
Supplemental Appendices for

New testing approaches for mean-variance
predictability

Gabriele Fiorentini

Università di Firenze and RCEA, Viale Morgagni 59, I-50134 Firenze, Italy

<gabriele.fiorentini@unifi.it>

Enrique Sentana

CEMFI, Casado del Alisal 5, E-28014 Madrid, Spain

<sentana@cemfi.es>

Revised: February 2020



A Proofs

Proposition 1

Given the discussion in Supplemental Appendix E, to find the score function, the expected

value of the Hessian and the variance of the score of the pseudo log-likelihood function, all we

need is the matrix Zdt(θs), which in turn requires the Jacobian of the conditional mean and

covariance functions. In view of (1), we will have that

∂µt(π, 0, ω)/∂θ′ =
(

1 yt−1 − π 0
)

and

∂σ2t (π, 0, ω)/∂θ′ =
(

0 0 1
)
,

whence

Zdt(π, 0, ω) =

 ω−1/2 0
εt−1(θs, 0) 0

0 1
2ω
−1

 , (A1)

so that

Zd(π0, 0, ω0,η0) =

 ω
−1/2
0 0
0 0

0 1
2ω
−1
0

 . (A2)

As a result, the score under the null will be sπt(π, 0, ω,η)
sρt(π, 0, ω,η)
sωt(π, 0, ω,η)

 =

 −ω−1/2∂f [εt(θs, 0), η] /∂ε∗

−∂f [εt(θs, 0), η] /∂ε∗ · εt−1(θs, 0)
−12ω

−1[∂f [εt(θs, 0), η] /∂ε∗ · εt(θs, 0) + 1]

 .
Given Assumptions 1-3, we can then use standard arguments (see e.g. Newey and McFadden

(1994)) to show that
√
T

T

∑T

t=1
sρt(φ̂s, 0) =

√
T

T

∑T

t=1
sρt(φs∞, 0) +

1

T

∑T

t=1
hρφst(φs∞, 0)

√
T (φ̂s − φs∞) + op(1)

=

√
T

T

∑T

t=1
sρt(φs∞, 0)− 1

T

∑T

t=1
hρφst(φs∞, 0)

[
1

T

∑T

t=1
hφsφst(φs∞, 0)

]−1
×
√
T

T

∑T

t=1
sφst(φs∞, 0) + op(1),

where φs = (θ′s,η
′)′. Hence, the asymptotic variance of

√
T
T

∑T
t=1 sρt(φ̂s, 0) will be given by

Fρρ(θs∞, 0,η∞;θs0, 0,%0), where

Fρρ = Bρρ − 2AρφsA
−1
φsφs
B′ρφs +AρφsA

−1
φsφs
BφsφsA

−1
φsφs
A′ρφs ,

and Bρρ, Aρφs , etc. are the relevant elements of

B(θs, 0,η;θs0, 0,%0) = V [sφt(θs, 0,η)|θs0, 0,%0),

A(θs, 0,η;θs0, 0,%0) = −E[hφφt(θs, 0,η)|θs0, 0,%0).
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Tedious but straightforward algebra shows that at ρ = 0 :

hππt(φ) = ω−1∂2 ln f [εt(θs, 0),η] /∂ε∗∂ε∗

hπωt(φ) = 1
2ω
−3/2{∂2 ln f [εt(θs, 0),η] /∂ε∗∂ε∗ · εt(θs, 0) + ∂ ln f [εt(θs, 0),η] /∂ε∗}

hπηt(φ) = −ω−1/2∂2 ln f [εt(θs, 0),η] /∂ε∗∂η′

hωωt(φ) = 1
2ω
−2{1 + 3

2∂ ln f [εt(θs, 0),η] /∂ε∗ · εt(θs, 0)

+1
2∂
2 ln f [εt(θs, 0),η] /∂ε∗∂ε∗ · ε2t (θs, 0)}

hωηt(φ) = −12ω
−2∂2 ln f [εt(θs, 0),η] /∂ε∗∂η′ · εt(θs, 0)

hηηt(φ) = ∂2 ln f [εt(θs, 0),η] /∂η∂η′

Similarly, we can show that at ρ = 0

hρπt(φ) = ω−1/2{∂2 ln f [εt(θs, 0),η] /∂ε∗∂ε∗ ·εt−1(θs, 0)+∂ ln f [εt(θs, 0),η] /∂ε∗}

hρρt(φ) = ∂2 ln f [εt(θs, 0),η] /∂ε∗∂ε∗ ·ε2t−1(θs, 0)+∂ ln f [εt(θs, 0),η] /∂ε∗ ·εt−2(θs, 0)

hρωt(φ) = 1
2ω
−1{∂2 ln f [εt(θs, 0),η] /∂ε∗∂ε∗ ·εt(θs, 0)+∂ ln f [εt(θs, 0),η] /∂ε∗}·εt−1(θs, 0)

hρηt(φ) = −∂2 ln f [εt(θs, 0),η] /∂ε∗∂η ·εt−1(θs, 0)

Given that the pseudo-true values of π, ω and η are implicitly defined in such a way that

E{∂ ln f [εt(θs, 0),η∞] /∂ε∗|ϕ0} = 0,

E{1 + ∂ ln f [εt(θs, 0),η∞] /∂ε∗ · εt(θs, 0)|ϕ0} = 0,

E{∂ ln f [εt(θs, 0),η∞] /∂η|ϕ0} = 0,

the law of iterated expectations implies that

E[hππt(φ∞)|It−1;ϕ0] = ω−1∞ Hll(φ∞;ϕ0)

E[hπωt(φ∞)|It−1;ϕ0] = 1
2ω
−3/2
∞ Hls(φ∞;ϕ0)

E[hπηt(φ∞)|It−1;ϕ0] = −ω−1/2∞ Hlr(φ∞;ϕ0)

E[hωωt(φ∞)|It−1;ϕ0] = 1
4ω
−2
∞ [Hss(φ∞;ϕ0)− 1]

E[hωηt(φ∞)|It−1;ϕ0] = −12ω
−1
∞ Hsr(φ∞;ϕ0)

E[hηηt(φ∞)|It−1;ϕ0] = Hrr(φ∞;ϕ0)

and

E[hρπt(φ∞)|It−1;ϕ0] = ω−1/2∞ Hll(φ∞;ϕ0) · εt−1(θs, 0)

E[hρρt(φ∞)|It−1;ϕ0] = Hll(φ∞;ϕ0) · ε2t−1(θs, 0)

E[hρωt(φ∞)|It−1;ϕ0] = 1
2ω
−1
∞ Hls(φ;ϕ0) · εt−1(θs, 0)

E[hηηt(φ∞)|It−1;ϕ0] = −Hlr(φ∞;ϕ0) · εt−1(θs, 0)
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where

Hll(φ∞;ϕ0) = E[∂2 ln f [εt(θs, 0),η∞] /∂ε∗∂ε∗|It−1;ϕ0]

Hls(φ∞;ϕ0) = E[∂2 ln f [εt(θs, 0),η∞] /∂ε∗∂ε∗ · εt(θs, 0)|It−1;ϕ0]

Hlr(φ∞;ϕ0) = E[∂2 ln f [εt(θs, 0),η∞] /∂ε∗∂η′|It−1;ϕ0]

Hss(φ∞;ϕ0) = E[∂2 ln f [εt(θs, 0),η∞] /∂ε∗∂ε∗ · ε2t (θs, 0)|It−1;ϕ0]

Hsr(φ∞;ϕ0) = E[∂2 ln f [εt(θs, 0),η∞] /∂ε∗∂η′ · εt(θs, 0)|It−1;ϕ0]

and ϕ0 = (θ′s0, 0,%
′
0)
′.

Consequently,

E[hρπt(φ∞)|ϕ0] = ω−1/2∞ · E[εt−1(θs, 0)|ϕ0]

E[hρρt(φ∞)|ϕ0] = Hll(φ∞;ϕ0) · E[ε2t−1(θs, 0)|ϕ0]

E[hρωt(φ∞)|ϕ0] = 1
2ω
−1
∞ Hls(φ∞;ϕ0) · E[εt−1(θs, 0)|ϕ0]

E[hρηt(φ∞)|ϕ0] = −Hlr(φ∞;ϕ0) · E[εt−1(θs, 0)|ϕ0]

where

E[εt(θs, 0)|ϕ0] = E[ω−1/2(yt − π)|ϕ0] = E[ω−1/2(π0 + ω
1/2
0 ε∗t − π)|ϕ0] = ω−1/2(π0 − π)

and

E[ε2t (θs, 0)|ϕ0] = E[ω−1(yt − π)2|ϕ0] = E[ω−1(π0 + ω
1/2
0 ε∗t − π)2|ϕ0] = ω−1[(π0 − π)2 + ω0],

so that

V [εt(θs, 0)|ϕ0] = ω−1ω0. (A3)

Given that Aρφs is proportional to the first column of Aφsφs , we can immediately show that

AρφsA
−1
φsφs

=
(
E[εt(θs, 0)|ϕ0]

