x > dt| It]
−K exp(−rtτ) PrQ [x > dt| It] , (36)

where

PrQ [x > dt| It] = Φ (−dt) + φ (dt)
2m∑

k=1

γk(θt)√
k
Hk−1 (dt) ,

PrQ1
[x > dt| It] = exp(−rtτ + δQt)

2m∑

k=0

γk(θt)I
∗
k,t,

I∗k,t = 1√
k

exp(λQtdt)Hk−1 (dt)φ (dt) +
λQt√

k
I∗k−1,t

I∗0,t = exp(λ2
Qt/2)Φ (λQt − dt) ,

(37)

δQt =

(
µQ

t − σQ2
t

2

)
τ + a(θt)σ

Q
t τ,

dt =
log(K/St) − δQt

λQt

; λQt = b(θt)σ
Q
t

√
τ

and Φ (·) is the cumulative distribution function of the standard
normal density.

As expected, (36) reduces to the Black and Scholes (1973)

formula when θ0t = 1 and θkt = 0 ∀k ≥ 1. Importantly, if we

treat the coefficients γk of the Gram-Charlier expansion (4) as

shape parameters themselves, instead of functions of either νt or

θt, we can show that (36) is also valid when the distribution of

the underlying asset return is a finite Gram-Charlier expansion.

As a consequence, we can use Proposition 9 to obtain closed

form option prices when returns follow a high frequency process

with iid SNP innovations, since Proposition 4 shows that their

distribution at low frequencies is a Gram-Charlier expansion.

In Figure 2 we compare the range of call prices that the SNP

density can produce with the corresponding ranges obtained for

the Gram-Charlier expansion with positivity restrictions and the

GB model. Not surprisingly, the higher flexibility of the SNP in
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modelling skewness and kurtosis that we saw in Figure 1 results

in a wider range of call prices. The only exception is the VG

model, which can reach the arbitrage bounds, but only under the

limiting case in which the underlying distribution converges to

a Bernoulli whose skewness tends to +/- infinity. Importantly,

a larger value of m also leads to an SNP with even broader

range. Nevertheless, there is a close relationship between the

different pricing models: the Gram-Charlier call price formula

can be obtained as a fourth-order Taylor expansion of (36), while

Black-Scholes corresponds to a second-order one (see appendix

A for further details).

4. SEMIPARAMETRIC PRO-

PERTIES OF THE SNP

OPTION PRICING MODEL

4.1 Estimation with a misspecified model

Fenton and Gallant (1996) and Gallant and Tauchen (1999)

used the Marron and Wand (1992) test suite to analyse the semi-

parametric properties of SNP distributions in density estimation

and in the implementation of the Efficient Method of Moments,

respectively. However, their semiparametric properties in op-

tion pricing applications have not been studied. In this section,

we will assess the performance of our option pricing model when

the true distribution is not SNP.

Specifically, we will assume that the true distribution of the

underlying asset return is one of the first nine non-Gaussian dis-

tributions proposed by Marron and Wand (1992). For each of

them, we generate 1000 call option prices from the true model,

with a range of moneyness uniformly distributed between ±3

times the standard deviation of the underlying asset return.

Finally, we estimate the parameters of the following misspec-

ified models by minimising the root mean square pricing errors
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(RMSE’s): Black-Scholes, Gram-Charlier with two shape para-

meters, SNP with m = 2, and SNP of order m∗ such that the

RMSE divided by the mean option price is less than 10 basis

points.

Some selected results are displayed in Figure 3. The left pan-

els show the shape of the true density, whereas the right panels

display the true implied volatilities together with the ones esti-

mated with the misspecified models. Since none of these models

is Gaussian, Black-Scholes performs poorly in most cases. The

models with two shape parameters perform reasonably well in

some examples, such as the skewed and kurtotic unimodal cases.

However, in some other examples, such as the strongly skewed,

the Gram-Charlier parameter estimates cannot guarantee the

positivity of the density. The consequence is that Gram-Charlier

implied volatilities suddenly jump to zero for some ranges of the

moneyness. In contrast, our pricing model does not suffer from

this restriction. Of course, if we let m→ ∞ then we will be able

to exactly reproduce all the volatility smiles. However, we are

able to show that even for finite m, the SNP already performs

very well. In this sense, we can check that we obtain substantial

improvements in fit in all cases as we increase the order of the

SNP.

