
Testing for GARCH Effects:

A One-Sided Approach1

Antonis Demos

(Athens University of Economics and Business)

Enrique Sentana

(CEMFI)

October 1990

This revision: June 1997

1We would like to thank Manuel Arellano, Angelos Dassios, Frank Diebold, Rob

Engle, Gabriele Fiorentini, Alberto Holly, James MacKinnon, Grayham Mizon, Peter

Robinson, Neil Shephard and seminar audiences at CEMFI, the European Meeting of the

Econometric Society (Cambridge, September 1991) and the ESRC Econometric Study

Group (Bristol, July 1994) for very useful comments and suggestions. Two anonymous

referees, and especially the associate editor have also helped us greatly improve the

paper. This research was initiated when both authors were based at the LSE Financial

Markets Group, whose financial support as part of the ESRC project “The Efficiency and

Regulation of Financial Markets” is gratefully acknowledged. Correspondence should

be addressed to E. Sentana, CEMFI, Casado del Alisal 5, 28014 Madrid, Spain (tel.:

+34 1 429 0551, fax: +34 1 429 1056, e-mail: sentana@cemfi.es).



Abstract

ARCH models often lie at the boundary of the parameter space under conditional

homoskedasticity, which invalidates the usual χ2 distribution of LR and Wald

tests. Although LM tests are not affected, the one-sided nature of the alternative

hypothesis should result in more powerful tests. We propose a simple one-sided

version of the LM test, which is closely related to the Kuhn-Tucker multiplier

test. We also present critical values for LR, Wald and one-sided LM tests. The

results of a Monte Carlo comparison suggest that one-sided tests are indeed more

powerful than their two-sided counterparts.

Keywords: Inequality constraints, Likelihood ratio, Lagrange multiplier, Wald

test, Monte Carlo
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1 Introduction

Engle’s (1982) Autoregressive Conditional Heteroskedasticity (ARCH) model

and Bollerslev’s (1986) Generalized ARCH (GARCH) extension have been very

popular in modelling the time variation in the variance of a series. In the case of a

dynamic regression model with GARCH(p,q) innovations, the dependent variable,

yt, is assumed to be generated by the following equations:

yt = μt + εt (1)

μt = μ (xt; δ) (2)

ht = ω +
qX

i=1

αiε
2
t−i +

pX
j=1

βjht−j = ω + α (L) ε2t + β (L)ht (3)

where μ() is a differentiable function known up to the parameters δ, xt are k

predetermined explanatory variables, which may contain contemporaneous condi-

tioning variables zt, as well as past values of yt and zt, It−1 denotes the information

set available at t-1, and εt is a martingale difference sequence satisfying E(εt |

zt, It−1) = 0 and E(ε2t | zt, It−1) = ht. As a consequence, E(yt | zt, It−1) = μt and

V (yt | zt, It−1) = ht.

The model in (1-3) is well defined as a data generation mechanism if the

conditional variance ht is always strictly positive. Sufficient restrictions can be

obtained by rewriting ht as a rational distributed lag of past squared innovations.

Specifically, we can write ht = ω[1 − β(1)]−1 + α(L)[1 − β(L)]−1ε2t under the

assumption that the roots of 1−β(L) lie outside the unit circle. In this framework,

Nelson and Cao (1992) and Drost and Nijman (1993) point out that positive

variances are obtained if ϑ = ω/[1 − β(1)] > 0 and the coefficients in the power

expansion of α(L)[1−β(L)]−1 are all non-negative. Conditions in terms of the α’s

and β’s are generally difficult to find. In some empirically relevant cases, though,

they adopt a simple form. For instance, in the ARCH(q) model, the non-negativity
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restrictions are αi ≥ 0 for i = 1, . . . , q. The commonly used GARCH(1,1) is also

straightforward, as it involves α1, β1 ≥ 0. The GARCH(1,2) is slightly more

complicated; in addition to α1 ≥ 0 and β1 ≥ 0, we need α2 ≥ −α1β1, a negative

number. In any case, it is clear that the admissible parameter space will often be

inequality restricted.

The preferred method of estimation for GARCH models has been maximum

likelihood, under the assumption that the standardized innovations, ε∗t = h
−1
2

t εt,

are i.i.d. N(0,1). Let θ0 = (δ0, ω, α1, . . . , αq, β1, . . . , βp) = (δ
0, γ0) denote the vector

of conditional mean and conditional variance parameters. The Quasi Maximum

Likelihood Estimator for a sample of size T , θ̂T , is obtained by maximizing the

conditionally Gaussian log-likelihood function
PT

t=1 lt(θ), where lt(θ) = −12 ln 2π−
1
2
lnht(θ)− 1

2
ε2t (θ)/ht(θ), εt(θ) = yt−μ (xt; δ), and ht(θ) is the conditional variance

function evaluated at the parameter value θ. Obviously, it also is necessary to

specify rules for selecting pre-sample values of εt and ht in order to start up the

recursions.

If the conditional mean and variance functions are correctly specified, and the

regularity conditions given in Bollerslev and Wooldridge (1992) are satisfied, the

Quasi-Maximum Likelihood Estimator of the above parameters is root-T consis-

tent with a limiting normal distribution. The asymptotic covariance matrix is

given by C(θ0) = A−1(θ0)B(θ0)A
−1(θ0), where

A(θ) = lim
T→∞

E[− 1
T

∂2LT (θ)

∂θ∂θ0
] = lim

T→∞

1

T

TX
t=1

E[−∂
2lt(θ)

∂θ∂θ0
]

B(θ) = lim
T→∞

V [T−
1
2
∂LT (θ)

∂θ
] = lim

T→∞

1

T

TX
t=1

E[
∂lt(θ)

∂θ

∂lt(θ)

∂θ
0 ]

and θ0 denotes the true parameter values. Their proof is based on the fact that the

score st(θ) = ∂lt(θ)/∂θ satisfies E[st(θ0) | zt, It−1] = 0, and hence it constitutes

a vector martingale difference sequence. Besides, if the conditional distribution
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of the observations is actually normal, A(θ0) = B(θ0) and the classical test pro-

cedures, i.e. Likelihood Ratio (LR), Lagrange Multiplier (LM), and Wald (W),

will have the usual χ2 distribution. Weiss (1986), Lumsdaine (1996) and Lee and

Hansen (1994) provide alternative regularity conditions for particular cases of the

model (1-3), which are somewhat easier to verify.

A common regularity condition is that the true parameters must be in the

interior of the parameter space. This is mainly required for normal asymptotics.

However, as our previous discussion shows, this condition is clearly violated under

the null hypothesis of conditional homoskedasticity.1

In such cases, the usual asymptotic χ2 distribution of the LR and W tests

(see Engle, 1982) is not valid. This problem is well-known (see e.g. Weiss, 1986)

but has not been investigated thoroughly. Given the widespread use of ARCH

formulations in applied work, it is of interest to investigate it in more detail.

On the other hand, the fact that under the null the parameters lie on the

boundary of the admissible parameter space does not affect the distribution of

the LM test (or efficient score test), which is still χ2 (see Chant, 1974, or Godfrey,

1988). Nevertheless, intuition suggests that the one-sided nature of the alternative

hypothesis should be taken into account to obtain more powerful tests. For that

reason, we also propose a simple one-sided version of the standard LM test for

ARCH in Engle (1982), which is closely related to the Kuhn-Tucker multiplier

introduced by Gourieroux, Holly and Monfort (1980). As we shall see, the critical

values presented here for the LR and W tests are the same as those for the one-

sided LM test. The intuition is that the LR and W tests are, in this context,

implicitly one-sided.

1Notice that this problem cannot be solved by reparameterizing the inequality restricted

coefficients in terms of, say, squares of unrestricted parameters, as the Jacobian of such trans-

formations is 0 under the null. But it is worth mentioning that other variance parameterizations

avoid the non-negativity problem altogether (e.g. the exponential GARCH of Nelson, 1991).
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The paper is organized as follows. In section 2 we discuss testing conditional

homoskedasticity versus ARCH(q) and GARCH(1,1) alternatives, and introduce

the one-sided LM test. The results of a Monte Carlo comparison of the one-sided

LM test proposed here with other tests is presented in section 3. Finally, we

conclude in section 4. Auxiliary results are gathered in appendices.