√
ω∞ 0 0′

)
= E[εt(θs∞, 0)|ϕ0]ω1/2∞ e′1 (A4)

if we evaluate these expressions at the pseudo true values, where e1 is the first element of

the canonical basis. Therefore, the only elements of B(φ∞;ϕ∞) that we need are the ones

corresponding to π and ρ. But since

B(φ∞;ϕ∞) = E[Bt(φ∞;ϕ∞)|ϕ∞],

Bt(φ∞;ϕ∞) = V [sφt(θs∞, 0,η∞)| It−1;ϕ∞] = Zt(θ∞)K(φ∞;ϕ∞)Z′t(θ∞),

K(φ;ϕ) = V

 elt(φ)
est(φ)
ert(φ)

∣∣∣∣∣∣ϕ
 =

 Kll(φ;ϕ) Kls(φ;ϕ) K′lr(φ;ϕ)
Kls(φ;ϕ) Kss(φ;ϕ) K′sr(φ;ϕ)
Klr(φ;ϕ) Ksr(φ;ϕ) Krr(φ;ϕ)


we will have that under the null of H0 : ρ = 0,[

Bππ(φ∞;ϕ0) Bπρ(φ∞;ϕ0)
Bπρ(φ∞;ϕ0) Bρρ(φ∞;ϕ0)

]
= Kll(φ∞;ϕ0)

[
ω−1∞ ω

−1/2
∞ E[εt−1(θs∞, 0)|ϕ0]

ω
−1/2
∞ E[εt−1(θs∞, 0)|ϕ0] E[ε2t−1(θs∞, 0)|ϕ0]

]
.
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Finally we obtain

Fρρ(θs∞, 0,η∞;θs0, 0,%0) = Kll(φ∞;ϕ0)V [εt−1(θs∞, 0)|ϕ0],

which is precisely the denominator of the R2 in the regression of ∂ ln f [εt(θs∞, 0),η] /∂ε∗ on a

constant and εt−1(θs∞, 0).

We can also use these expressions to derive the asymptotic variance of the pseudo ML

estimator of ρ under the null. Specifically, straightforward algebra shows that the “ρρ”element

of the matrix

C(φ∞;ϕ∞) = A−1(φ∞;ϕ∞)B(φ∞;ϕ∞)A−1(φ∞;ϕ∞)

will be given by
Fρρ(θs∞, 0,η∞;θs0, 0,%0)

G2ρρ(θs∞, 0,η∞;θs0, 0,%0)
,

where

Gρρ = Aρρ −AρφsA
−1
φsφs
A′ρφs .

But (A4) immediate implies that

Gρρ(θs∞, 0,η∞;θs0, 0,%0) = Hll(φ∞;ϕ0)
{
E[ε2t−1(θs∞, 0)|ϕ0]−E2[εt−1(θs∞, 0)|ϕ0]

}
= Hll(φ∞;ϕ0)V [εt−1(θs∞, 0)|ϕ0],

whence
√
T ρ̂T → N

[
0,
Kll(φ∞;ϕ0)

H2ll(φ∞;ϕ0)

ω∞
ω0

]
in view of (A3). Not surprisingly, this expression nests both the usual Gaussian PML expression,

as well as the true ML expression when the information matrix equality holds.

Let us now find the remaining elements of C(φ∞;ϕ∞). We need to find out an expression

for B(φ∞;ϕ∞), which is given by the unconditional expected value of
ω−1/2 0 0

εt−1(θs, 0) 0 0
0 1

2ω
−1 0

0 0 Iq


 Kll(φ;ϕ) Kls(φ;ϕ) K′lr(φ;ϕ)
Kls(φ;ϕ) Kss(φ;ϕ) K′sr(φ;ϕ)
Klr(φ;ϕ) Ksr(φ;ϕ) Krr(φ;ϕ)



×

 ω−1/2 εt−1(θs, 0) 0 0
0 0 1

2ω
−1 0

0 0 0 Iq



=


ω−1/2Kll(φ;ϕ) ω−1/2Kls(φ;ϕ) ω−1/2K′lr(φ;ϕ)

εt−1(θs, 0)Kll(φ;ϕ) εt−1(θs, 0)Kls(φ;ϕ) εt−1(θs, 0)K′lr(φ;ϕ)
1
2ω
−1Kls(φ;ϕ) 1

2ω
−1Kss(φ;ϕ) 1

2ω
−1K′sr(φ;ϕ)

Klr(φ;ϕ) Ksr(φ;ϕ) Krr(φ;ϕ)


×

 ω−1/2 εt−1(θs, 0) 0 0
0 0 1

2ω
−1 0

0 0 0 Iq
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=


ω−1Kll(φ;ϕ) ω−1/2εt−1(θs, 0)Kll(φ;ϕ)

ω−1/2εt−1(θs, 0)Kll(φ;ϕ) ε2t−1(θs, 0)Kll(φ;ϕ)
1
2ω
−3/2Kls(φ;ϕ) 1

2ω
−1εt−1(θs, 0)Kls(φ;ϕ)

ω−1/2Klr(φ;ϕ) εt−1(θs, 0)Klr(φ;ϕ)

1
2ω
−3/2Kls(φ;ϕ) ω−1/2K′lr(φ;ϕ)

1
2ω
−1εt−1(θs, 0)Kls(φ;ϕ) εt−1(θs, 0)K′lr(φ;ϕ)
1
4ω
−2Kss(φ;ϕ) 1

2ω
−1K′sr(φ;ϕ)

1
2ω
−1Ksr(φ;ϕ) Krr(φ;ϕ)

 .
As for A−1(φ∞;ϕ∞), we can use the partitioned inverse formula to write

A−1(φ∞;ϕ∞) =

(
A−1φsφs +A−1φsφsA

′
ρφs
G−1ρρ AρφsA

−1
φsφs

−A−1φsφsA
′
ρφs
G−1ρρ

−G−1ρρ AρφsA
−1
φsφs

G−1ρρ

)
.

But if we use the expression for AρφsA
−1
φsφs

, we will get

A−1(φ∞;ϕ∞) =

(
A−1φsφs 0

0 0

)
+G−1ρρ

(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e′1 1

)
Hence,

A−1(φ∞;ϕ∞)B(φ∞;ϕ∞)A−1(φ∞;ϕ∞) =

(
A−1φsφsBφsφsA

−1
φsφs

0

0 0

)
+G−1ρρ

(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e′1 1

)( BφsφsA−1φsφs 0

BρφsA
−1
φsφs

0

)

+G−1ρρ
(
A−1φsφsBφsφs A

−1
φsφs
B′ρφs

0 0

)
×
(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e′1 1

)
+FρρG−2ρρ

(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e1

1

)(
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e′1 1

)
.

But (
−E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e′1 1

)( BφsφsA−1φsφs 0

BρφsA
−1
φsφs

0

)
= 0

because

BφsφsA
−1
φsφs
A′ρφs =

 ω−1Kll(φ;ϕ)
1
2ω
−3/2Kls(φ;ϕ)

ω−1/2Klr(φ;ϕ)

E[εt(θs∞, 0)|ϕ0]ω1/2∞

and

B′ρφs − BφsφsA
−1
φsφs
A′ρφs

=
ω−1/2εt−1(θs, 0)Kll(φ;ϕ)
1
2ω
−1εt−1(θs, 0)Kls(φ;ϕ)
εt−1(θs, 0)Klr(φ;ϕ)

−

 ω−1Kll(φ;ϕ)
1
2ω
−3/2Kls(φ;ϕ)

ω−1/2Klr(φ;ϕ)

E[εt(θs∞, 0)|ϕ0]ω1/2∞ = 0.
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As a result,

C(φ∞;ϕ∞) = A−1(φ∞;ϕ∞)B(φ∞;ϕ∞)A−1(φ∞;ϕ∞)

=

(
A−1φsφsBφsφsA

−1
φsφs

0

0 0

)
+FρρG−2ρρ

(
E2[εt(θs∞, 0)|ϕ0]ω∞e1e

′
1 −E[εt(θs∞, 0)|ϕ0]ω

1/2
∞ e1

−E[εt(θs∞, 0)|ϕ0]ω
1/2
∞ e′1 1

)
,

which means that the PML estimator of ρ will be asymptotically orthogonal to the PML esti-

mators of ω and η, but not to the PML estimator of π.

To prove the third part of the proposition, we need to find out what would happen for

a restricted pseudo ML estimator that fixes the shape parameters to some arbitrary value η̄.

Fortunately, all the previous expressions remain valid after eliminating the rows and columns

corresponding to η, and replacing θ∞ by θ∞(η̄) = [π∞(η̄), ω∞(η̄)], which are the values that

solve the system of equations

E[∂ ln f{εt[θ∞(η̄), 0], η̄}/∂ε∗|ϕ0] = 0,

E[1 + ∂ ln f{εt[θ∞(η̄), 0], η̄}/∂ε∗ · εt[θ∞(η̄), 0]|ϕ0] = 0.

In fact, we would obtain exactly the same expressions even if fixed both ω and η to some

arbitrary values ω̄ and η̄, as long as we replaced π∞ by π∞(ω̄, η̄), which would be the value that

solves

E[∂ ln f{ω̄−1/2[yt − π∞(ω̄, η̄)], η̄}/∂ε∗|ϕ0] = 0.

�

Proposition 2

Let us first proof that the moment condition (2) continues to hold when the true DGP is

(4), in which case

εt(π∞, ω∞, 0) = ω−1/2∞ [(µ0 − π∞) + σtε
∗
t ].