4.2 Temporal aggregation

From Proposition 4, we know that the distribution of ag-

gregated SNP returns is not a SNP of the same order, not even

when they are iid. In this subsection, we assess the ability of

our model applied to low frequency data to fit option prices

that have been generated with a high frequency process with

SNP log-returns. To do so, we model the weekly process of log-

returns with a non-iid SNP distribution of order m = 2, whose

volatility follows a persistent binary Markov chain. The skew-
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ness and kurtosis of this process conditional on the volatilities of

the two states that we consider are characterised by the shape

parameters of the SNP distribution, while the probabilities of

remaining in each of these states determine the unconditional

variance and the persistence of the stochastic volatility. All

these parameters have been calibrated using S&P 500 weekly

return data from 1950 to 2006. Although for the purposes of

our exercise we could have considered a continuous distribution

for volatility, we have chosen a Markov chain only because we

can obtain closed form option prices. Specifically, we consider

every possible volatility path that the Markov chain can gener-

ate. Along any of those paths, Proposition 4 implies that the

distribution of the log return between the initial and final date

is just a Gram-Charlier expansion, for which Proposition 9 ap-

plies if we impose (30) to ensure that the martingale restriction

is satisfied. Finally, we can express the call price as a weighted

sum of the option prices in each possible path, with weights that

correspond to their unconditional probabilities of occurring. We

have generated from this process 1000 option prices maturing

in one and three months with the same range of moneyness as

in the previous subsection. We fit SNP’s of increasing order to

these prices until the RMSE divided by the mean option price

is less than 10 basis points.

As shown in Figure 4, a SNP with m = 4 is enough to yield a

RMSE below our target for both maturities. This is somewhat

surprising if we take into account that, for a given volatility

path, the distribution of the one and three month log-returns

are Gram-Charlier expansions of order 16 and 48, respectively

(see Proposition 4). Thus, we believe that the time incoherence

problem should not be an issue of major concern in our context.

We can also notice in Figure 4 the flattening of the smile at the

longer horizon, which is consistent with the empirical evidence
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(see e.g. Das and Sundaram 1999).

5. EMPIRICAL PERFORMANCE

OF SNP OPTION PRICING

In this section, we apply the SNP option valuation formula

(36) in Proposition 9 to S&P 500 index options using the same

database as Dumas, Fleming, and Whaley (1998). Option prices

were collected every Wednesday between 2:45 p.m. and 3:45

p.m. from June 1988 to December 1993, which makes a total

number of 292 days. Options are European-style and expire on

the third Friday of each contract month. We will focus on call

options, and use the bid-ask mid price for estimation purposes.

The riskless interest rate will be proxied by the T-bill rate im-

plied by the average of the bid and ask discounts reported in the

Wall Street Journal. To account for the presence of dividends,

the implied forward price is computed as the current stock price

St minus the present value of dividends D̄t times the interest ac-

crued until maturity, i.e. Ft,T = (St − D̄t) exp(rtτ) (see Dumas,

Fleming, and Whaley 1998, for further details).

We will compare the performance of the SNP option val-

uation framework with the following competing models: the

standard Black and Scholes (1973) model, the Gram-Charlier

expansion with positivity restrictions, the GB and VG mod-

els, and finally a variant of the Black-Scholes model where the

volatility is assumed to be a quadratic function of moneyness.

We will call this methodology Practitioners’ Black-Scholes, a

name inspired by its wide use in the financial industry. In order

to guarantee positivity, we will consider the parametrisation

σ(x) = ρ0 + ρ1(x− ρ2)
2 (38)

where ρ0 > 0, ρ1 ≥ 0 and x = Ft,T/K. Finally, note that since

we are using implied forward prices, an adjustment in the spirit
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of Black (1976) is needed in all cases.

We consider separate estimations for short and long maturi-

ties. Specifically, we estimate the implied volatility and the re-

maining shape parameters of each model by minimising the sum

of squared pricing errors between the observed option prices and

the ones implied by the models. To select the short maturity

group, we begin by considering call options that mature in 45

days for the first day in the sample. We track those options

every week until two weeks before they expire. Then, we move

to the next group of options that are 45 days away from expira-

tion and start the tracking process again. At the end, we have

data on 3,462 call option prices with median time to expiration

of 24 days, and a number of options per day that ranges from

4 to 25, with a median of 11. In the long maturity group we

follow an analogous selection process. In particular, we have

selected 4,306 call option prices with a median time to maturity

of 150 days. The number of prices per day also ranges between

4 and 25, but the median is now 15. Our empirical results are

essentially unaffected by conditioning our estimation procedure

on having at least 6 or 7 options per day. The main reason

is that only 11 (10) out of the 292 days in our database have

less than 6 options available across strikes for the short (long)

maturity group.

Tables 1a to 1d report the RMSE’s of the six competing

models when we allow all the parameters of the conditional dis-

tribution of returns to vary each Wednesday, which is consistent

with the conditional nature of our pricing framework. We also

provide information on the degree of fit achieved for different

degrees of moneyness using the six categories proposed by Bak-

shi, Cao, and Chen (1997), together with the number of options

in each category. Tables 1a and 1c report in-sample RMSE’s

based on the first four years of data. In contrast, Tables 1b and
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1d report out-of-sample results based on pricing errors for each

Wednesday in the last year of the sample using the parameters

estimated on the previous Wednesday. In the short maturity

group, Practitioners’s Black-Scholes and the SNP are the two

best performing models in-sample, followed by the VG and GB

models. However, if we look at the out-of-sample results, we

can observe that Practitioner’s Black-Scholes shows a strong

parameter instability, whereas the other three models are much

more stable. In the long maturity group, again the SNP, GB

and VG models yield the lowest RMSE’s, although VG yields a

slightly better fit in this case. Nevertheless, the differences be-

tween these three models are very small, whereas the RMSE’s

of the Black-Scholes, Gram-Charlier with positivity restrictions

and Practitioners’ Black-Scholes models are clearly higher.