2 Testing conditional homoskedasticity

2.1 versus an ARCH(q) alternative

2.1.1 under conditional normality

Let’s consider testing conditional homoskedasticity versus ARCH(q) under the

maintained assumption that p=0, and mean and variance parameters are variation

free. Since ht is computed as ω+
Pq

j=1 αjε
2
t−j, it is clear that constant conditional

variances are obtained if αi = 0 (i=1,...,q). But it is also clear that the inequal-

ity constraints α1 ≥ 0, . . . , αq ≥ 0 must be satisfied to guarantee nonnegative

conditional variances. Therefore, we should test H0 : α1 = 0, . . . , αq = 0 versus

H1 : α1 ≥ 0, . . . , αq ≥ 0, with at least one strict inequality.

Let’s assume initially that the standardized innovation ε∗t is i.i.d. N(0,1), so

that the Gaussian-based likelihood function is indeed correct. Self and Liang

(1987) and Wolak (1989a) study the distribution of the Maximum Likelihood

Estimator and LR test when the true values of any parametric model lie on the

boundary of the parameter space (see also Bartholomew, 1961, Chant, 1974, Cher-

noff, 1954, Gourieroux, Holly and Monfort, 1982, and Moran, 1973, for previous

results for particular models). In this respect, they prove that the problem is as-

ymptotically equivalent to the estimation and testing of the inequality restricted

mean of a multivariate Gaussian distribution from a sample of size 1. As in
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Gourieroux, Holly and Monfort (1982), it is not difficult to see that the asymp-

totic distribution of the W test is the same as that of the LR.

It is very important to mention that the results of Self and Liang (1987)

are derived assuming i.i.d. sampling, whereas Wolak’s (1989a) results depend on

regularity conditions which are very difficult to prove except in special cases.

Therefore, we build our analysis on the presumption that the results of the above

authors can be extended to our dependent observations case in the same manner

as the standard MLE properties for i.i.d. observations have been extended to the

GARCH context under suitable regularity conditions. Nevertheless, in section 3.2

we carry out a detailed Monte Carlo exercise to assess the null distribution of our

proposed test statistic for various sample sizes.

Extending case 5, Theorem 3 of Self and Liang (1987) or applying Theorem

4.3 of Wolak (1989a), the asymptotic distribution of the LR and W tests for

αi = 0 (i=1,...,q) is given by a mixture of q+1 independent χ20s whose degrees of

freedom range from q to 0.2Therefore, the distribution of the W and LR tests is

more concentrated towards the origin than a χ2q.

The mixture weights depend on the number of restrictions, q, and the struc-

ture of the inverse information matrix (see Gourieroux, Holly and Monfort, 1982,

Shapiro, 1985, and Wolak, 1989a). However, since the section of the inverse in-

formation matrix corresponding to the q ARCH parameters, Aαα, is the identity

matrix under the null (see appendix 1), the weights in this case take a particularly

simple form. Specifically, the asymptotic distribution of the LR and W tests is

given by:

gLR ∼ W̃ ∼
qX

i=0

³
q
i

´
2q

χ2i (4)

From (4), the p-value of the test can be easily derived and it is given by the

2By convention, χ20 is a random variable which is equal to zero with probability 1.
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following formula:

P (gLR > z) = P (W̃ > z) =
qX

i=1

³
q
i

´
2q

P (χ2i > z) (5)

where P [χ2i > z] is obtained from the usual χ2 tables.3The critical values zφ, such

that P [W̃ > zφ] = P [gLR > zφ] = φ, can be easily tabulated using (5) and are

presented in table 1 for q = 1, . . . , 12. For comparison, we also present critical

values for the χ2 distribution in brackets. Notice that there can be a substantial

difference between both critical values, especially as the number of constraints

increases or as the size of the test, φ, decreases.

The usual LM test is based on the quadratic form s0αA
ααsα, where sα are the

scores corresponding to the q ARCH parameters. As we have already mentioned,

the χ2q asymptotic distribution of the LM test is not affected by the fact that

the parameters of interest lie at the boundary of the parameter space under the

null. However, intuition tells us that since the αi’s must be positive under the

alternative, a one-sided test would be more appropriate.

Suppose for simplicity that one wants to test conditional homoskedasticity

versus ARCH(1). The LM test (see Engle, 1982) can be evaluated as T times the

R2 of the regression of ε̂2t on a constant and ε̂
2
t−1, where ε̂t = yt−μ(xt, δ̂), and δ̂ is

the least squares estimate of δ. If we compare this with the χ21 5% critical value,

we will not be capturing the one-sided nature that the test should have because

α1 can only be positive under the alternative. The same happens if we look at the

t-ratio associated with ε̂2t−1, or its square the F test of the regression, although

these tests could be better behaved in finite samples (cf. Kiviet, 1986).

Nevertheless, one can easily perform a 5% one-sided LM test as follows: reject

H0 if the OLS coefficient is positive and TR2 is bigger than 1.642 = 2.706 (see

Engle, Hendry and Trumble, 1985), or if the t-ratio is bigger than the 95% per-

3Note that the summation in (5) starts at 1, not at 0 (see appendix 1 for details).
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centile of the t distribution (1.64 asymptotically). Notice that since the W and

LR tests are asymptotically distributed as a 50 : 50 mixture of χ20 and χ
2
1, the 5%

critical value is also 2.706 (see table 1). The reason for the equality of the critical

values is that the OLS coefficient will be negative half the time and positive the

other half under the null. As a consequence, the TR2-version of the one-sided LM

test is also distributed as a 50 : 50 mixture of χ20 and χ21.

This result is hardly surprising. A numerically equivalent way of defining the

one-sided LM test is as TR̃2, where R̃2 is the proportion of variance of ε̂2t explained

by ε̂2t−1 when we use a least squares estimator that restricts the estimated coef-

ficient on ε̂2t−1 to be nonnegative. But this is simply the Kuhn-Tucker multiplier

test of the auxiliary regression, which is distributed as a 50 : 50 mixture of χ20 and

χ21 (see Gourieroux, Holly and Monfort, 1982).

In the general ARCH(q) case, the two-sided LM test is obtained as TR2 of

the auxiliary regression of ε̂2t on a constant and q lags of ε̂2t . Alternatively, we

can use the F test of the regression because it may be better behaved in small

samples. In fact, given that Aαα is the identity matrix, an equivalent F -version

of the two-sided LM test can also be obtained as the sum of the squared t-ratios

for all q coefficients.

Then, a one-sided LM test for the general ARCH(q) case can be simply ob-

tained either as TR̃2, where R̃2 is the proportion of variance of ε̂2t explained by

the first q lags of ε̂2t when we use nonnegatively restricted least squares, or as

the sum of the squared t-ratios associated with the positive OLS coefficients (cf.

Yancey, Judge and Bock, 1981). Under the null, both versions of the one-sided

LM test will have the same distribution as the W and LR tests, so that critical

values can be obtained from Table 1 too. But in practice, it may be better to use

critical values from the corresponding mixture of F -distributions for the version

of the test based on the squared t-ratios (see section 3 below).
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Intuition suggests once more that one-sided tests should be more powerful than

two-sided versions because the latter ignore that the αi’s are non-negative under

the alternative. Unfortunately, evaluating the exact power of the one-sided tests

is analytically rather difficult, as the weights of the mixture of χ20s depend on the

information matrix, whose exact form is unknown under the alternative. However

when testing for one restriction, i.e. homoskedasticity versus ARCH(1), the test

is asymptotically one-sided uniformly most powerful (see Gourieroux, Holly and

Monfort, 1982).

2.1.2 under conditional homokurtosis

Many empirical studies with ARCHmodels for high frequency financial time se-

ries indicate that the assumption of conditional normality does not seem adequate

to represent the rather leptokurtic distribution of asset returns. If in (1-3) one as-

sumes normality for estimation purposes when the true conditional density is not

normal, the resulting estimators should be interpreted as quasi-maximum likeli-

hood ones. In this context, Bollerslev and Wooldridge (1992) show that if the con-

ditional mean and variance functions are correctly specified, the Quasi-Maximum

Likelihood Estimators are root-T consistent, but the asymptotic distribution of

the standard forms of the LR, W and LM tests will be generally affected (see also

White, 1982, and Gourieroux, Monfort and Trognon, 1984, for earlier results in

cross-section settings). However, when we are only interested in testing conditional

homoskedasticity, the null distributions derived in the previous subsection are as-

ymptotically robust against certain leptokurtic distributions. In particular, they

are robust to distributions for whichE(ε4t | zt, It−1) = κ·[E(ε2t | zt, It−1)]2. That is,

distributions for standardized innovations which show conditional homokurtosis

(i.e. κt = E(ε∗4t | zt, It−1) = κ <∞).