On this basis, we can write the moment condition underlying our proposed test as

ω−1/2∞ (µ0 − π∞)E

[
∂ ln f{εt(θs∞, 0),η}

∂ε∗

∣∣∣∣ϕ0]+ ω−1/2∞ E

[
∂ ln f{εt(θs∞, 0),η}

∂ε∗
σt−1ε

∗
t−1

∣∣∣∣ϕ0] .
The first summand is 0 because it is proportional to the moment condition that defines π∞.

In turn, the second summand is also 0 thanks to the zero mean i.i.d. assumption on ε∗t .

Next, we need to find the expected values of the ten different elements of the Hessian evalu-

ated under the null that appear in the proof of Proposition 1. Unfortunately, we cannot directly

rely on the law of iterated expectation conditional on the past. Nevertheless, we can still prove
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that

E[hρπt(φ∞)|ϕ0] = ω−1/2∞ Hll(φ∞;ϕ0) · E[εt−1(θs∞, 0)|ϕ0]

E[hρρt(φ∞)|ϕ0] = Hll(φ∞;ϕ0) · E[ε2t−1(θs∞, 0)|ϕ0]

E[hρωt(φ∞)|ϕ0] = 1
2ω
−1
∞ Hls(φ∞;ϕ0) · E[εt−1(θs∞, 0)|ϕ0]

E[hρηt(φ∞)|ϕ0] = −Hlr(φ∞;ϕ0) · E[εt−1(θs∞, 0)|ϕ0]

where

E[εt(θs, 0)|ϕ0] = E[ω−1/2(yt − π)|ϕ0] = E[ω−1/2(µ0 + σtε
∗
t − π)|ϕ0] = ω−1/2(µ0 − π)

and

E[ε2t (θs, 0)|ϕ0] = E[ω−1(yt − π)2|ϕ0] = E[ω−1(µ0 + σtε
∗
t − π)2|ϕ0] = ω−1[(µ0 − π)2 + σ2],

with σ2 = E(σ2t ), so that V [εt(θs, 0)|ϕ0] = ω−1σ2, as in (A3).

Let us start with the expression for hρπt(φ):

E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂ε∗
ω−1/2∞ [(µ0 − π∞) + σt−1ε

∗
t−1]

∣∣∣∣∣ϕ0
]

= ω−1/2∞ (µ0 − π∞)E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂ε∗

∣∣∣∣∣ϕ0
]

+ω−1∞ E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂ε∗
σt−1ε

∗
t−1

∣∣∣∣∣ϕ0
]
.

The second summand is 0 because ε∗t−1 has 0 mean. In contrast, the first summand is clearly

seen to be E[εt−1(θs, 0)|ϕ0] times Hll(φ∞;ϕ0), as required.

Let us now move on to hρρt(φ). The expectation of its first component is given by

E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂ε∗
ω−1/2∞ [(µ0 − π∞) + σt−1ε

∗
t−1]

2

∣∣∣∣∣ϕ0
]

= ω−1∞ (µ0 − π∞)2E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂ε∗

∣∣∣∣∣ϕ0
]

+ω−1∞ E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂ε∗
σ2t−1ε

∗2
t−1

∣∣∣∣∣ϕ0
]

+2ω−1∞ (µ0 − π∞)

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂ε∗
σt−1ε

∗
t−1

∣∣∣∣∣ϕ0
]
.

We have already seen that the third summand is 0, while the first summand will be

ω−1∞ (µ0 − π∞)2Hll(φ∞;ϕ0).

As for the second one, the zero mean, unit variance i.i.d. assumption on ε∗t together with the defi-

nition of σ2 yields ω−1∞ σ2Hll(φ∞;ϕ0), so that the required expectation becomes E[ε2t−1(θs, 0)|ϕ0]
times Hll(φ∞;ϕ0).
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Nevertheless, we still need to worry about the expected value of the second component of

hρρt(φ), which is given by

E

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗
ω−1/2∞ [(µ0 − π∞) + σt−2ε

∗
t−2]

∣∣∣∣∣ϕ0
]

= ω−1/2∞ (µ0 − π∞)E

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗

∣∣∣∣∣ϕ0
]

+ω−1∞

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗
σt−2ε

∗
t−2

∣∣∣∣∣ϕ0
]
.

But the arguments above immediately imply that both these terms will be 0, as required.

Let us now consider hρωt(φ). Given that the second term will have 0 mean, we can focus on

the following expectations

ω−1∞ E

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗
[(µ0 − π∞) + σtε

∗
t ][(µ0 − π∞) + σt−1ε

∗
t−1]

∣∣∣∣∣ϕ0
]

= ω−1∞ (µ0 − π∞)2E

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗

∣∣∣∣∣ϕ0
]

+ω−1∞ (µ0 − π∞)E

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗
σt−1ε

∗
t−1

∣∣∣∣∣ϕ0
]

+ω−1∞ (µ0 − π∞)E

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗
σtε
∗
t

∣∣∣∣∣ϕ0
]

+E

[
∂ ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗
σtε
∗
tσt−1ε

∗
t−1

∣∣∣∣∣ϕ0
]

We have already seen that the first two summands will be 0. For analogous reasons, the

fourth one will also be 0. In contrast, the third one will be given by E[εt−1(θs, 0)|ϕ0] times
Hlω(φ∞;ϕ0), as required.

Finally, we need to study hρηt(φ). But its expected value will be given by

E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂η
ω−1/2∞ [(µ0 − π∞) + σt−1ε

∗
t−1]

∣∣∣∣∣ϕ0
]

= ω−1/2∞ (µ0 − π∞)E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂η

∣∣∣∣∣ϕ0
]

ω−1∞ E

[
∂2 ln f{ω−1/2∞ [(µ0 − π∞) + σtε

∗
t ];η}

∂ε∗∂η
σt−1ε

∗
t−1

∣∣∣∣∣ϕ0
]
.

Once again, the second summand is clearly equal to 0, while the first one will be given by

−Hlr(φ∞;ϕ0) · E[εt−1(θs∞, 0)|ϕ0], as desired.
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If we combine these expressions with the fact that

E[hππt(φ∞)|ϕ0] = ω−1∞ Hll(φ∞;ϕ0)

E[hπωt(φ∞)|ϕ0] = 1
2ω
−3/2
∞ Hls(φ∞;ϕ0)

E[hπηt(φ∞)|ϕ0] = −ω−1/2∞ Hlr(φ∞;ϕ0)

E[hωωt(φ∞)|ϕ0] = 1
4ω
−2
∞ [Hss(φ∞;ϕ0)− 1]

E[hωηt(φ∞)|ϕ0] = −12ω
−1
∞ Hsr(φ∞;ϕ0)

E[hηηt(φ∞)|ϕ0] = Hrr(φ∞;ϕ0)

it is easy to see that Aρφs will be proportional to the first column of Aφsφs , so that we can
immediately show that

AρφsA
−1
φsφs

=
(
E[εt(θs∞, 0)|ϕ0]

√
ω∞ 0 0′

)
= E[εt(θs∞, 0)|ϕ0]ω1/2∞ e′1

if we evaluate these expressions at the pseudo true values. The rest of the proof follows the

same steps as the proof of Proposition 1, but with Bφφ representing the long run variance of the
average scores. �

Proposition 3

The first thing we can show in this context is that the pseudo true value of the mean

parameter coincides with the true mean. To understand why, we can use the law of iterated

expectations to express the moment condition defining π∞ evaluated at π∞ = µ0 as

E

{
∂ ln f [εt(µ0, ω∞, 0);η]

∂ε∗

∣∣∣∣ϕ0} = E

[
E

{
∂ ln f [εt(µ0, ω∞, 0);η]

∂ε∗

∣∣∣∣ It−1;ϕ0}] .
But since

εt(µ0, ω∞, 0) = ω−1/2∞ σtε
∗
t ,

we can write the conditional expectation as∫ ∞
−∞

∂ ln f [ω
−1/2
∞ σtε

∗
t ;η]

∂ε∗
h(ε∗t )dε

∗
t .

The symmetry of the assumed conditional density implies that its derivative with respect to its

argument is an odd function, which makes the integral above 0 in view of the symmetry of the

true conditional distribution of ε∗t .

Let us know turn to the moment condition (2) evaluated at π∞ = µ0. If we use again the

law of iterated expectations, we can re-write it as

E

{
∂ ln f [εt(µ0, ω∞, 0); η]

∂ε∗
εt−1(µ0, ω∞, 0)

∣∣∣∣ϕ0}
= E

[
εt−1(µ0, ω∞, 0)E

{
∂ ln f [εt(µ0, ω∞, 0);η]

∂ε∗

∣∣∣∣ It−1;ϕ0}∣∣∣∣ϕ0] ,
9



which is 0 for exactly the same reason.

These two results also imply that sπt(µ0, ω∞;η) and sρt(µ0, ω∞;η) are martingale differences

despite the misspecification of the distribution and the disregard for the time-variation σ2t , so

that the asymptotic variance of their averages will coincide with their unconditional variance.