In Figures 5a and 5b we have plotted the skewness and kurto-

sis values implied by the SNP, Gram-Charlier with positivity re-

strictions, GB and VG models for each day in the in-sample pe-

riod. Several important patterns arise from these figures. First,

there is high dispersion in the estimated higher order moments,

although skewness is usually negative and kurtosis is typically

higher than 3. Second, skewness and kurtosis tend to be lower

when the time to expiration is longer. Furthermore, skewness

and kurtosis in Gram-Charlier densities with positivity restric-

tions are usually on the frontier of values compatible with these

densities. This is also observed with the VG and specially with

the GB model. In particular, market prices often suggest a more

(negative) skewness than these models are able to account for.

However, some SNP estimates are also located on the frontier,

especially in the short maturity group. Although we could easily

enlarge the SNP frontier by simply increasing the order m (see

Figure 1), it is interesting to analyse in more detail the possible

sources of the high sampling variability.
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To do so, we have carried out the following bootstrap exer-

cise. First, we group the SNP pricing errors obtained for short

maturities in the six moneyness categories already considered.

Then, we simulate prices for a specific but broadly representa-

tive day (November 13, 1991), by adding random pricing errors

to the 19 prices of that day estimated with the SNP model. In

this sense, we sample the errors that we add to each price from

the same moneyness category to which that price belongs. In

this way, we take into account possible distributional differences

between pricing errors for, say, deep in the money and out of the

money options. Finally, we re-estimate the SNP model on the

simulated data. We plot the implied skewness and kurtosis for

1,000 such simulations in Figure 5c. As we can observe, the es-

timates are again highly disperse, and basically cover the whole

region of negative skewness. Nevertheless, the true option prices

have constant parameters by construction, which approximately

correspond to skewness of −1.5 and kurtosis of 7.7 (see Figure

5c).

Therefore, it may well be the case that even if the true para-

meters are constant, the high variation in skewness and kurtosis

that we observe in Figures 5a and 5b simply results from the

relatively low number of prices with which we are estimating the

daily models. For that reason, we also study the performance

of all the different models under the assumption that the con-

ditional distribution of standardised log-returns (or ρ1 and ρ2

in (38)) is time invariant, while volatility (or the intercept ρ0 in

Practitioner’s Black-Scholes) is allowed to change over time as

before. Again, we carry out an in-sample and an out-of-sample

analysis, which show that the SNP, GB and VG models perform

more or less on the same level, while the remaining models yield

less satisfactory results (see Tables 2a to 2d). We can also note

that, by increasing the order of the SNP we can improve its

23



performance without deteriorating its out of sample stability.

If we compare the SNP pricing errors in Tables 2b and 2d

with those of Tables 1b and 1d, we can observe that the as-

sumption of constant shape parameters does indeed yield better

out-of-sample results. Importantly, the SNP with fixed parame-

ters generally performs better out-of-sample than the remaining

models with time varying parameters. In terms of skewness and

kurtosis, Figure 5d shows that SNP estimations are no longer

at the frontier. In contrast, Gram-Charlier and GB estimates

are very close or exactly on their respective frontiers.

As a sanity check, Figure 6 confirms that the main differences

between Black-Scholes and the remaining non-Gaussian models

lie in the tails of the distributions, and not so much in the

temporal evolution of the option-implied volatilities.

Another interesting issue is whether the main reason for the

rejection of the Black-Scholes model is skewness or excess kur-

tosis. To find out, we have re-estimated our SNP model for

m = 2 with fixed parameters imposing zero skewness first, and

then kurtosis equal to 3. Interestingly, it turns out that when

we force the skewness to be zero we obtain the Black-Scholes

special case. In contrast, if we fix the kurtosis to 3, we obtain

substantial negative skewness for both the short and long ma-

turity groups. Hence, it seems that negative skewness plays a

more fundamental role in determining option prices than excess

kurtosis. This result is likely to be related to the specific fea-

tures of equity index options, which are typically characterised

by significant smirks rather than purely symmetric smiles, es-

pecially after the 1987 stock market crash (see e.g. Brown and

Jackwerth 2004). However, it is beyond the scope of this pa-

per to assess whether this result is specific to the equity-index

market.