Let’s start with the LM test. In this case, the corrected version of the two-
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sided test would be based on the quadratic form s0αA
ααC−1ααA

ααsα, where Cαα is

the relevant block in C (see Engle, 1984). But since Aαα is proportional to Cαα,

which in turn is the identity matrix, the LM test is still equivalent to TR2 from the

regression of ε̂2t on a constant and q lags of ε̂2t , or to the F test of that regression

(see also Koenker, 1981). Hence, the mixture of χ2 distributions derived above

for the one-sided LM test remains valid. This is also true of the W and LR tests,

for the robust covariance matrix of the ARCH parameter estimators is still the

identity matrix under the null (see appendix 2).

The assumption of conditional homokurtosis of the standardized residuals may

seem quite strong at first sight. However, most of the theoretical and empirical

GARCH literature assumes not only homokurtosis, but also that the conditional

distribution of the standardized innovations is time-invariant. This is what Drost

and Nijman (1993) call the “strong” GARCH assumption. For instance, Boller-

slev (1987) specified a tv distribution for ε∗t , Nelson (1991) a Generalized Error

Distribution with constant parameter, while Bollerslev, Engle and Nelson (1994)

use the generalized t distribution, which nests the previous ones.

2.1.3 under conditional heterokurtosis

In principle, though, some features of the conditional distribution of the stan-

dardized innovation ε∗t could be time-varying. For instance, Hansen (1994) re-

cently suggested the use of a conditional t distribution whose degrees of freedom

are a time-varying (measurable) function of the information set. Unfortunately,

if κt is not constant, the results obtained so far will be generally affected. The

reason is that Bγγ =
1
4
E[(κt − 1)g∗t g∗t 0] , with g∗t

0 = (ω−10 , ε∗2t−1, . . . ., ε
∗2
t−q), will no

longer be proportional to Aγγ =
1
2
E[g∗t g

∗0
t ] (see appendix 2).

To gain some intuition, let’s consider the simplest possible case in which μt = 0.

Here the standard LM test is based on the regression of y2t on a constant and its
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first q lags. If κt = κ < ∞ ∀t, the residual from such an autoregression is

conditionally homoskedastic, and the limiting distribution of the F -test is χ2q/q

even though we do not have normality. But if κt time-varies, the F test will have

the wrong asymptotic size under the null.

Intuitively, one should use White’s (1980) covariance matrix to compute the

test (see Hsieh, 1983, and Pagan and Hall, 1983). On this basis, Wooldridge

(1990, 1991) proposed a robustified LM test which will have the right size even

when the conditional distribution of the standardized innovations is not homokur-

tic. His version of the two-sided ARCH(q) test is based on the regression of 1 on

y2ty
2
t−1, . . ., y

2
ty
2
t−q where y

2
t−j is the demeaned value of y

2
t−j . Ideally, one would

like to be able to robustify our proposed one-sided test along similar lines. Un-

fortunately, the regressors y2ty
2
t−i and y

2
ty
2
t−j (i,j=1,...,q, i6=j) are not orthogonal

unless E(κty2t−iy
2
t−j) = 0. As a result, the weights of the χ

2-mixture are not easily

obtained a priori without maintained assumptions about the dependence of the

conditional kurtosis, κt, on y2t−1, . . .,y
2
t−q (see Sentana, 1995, for some examples in

the context of Quadratic ARCH models).

The ARCH(1) case is a notable exception. Wooldridge’s robustified test is

based on the regression coefficient ( 1
T

P
t y
2
ty
2
t−1)/(

1
T

P
t y
4
ty
4
t−1), which converges

to cov(y2t , y
2
t−1)/E[(y

2
t − ω2)2(y2t−1 − ω2)2]. Since cov(y2t y

2
t−1) can only be positive

under the alternative, we can carry out a one-sided robust version based on the

sign of the above coefficient. As we mentioned before, an asymptotically equivalent

one-sided test is based on the White-robust t ratio in the regression of y2t on a

constant and y2t−1.

2.2 against GARCH(1,1) alternatives

Let’s now consider testing conditional homoskedasticity vs GARCH(1,1) under

the maintained assumption that mean and variance parameters are variation free.
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Since ht is effectively computed as ϑ+ α1
Pt−1

j=0 β
j
1ε
2
t−j−1 + βt1(h0 − ϑ), where ϑ =

ω/(1− β1), it is clear that constant conditional variances are obtained if α1 = 0

and β1 = 0. But since the inequality constraints α1 ≥ 0 and β1 ≥ 0 must be

satisfied to guarantee nonnegative conditional variances under the alternative, we

should again consider one-sided tests. In particular, we should test H0 : α1 =

0, β1 = 0 versus H1 : α1 ≥ 0, β1 ≥ 0, with at least one strict inequality.

However, as Bollerslev (1986) noted, one cannot derive the LM test for condi-

tional homoskedasticity versus GARCH(1, 1) in the usual way, because the block

of the information matrix whose inverse is required is singular under the null.

Nevertheless, Lee (1991) showed that the LM test for GARCH(1,1) is numeri-

cally identical to the LM test for ARCH(1). The intuition is that since the score

associated with β1 is identically zero under the null hypothesis, the problem re-

duces to testing only whether the score associated with α1 is significantly different

from zero. As a result, our proposed one-sided LM test for ARCH(1) can also be

used as one-sided LM test for GARCH(1,1) (see also Lee and King, 1993). As

we mentioned in section 2.1, this test is robust to nonnormal conditional distribu-

tions with conditionally homokurtic standardized innovations. Furthermore, since

there is only one parameter involved, it can be easily robustified a la Wooldridge

or White. In section 3.2 we carry out a detailed Monte Carlo exercise to assess

the null distribution of the tests statistics for various sample sizes.

Econometric wisdom suggests that singularity of the information matrix must

be somewhat related to parameter unidentifiability under the null. This is indeed

the case, at least asymptotically. From the expression for ht above, the time-

varying conditional variance is simply ϑ + βt1(h0 − ϑ) when α1 = 0. Hence, ht

converges to ϑ as t → ∞ for any β1 ∈ [0, 1), although it may take a long time

to settle down if β1 and h0 − ϑ are large. In contrast, if we set h0 = ϑ to start

up the recursions, ht = ϑ ∀t. In this specific case, we have a testing situation in
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which the parameter β1 is only identified under the alternative. Note, though,

that since ht = ϑ + α1
Pt−1

j=0 β
j
1ε
2
t−j−1, α1 has to be positive under the alternative

to guarantee nonnegative variances everywhere, we should still test H0 : α1 = 0

vs H1 : α1 ≥ 0.

There are two standard solutions to testing situations with unidentified pa-

rameters under the null. The first one involves choosing an arbitrary value

of β1, β̄1 say, to carry out a one-sided LM test as TR̃2 from the regression

of ε̂2t on a constant and the distributed lag
P

j β̄
j
1ε̂
2
t−j. Such a test is asymp-

totically distributed as a 50 : 50 mixture of χ20 and χ21 irrespectively of the

value of β̄1. In this context, β̄1 = 0 is preferable because, as we explained

before, the one-sided LM test for GARCH(1,1) and ARCH(1) coincide. Nev-

ertheless, the value of β̄1 influences the small sample power of this test. In

this respect, it is easy to see that for β̄1 = 0, the power of the one-sided LM

test monotonically increases with the value of the first autocorrelation of ε2t , ρ1.

Since the GARCH(1,1) model implies that ε2t follows an ARMA(1,1) process with

AR parameter α1 + β1 and MA parameter −β1, standard results on ARMA

models imply that ρ1 = α1(1 − β21 − α1β1)/(1 − β21 − 2α1β1). Therefore, our

proposed test has non-trivial local power, which increases rapidly with α1 but

rather more slowly with β1. Similarly, it is possible to prove that for any pre-

specified β̄1, the power of the one-sided LM tests monotonically increases with

ρ1 · g(β̄1), where g(β̄1) = (1 − β̄1)/
q
[1− β̄1(α1 + β1)][1− β̄1(α1 + β1) + 2ρ1β̄1].