Once again, we need to look at the Hessian matrix in this case. But the only difference with

respect to the conditionally homoskedastic case in Proposition 1 is that the exact expressions

for Hll(φ∞;ϕ0), Hss(φ∞;ϕ0), etc. will be a function of σ
2
t . Nevertheless, the symmetry of the

true conditional distribution implies that both Hlst(φ∞;ϕ0) and Hsrt(φ∞;ϕ0) will be zero. But

given that

E[hρπt(φ∞)|It−1;ϕ0] = ω−1/2∞ Hllt(φ∞;ϕ0)εt−1(θs∞, 0)

E[hρρt(φ∞)|It−1;ϕ0] = Hllt(φ∞;ϕ0)ε
2
t−1(θs∞, 0)

E[hρωt(φ∞)|It−1;ϕ0] = 1
2ω
−1
∞ Hlst(φ∞;ϕ0)εt−1(θs∞, 0) = 0

E[hρηt(φ∞)|It−1;ϕ0] = −Hlrt(φ∞;ϕ0)εt−1(θs∞, 0) = 0

we do not need to worry about the sampling uncertainty in estimating ω∞ and η∞. In general,

E[Hllt(φ∞;ϕ0)εt−1(θs∞, 0)] will be different from 0, but if the conditional variance is a sym-

metric function of εt−1, then this moment will be 0 too. In any case, we can still conduct the

usual test by regressing ∂ ln f [εt(µ0, ω∞, 0);η]/∂ε on a constant and εt−1(µ0, ω∞, 0). �

Proposition 4

Consider the following model:

yt = π0 + σt(θ0)ε
∗
t ,

σ2t (θ) = ω[1 + γ(yt−1 − π)2],
ε∗t |It−1;π, ω, γ,η ∼ i.i.d. D(0, 1,η),
with density function f(.,η)

 ,

where the parameters of interest are φ = (θ′,η′)′, θ′ = (θ′s, γ)′ and θs = (π, ω)′. In this context,

the null hypothesis is H0 : γ = 0.

It is then easy to see that
∂µt
∂θ′

=
(

1 0 0
)

while
∂σ2t
∂θ′

=
(
−2ωγ(xt−1 − π) 1 + γ(xt−1 − π)2 ω(xt−1 − π)2

)
.

As a result, the score vector will be

sπt = − 1

{ω[1 + γ(xt−1 − π)2]}1/2
∂ ln f [εt(θ),η]

∂ε∗

+
γ(xt−1 − π)

[1 + γ(xt−1 − π)2]

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
,
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sωt = − 1

2ω

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
,

sγt = − (xt−1 − π)2

2[1 + γ(xt−1 − π)2]

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
,

sηt =
∂ ln f [εt(θ),η]

∂η

which under the null of γ = 0 reduces to

sπt = − 1

ω1/2
∂ ln f [εt(θs, 0),η]

∂ε∗
,

sωt = − 1

2ω

{
1 + εt(θs, 0) · ∂ ln f [εt(θs, 0),η]

∂ε∗

}
,

sγt = −ω
2
ε2t−1(θs, 0)

{
1 + εt(θs, 0) · ∂ ln f [εt(θs, 0),η]

∂ε∗

}
,

sηt =
∂ ln f [εt(θs, 0),η]

∂η
.

Note that we could have obtained the same expressions by using the chain rule for first

derivatives since

sωt = − 1− γω
2ω[1 + γ(xt−1 − π)2]

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
sαt = −

(xt−1 − π)2 − ω
1−γω

2ω[1 + γ(xt−1 − π)2]

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
and

∂

(
ω
α

)
∂
(
ω γ

) =

(
(1− γω)−2 ω2(1− γω)−2

γ ω

)
.

Given Assumptions 1-3, we can then use standard arguments (see e.g. Newey and McFad-

den (1994)) to expand the average score and obtain the asymptotic distribution of the sample

analogue to the moment condition (5) evaluated at the pseudo maximum likelihood estimators

of the parameters under the null, as in the proof of Proposition 1.

Similarly,

hππt(φ) =
1

σ2t

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗
− ωγ (xt−1 − π)

σ3t

(
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

)
+γ
−1 + γ(xt−1 − π)2

[1 + γ(xt−1 − π)2]2

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
+

γ(xt−1 − π)

[1 + γ(xt−1 − π)2]

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
εt(θ)

)
×
[
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

]

hπωt(φ) = − 1

2ω

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
εt(θ)

)[
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

]
11



hπγt(φ) =
(xt−1 − π)

[1 + γ(xt−1 − π)2]2

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
− (xt−1 − π)2

2[1 + γ(xt−1 − π)2]

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
εt(θ)

)
×
{
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

}

hπηt(φ) =

(
− 1

σt
+
ωγ(xt−1 − π)

σ2t
εt(θ)

)
∂2 ln f [εt(θ),η]

∂ε∗∂η′

hωωt(φ) =
1

2ω2

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
+

1

4ω2

[
εt(θ)

∂ ln f [εt(θ),η]

∂ε∗
+ ε∗2t (θ) · ∂

2 ln f [εt(θ),η]

∂ε∗∂ε∗

]

hωγt(φ) =
(xt−1 − π)2

4ω[1 + γ(xt−1 − π)2]

[
εt(θ)

∂ ln f [εt(θ),η]

∂ε∗
+ ε∗2t (θ) · ∂

2 ln f [εt(θ),η]

∂ε∗∂ε∗

]
hωηt(φ) = − 1

2ω
εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂η

hγγt(φ) =
(xt−1 − π)4

2[1 + γ(xt−1 − π)2]2

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
+

(xt−1 − π)4

4[1 + γ(xt−1 − π)2]2

[
εt(θ)

∂ ln f [εt(θ),η]

∂ε∗
+ ε∗2t (θ) · ∂

2 ln f [εt(θ),η]

∂ε∗∂ε∗

]

hγηt(φ) = − (xt−1 − π)2

2[1 + γ(xt−1 − π)2]
εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗t∂η
′

and

hηηt(φ) =
∂2 ln f [ε∗t (θs, 0),η]

∂η∂η′
.

Under the null of γ = 0 these expressions reduce to

hππt(φ) =
1

ω

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

hπωt(φ) =
1

2ω3/2

[
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

]
hπγt(φ) = ω1/2εt−1(θ)

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
+
ω1/2

2
ε2t−1(θ)

{
∂ ln f [εt(θ),η]

∂ε∗
+ εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗∂ε∗

}
hπηt(φ) = − 1

ω1/2
∂2 ln f [εt(θ),η]

∂ε∗t∂η
′

hγγt(φ) =
1

2
ω2ε4t−1(θ)

{
1 + εt(θ) · ∂ ln f [εt(θ),η]

∂ε∗

}
+

1

4
ω2ε4t−1(θ)

[
εt(θ)

∂ ln f [εt(θ),η]

∂ε∗
+ ε2t (θ) · ∂

2 ln f [εt(θ),η]

∂ε∗∂ε∗

]
hγηt(φ) = −1

2
ωε2t−1(θ) · εt(θ)

∂2 ln f [εt(θ),η]

∂ε∗t∂η
′
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and

hηηt(φ) =
∂2 ln f [εt(θ),η]

∂η∂η′

Given that the pseudo-true values of π, ω and η are implicitly defined in such a way that

E{∂ ln f [εt(θs∞, 0),η∞] /∂ε∗|ϕ0} = 0,

E{1 + ∂ ln f [εt(θs∞, 0),η∞] /∂ε∗ · εt(θs∞, 0)|ϕ0} = 0,

E{∂ ln f [εt(θs∞, 0),η∞] /∂η|ϕ0} = 0,

the law of iterated expectations implies that

E[hππt(φ∞)|It−1;ϕ0] = ω−1∞ Hll(φ∞;ϕ0)

E[hπωt(φ∞)|It−1;ϕ0] = 1
2ω
−3/2
∞ Hls(φ∞;ϕ0)

E[hπηt(φ∞)|It−1;ϕ0] = −ω−1/2∞ Hlr(φ∞;ϕ0)

E[hωωt(φ∞)|It−1;ϕ0] = 1
4ω
−2
∞ [Hss(φ∞;ϕ0)− 1]

E[hωηt(φ∞)|It−1;ϕ0] = −12ω
−1
∞ Hsr(φ∞;ϕ0)

E[hηηt(φ∞)|It−1;ϕ0] = Hrr(φ∞;ϕ0)

and

E[hπγt(φ∞)|ϕ0] = 1
2ω
−1/2
∞ Hls(φ∞;ϕ0) · E[ε2t−1(θs∞, 0)|ϕ0]

E[hωγt(φ∞)|ϕ0] = 1
4 [Hss(φ∞;ϕ0)− 1] · E[ε2t−1(θs, 0)|ϕ0]

E[hγγt(φ∞)|ϕ0] = 1
4ω

2
∞[Hss(φ∞;ϕ0)− 1] · E[ε4t−1(θs, 0)|ϕ0]

E[hγηt(φ∞)|ϕ0] = −12ω∞Hsr(φ∞;ϕ0) · E[ε2t−1(θs∞, 0)|ϕ0]

E[hωωt(φ∞)|It−1;ϕ0] = 1
4ω
−2
∞ [Hss(φ∞;ϕ0)− 1]

where

Hll(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞, 0),η∞] /∂ε∗∂ε∗|It−1;ϕ0]

Hls(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞, 0),η∞] /∂ε∗∂ε∗ · εt(θs)|It−1;ϕ0]

Hlr(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞, 0),η∞] /∂ε∗∂η′|It−1;ϕ0]

Hss(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞, 0),η∞] /∂ε∗∂ε∗ · ε2t (θs, 0)|It−1;ϕ0]

Hsr(φ∞;ϕ0) = E[∂2 ln f [εt(θs∞, 0),η∞] /∂ε∗∂η′ · εt(θs, 0)|It−1;ϕ0]

and ϕ0 = (θ′s0, 0,%
′
0)
′. Finally,

E[ε2t (θs, 0)|ϕ0] = E[ω−1(yt − π)2|ϕ0] = E[ω−1(π0 + ω
1/2
0 ε∗t − π)2|ϕ0] = ω−1[(π0 − π)2 + ω0]

and

E{[ε4t (θs, 0)|ϕ0} = E{ω−2[(yt − π)4|ϕ0} = ω−2E{[(π0 − π) + ω
1/2
0 ε∗t ]

4|ϕ0}

= ω−2[(π0 − π)4 + 6(π0 − π)2ω0 + 4ω
3/2
0 (π0 − π)ϕ(%0) + ω20κ(%0)].

where ϕ(%0) = E(ε∗3t |%0) and κ(%0) = E(ε∗4t |%0) are the skewness and kurtosis coeffi cients of
the true distribution of ε∗t .