Finally, we compare the estimated conditional risk-neutral
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densities in Figures 7a to 7d for the same day as in the boot-

strap exercise, having obtained the density implied by the Prac-

titioner’s Black-Scholes model from the second derivative of the

call price with respect to the strike (see Breeden and Litzen-

berger 1978). All the models except Black-Scholes imply neg-

atively skewed and peaked densities, but they are reasonably

similar at the centre, except for the much higher peaks in the

VG densities. In fact, it turns out that this density has a

pole near zero for the long maturity group. However, zooms of

the left tails show that the Practitioner’s Black-Scholes model

attaches unreasonably high probabilities to extreme negative

events. This result is consistent with the fact that the Practi-

tioner’s Black-Scholes method gives relatively good results in-

sample but unrealistic implications for out-of-the-money calls.

In Figure 8 we compare the smiles that each model can generate

with the bid, ask and mid-price quotes for our chosen represen-

tative day. This figure shows a highly asymmetric smile, which

Practitioner’s Black-Scholes tries to fit with quadratic curve, at

the cost of not providing very reliable results at the extremes

(see in particular the out-of-the money area). This picture also

shows that the rather limited amount of skewness allowed by

“positive” Gram-Charlier densities prevents them from repro-

ducing the empirical smile as we get deeper in the money. How-

ever, lack of liquidity is stronger in deep in-the-money options,

so the real importance of this result must be taken with some

caution.

6. EXTENSIONS

The SNP density of order m is constructed by multiplying

the Gaussian density by a squared polynomial of order m. The

fact that the polynomial of the expansion is a perfect square

is a sufficient but not necessary condition for positivity of the
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final density. Hence, we can create a generalised SNP (GSNP)

density by multiplying the Gaussian density with an otherwise

unrestricted positive polynomial P2m(x) of order 2m. This dis-

tribution will include as particular cases both the SNP and the

Gram-Charlier density with positivity restrictions.

The positivity of P2m(x) is ensured if its roots are either real

and double, or complex conjugates. In contrast, in the SNP

case the complex roots must always be double. Meddahi (2001)

shows that a necessary and sufficient condition for P2m(x) to

be positive is that it can be written as the sum of two squared

polynomials of order m.

Interestingly, we can interpret the GSNP density as a mix-

ture of two SNP densities with the same location and scale:

Proposition 10 The GSNP density can be written as

fGSNP (x; ν1,ν2) = p(ν1,ν2)f(x; ν1) + [1 − p(ν1,ν2)]f(x; ν2)

where ν1 and ν2 are vectors of dimension m and m− 1, respec-
tively, f(x; ν1) is defined in (1), and

p(ν1,ν2) =
ν
′
1ν1

ν ′
1ν1 + ν ′

2ν2

This interpretation can be exploited to extend the results of

the paper to this generalised class of distributions. Nevertheless,

despite the increased generality of the GSNP, we have found

that it does not seem to provide a higher flexibility in terms

of skewness, kurtosis or range of option prices than a standard

SNP density of the same order. A more thorough study of the

characteristics of the GSNP density is left for future research.

7. CONCLUSIONS

The SNP distribution was introduced by Gallant and Ny-

chka (1987) for nonparametric estimation purposes. In contrast,

we propose to use it as a parametric model. This distribution

shares the analytical tractability of truncated Gram-Charlier

expansions, but its density is always positive.
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We obtain its moments, show its flexibility in terms of skew-

ness and kurtosis and derive the distribution of linear combina-

tions. Next, we focus our attention on option pricing, and show

that if the log of the underlying asset price has a conditional

SNP distribution under the real measure, and the stochastic

discount factor is exponentially affine, then the log of the un-

derlying asset price will also have a conditional SNP distribution

of the same order under the risk-neutral measure. On this basis,

we obtain closed form expressions for European option prices.

We also show that our SNP option pricing formula can approx-

imate arbitrarily well the prices of options whose true densities

are not SNP. Furthermore, we apply our pricing formulas to ob-

tain exact option prices in a high frequency SNP model. In this

sense, we show that a low order SNP can approximate very well

the behaviour of low frequency option prices generated by a sto-

chastic volatility high frequency process with SNP innovations.

Finally, we carry out an empirical application to the S&P

500 options data of Dumas, Fleming, and Whaley (1998). We

compare the performance of our pricing formulas with the Black

and Scholes (1973) model, the Practitioner’s Black-Scholes pro-

cedure, the Gram-Charlier density with positivity restrictions,

as well as the GB and VG models. We estimate the shape pa-

rameters and the implied volatility that minimise the sum of

squared pricing errors of these models. We find that the SNP,

together with the GB and the VG, are the best performing mod-

els, both in and out of sample. We also find a high dispersion in

the daily estimates of skewness and kurtosis, which is probably

due to sampling variability. In this sense, we find that the pric-

ing performance of our model improves out-of-sample if we keep

the shape parameters constant over time. It is also worth men-

tioning that skewness seems to be relatively more important

than excess kurtosis for the empirical rejection of the Black-
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Scholes model. This result is probably due to the asymmetric

smiles that are typically observed for equity index options.