As expected, maximum power would be achieved if we could choose β̄1 equal

to the “true” value of β1 under the alternative. Nevertheless, the ARCH(1)-

GARCH(1,1) test (i.e. β̄1 = 0) is more powerful than any test based on β̄1 ≥

2[(α1+ β1)− ρ1]/{(1− ρ21) + [(α1+ β1)]− ρ1]
2}. In particular, if (α1+ β1) is very

close to 1, the ARCH(1)-GARCH(1,1) test can have close to maximum power

even though it wrongly assumes that β1 = 0.
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The second solution involves computing the LM test statistic for many values

of β̄1 in the range (0,1), and constructing an overall test statistic as some combina-

tion of these. Such a solution was initially suggested by Davies (1977, 1987), who

proposed using the supβ̄1 LR test. More recently, Andrews and Ploberger (1994)

argue that superior local power can be obtained with (exponential) weighted aver-

ages of the statistics. Andrews (1993), Andrews and Ploberger (1994) and Hansen

(1996) discuss ways of obtaining critical values for such tests. Their procedures

are based on regarding the different LR, W and LM statistics as continuous sto-

chastic processes indexed with respect to the parameter β̄1. For instance, they

prove that under some regularity conditions, the asymptotic null distribution of

the supβ̄1 LR test is that of the supremum of a χ2(β̄1) process. Unfortunately,

their results are not valid in our one-sided context, since one of their regularity

conditions is that the parameter value under the null is not on the boundary of

the parameter space. Andrews (1993) suggests ways in which functional Central

Limit Theorems could be used to show that the t-ratios associated with
P

j β̄
j
1ε̂
2
t−j

converge weakly to a Gaussian process. However, the practical problem is that our

one-sided LM test statistics is based on the maximum of 0 and the t-ratio, which

should converge to a censored Gaussian process instead. To the best of our knowl-

edge, the asymptotic distribution of an overall test statistic such as supβ̄1 LR or

aveβ̄1LM in one-sided contexts has not been investigated.

Similar problems arise if we want to test conditional homoskedasticity against

an ARCH(q)-M alternative when the conditional mean, μt, includes an additive

constant. For instance, if μ(xt; δ) = ψ+ϕht with ϕ 6= 0, ϕ is only identified if ht is

time-varying. Bera and Ra (1995) have implemented a Davies-type procedure to

this problem from a two-sided perspective. Unfortunately, the information matrix

is not block diagonal between mean and variance parameters unless ϕ = 0, which

makes the implementation of the one-sided test even more complicated than in
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the GARCH(1,1) case. One simple possibility is to fix ϕ to 0, and carry out our

proposed one-sided LM test. Under the null of conditional homoskedasticity, such

a test will have the mixture of chi-square distribution in expression (4).

3 Monte Carlo Evaluation of Size and Power

3.1 Experimental Design

It is nowadays customary to investigate the finite sample properties of hypoth-

esis tests by means of simulation methods. In our case, the importance of carrying

out such simulations is even greater for the following two reasons. First, our the-

oretical analysis is based on the presumption that standard results on inequality

testing can be extended to our dependent observations case. Therefore, it is cru-

cial to assess to what extent such a presumption is realistic. Second, Lee and King

(1993) have suggested another one-sided version of the score test based on the sum

of the scores with respect to the conditional variance parameters. Specifically, to

test conditionally homoskedasticity vs ARCH(q), Lee and King (1993) propose

the test statistic

(T − q)
P

t(ε̂
2
t/ω̂ − 1)

Pq
i=1 ε̂

2
t−iq

[
P

t(ε̂
2
t/ω̂ − 1)2][(T − q)

P
t(
Pq

i=1 ε̂
2
t−i)

2 − (Pt

Pq
i=1 ε̂

2
t−i)

2]
(6)

which is asymptotically distributed as a N(0,1) under the null. This test is also

robust to conditionally homokurtic distributions for the standardized residuals.

The Lee-King one-sided test is locally most powerful within the class of unbiased

tests. However, an analytic comparison of their test and our one-sided version

is very difficult as our proposed test is not necessarily within the unbiased class.

Nevertheless, for the ARCH(1) versus conditional homoskedasticity case both tests

are asymptotically the same. This equivalence also holds for the GARCH(1,1)
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case, since Lee and King also show that their test for GARCH(1,1) is identical to

their test for ARCH(1).

In the Monte Carlo study that follows we investigate the finite sample size and

power properties of the standard LM, denoted by 2-sided, the one-sided Lee and

King test, denoted by L-K, and the one-sided LM test proposed in this paper,

denoted by 1-sided. We also carry out some experiments on the size properties

of the robustified versions. We analyze both ARCH(2) and GARCH(1,1) specifi-

cations, with 15000 replications for the purposes of evaluating size, and 2000 for

the purposes of evaluating power.

For the mean specification we chose a linear regression with two explanatory

variables: one is a constant; the other is generated as follows:

xt = ρxt−1 + ηt

where ηt ∼ i.i.d. N(0, 4), with ρ taking the values of 0, 0.8 and 1.4The choices of ρ

correspond to white noise, autoregressive and random walk processes, which have

been found to adequately represent many economic time series. In each case,

xt is generated artificially and then held fixed from replication to replication.

Such design matrices allow direct comparisons with the Monte Carlo results in

Engle, Hendry and Trumble (1985) and Lee and King (1993). However, since in

univariate linear regression models with regressors that can be treated as fixed, any

specification test that only depends on the residuals and the regressors is pivotal,

the distributions of the three tests considered are independent of the value of the

first order autocorrelation for the xt’s, ρ. Consequently, we only report results for

ρ = .8 (a full set of simulation results is available from the authors on request).

Similarly, we can also set the regression coefficients to 1 without loss of gener-

4We also considered ρ = 1.02 to capture explosive processes. However, this value leads to

numerical problems for large sample sizes.
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ality. Hence, for each replication the data is generated as:

yt = 1 + xt + εt

where εt = ε∗th
1
2
t , ε

∗
t is a zero mean-unit variance time series process, ht a condi-

tional ARCH or GARCH variance, and xt as above.

We generally consider three different values of T: 100, 250 and 500 to evaluate

size and power, although in some size experiments larger values of T have also

being used. Such sample sizes are common in empirical studies of macro and

financial time series. For instance, 100 observations correspond to 25 years of

quarterly data, 250 to 20 years of monthly data, and 500 to 10 years of weekly

data. We shall often focus on 250 observations as a reference sample.

For the ARCH(2) simulations, ht has the following form:

ht = 1 + α1ε
2
t−1 + α2ε

2
t−2

with α1 and α2 taking values from the following set: {0.0, 0.2, 0.4, 0.6}.

For evaluating the standard (i.e. two-sided) LM test, we first regress yt on a

constant and xt, and then compute the sum of the squared t-statistics from the

regression of the squared residuals on a constant and two lagged squared residuals.

Under the null of conditional homoskedasticity, the statistic should be distributed

as an F2,T variate. The one-sided LM test is formed as the sum of the squared

t-statistics associated with the positive coefficients in the auxiliary regression.

Under the null it is distributed as a (1/4, 1/2, 1/4) mixture of F0,T , F1,T and F2,T

variates. For the Lee-King test, we use their statistic in (6) and compare it with a

t distribution with degrees of freedom equal to the sample size (see Lee and King,

1993).5

5We also considered χ2 versions of the 1-sided and 2-sided LM tests, and the normal version

of the L-K test. Such versions show bigger size distortions for small sample sizes, which largely

explains the numerical differences between our results and those of Lee and King (1993).
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For the GARCH(1,1) simulations, ht is given by:

ht = 1 + α1ε
2
t−1 + β1ht−1

with α1 and β1 taking values from the following sets; α1 ∈ {0.0, 0.05, 0.1, 0.4} and

β1 ∈ {0.0, 0.3, 0.6, 0.9}.6

Again, to evaluate the standard LM test we first regress yt on a constant and xt,

and then we use the squared t-statistic from the regression of the squared residuals

on a constant and the lagged squared residual. Under the null of conditional

homoskedasticity, the statistic should be distributed as an F1,T variate. The one-

sided LM test is either the squared t-statistic if the regression coefficient is positive,

or 0. Under the null this statistic is distributed as a mixture of F0,T and F1,T

variates with 50:50 weights. For the Lee-King test we use again the statistic in (6)

above. Notice that in all three cases testing conditional homoskedasticity versus

GARCH(1,1) is numerically the same as testing for ARCH(1) (see the discussion

in section 2.2).