The rest of the proof is entirely analogous to the proof of Proposition 1. �
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B Additional results

B.1 Joint tests for mean-variance predictability

In this appendix, we consider joint tests of Ar and Arch effects. Specifically, our alternative

in the first-order case will be

yt = µt(π0, ρ0) + σt(θ0)ε
∗
t ,

µt(π, ρ) = π(1− ρ) + ρyt−j ,
σ2t (θ) = ω(1− α) + αj [yt−1 − µt−1(π, ρ)]2,

ε∗t |It−1;θ0,η0 ∼ i.i.d. D(0, 1,η0)

 , (B5)

where the parameters of interest are φ = (θ′,η′)′, with θ′ = (θ′s, ρ, α)′. When the conditional

variance σ2t (θ) is constant (α = 0), the above formulation reduces to (1). Similarly, when the

levels of the observed variable are unpredictable (ρ = 0), the above model simplifies to (5).

Finally, the joint null hypothesis of lack of predictability in mean and variance corresponds to

ρ = 0 and α = 0.

In this context, the double length artificial regression of Davidson and MacKinnon (1988)

might seem natural. However, there are two potential problems. First, in general the mean and

variance regressands, namely ∂ ln f [εt(θs, 0),η]/∂ε∗ and 1 + εt(θs, 0)∂ ln f [εt(θs, 0),η]/∂ε∗, have

different variances, which introduces heteroskedasticity. More seriously, those two regressands

will be correlated unless the true distribution is symmetric. The solution is a system of seemingly

unrelated regression equations (SURE) in which one simultaneously regresses each of those

regressands on the corresponding regressors, εt−1(θs, 0) and ε2t−1(θs, 0), respectively, and jointly

tests the significance of both slope coeffi cients. In effect, this is a joint moment test of (2) and

(6). Under the null, the covariance matrix of those moment conditions is

V

[
εt−1(θs0, 0)
1
2ε
2
t−1(θs0, 0)

∣∣∣∣θs0, 0,%0]� V [ ∂ ln f [εt(θs0, 0),η∞]/∂ε∗

1 + εt(θs0, 0)∂ ln f [εt(θs0, 0),η∞]/∂ε∗

∣∣∣∣θs0, 0,%0] ,
where � denotes the Hadamard (or element-by-element) product of two matrices, which reduces
to [

1 1
2φ
2
0

1
2φ
2
0

1
4(κ0 − 1)2

]
when the assumed distribution is Gaussian but the true one has skewness and kurtosis coeffi cients

φ0 and κ0, respectively.

Nevertheless, if the true distribution of ε∗t is symmetric, then it turns out that the joint tests

of Ar(1)-Arch(1) in Propositions 1 and 4 is simply the sum of the separate tests:

Proposition 5 If ε∗t is symmetrically distributed, then under the joint null hypothesis H0 : ρ = 0
and α = 0 the score test statistic

LMAR(1)−ARCH(1)(η) = LMAR(1)(η) + LMARCH(1)(η),

will be distributed as a χ2 with 2 degrees of freedom as T goes to infinity. This asymptotic null
distribution is unaffected if we replace θs and η by their joint MLEs.
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Proof. The proof is trivial if we combine several results that appear in the proofs of Propositions

1 and 4, respectively, with the fact that the corresponding effi ciency bounds are block diagonal

between θs, ρ and γ when the true distribution of ε∗t is symmetric. �
Intuitively, the serial correlation orthogonality condition (2) is asymptotically orthogonal to

the Arch orthogonality condition (6) because all odd order moments of symmetric distributions

are 0, which means that the joint test is simply the sum of its two components.

B.2 Exploiting the persistence of expected returns

Let us now consider a situation in which

yt = π(1−
∑h

l=1
ρl) +

∑h

l=1
ρlyt−l +

√
ωε∗t ,

with h > 1 but finite, so that the null hypothesis of lack of predictability becomesH0 : ρ1 = . . . =

ρh = 0. In view of our previous discussion, it is not diffi cult to see that under this maintained

assumption the score test of ρl = 0 will be based on the orthogonality condition

E

{
∂ ln f [εt(θs, 0),η0]

∂ε∗
εt−l(θs, 0)

∣∣∣∣θs0, 0,η0} = 0. (B6)

In this context, it is straightforward to show that the test against Ar(h) dynamics will

be given by the joint test of the moment conditions (B6) for l = 1, . . . , h, whose asymptotic

distribution would be a χ2h under the null.

Such a test, though, does not impose any prior knowledge on the nature of the expected

return process, other than its lag length is h. Nevertheless, there are theoretical and empirical

reasons which suggest that time-varying expected returns should be smooth processes.

A rather interesting example of persistent expected returns is an autoregressive model in

which ρl = ρ for all l. In this case, we can use the results in Fiorentini and Sentana (1998) to

show that the process for expected returns will be given by the following not strictly invertible

Arma(h, h− 1) process:

µt+1 = π(1− hρ) +
∑h

j=1
ρµt+1−j + ρ

[
εt +

∑h−1

j=1
εt−j

]
. (B7)

As long as the covariance stationarity condition hρ < 1 is satisfied, the autocorrelations of

the expected return process can be easily obtained from its autocovariance generating function

ψµµ(z) =

(
1 +

∑h−1
j=1 z

j
)(

1 +
∑h−1

j=1 z
−j
)

(
1− ρ

∑h
j=1 z

j
)(

1− ρ
∑h

j=1 z
−j
) , (B8)

which contrasts with the autocovariance generating function of the observed process

ψyy(z) =
1(

1− ρ
∑h

j=1 z
j
)(

1− ρ
∑h

j=1 z
−j
) .

In this context, we can easily find examples in which the autocorrelations of the observed

return process are very small while the autocorrelations of the expected return process are much
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higher, and decline slowly towards 0. For example, Figure S1 presents the correlograms of yt

and µt+1 on the same vertical scale for h = 24 and ρ = .015. Note that expression (B8) implies

the correlograms of µt+1 and an overlapping sum of h consecutive returns coincide.

This differential behaviour suggests that a test against first order correlation will have little

power to detect such departures from white noise, the optimal test being one against an Ar(h)

process with common coeffi cients. We shall return to this issue below.

From the econometric point of view, the assumption that ρl = ρ for all l does not pose any

additional problems. Specifically, it is easy to prove that the relevant orthogonality condition

will become

E

{
∂ ln f [εt(θs, 0),η0]

∂ε∗

∑h

l=1
εt−l(θs, 0)

∣∣∣∣θs0, 0,η0} = 0, (B9)

with hIρρ(θs, 0,η) being the corresponding asymptotic variance under correct specification.

This moment condition is analogous to the one proposed by Jegadeesh (1989) to test for

long run predictability of individual asset returns without introducing overlapping regressands.

Cochrane (1991) and Hodrick (1992) discussed related suggestions. The intuition is that if re-

turns contain a persistent but mean reverting predictable component, using a persistent right

hand side variable such as an overlapping h-period return may help to pick it up. Not surpris-

ingly, the asymptotic variance is analogous to the so-called Hodrick (1992) standard errors used

in tests for long run predictability in univariate OLS regressions with overlapping regressands.

More recently, the Gaussian version of (B9) has also been tested by Moskowitz, Ooi and

Pedersen (2012) in their empirical analysis of time series momentum. These authors provide both

behavioural and rational justifications for the forecasting ability of lagged compound returns.

It is important to mention that the regressor
∑h

l=1 εt−l(θs, 0) will be quite persistent even

if returns are serially uncorrelated because of the data overlap. Specifically, the first-order

autocorrelation coeffi cient will be 1− 1/h in the absence of return predictability. Nevertheless,

since the correlation between the innovation to the regressor at time t + 1 and the innovations

εt(θs, 0) is 1/
√
h under the null, the size problems that plague predictive regressions should not

affect much our test (see Campbell and Yogo (2006)).

Let us now assess the power gains obtained by exploiting the persistence of expected returns.