We propose a generalised version of the SNP distribution

that nests all positive Gram-Charlier expansions. We show that

it can be generated as a mixture of two SNP variables with the

same location and scale, which allows us to extend our previous

results to this density.

A fruitful avenue for future research would be to exploit the

relationship between real and risk-neutral measures in the esti-

mation of our option pricing model by combining data on the

underlying asset price, which is informative about the real mea-

sure, with option price data, which contains information about

the risk-neutral measure (see Jackwerth 2000). It would also be

interesting to explore possible time varying specifications for the

parameters of the model, such as GARCH parametrisations for

the volatility (see Heston and Nandi 2000), and analogous exten-

sions for the remaining shape parameters, as in Hansen (1994)

or Jondeau and Rockinger (2005). Similarly, it would also be

worth exploring the flexibility of the SNP and generalised SNP

distributions for risk-management purposes.
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APPENDIX

A RELATIONSHIP WITH GRAM-

CHARLIER OPTION PRICING

MODELS

We can express (36) in terms of the infinite Gram-Charlier

expansion the SNP distribution as follows:

Proposition 11 The call price CSNP
t in (36) can be rewritten

in terms of an infinite expansion CSNP
t = ξ0t +ξ3tskt +ξ4t(kut−

3) + ζt, where

ζt = e−rtτ

∞∑

k=5

ck(θt)

∫ ∞

ωt

(ST (κ∗) −K)Hk (κ∗)φ (κ∗) dκ∗,

ξ0t = Ste
(µQ

t
−rt)τΦ (d∗1t) −Ke−rtτΦ

(
d∗1t − σQ

t,τ

)
,

ξ3t = (1/3!)σQ
t,τSte

(µQ
t
−rt)τ

×
[
σQ 2

t,τ Φ (d∗1t) +
(
2σQ

t,τ − d∗1t

)
φ (d∗1t)

]
,

ξ4t = (1/4!)σQ
t,τSte

(µQ
t
−rt)τ

×
[
σQ 3

t,τ Φ (d∗1t) +
(
3σQ 2

t,τ − 3d∗1tσ
Q
t,τ + d∗21t − 1

)
φ (d∗1t)

]
,

ωt = σQ
t,τ − d∗1t, σ

Q
t,τ = σQ

t

√
τ ,

d∗1t = [log (St/K) +
(
µQ

t + σQ 2
t /2

)
τ ]/σQ

t,τ and ST (κ∗), defined
in (26), is regarded as a function of the standardised random
variable κ∗, while the coefficients ck(θt) are given in (17).

We can use Proposition 11 to relate our pricing model to the

model of Corrado and Su (1996, 1997), who consider a fourth

order Gram-Charlier density (ck = 0, for k ≥ 5 in (13)), without

imposing positivity restrictions. In this respect, it is important

to mention that the original Corrado-Su formula, apart from

containing a mistake in the definition of the Hermite polyno-

mials, does not satisfy the martingale restriction (32). Both

problems are dealt by Jurczenko, Maillet, and Negrea (2002b).

The following result shows that the martingale restriction in

Jurczenko, Maillet, and Negrea (2002b) can be regarded as a

truncated version of our drift (30):

Lemma 2 The drift of the risk neutral price model can be writ-
ten as µQ

t = rt

− (1/τ) log
[
1 + (skt/3!)σQ 3

t,τ + ((kut − 3)/4!)σQ 4
t,τ + o

(
σQ 4

t,τ

)]
.
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On this basis, it is easy to show that the modified Corrado-Su

formula is an approximated version of our call formula in which

we only retain the first four elements of a Taylor expansion in

σQ
t,τ of the SNP call pricing formula:

Proposition 12 Consider the call price CSNP
t in Proposition

11. Then, if we neglect the term ζt, C
SNP
t can be written as

CSNP
t = C∗CS

t + o
(
σQ 4

t,τ

)
, where C∗CS

t is the modified Corrado-
Su formula (see Jurczenko et al. 2002b)

C∗CS
t = C∗BS

t + sktQ
∗
3t + (kut − 3)Q∗

4t, (A1)

C∗BS
t = StΦ(d∗t ) −Ke−rtτΦ

(
d∗t − σQ

t,τ

)
,

d∗t =
1

σQ
t,τ

[
log

(
St

K

)
+

(
rt +

σQ 2
t

2

)
τ

]

− 1

σQ
t,τ

log

(
1 +

skt

3!
σQ 3

t,τ +
(kut − 3)

4!
σQ 4

t,τ

)
,

Q∗
3t = (1/3!)σQ

t,τSt

(
2σQ

t,τ − d∗t
)
φ (d∗t )

×
(
1 + (1/3!) skt σ

Q 3
t,τ + (1/4!)(kut − 3)σQ 4

t,τ

)−1
,

and

Q∗
4t = (1/4!)σQ

t,τSt

(
3σQ 2

t,τ − 3d∗tσ
Q
t,τ + d∗2t − 1

)
φ (d∗t )

×
(
1 + (1/3!) skt σ

Q 3
t,τ + (1/4!)(kut − 3)σQ 4

t,τ

)−1
.