To assess the robustness of the different test to non-normal distributions for

ε∗t , we consider three time series processes for the standardized innovations, in line

with the discussion in section 2.1 above. The first one is our benchmark, and takes

ε∗t ∼ i.i.d. N(0, 1). The second process we consider assumes that ε∗t is independent

and identically distributed as a standard t with 5 degrees of freedom. In both

cases, we use TSP 4.2B built-in random generator routine for Gaussian variates

on a PC. The third process allows for conditionally heterokurtic standardized

innovations. In particular, we generate standardized t-distributed errors with νt

degrees of freedom, where the parameter νt evolves according to the following

stochastic difference equation:

νt = π(1− λ) + γ(ε∗t−1 − τ)2 + λνt−1 (7)

6In neither specification of the conditional variance do we consider cases in which the sum of

the ARCH and GARCH parameters is strictly bigger than 1.
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Such an infinite distributed lag produces smoother variation in νt than the

equation used by Hansen (1994), who modelled the degrees of freedom as a logistic

function of ε∗t−1 and ε∗2t−1 only. Straightforward algebra shows that inft νt = π,

E(νt) = π + γ(1 + τ 2)/(1 − λ) and V (νt) = γ2(E(κt) − 1 + 4τ 2)/(1 − λ2). For

our purposes, however, what matters is not so much the variation in the degrees

of freedom, νt, as the variation in the conditional kurtosis coefficient κt = 3(1 +

2/(νt − 4)). In this respect, note that E(κt) − 3 ≥ 6/(E(νt) − 4) by Jensen’s

inequality, so that time-variation in νt induces average excess kurtosis over and

above that of a t with E(νt) degrees of freedom. In fact, a second-order Taylor

expansion yields E(κt) − 3 ≈ 6/(E(νt) − 4) + 6V (νt)/(E(νt) − 4)3, which is an

increasing function of V (νt). Similarly, V (κt) ≈ 36V (νt)/(E(νt)− 4)4, so that for

values of νt close to 4, small changes in degrees of freedom result in substantial

variation in conditional kurtosis. With this is mind, we choose the following set of

values, namely γ = .1, λ = .8, τ = 0, π = 4.5. Note that E(νt) = 5 for comparison

with the i.i.d. t5 innovations.7

Since the degrees of freedom parameter is generally a real number, we generate

the standard tνt as
√
νt − 2 times the ratio of a standard normal to the square

root of an independent gamma variate with parameters νt/2 and 2. In this case,

we use the NAG library Fortran routines G05FDF and G05FFF. In all Monte

Carlo exercises we discard the first 2000 observations in each replication to avoid

start-up problems.

3.2 Evaluation of Size

The first question that we need to address is whether the asymptotic distrib-

utions attributed to our proposed test statistics are correct. To do so, we employ

7We also considered γ = .4, λ = .5, τ = 0, π = 4.2, without significant differences in the

results.
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the graphical methods recently proposed by Davidson and MacKinnon (1996). In

particular, we use what they call p-value plots. Let τ j denote the simulated

values of a given test statistic, and let pj be the asymptotic p-value of τ j, i.e. the

probability of observing a value of the test statistic at least as large as τ j accord-

ing to its asymptotic distribution under the null. Let also F̂(x) for x∈(0,1) be

the empirical distribution function of pj, i.e. the sample proportion of p0js which

are not greater than x. Formally, a p-value plot is a plot of F̂(x) against x. But

a careful reading of the procedure shows that a p-value plot is simply a plot of

actual test size versus nominal test size for all possible test sizes.

If the candidate distribution for τ j is correct, the p-value plot should be close

to the 45% line for x between 0 and 1 provided that τ j is a continuous random

variable. Thus, we should expect to see such a behaviour for the two-sided LM

test and the Lee and King test. However, if τ j is equal to 0 with probability

2−q, as it happens with our one-sided LM tests, F̂(x) should be close to x only

for x∈(0,1-2−q), while it should be 1 for x>1-2−q if the candidate distribution

function is correct.8

Figure 1 shows with T=5000 that our presumption seems to be correct for

the case of i.i.d. N(0,1) and t5 innovations, although, as expected, the asymptotic

distribution provides a much more reliable approximation for Gaussian errors.

The conventional way to report Monte Carlo results on size is to tabulate the

proportion of τ 0js computed from data generated under the null that exceed the 5%

asymptotic critical value of the test. In this vein, Table 2 presents the estimated

rejection probabilities for ARCH(2) tests for data generated with conditional ho-

moskedasticity. Similarly, Table 3 reports the estimated rejection probabilities for

GARCH(1,1) tests under the null. The tables differ in the way ε∗t is generated: in

8The reason is that the p-value of τ j = 0 is 1−2−q when the distribution of the test statistic
is a mixture of χ2’s, with weight 2−q on a χ20 (see appendix 1).
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the first panel of tables 2 and 3, they are i.i.d. N(0,1) variates, while in the second

panel, i.i.d. standard t5 variates are used instead. Finally, in the last panel of both

tables, we consider standard tνt , with νt generated as in (7) above. In all cases, we

can use a confidence interval of 0.05±2·[0.05·(1−0.05)/15000] 12 = [0.0464, 0.0535]

as indicative of the expected range of values.

Overall, the size of the F -version of 1-sided is generally closest to its asymp-

totic value, although as expected, L-K and 1-sided behave very similarly in the

GARCH(1,1) model, since they are asymptotically equivalent in that case. For

i.i.d. N(0,1) and standard t5 variates, actual test size tends to increase with the

sample size, T. Also, size distortions are larger with student t innovations than

with Gaussian ones, especially for the 2-sided LM test. However, relative to the

case of constant degrees of freedom, the results for 1-sided and L-K do not seem

to be much affected by allowing for time-variation in νt. The performance of the

2-sided LM test, though, deteriorates.

The information in the tables can be conveyed more concisely by using p-

value plots. However, since the three tests that we are considering are fairly well

behaved, it is more revealing to graph F̂(x)-x against x. This is what Davidson

and MacKinnon (1996) call p value discrepancy plots, which are simply plots

of actual minus nominal test size versus nominal test size for all possible test sizes.

Since we usually focus on small significance levels when testing, we truncate the

plots at x=.15.

Figure 2 summarizes the behaviour of the 1-sided LM tests for the differ-

ent error distributions and ARCH/GARCH models for a reference sample of 250

observations. In all cases, the test is liberal for small nominal sizes, and then be-

comes conservative, although it has a reasonable size at the 5% nominal level. The

test performs fairly well with normal errors, both for ARCH(2) and GARCH(1,1)

models, which is in agreement with the results in Figure 1. In contrast, there are
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significantly larger size distortions in the empirically relevant case of leptokurtic

innovations, especially for the GARCH(1,1) model. However, the distortions are

largely unaffected by time-varying degrees of freedom.

Figures 3a-3b compare the 1-sided LM to the other tests for the ARCH(2)

and GARCH(1,1) models respectively, with the same sample size as before (i.e.

T=250). The L-K statistic is much more conservative than the 1-sided LM test

in the ARCH(2) model, but so similar in the GARCH(1,1) case that it is not

even worth plotting. Again, the size distortions increase when we go from normal

to leptokurtic innovations. On the other hand, the 2-sided LM test performs

reasonably well in the models with normal errors, although not as well as the 1-

sided LM test. It also shows much bigger size distortions for student’s t distributed

errors.

As we mention in section 2.2.3, it is easy to robustify the different tests for

GARCH(1,1) so that they remain asymptotically valid with conditional heterokur-

tic innovations. For that reason, we also consider one-sided and two-sided ver-

sions of the LM tests robustified in two different but asymptotically equivalent

ways. In particular, we use both the White t-ratio from the auxiliary regression

of the squared residuals on a constant and the lagged squared residual (cf. Hsieh,

1983, and Pagan and Hall, 1983), and the procedure recommended by Wooldridge

(1990), which we explained in section 2.1.3. The results are reported in Table 4.