For simplicity we consider Gaussian tests only, and evaluate asymptotic power against compatible

sequences of local alternatives of the form ρ0T = ρ̄/
√
T . As we show in Supplemental Appendix

C, when the true model is (B7), the non-centrality parameter of the Gaussian score test for

first order serial correlation is ρ̄2 regardless of h, while the non-centrality parameter of the test

that exploits the persistence of the conditional mean will be hρ̄2. Hence, Pitman’s asymptotic

relative effi ciency of the two tests is precisely h. Figure S2A shows that those differences in

non-centrality parameters result in substantive power gains. However, the asymptotic relative

effi ciency would be exactly reversed in the unlikely event that the true model were an Ar(1)

but we tested for it by using the moment condition (B9) (see Supplemental Appendix C). Not

surprisingly, this would result in substantial power losses, which are illustrated in Figure S2A.
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B.3 Construction of the quarterly portfolios

We follow exactly the same procedure as Ken French uses to create annual returns from

monthly ones. The first thing we do is to add the monthly gross return on the 1-month Tbill rate

to the excess returns of the 6 value-weighted portfolios formed on size and book-to-market, the

6 value-weighted portfolios formed on size and operating profitability, and the 6 value-weighted

portfolios formed on size and investment to transform each of them into monthly gross returns.

Then we compound the monthly gross returns into quarterly gross returns by multiplication, and

subtract the quarterly gross return on the 3-month Tbill (from the FRED database) to obtain

our quarterly excess returns. Form those, we create the five FF factors using the appropriate

long or short weights.

More formally, let X(K,J,D)
t,i be the net % return over month i, year t of some value-weight

portfolio, with i = 1, . . . , 12, where D = SMALL, BIG, K = BM , OP , INV and J = LOW ,

NEUTRAL, HIGH, with LOW and HIGH denoting growth and value for BM portfolios,

weak and robust for OP portfolios, and conservative and aggressive for INV portfolios. We

then calculate the quarterly portfolios as:

X
(K,J,D)
t,I = 100

 3I∏
i=3(I−1)+1

(
X
(K,J,D)
t,i

100
+ 1

)
− 1

 ,
for I = 1, 2, 3, 4. Next, we apply the FF factor definitions. Specifically, the small minus big

factor is

SMB = 1/3(SMBBM + SMBOP + SMPINV ),

where

SMBK =
X(K,LOW,SMALL) +X(K,NEUTRAL,SMALL) +X(K,HIGH,SMALL)

3

−X
(K,LOW,BIG) +X(K,NEUTRAL,BIG) +X(K,HIGH,BIG)

3
.

Similarly, the high minus low factor is obtained as

HML =
X(BM,HIGH,SMALL) +X(K,HIGH,BIG)

2
− X(BM,LOW,SMALL) +X(K,LOW,BIG)

2
,

the robust minus weak as

RMW =
X(OP,HIGH,SMALL) +X(OP,HIGH,BIG)

2
− X(OP,LOW,SMALL) +X(OP,LOW,BIG)

2
,

and the conservative minus aggressive as

CMA =
X(INV,LOW,SMALL) +X(INV,LOW,BIG)

2
− X(INV,HIGH,SMALL) +X(OP,HIGH,BIG)

2
.

Finally, the quarterly excess return on the market can be obtained aggregating directly the
monthly factor

Rmt,I = 100

 3I∏
i=3(I−1)+1

(
Rmt,i +Rft,i

100
+ 1

)
− 1

−Rft,I
where Rft,i and Rft,I are the one-month and three-month riskfree rate, respectively.

17



B.4 The symmetry component of the Jarque-Bera (1980) test without im-
posing normality

Consider a moment test based on the influence function

n(y;π, ω) = ε3t (θs, 0)− 3εt(θs, 0)

where εt(θs, 0) = ω−1/2(yt − π), evaluated at the sample mean and variance. This influence

function coincides with the third Hermite polynomial.

Using standard results (see e.g. Newey and McFadden (1994)), the asymptotic variance of

√
T

T

T∑
t=1

n(yt; π̂, ω̂)

=

√
T

T

T∑
t=1

n(yt;π0, ω0) + E
(

∂n(y;π0,ω0)
∂π

∂n(y;π0,ω0)
∂ω

)√
T

(
π̂ − π0
ω̂ − ω0

)
+ op(1)

But the expected Jacobian matrix evaluated at the true value of the parameters is 0 under

symmetry because

∂n(y;π, ω)

∂π
= − 3

ω
1
2

[
ε2t (θs, 0)− 1

]
,

∂n(y;π, ω)

∂ω
= − 3

2ω

[
ε2t (θs, 0)− 1

]
εt(θs, 0).

Therefore, the asymptotic covariance matrix of the sample mean of the third Hermite poly-

nomial evaluated at the sample mean and variance will be the same as if we could evaluate it at

the true values. Consequently, a moment test of H0 : E[n(y;π, ω)] = 0 can be simply computed

as the t−ratio of the sample mean of n(yt; π̂, ω̂).

Interestingly, this moment test coincides with the outer product of the score version of

the asymmetry component of the test of the null hypothesis of normality versus generalised

hyperbolic alternatives in Mencía and Sentana (2012), which they argue remains valid under as

long the true distribution is symmetric.

C Local power calculations

C.1 General results

Let mt(θ1,θ2) denote the h influence functions used to develop the following moment test

of H0 : θ2 = 0:

MT = Tm̄′T (θ10,0)Ψ−1m̄T (θ10,0), (C10)

where m̄T (θ10,0) is the sample average of mt(θ) evaluated under the null, Ψ is the correspond-

ing asymptotic covariance matrix and θ10 the true values of the remaining model parameters.

In order to obtain the non-centrality parameter of this test under Pitman sequences of local
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alternatives of the form H0 : θ2T = θ̄2/
√
T , it is convenient to linearise mt(θ10,0) with respect

to θ2 around its true value θ2T . This linearisation yields

√
Tm̄T (θ10,0) =

√
Tm̄T (θ10,θ2T ) +

1

T

∑T

t=1

∂mt(θ10,θ
∗
2T )

∂θ′2
θ̄2,

where θ∗2T is some “intermediate”value between θ2T and 0. As a result,

√
Tm̄T (θ10,0)→ N [M(θ10,0)θ̄2,Ψ],

under standard regularity conditions, where

M(θ10,0) = E[∂mt(θ10,0)/∂θ′2],

so that the non-centrality parameter of the moment test (C10) will be

θ̄
′
2M
′(θ10,0)Ψ−1M(θ10,0)θ̄2 (C11)

when θ10 is known. On this basis, we can easily obtain the limiting probability of MT exceed-

ing some pre-specified quantile of a central χ2h distribution from the cdf of a non-central χ2

distribution with h degrees of freedom and non-centrality parameter (C11).

Often, though, θ10 will be unknown, and we will have to replace it by some estimator θ̄1T . Let

nt(θ1,θ2) denote the dim(θ1) influence functions used to estimate θ10 subject to the restriction

θ2 = 0. For convenience, we replace the original influence functions by

m⊥t (θ1,θ2) = mt(θ1,θ2)− E
(
∂mt(θ1,θ2)

∂θ′1

)[
E

(
∂nt(θ1,θ2)

∂θ′1

)]−1
nt(θ1,θ2),

which are unaffected by the sampling uncertainty in the estimator of θ1. In this way, the test

statistic will be

MT = Tm̄⊥′T (θ̄1T ,0)Υ−1m̄⊥T (θ̄1T ,0),

where Υ is the relevant asymptotic covariance matrix, which takes into account the possible

(long-run) correlation between mt(θ1,θ2) and nt(θ1,θ2). As a result, the non-centrality para-

meter will be

θ̄
′
2M
⊥′(θ10,0)Υ−1M⊥(θ10,0)θ̄2,

where

M⊥(θ10,0) = E

(
∂mt(θ1,θ2)

∂θ′2

)
− E

(
∂mt(θ1,θ2)

∂θ′1

)[
E

(
∂nt(θ1,θ2)

∂θ′1

)]−1
E

(
∂nt(θ1,θ2)

∂θ′2

)
.

In the special case in which θ̄1T is the ML estimator of θ10 under the null, and mt(θ1,0) and

the scores corresponding to θ1 are asymptotically uncorrelated whenH0 is true, as in all our tests

under correct specification, then no adjustment will be required because E[∂mt(θ1,θ2)/∂θ
′
1] will

be 0 by the generalised information matrix equality. In addition, both M(θ10,0) and Ψ coincide

with the (2,2) block of the information matrix when mt(θ1,θ2) are the scores with respect to

θ2.
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If on the other hand nt(θ1,θ2) andmt(θ1,θ2) coincide with the scores with respect to θ1 and

θ2 but these are not uncorrelated under the null, as in our tests under incorrect specification,

then we should we work with m⊥t (θ1,θ2), although we could still exploit the fact that

E

(
∂mt(θ1,θ2)

∂θ′1

)′
= E

(
∂nt(θ1,θ2)

∂θ′2

)
by the symmetry of the Hessian matrix. In either case, though, the non-centrality parameters

of LM and Wald tests will be the same under sequences of local alternatives, at least under

the assumption that θ2 is consistently estimated not only under the null but also under those

sequences (see White (1982)).