The main difference between the SNP model and the modi-

fied Corrado-Su formula results from the fact that Corrado and

Su do not impose positivity restrictions on the density. In fact, a

statistically correct version of the Corrado-Su model should im-

pose the positivity restrictions of Jondeau and Rockinger (2001).

Hence, our SNP assumption, which implicitly guarantees a non-

negative density, leads to a slightly more complex formula for

the same number of parameters (i.e., for m = 2). However, as

Proposition 12 shows, if we eliminate the higher order terms in

the infinite expansion of Proposition 11, the same fundamental

effects of skewness and kurtosis emerge. Furthermore, if we ne-

glect the terms σQ k
t,τ for k ≥ 3 in a Taylor expansion of (A1)

we can relate the SNP and the Black-Scholes model with the

following result:
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Proposition 13 We can write CSNP
t as

CSNP
t = CBS

t + β3tskt + β4t(kut − 3) + o
(
σQ 2

t,τ

)
, (A2)

where CBS
t is the Black-Scholes formula, d1t = [log(St/K) +

(rt + (1/2)σQ 2
t )τ ]/(σQ

t

√
τ) and

β3t = (1/3!)Stσ
Q
t,τ

(
σQ

t,τ − d1t

)
φ (d1t)

+(1/3!)K exp(−rtτ)φ (d1t)σ
Q 2
t,τ ,

and β4t = (1/4!)Stσ
Q
t,τ

(
d2

1t − 3d1σ
Q
t,τ − 1

)
φ (d1t) .

An analogous result is provided in Jurczenko, Maillet, and

Negrea (2002b) for the modified Corrado-Su formula, under the

name of “Simplified Corrado-Su formula”. However, we will not

obtain exactly the formula since Jurczenko, Maillet, and Negrea

(2002b) approximate d∗t by d1t, which implies that they are ef-

fectively discarding some terms in σQ 2
t,τ . We can also provide

an approximate expression for the implied volatility in the SNP

model:

Proposition 14 Let CSNP
t denote the market price on a Eu-

ropean call option. Then the implied volatility Ψt for a given
moneyness and time to maturity can be written as

Ψt ≃ σQ
t

√
τ + β̃3tskt + β̃4t(kut − 3), (A3)

where β̃3t = (1/3!)σQ
t,τ

(
2σQ

t,τ − d1t

)

+ (1/3!)(K/St) exp(−rtτ)σ
Q 2
t,τ , and

β̃4t = (1/4!)σQ
t,τ

(
d2

1t − 3d1tσ
Q
t,τ − 1

)
.
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Table 1

(a) In-sample RMSE for the short maturity group with time-varying parameters.

Moneyness BS Pr. BS GC+ SNP(m=2) G. Beta V. Gamma N

< 0.94 0.488 0.127 0.213 0.104 0.086 0.113 65
0.94-0.97 0.542 0.137 0.201 0.110 0.106 0.141 287
0.97-1.00 0.489 0.143 0.175 0.124 0.125 0.179 450
1.00-1.03 0.291 0.176 0.144 0.140 0.213 0.173 439
1.03-1.06 0.662 0.160 0.167 0.129 0.172 0.189 434

>1.06 0.732 0.284 0.435 0.334 0.436 0.330 1,176
Total 0.611 0.218 0.309 0.236 0.306 0.249 2,851

(b) Out-of-sample RMSE for the short maturity group with time-varying parameters.

Moneyness BS Pr. BS GC+ SNP(m=2) G. Beta V. Gamma N

< 0.94 0.637 0.079 0.310 0.148 0.117 0.545 2
0.94-0.97 0.855 0.238 0.683 0.334 0.329 0.643 40
0.97-1.00 1.044 0.531 0.783 0.581 0.534 0.998 91
1.00-1.03 0.836 0.721 0.751 0.752 0.848 0.815 107
1.03-1.06 1.035 1.131 0.670 0.732 0.687 0.893 108

>1.06 1.064 5.911 0.882 0.823 0.847 0.860 263
Total 1.005 3.925 0.797 0.737 0.753 0.867 611

(c) In-sample RMSE for the long maturity group with time-varying parameters.

Moneyness BS Pr. BS GC+ SNP(m=2) G. Beta V. Gamma N

< 0.94 1.878 0.330 0.848 0.251 0.169 0.141 360
0.94-0.97 1.634 0.298 0.625 0.191 0.149 0.145 365
0.97-1.00 1.196 0.251 0.366 0.175 0.195 0.161 457
1.00-1.03 0.630 0.209 0.323 0.202 0.188 0.144 474
1.03-1.06 0.968 0.244 0.454 0.166 0.174 0.152 440

>1.06 1.662 0.393 0.447 0.277 0.324 0.254 1,599
Total 1.464 0.327 0.500 0.235 0.251 0.201 3,695

(d) Out-of-sample RMSE for the long maturity group with time-varying parameters.