Surprisingly enough, the actual sizes of the robustified tests are further away from

the 5% nominal value than the sizes of the nonrobustified tests. As can be seen

from the table, both versions of the one-sided tests underreject, while the cor-

responding two-sided versions overreject. This is due to the fact that the finite

sample distributions of the t-ratios in both auxiliary regressions are significantly

skewed to the right. The size distortions are more acute for the Wooldridge ver-
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sion of the one-sided test, and the White version of the two-sided test.9Therefore,

it seems that for the sample sizes we analyze, there are large sampling errors in-

volved in the computation of the higher order moments required for carrying out

the robust corrections which outweigh the smaller misspecification errors associ-

ated with these tests.

3.3 Power Comparisons

The conventional way to report Monte Carlo results on power is to tabulate

the proportion of τ j’s computed from data generated under the alternative that

exceed the 5% quantile of the simulated null distribution of the test. In this vein,

tables 5a-5b present the estimated (size-adjusted) powers of all three ARCH(2)

tests. To save space, we only present those combinations for which α1 ≥ α2, but

a rather symmetric pattern is obtained for α2 > α1. Similarly, tables 6a-b report

the estimated (size-adjusted) rejection probabilities for GARCH(1,1) tests. The

tables differ in the way ε∗t is generated: in tables 5a and 6a, they are i.i.d. N(0,1)

variates, while in tables 5b and 6b i.i.d. standard t5 are used instead.

In all cases, powers uniformly increase with sample size for a fixed alternative.

They also increase as we depart from the null for a given sample size. However,

for a given sample size and a fixed alternative, the power of all three tests is signif-

icantly smaller for t5 innovations than for normal ones. This finding is consistent

with the results of Bollerslev and Wooldridge (1992) and Lee and King (1993),

and simply reflects the fact that the “optimality” of LM-type tests derived from

a Gaussian likelihood is lost in a pseudo maximum likelihood context.

Note that LM 1-sided is invariably more powerful than LM 2-sided, both

against ARCH(2) and GARCH(1,1) alternatives, with normal or t-distributed er-

9We have also carried some experiments which show that the size distorsions of the robustified

tests are smaller for data generated under Gaussianity, although still important.
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rors. The difference is particularly noticeable for small sample sizes and Gaussian

innovations. This is what we expected for GARCH(1,1) alternatives with β1 = 0,

since LM 1-sided is asymptotically one-sided more powerful in this situation. But

our results suggest that higher power is also achieved in general. Note also that

in the GARCH(1,1) case, the finite sample power of the three tests is not much

affected by changes in β1, except for β1 large (cf. Lee and King, 1993). This is

consistent with the fact that in this context, the tests are essentially derived as

tests for ARCH(1) (see section 2.2).

The relative performance of the two one-sided tests depends on the alternative

model. As expected, size-adjusted powers for LM 1-sided and L-K are practically

the same across experimental designs in the GARCH(1,1) case. On the other

hand, L-K is always more powerful in the ARCH(2) case when α1 = α2 > 0. This

is hardly surprising, since it is locally the best test of conditional homoskedasticity

in that direction. By contrast, 1-sided tends to have more power when α1 > 0 but

α2 = 0 (and vice versa), especially for large sample sizes. For the intermediate

parameter combinations, L-K is generally more powerful, especially when α1−α2

is small.

Again, we can complement the tables with another graphical method recently

proposed by Davidson and MacKinnon (1996) to display the simulation evidence

on the power of the different tests. In particular, we use what they call Size-

Power curves. In the previous subsection, we defined F̂(x) for x∈(0,1) as the

empirical distribution function of the asymptotic p-values when the data are gen-

erated under the null. Similarly, we can define F̂∗(x) for x∈(0,1) as the empirical

distribution function of the asymptotic p-values when the data are generated un-

der the alternative. Formally, a size-power curve is a plot of F̂∗(x) against F̂(x).

But a careful reading of the procedure shows that a size-power plot is simply a plot

of test power versus actual test size for all possible test sizes. The main advantage
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of size-power plots is that they allow us to see immediately the effect on power

of several factors, like sample size, or parameter values, as well as to compare the

relative powers of test statistics that have different null distributions. But as with

p-value plots, if the distribution of the test is partly discrete, the range of values

for which the size-power curve can be computed is restricted. In order to minimize

experimental error, we use the same set of random numbers in both experiments

by sharing the random numbers corresponding to the first 2000 replications from

the size experiments.

Most empirical models in finance have found that GARCH models better de-

scribe the data than ARCH models (see Bollerslev, Chou and Kroner, 1992, for

a survey of the extensive empirical literature). They also indicate that the con-

ditional distribution of asset returns is rather leptokurtic, especially for high fre-

quency observations. Given this, we concentrate on the GARCH(1,1) model with

i.i.d. t5 innovations and a reference sample size of T=250 (see Demos and Sen-

tana, 1996, for a more comprehensive set of results). There are two features of the

estimated parameters in GARCH(1,1) models in the empirical literature that are

notable. First, α1 + β1 is close to one, though usually slightly less. Second, β1 is

typically much larger than α1.With this in mind, we consider two parameter con-

figurations, namely (α1 = .05, β1 = .9) and (α1 = .1, β1 = .9), that match roughly

what we tend to see in practice. For comparison purposes, we also include the

pair (α1 = .4, β1 = .3). The results in Figure 4 confirm the increase in power as

we depart from the null in the direction α1 > 0. In this respect, notice that the

effect on power of β1 is much smaller. This figure also reinforces the point that our

proposed one-sided LM test is always more powerful than the standard two-sided

version, although not overwhelmingly so for realistic experimental designs such as

these.
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4 Conclusions

Here we present critical values of the LR and W tests for testing ARCH effects

versus constancy in the conditional variance of a series. Besides, we propose a

simple one-sided version of the standard TR2-type LM test for ARCH (see En-

gle, 1982), which is computed from the same auxiliary regression of the squares

of the residuals on a constant and its lags. This test is closely related to the

Kuhn-Tucker multiplier test in Gourieroux, Holly and Monfort (1982). The crit-

ical values reported here are also valid for this new test. The reason is that the

W and LR tests are implicitly one-sided in this context. We also consider tests

of conditional homoskedasticity against a GARCH(1,1) alternative, which are nu-

merically identical to a test against ARCH(1). The critical values we present are

robust to non-normal conditionally homokurtic disturbances, but not to condi-

tionally heterokurtic ones in general. In the ARCH(1) and GARCH(1,1) cases,

though, one-sided robustified versions are also possible.

We carry out a Monte Carlo experiment to compare the finite sample size and

power of our proposed test with those of the standard LM test and another one-

sided test recently proposed by Lee and King (1993). Our results suggest that

going one-sided is invariably worth it. For the ARCH(2) case, the size-adjusted

Lee and King (1993) test is the most powerful one when α1 is close to α2, whereas

our version is more powerful when α2 (or α1) is close to 0. The results also suggest

that F -versions of the LM tests produce smaller size distortions, with the Lee and

King test being the most conservative. In the GARCH(1,1) case, LM 1-sided

and L-K are asymptotically equivalent, and have less size distortions and more

power than LM 2-sided, although the difference in power is not overwhelming for

realistic experimental designs. The finite sample distribution of both one-sided

tests does not seem to be much affected by having conditionally heterokurtic

innovations. Surprisingly enough, the robustified versions of the tests have larger
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size distortions than the nonrobustified ones.

Ideally, one would like to extend the previous discussion to those cases in which

we are interested in testing any number of homogeneous restrictions against a null

of GARCH(p,q). For instance, we may be interested in testing ARCH(q) versus

ARCH(q+r). A one-sided approach is still desirable in this case given that αq+i

has to be nonnegative under the alternative to guarantee positive conditional

variances. Unfortunately, in this case the exact form of the information matrix

is unknown, and the weights for the mixtures of χ20s cannot generally be derived

theoretically. Therefore, the only available solutions are either to do Monte-Carlo

simulations to obtain critical values, or to use upper and lower bounds on the

mixture distributions (see Wolak, 1989b, and Kodde and Palm, 1986). Of course,

we can always use the two-sided LM test which, although less powerful, will have

the right size provided that E(ε∗4t | zt, It−1) = κ <∞. The two-sided LM test

for αq+i = 0 (i=1,r) is TR2 from the regression of (ε̃2t − h̃t)/h̃t on 1/h̃t, ε̃2t−j/h̃t

(j = 1, q), and ε̃2t−q−i/h̃t (i = 1, r), where ˜ indicates ML estimates under the

null (as in Godfrey, 1979).