C.2 Gaussian tests

C.2.1 Serial correlation tests

Let us assume without loss of generality that π = 0. The first-order serial correlation test is

effectively based on the influence functions

mlt(θs, ρ) = ytyt−1 −Gyy(1)

evaluated at ρ = 0. But since

yt =

(
1 +

∑h

l=1
ρLl
)
εt,

we will have that

Gyy(0) = [1 + (h− 1)ρ2]σ2

The Yule-Walker equations of the model considered in (B7) will be given by

Gyy(1)
Gyy(0)

= ρ
[
1 +

Gyy(1)
Gyy(0)

+ . . .+
Gyy(h−1)
Gyy(0)

]
Gyy(2)
Gyy(0)

= ρ
[
Gyy(1)
Gyy(0)

+ 1 + . . .+
Gyy(h−2)
Gyy(0)

]
...

...
Gyy(h−1)
Gyy(0)

= ρ
[
Gyy(h−2)
Gyy(0)

+
Gyy(h−3)
Gyy(0)

+ . . .+
Gyy(1)
Gyy(0)

]
whence

Gyy(1) =
ρ

1− (h− 1)ρ
[1 + (h− 1)ρ2]σ2.

Hence, it trivially follows that

Ml(θs,0) = E[∂mlt(θs, 0)/∂ρ] = −σ2.

As for the asymptotic covariance matrix, the proof of Proposition 1 implies that if ρ = 0, then

√
Tmlt(θs, 0) =

√
T

T

∑T

t=1
yty
′
t−1 → N(0, σ4)

irrespective of the distribution of yt. As a result, the non-centrality parameter will be ρ2 regard-

less of h.

20



In contrast, the test that uses the influence function

yt
∑h

l=1
yt−l −

∑h

l=1
Gyy(l)

will be asymptotically equivalent to the Wald test based on the Gaussian PML estimator ρ,

whose non-centrality parameter is hρ2, which is clearly bigger than ρ2 for any h > 1.

It is also interesting to study the opposite situation in which we decide to use the influence

function that involves h−period returns when in fact the true model is an Ar(1). Since Gyy(l) =

ρlσ2 in that case,
∑h

l=1Gyy(l) will be equal to (1 − ρh+1)σ2/(1 − ρ). Therefore, Ml(θs,0) will

also be equal to −σ2. But since the asymptotic covariance of the sample average of yt
∑h

l=1 yt−l

is hσ4 under the null, the non-centrality parameter will be h−1ρ2, which is clearly below ρ2 for

any h > 1.

C.2.2 GARCH tests

To keep the algebra simple, we assume once again that π = 0, that the conditional variance

has been generated according to a Garch(1,1) process and that the conditional distribution

has constant kurtosis coeffi cient κ. The fixed-β̄ Garch test is based on the following influence

function:

mst(σ
2, β̄) = (x2t − σ2)

∑∞

j=0
β̄
j
(x2t−j − σ2)

As is well known, Bollerslev (1986) showed that a Garch(1, 1) model implies the following

Arma(1, 1) process for x2t :

(x2t − σ2) = (α+ β)(x2t−1 − σ2) + ηt − βηt−1,

where ηt is the martingale difference sequence x
2
t − σ2t . As a result,

V (x2t ) =
1− 2αβ − β2

1− (α+ β)2
V (ηt),

cov(x2t , x
2
t−1) =

[1− (α+ β)β]

1− (α+ β)2
αV (ηt),

and

cov(x2t , x
2
t−j−1) = (α+ β)cov(x2t , x

2
t−j) = (α+ β)j−1cov(x2t , x

2
t−1)

for any j ≥ 1, so that

cor(x2t , x
2
t−1) =

[1− (α+ β)β]

1− 2αβ − β2
α,

cor(x2t , x
2
t−j−1) = (α+ β)j−1cor(x2t , x

2
t−1).

But since we know that

V (x2t ) =
1− 2αβ − β2

1− κα2 − 2αβ − β2
(κ− 1)σ4
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when κα2 + 2αβ + β2 < 1, it immediately follows that

V (ηt) =
1− (α+ β)2

1− κα2 − 2αβ − β2
(κ− 1)σ4.

As a result, the expected value of mst(σ
2, β̄) under the alternative will be given by∑∞

j=0
β̄
j
(α+ β)jE[(x2t − σ2)(x2t−1 − σ2)] =

α

1− β̄(α+ β)

[1− (α+ β)β]

1− κα2 − 2αβ − β2
(κ− 1)σ4.

If we expand this expression with respect to α at α = 0, we finally obtain

α

1− β̄β
(κ− 1)σ4.

Hence, the non-centrality parameter will be

1− β̄2

(1− β̄β)2
α2.

Specifically, for β̄ = 0 the non-centrality parameter will be α2, while for β̄ = 1 the non-centrality

parameter becomes 0 because the regressor has infinite variance while the regressand does not.

In fact, β̄ bigger than 2β/(1 + β2) will result in local power losses relative to β̄ = 0. Not

surprisingly, the maximum of this expression is achieved for β̄ = β, in which case its value is

α2

1− β2
,

which is bigger than α2, the more so the closer β is to 1.

Power comparisons To assess the power gains obtained by exploiting the persistence of

conditional variances, we compare the Gaussian versions of theArch(1) and fixed-β̄ Garch(1,1)

tests, and evaluate asymptotic power against compatible sequences of local alternatives of the

form α0T = ᾱ/
√
T . Given that the sample variance is consistent for ω, exactly the same results

will be obtained if we worked with the transformed sequence γ0T = (ᾱω−10 )/
√
T = γ̄/

√
T .

As we have shown above, when the true model is (B7), the non-centrality parameter of the

Gaussian pseudo-score test based on the first order serial correlation coeffi cient of ε2t (θs, 0) is

ᾱ2 regardless of the true value of β. In contrast, the non-centrality parameter of the fixed-β̄

Garch(1,1) test is ᾱ2(1− β̄2)/(1− β̄β0)2. Hence, the asymptotic relative effi ciency of the two
tests is (1 − β̄2)/(1 − β̄β0)2, which is not surprisingly maximised when β̄ = β0. Figure S3A

shows that for a realistic value of β0 these effi ciency gains yield substantive power gains when

we set β̄ to its RiskMetrics value of .94

C.3 Student t tests

Under correct specification, the non-centrality parameters are trivial to find because they

effectively depend on the ρρ or αα elements of the information matrix under the null of mean

and variance unpredictability, which we discuss in Lemmas 1 and 2 below. Under distributional

misspecification, the calculations are substantially more elaborate.
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C.3.1 Normal mixtures

For any given value of the mixing probability λ, the ratio of variances υ and the relative

differences in means δ, the first thing we do is to compute the pseudo true values of the Student

t pseudo ML estimators under the null, namely π∞, ω∞ and η∞. We obtain these pseudo true

values by solving a nonlinear system of three equations that sets to zero the expected value of

the scores with respect to π, θ and η. We compute the integrals with respect to the true normal

mixture measure as the weighted average of two integrals with respect to the two underlying

Gaussian measures, as in Amengual and Sentana (2010). We obtain each of those integrals by

Gauss-Hermite quadrature with infinite support using the Nag D01BAF routine with 64 points,

a = µi and b = .5σ−2i (i = 1, 2). We solve the resulting nonlinear system of equations in two

steps. First, we define a non-uniform grid of 70 values for η between 0.001 and .4995, which is

finer close to the two extremes, and then solve the bivariate system for π and ω keeping η fixed.

Next, we feed the “best” triplet as starting values for solving the trivariate system using the

Nag C05NCF routine.

Once we have thus obtained π∞, ω∞ and η∞, we compute the expected value of the Hessian

(H) and variance of the score (K), including the elements involving ρ or γ using the expressions
in the proofs of Propositions 1 and 4. We then compute the usual sandwich formulas H−1BH−1

and take the appropriate diagonal element to obtain the ratio of noncentrality parameters of the

Student t−based test to the Gaussian one. Although we can repeat these calculations for any
possible triplet (λ, υ, δ), in practice we fix λ = .05 and define a bivariate grid (on a log-scale)

on δ and υ of 300 × 80 points. We then find out the skewness and kurtosis values that those

parameters imply using the bounds described in Supplemental Appendix D.1.2.

There are two further controls in the program. On the one hand, when η∞ is less or equal

then 0.001, then we simply set the ratios of noncentrality parameters equal to one. On the other

hand, when η∞ is greater or equal than .4995, then we drop η from the calculations and compute

the expected Hessian and variance of the score matrices for the remaining three parameters.

C.3.2 Gram-Charlier expansions

The procedure for the fourth-order Gram-Charlier density is similar to the one we have

just described for discrete normal mixtures. The most relevant differences are (i) that the shape

parameters of the true measure are now c3 and c4, so that we need to find out first the admissible

range of values of these parameters which are compatible with a non-negative density; and (ii)

the values of a and b in the Gauss-Hermite numerical quadrature Nag D01BAF routine are no

longer optimal.
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C.4 Power comparisons under correct specification

C.4.1 Serial correlation tests

The following result gives us the necessary ingredients to compare the Gaussian and non-

Gaussian tests under correct specification:

Lemma 1 If the true DGP corresponds to (1) with ρ0 = 0, then the feasible ML estimator of
ρ is as effi cient as the infeasible ML estimator, which require knowledge of η0. In contrast, the
ineffi ciency ratio of the Gaussian PML estimator of ρ is M−1ll (η0), with Mll(η0) defined in
(E21).