Moneyness BS Pr. BS GC+ SNP(m=2) G. Beta V. Gamma N

< 0.94 2.045 0.401 0.832 0.596 0.324 0.605 36
0.94-0.97 2.153 0.929 0.935 0.900 0.692 1.126 59
0.97-1.00 1.654 0.977 0.987 0.894 0.876 0.813 66
1.00-1.03 1.102 0.840 1.077 1.079 1.020 0.797 94
1.03-1.06 1.358 0.764 0.969 0.953 0.943 0.792 97

>1.06 1.838 1.985 0.906 1.155 0.893 0.916 259
Total 1.703 1.438 0.952 1.037 0.880 0.876 611

Notes: In-sample analysis uses different parameters for each Wednesday from 1988 to 1992, while

Out-of-sample tables use the parameters estimated on the previous Wednesday during 1993. Mon-

eyness is defined as the ratio of the implicit forward price of the underlying asset to the strike

price. BS, Pr. BS, GC+ , G. Beta and V. Gamma denote, respectively, Black-Scholes, Practi-

tioners’ Black-Scholes, Gram-Charlier with positivity restrictions, Generalised Beta and Variance

Gamma models. N denotes the number of option prices per moneyness category.
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Table 2

(a) In-sample RMSE for the short maturity group with fixed shape parameters.

Moneyness Prac. SNP Gen. Var.
BS BS GC+ m=2 m=3 m=4 Beta Gamma N

< 0.94 0.488 0.211 0.228 0.230 0.206 0.193 0.215 0.285 65
0.94-0.97 0.542 0.296 0.235 0.256 0.242 0.236 0.221 0.237 287
0.97-1.00 0.489 0.285 0.250 0.246 0.243 0.241 0.260 0.277 450
1.00-1.03 0.291 0.213 0.202 0.206 0.196 0.191 0.222 0.221 439
1.03-1.06 0.662 0.295 0.283 0.292 0.282 0.278 0.262 0.270 434

>1.06 0.732 0.503 0.473 0.443 0.422 0.408 0.464 0.451 1,176
Total 0.611 0.384 0.357 0.343 0.328 0.319 0.351 0.349 2,851

(b) Out-of-sample RMSE for the short maturity group with fixed shape parameters.

Moneyness Prac. SNP Gen. Var.
BS BS GC+ m=2 m=3 m=4 Beta Gamma N

< 0.94 0.637 0.086 0.232 0.132 0.110 0.097 0.241 0.316 2
0.94-0.97 0.855 0.286 0.410 0.427 0.391 0.367 0.387 0.451 40
0.97-1.00 1.044 0.715 0.668 0.695 0.678 0.660 0.642 0.620 91
1.00-1.03 0.836 0.739 0.723 0.719 0.723 0.720 0.762 0.757 107
1.03-1.06 1.035 0.694 0.637 0.632 0.630 0.627 0.652 0.644 108

>1.06 1.064 0.859 0.882 0.815 0.775 0.740 0.862 0.846 263
Total 1.005 0.762 0.759 0.729 0.706 0.685 0.754 0.743 611

(c) In-sample RMSE for the long maturity group with fixed shape parameters.

Moneyness Prac. SNP Gen. Var.
BS BS GC+ m=2 m=3 m=4 Beta Gamma N

< 0.94 1.878 0.582 0.851 0.554 0.551 0.508 0.496 0.497 360
0.94-0.97 1.634 0.521 0.637 0.450 0.438 0.438 0.444 0.450 365
0.97-1.00 1.196 0.399 0.406 0.349 0.338 0.337 0.338 0.339 457
1.00-1.03 0.630 0.256 0.342 0.252 0.218 0.217 0.218 0.223 474
1.03-1.06 0.968 0.302 0.448 0.250 0.230 0.230 0.224 0.225 440

>1.06 1.662 0.583 0.530 0.512 0.461 0.455 0.453 0.454 1,599
Total 1.464 0.496 0.540 0.441 0.404 0.400 0.398 0.400 3,695

(d) Out-of-sample RMSE for the long maturity group with fixed shape parameters.