Nevertheless, one-sided tests for an extra ARCH term can be easily handled,

because when there is only one restriction, the mixture weights are 1/2 and 1/2

independently of the structure of the information matrix. As a result, the first row

of Table 1 can again be used for bothWand LR tests, and indeed the one-sided LM

test. For example, the 5% one-sided LM test of ARCH(q + 1) versus ARCH(q)

will reject the null hypothesis if TR2 exceeds 2.706 and the OLS coefficient of

ε̃2t−q−1/h̃t is positive.

As we mention in the introduction, positivity of the conditional variance in a

general GARCH(p, q) model does not necessarily require non-negativity of all α0is

and β0is. Hence, when testing homogeneous restrictions, the parameters may no

longer be at the boundary of the parameter space under the null. For example,
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in the GARCH(1,2) case the restrictions become α1, β1 ≥ 0, and α2 ≥ −α1β1, a

negative number. Hence, in testing GARCH(1,1) versus GARCH(1,2), the LR,

W and (two-sided) LM tests all have the usual χ21 distribution.

The critical values presented here could be of use in similar situations. An

obvious example is testing for conditionally normal versus t distributed ε0ts in the

ARCH model. In this respect, Bollerslev (1987) found by Monte Carlo methods

that the distribution of the LR as a test of 1/ν = 0 (with ν being the number of

degrees of freedom) was more concentrated towards the origin than a χ21, with a

5% critical value of 2.7, which is essentially identical to our 2.706 from table 1. Our

one-sided approach can also be extended to other dynamic heteroskedastic models

that impose nonnegativity restrictions, such as the Quadratic ARCH model (see

Sentana, 1995).

Finally, there is a point which is worth mentioning and affects all three tests

(LR, LM and W). If some of the nuisance parameters lie on the boundary of the

parameter space (i.e. they are zero) the asymptotic distribution of the tests will

be quite different, and in general it will not be a mixture of χ20s (see Self and

Liang, 1987). This situation can arise if, for example, one tries to test ARCH(q)

versus ARCH(q+1) and some of the α0is parameters in equation (2), for i < q,

are zero. Obviously, if one knew that, say, αj = 0 for j < q, one could solve this

problem by imposing this restriction.
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Appendices

1 Derivation of critical values

Let Fχ2i
() and fχ2i () be the cumulative distribution function and density func-

tion of a random variable which is distributed as χ2 with i degrees of freedom. If

Z is a mixture of χ20s, its cumulative distribution function is the mixture of the

χ2 cumulative distribution functions. That is:

FZ(z) =
qX

i=0

wiFχ2i
(z)

Hence

P [Z > z] = 1− P [Z ≤ z] =
qX

i=0

wi[1− F χ2i
(z)]

But since Fχ20
(z) = 1 for all z ≥ 0, the first term in the summation vanishes and

we are left with (5)

2 Asymptotic distribution of the quasi- maxi-

mum likelihood estimators of the ARCH(q)

coefficients under conditional homoskedastic-

ity and homokurtosis

Consider the dynamic regression model in (1)-(3) for the case of p=0, with

A(θ) = E[−∂2lt(θ)/∂θ∂θ0]

B(θ) = E(∂lt(θ)/∂θ
0∂lt(θ)/∂θ]

C(θ) = A−1(θ)B(θ)A−1(θ)

28



Proposition 1 Let the true parameter configuration correspond to the case of

conditional homoskedasticity, i.e. θ0 = (δ0, γ) = (δ0, ω0, 0, . . . , 0). If κt = E(ε∗4t |

zt, It−1) = κ <∞, then

A(θ0) =

⎛⎜⎝ F 00

1
2
G

⎞⎟⎠

B(θ0) =

⎛⎜⎝ F H

κ−1
4
G

⎞⎟⎠

C(θ0) =

⎛⎜⎝ F−1 F−1HG−1

G−1

⎞⎟⎠
F =

1

ω0
E[

∂μt(θ0)

∂δ

∂μt(θ0)

∂δ0
]

H =
1

2ω
3/2
0

E[ε∗
3

t

∂μt(θ0)

∂δ

∂ht(θ0)

∂γ0
]

G =
1

ω20
E[

∂ht(θ0)

∂γ

∂h0t(θ0)

∂γ
] =

⎛⎜⎝ ω−20 ω−10 l0q

(κ− 1)Iq + lql
0
q

⎞⎟⎠

G−1 = (κ− 1)−1
⎛⎜⎝ ω20(q + κ− 1) −ω0l0q

Iq

⎞⎟⎠
where lq is a vector of q ones, and Iq the identity matrix of order q.

Proof. Bollerslev and Wooldridge (1992) show that the score function, st(θ)0 =

∂lt(θ)/∂θ
0, for any conditionally heteroskedastic dynamic regression model is given

by the expression:

st(θ) = h
−1
2

t (θ)εt(θ)h
− 1
2

t (θ)
∂μt(θ)

∂θ
+
1

2
[ε2t (θ)h

−1
t (θ)− 1]h−1t (θ)

∂ht(θ)

∂θ

In our case ∂μt(θ)/∂δ = f t(θ), ∂μt(θ)/∂γ = 0, ∂ht(θ)/∂δ = −2
Pq

i=1 αiεt−i(θ)ft−i(θ)

and ∂ht(θ)/∂γ = (1, ε2t−1(θ), . . . ., ε
2
t−q(θ))

0 = gt(θ). For θ = (δ,γ) = (δ,ω0, 0, . . . , 0),

we get ht(θ0) = ω0, εt(θ0) = ε∗tω
1
2
0 , gt(θ0) = ω0(ω

−1
0 , ε∗2t−1, . . . ., ε

∗2
t−q) = ω0g

∗
t ,

ft(θ0) = ω
1
2
0 f

∗
t and ∂ht(θ0)/∂δ = 0.
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Hence, s(θ0) = [ε∗tf
∗0
t ,

1
2
(ε∗2t − 1)g∗

0
t ]. Since E[s(θ0) | zt, It−1] = 0, it is then

straightforward to see that V [st(θ0) | zt, It−1] =

⎛⎜⎝ f∗t f
∗0
t

1
2
φtf

∗
t g
∗0
t

κt−1
4

g∗t g
∗0
t

⎞⎟⎠ where φt =
E(ε∗3t | zt, It−1) and κt = E(ε∗4t | zt, It−1). Taking unconditional expectations

under the assumption that κt = κ gives the desired expression for B(θ0) above.

Bollerslev and Wooldridge (1992) also prove that

−E(∂
2lt(θ0)

∂θ∂θ0
| zt, It−1) = h−1t (θ0)

∂μt(θ0)

∂θ

∂μt(θ0)

∂θ0
+
1

2
h−2t (θ0)

∂ht(θ0)

∂θ

∂ht(θ0)

∂θ0

which in our case reduces to ⎛⎜⎝ f∗t f
∗0
t 00

1
2
g∗t g

∗0
t

⎞⎟⎠
Taking unconditional expectations we obtain A(θ0) above. Given that E(g∗t g

∗0
t ) =

G, and using the partitioned inverse formula we finally obtain G−1 above.
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TABLE 1

Critical Values for
qX

i=0

h
q
i

i
2q

χ2i (and χ2q)

q\φ 0.25 0.10 0.05 0.025 0.01 0.005 0.001
1 0.455 1.642 2.706 3.841 5.412 6.635 9.549

(1.323) (2.706) (3.841) (5.024) (6.635) (7.879) (10.828)

2 1.350 2.952 4.231 5.537 7.289 8.628 11.763
(2.772) (4.605) (5.991) (7.378) (9.210) (10.597) (13.816)

3 2.143 4.010 5.435 6.861 8.746 10.171 13.474
(4.108) (6.251) (7.815) (9.348) (11.345) (12.838) (16.266)

4 2.880 4.955 6.498 8.023 10.019 11.516 14.961
(5.385) (7.779) (9.488) (11.143) (13.277) (14.860) (18.467)

5 3.582 5.835 7.480 9.091 11.183 12.744 16.317
(6.626) (9.236) (11.070) (12.832) (15.086) (16.750) (20.515)

6 4.261 6.671 8.407 10.095 12.274 13.893 17.581
(7.841) (10.645) (12.592) (14.450) (16.812) (18.548) (22.458)

7 4.923 7.474 9.295 11.053 13.312 14.985 18.780
(9.037) (12.017) (14.067) (16.012) (18.475) (20.278) (24.322)