Moneyness Prac. SNP Gen. Var.
BS BS GC+ m=2 m=3 m=4 Beta Gamma N

< 0.94 2.045 0.585 0.765 0.420 0.328 0.319 0.366 0.404 36
0.94-0.97 2.153 1.039 0.899 0.720 0.707 0.711 0.706 0.701 59
0.97-1.00 1.654 1.081 1.012 0.988 0.996 1.001 0.995 0.992 66
1.00-1.03 1.102 0.765 1.046 0.989 0.980 0.982 0.976 0.972 94
1.03-1.06 1.358 0.678 0.923 0.882 0.883 0.886 0.886 0.884 97

>1.06 1.838 0.613 0.849 0.903 0.841 0.832 0.841 0.847 259
Total 1.703 0.757 0.912 0.886 0.856 0.854 0.857 0.858 611

Notes: In-sample analysis (1988 to 1992) allows volatility to be time varying, but the other shape

parameters are kept fixed. Out-of-sample estimates (1993) use for each week the volatility from

the previous week and the fixed shape parameters estimated from the first five years. Moneyness

is the ratio of the implicit forward price to the strike price. BS, Pr. BS, GC+ , G. Beta and

V. Gamma denote, respectively, Black-Scholes, Practitioners’ Black-Scholes, Gram-Charlier with

positivity restrictions, Generalised Beta and Variance Gamma models. N denotes the number of

option prices per moneyness category.
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Figure 1

Regions of skewness and kurtosis
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Note: GC+ denotes a Gram-Charlier expansion of order n = 4 with positivity restrictions, while

Gen. Beta denotes the distribution of the log of a Generalised Beta.



Figure 2

Flexibility to model departures from Black-Scholes
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Note: This figure shows the minimum and maximum European call prices that each distribution

can yield for a strike price of 100, a maturity of 3 months and a risk free interest rate of 3%. GC+

denotes a Gram-Charlier expansion of order n = 4 with positivity restrictions.



Figure 3: Estimation of options from Marron-Wand test suite
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Notes: Marron-Wand densities are represented in the left panels. The corresponding true implied
volatilities are plotted on the right panels, together with the ones obtained by estimating the SNP and
Gram-Charlier option pricing models. SNP (m∗) denotes the SNP model of lowest order that makes the
root mean square pricing error divided by the mean call price smaller than 10 basis point. The
remaining non-Gaussian models only use two shape parameters.



Figure 4: Fit of the implied volatility of a multiperiod SNP process

(a) One-month options (m∗ = 4)
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(b) Three-month options (m∗ = 4)
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Notes: SNP (m∗) denotes the SNP model of lowest order that makes the root mean square
pricing error divided by the mean call price smaller than 10 basis point. The option prices of the
high frequency SNP model have been generated by assuming that the weekly log-returns under
the risk-neutral measure are SNP of order 2 whose skewness and kurtosis is −0.4 and 6.5,
respectively. Finally, the volatility follows a Markov chain with two states: σ1 = 0.1960 and
σ2 = 0.1023. The probabilities of remaining in states 1 and 2 are p = 0.9787 and q = 0.9847,
respectively. The risk-free rate is set at r = 3%.



Figure 5a

Skewness and kurtosis for the short maturity group with time-varying parameters
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Figure 5b

Skewness and kurtosis for the long maturity group with time-varying parameters
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Figure 5c

Skewness and kurtosis of the

bootstrapped call prices
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Figure 5d
Skewness and kurtosis

for fixed parameters
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Notes: The results in Figures 5a and 5b correspond to separate estimations for each Wednesday

in-sample, while to obtain Figure 5d all parameters except volatility are assumed to be constant

over the whole sample. In Figures 5a and 5b SNP refers to a semi-nonparametric distribution of

order 2. GC+, G. Beta and V. Gamma denote, respectively, the Gram-Charlier expansion (n = 4)

with positivity restrictions, the Generalised Beta and Variance Gamma models, while “Short” and

“Long” denote the short and long maturity groups.



Figure 6

Option-implied volatilities for the short maturities
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Note: “Fixed SNP” assumes that the shape parameters of the SNP are constant over time, while

“Changing SNP” allows them to be time varying. Gen. Beta and V. Gamma denote, respectively,

the Generalised Beta and Variance Gamma models.



Figure 7a
Risk-neutral density of log(ST /St) for the

short maturity group
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Figure 7b
Left tail of the risk-neutral density of

log(ST /St) for the short maturity group
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Figure 7c
Risk-neutral density of log(ST /St) for the

long maturity group
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Figure 7d
Left tail of the risk-neutral density of

log(ST /St) for the long maturity group
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Notes: These results are based on the volatility estimated on November 13, 1991, but the shape parameters

are estimated using data between 1988 and 1992. Pract. BS denotes a model in which volatility is a

quadratic function of moneyness. SNP refers to a seminonparametric distribution of order 4, while GC+,

Gen. Beta and V. Gamma denote, respectively, the Gram-Charlier distribution (n = 4) with positivity

restrictions, the Generalised Beta and Variance Gamma models.



Figure 8:

Implied volatility on November 13, 1991

(a) Short maturity group
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(b) Long maturity group
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Note: All the models use time varying volatilities but constant shape parameters. Moneyness

defined as log(St/K) + r(T − t). Pract. BS denotes a model in which volatility is a quadratic

function of moneyness. SNP (m=4) refers to a seminonparametric distribution of order 4, while

GC+, Gen. Beta and V. Gamma denote, respectively, the Gram-Charlier expansion (n = 4) with

positivity restrictions, the Generalised Beta and Variance Gamma models.