8 5.572 8.257 10.152 11.976 14.310 16.032 19.927
(0.219) (13.361) (15.507) (17.534) (20.090) (21.955) (26.125)

9 6.211 9.018 10.985 12.870 15.273 17.042 21.033
(11.389) (14.684) (16.919) (19.023) (21.666) (23.589) (27.877)

10 6.841 9.764 11.799 13.741 16.211 18.024 22.103
(12.549) (15.987) (18.307) (20.483) (23.209) (25.188) (29.588)

11 7.464 10.496 12.595 14.593 17.125 18.980 23.144
(13.701) (17.275) (19.675) (21.920) (24.725) (26.757) (31.264)

12 8.081 11.217 13.378 15.428 18.020 19.915 24.161
(14.845) (18.549) (21.026) (23.337) (26.217) (28.299) (32.909)



TABLE 2

Estimated sizes (%) 15000 replications
ρ = 0.8 ARCH (2)

ε∗t ∼ iid N(0,1)
T = 100 T = 250 T = 500

LM 1-sided 4.573 5.067 5.333
Lee-King 2.940 3.840 4.187
LM 2-sided 3.827 4.426 4.580

ε∗t ∼ iid std t5
T = 100 T = 250 T = 500

LM 1-sided 4.807 5.540 5.993
Lee-King 2.907 3.860 4.260
LM 2-sided 3.480 4.060 4.467

ε∗t ∼ std tνt
T = 100 T = 250 T = 500

LM 1-sided 4.873 5.687 5.593
Lee-King 2.893 3.867 4.227
LM 2-sided 3.547 3.947 3.873



TABLE 3

Estimated sizes (%) 15000 replications
ρ = 0.8 GARCH (1,1)

ε∗t ∼ iid N(0,1)
T = 100 T = 250 T = 500

LM 1-sided 4.653 5.187 5.273
Lee-King 4.187 4.887 5.100
LM 2-sided 3.707 4.207 4.713

ε∗t ∼ iid std t5
T = 100 T = 250 T = 500

LM 1-sided 4.087 4.400 4.747
Lee-King 3.813 4.287 4.713
LM 2-sided 2.840 3.180 3.420

ε∗t ∼ std tνt
T = 100 T = 250 T = 500

LM 1-sided 4.113 4.480 4.413
Lee-King 3.853 4.267 4.347
LM 2-sided 2.693 3.013 2.980



TABLE 4

Estimated sizes (%) 15000 replications
ρ = 0.8 GARCH (1,1) ε∗t ∼ std tνt

T = 100 T = 250 T = 500
LM 1-sided (Wooldridge) 0.967 1.047 1.200

(White) 2.940 2.473 2.347
LM 2-sided (Wooldridge) 5.620 7.433 8.240

(White) 11.720 11.327 10.380



TABLE 5a
Size-Adjusted Powers (%) 2000 replications

ρ = 0.8 ARCH(2), ε∗t ∼ iid N(0,1)

α1 α2 T LM 1-sided Lee-King LM 2-sided
0.2 0.0 100 34.65 33.20 30.10

250 67.65 58.90 61.60
500 91.35 83.55 88.50

0.2 0.2 100 55.25 63.50 45.65
250 89.85 93.20 85.00
500 99.45 99.75 98.95

0.4 0.0 100 66.65 61.85 60.60
250 95.35 91.60 93.20
500 99.90 99.65 99.85

0.4 0.2 100 77.35 82.80 69.10
250 98.60 99.10 97.50
500 100.00 100.00 100.00

0.4 0.4 100 87.65 93.00 81.10
250 99.80 99.85 99.60
500 100.00 100.00 100.00

0.6 0.0 100 81.30 79.15 76.85
250 99.20 98.10 98.85
500 100.00 99.95 99.95

0.6 0.2 100 88.35 92.35 82.25
250 99.65 99.80 99.15
500 100.00 100.00 100.00

0.6 0.4 100 93.55 96.35 89.15
250 99.90 99.95 99.80
500 100.00 100.00 100.00



TABLE 5b
Size-Adjusted Powers (%) 2000 replications

ρ = 0.8 ARCH(2), ε∗t ∼ iid std t5

α1 α2 T LM 1-sided Lee-King LM 2-sided
0.2 0.0 100 26.90 27.10 24.75

250 47.15 47.05 45.70
500 69.00 66.75 67.45

0.2 0.2 100 44.55 53.05 39.90
250 73.95 82.50 70.15
500 92.10 95.70 90.35

0.4 0.0 100 49.60 48.20 46.45
250 77.95 76.90 76.10
500 93.40 92.70 92.70

0.4 0.2 100 60.75 69.30 56.45
250 89.70 94.30 88.00
500 98.05 99.00 97.75

0.4 0.4 100 71.95 80.50 67.35
250 95.50 98.00 94.20
500 99.30 99.65 99.20

0.6 0.0 100 63.85 64.35 60.60
250 89.35 89.90 88.05
500 97.60 97.80 97.15

0.6 0.2 100 71.95 79.80 68.55
250 95.45 97.45 94.25
500 99.20 99.55 99.00

0.6 0.4 100 79.90 87.50 75.80
250 97.35 98.60 96.85
500 99.35 99.75 99.25



TABLE 6a
Size-Adjusted Powers (%) 2000 replications

ρ = 0.8 GARCH (1,1) ε∗t ∼ iid N(0,1)

α1 β1 T LM 1-sided Lee-King LM 2-sided
0.05 0.0 100 12.35 12.50 9.65

250 17.65 17.70 13.50
500 27.60 27.55 20.60

0.05 0.3 100 12.80 12.75 9.80
250 18.15 18.20 14.25
500 28.10 28.10 21.10

0.05 0.6 100 12.75 12.85 9.95
250 19.25 19.30 14.70
500 29.00 29.00 22.10

0.05 0.9 100 12.60 12.50 10.25
250 22.15 22.30 18.50
500 36.70 36.70 30.10

0.1 0.0 100 20.60 20.50 16.45
250 37.40 37.30 31.15
500 59.60 59.65 51.30

0.1 0.3 100 20.95 21.00 17.60
250 38.25 38.35 32.70
500 60.50 60.45 52.90

0.1 0.6 100 22.40 22.40 18.30
250 40.60 40.60 35.10
500 62.90 63.05 56.30

0.1 0.9 100 24.15 24.05 19.00
250 59.85 59.95 54.55
500 91.00 91.00 87.65

0.4 0.0 100 72.55 72.55 67.70
250 96.75 96.75 95.65
500 99.95 99.95 99.95

0.4 0.3 100 73.80 73.85 69.20
250 97.35 97.30 95.85
500 99.95 99.95 99.95

0.4 0.6 100 76.40 76.65 71.20
250 97.75 97.80 97.25
500 100.00 100.00 100.00



TABLE 6b
Size-Adjusted Powers (%) 2000 replications

ρ = 0.8 GARCH (1,1), ε∗t ∼ iid std t5

α1 β1 T LM 1-sided Lee-King LM 2-sided
0.05 0.0 100 12.05 12.15 10.70

250 18.60 18.65 15.95
500 24.05 24.05 21.75

0.05 0.3 100 12.45 12.45 10.65
250 19.05 19.10 16.60
500 24.10 24.10 22.20

0.05 0.6 100 12.45 12.55 10.75
250 19.45 19.45 17.20
500 24.35 24.40 22.60

0.05 0.9 100 11.20 11.20 10.15
250 19.45 19.55 18.15
500 30.10 30.20 27.15

0.1 0.0 100 19.05 19.05 16.60
250 32.65 32.70 30.00
500 46.70 46.75 43.45

0.1 0.3 100 19.20 33.30 17.20
250 33.35 31.15 30.80
500 47.75 47.75 44.40

0.1 0.6 100 19.45 19.45 17.55
250 34.15 34.25 31.95
500 49.85 49.85 46.35

0.1 0.9 100 20.30 20.45 17.55
250 46.50 46.45 42.65
500 74.60 74.65 72.10

0.4 0.0 100 57.55 57.55 54.00
250 85.25 85.25 83.20
500 96.65 96.75 96.00

0.4 0.3 100 59.60 59.60 54.40
250 87.00 87.05 85.20
500 97.20 97.25 96.60

0.4 0.6 100 61.95 62.10 58.45
250 91.00 91.15 89.05
500 97.90 97.90 97.40