Proof. The proof is trivial if we combine several results that appear in the proof of Propositions

1. �
This means that Pitman’s asymptotic relative effi ciency of those serial correlation tests that

exploit the non-normality of yt will be M−1ll (η0). Figure S2B assesses the power gains against

local Ar(1) alternatives under the assumption that the true conditional distribution of ε∗t is a

Student t with either 6 or 4.5 degrees of freedom. This figure confirms that the power gains that

accrue to our proposed serial correlation tests by exploiting the leptokurtosis of the t distribution

are noticeable, the more so the higher the kurtosis of yt. Similarly, Figure S2C repeats the same

exercise for two normal mixtures whose kurtosis coeffi cients are both 6, and whose skewness

coeffi cients are -.5 and -1.219, respectively. Once again, we can see that there are significant

power gains. In this sense, it is worth remembering that since our semiparametric tests are

adaptive, they should achieve these gains, at least asymptotically.

C.4.2 Conditional heteroskedasticity tests

The following result gives us the necessary ingredients to compare the Gaussian and non-

Gaussian tests under correct specification:

Lemma 2 If the true DGP corresponds to (5) with α0 = 0, then the feasible ML estimator of
α is as effi cient as the infeasible ML estimator, which require knowledge of η0. In contrast, the
ineffi ciency ratio of the Gaussian PML estimator of α is 4/[(κ0 − 1)Mss(η0)], where Mss(η0)
is defined in (E23).

Proof. The proof is trivial if we combine several results that appear in the proofs of Propositions

4. �
Lemma 2 then implies that the local non-centrality parameter of the Gaussian test for Arch

is α2, while the non-centrality parameter of the parametric test forArch is 14 [(κ0−1)Mss(η0)]α
2.

Figure S3B assesses the power gains under the assumption that the true conditional distribution

of ε∗t is a Student t with either 6 or 4.5 degrees of freedom. This figure confirms that the

power gains that accrue to our proposed Arch tests by exploiting the leptokurtosis of the t

distribution are in fact more pronounced than the corresponding gains in the mean predictability

tests. Similarly, Figure S3C repeats the same exercise for two discrete location scale mixture
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of normals whose kurtosis coeffi cients are both 6, and whose skewness coeffi cients are either -.5

or -1.219. In this case, our tests also yield significant power gains. In this sense, it is worth

remembering that since our semiparametric tests are adaptive, they should achieve these gains,

at least asymptotically.

D Standardised random variables

D.1 Discrete location scale mixtures of normals

D.1.1 Definition and simulation

Let st denote an i.i.d. Bernoulli variate with P (st = 1) = λ. If zt|st is i.i.d. N(0, 1), then

ε∗t =
1√

1 + λ(1− λ)δ2

[
δ(st − λ) +

st + (1− st)
√
υ√

λ+ (1− λ)υ
zt

]
,

where δ ∈ R and υ > 0, is a two component mixture of normals whose first two unconditional

moments are 0 and 1, respectively. The intuition is as follows. First, note that δ(st − λ) is a

shifted and scaled Bernoulli random variable with 0 mean and variance λ(1− λ)δ2. But since

st + (1− st)
√
υ√

λ+ (1− λ)υ
zt

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to δ(st−λ), the sum of the two random variables will have variance 1 +λ(1−
λ)δ2, which explains the scaling factor.

An equivalent way to define and simulate the same standardised random variable is as follows

ε∗t =

{
N [µ∗1(η), σ∗21 (η)] with probability λ
N [µ∗2(η), σ∗22 (η)] with probability 1− λ (D12)

where η = (δ, υ, λ)′ and

µ∗1(η) =
δ(1− λ)√

1 + λ(1− λ)δ2
,

µ∗2(η) = − δλ√
1 + λ(1− λ)δ2

= − λ

1− λµ
∗
1(η),

σ∗21 (η) =
1

[1 + λ(1− λ)δ2][λ+ (1− λ)υ]
,

σ∗22 (η) =
υ

[1 + λ(1− λ)δ2][λ+ (1− λ)υ]
= υσ∗21 (η).

Therefore, we can immediately interpret υ as the ratio of the two variances. Similarly, since

δ =
µ∗1(η)− µ∗2(η)√

λσ∗21 (η) + (1− λ)σ∗21 (η)
,

we can also interpret δ as the parameter that regulates the distance between the means of the

two underlying components relative to the mean of the two conditional variances.
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We can trivially extended this procedure to define and simulate standardised mixtures with

three or more components. Specifically, if we replace the normal random variable in the first

branch of (D12) by a k-component normal mixture with mean and variance given by µ∗1(η) and

σ∗21 (η), respectively, then the resulting random variable will be a (k + 1)-component Gaussian

mixture with zero mean and unit variance.

Finally, note that we can also use the above expressions to generate a two component mixture

of normals with mean π and variance ω2 as

yt =

{
N(µ1, σ

2
1) with probability λ

N(µ2, σ
2
2) with probability 1− λ

with

µ1 = π + ωµ∗1(η)

µ2 = π + ωµ∗2(η)

σ21 = ωσ∗21 (η),

σ22 = ωσ∗22 (η).

Interestingly, the expressions for υ and δ above continue to be valid if we replace µ∗1(η), µ∗2(η),

σ∗21 (η) and σ∗22 (η) by µ1, µ2, σ
2
1 and σ

2
2.

D.1.2 Skewness-kurtosis bounds

In the case of two-component Gaussian mixtures, the parameters λ, δ and υ determine the

higher order moments of ε∗t through the relationship

E(ε∗jt ) = λE(ε∗jt |st = 1) + (1− λ)E(ε∗jt |st = 0),

where E(ε∗jt |st = 1) can be obtained from the usual normal expressions

E(ε∗t |st = 1) = µ∗1(η)
E(ε∗2t |st = 1) = µ∗21 (η) + σ∗21 (η)
E(ε∗3t |st = 1) = µ∗31 (η) + 3µ∗1(η)σ∗21 (η)
E(ε∗4t |st = 1) = µ∗41 (η) + 6µ∗21 (η)σ∗21 (η) + 3σ∗41 (η)
E(ε∗5t |st = 1) = µ∗51 (η) + 10µ∗31 (η)σ∗21 (η) + 15µ∗1(η)σ∗41 (η)
E(ε∗6t |st = 1) = µ∗61 (η) + 15µ∗41 (η)σ∗21 (η) + 45µ∗21 (η)σ∗41 (η) + 15σ∗61 (η)

etc. But since E(ε∗t ) = 0 and E(ε∗2t ) = 1 by construction, straightforward algebra shows that

the skewness and kurtosis coeffi cients will be given by

E(ε∗3t ) =
3δλ(1− λ)(1− υ)

[λ+ (1− λ)υ][1 + λ(1− λ)δ2]3/2
+
δ3(1− λ)λ(1− 2λ)

[1 + λ(1− λ)δ2]3/2
= a(δ, υ, λ) (D13)

and

E(ε∗4t ) =
3[λ+ (1− λ)υ2]

[λ+ (1− λ)υ]2[1 + λ(1− λ)δ2]2
+

6δ2λ(1− λ)[(1− λ) + υλ]

[λ+ (1− λ)υ][1 + λ(1− λ)δ2]2

+
δ4λ(1− λ)[1− 3λ(1− λ)]

[1 + λ(1− λ)δ2]2
= b(δ, υ, λ). (D14)
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Two issues are worth pointing out. First, a(δ, υ, λ) is an odd function of δ, which means that

δ and −δ yield the same skewness in absolute value. In this sense, if we set δ = 0 then we will

obtain a discrete scale mixture of normals, which is always symmetric but leptokurtic. Another

way of obtaining discrete normal mixture distributions that are symmetric is by making λ = 1
2

and υ = 1. Second, b(δ, υ, λ) is an even function of δ, which implies that δ and −δ give rise to
the same kurtosis. For that reason, in what follows we mostly consider the case of δ ≥ 0.

A useful property of two component normal mixtures is that they span the entire uncondi-

tional skewness-kurtosis frontier given by the parabola E(ε∗4t ) ≥ 1 + E2(ε∗3t ) (see Stuart and

Ord (1977)). More specifically, for a fixed value of λ, skewness, which is 0 for δ = 0, reaches its

frontier value as δ →∞, in which case

lim
δ→∞

a(δ, υ, λ) =
2(12 − λ)√
λ(1− λ)

regardless of υ. Clearly, for λ < .5 this limiting skewness value is positive, while it is negative

for λ > .5. In any case, we can achieve the mirror point on the frontier as δ → −∞.
The corresponding kurtosis values are

b(0, υ, λ) =
3(λ+ (1− λ)υ2)

(λ+ (1− λ)υ)2
= 3

(
λ(1− λ)(1− υ)2

(λ+ (1− λ)υ)2
+ 1

)
and

lim
δ→±∞

b(δ, υ, λ) = −3 +
1

λ(1− λ)
= 1 +

(
2(12 − λ)√
λ(1− λ)

)2
,

which again does not depend on υ. Intuitively, the reason is that a standardised two component

normal mixture converges in distribution to a standardised Bernoulli random variable with

parameter λ as δ →∞ regardless of υ. Interestingly, limδ→∞ b(δ, υ, λ) = 3 for λ = 1
2 ±

1
6

√
3.

Nevertheless, to create Figures 2B and 4B, we need to find out the range of skewness and

kurtosis that this distribution can generate when λ is fixed. In this sense, notice that kurtosis is

always larger or equal than 3 for δ = 0, which reflects the fact that a scale mixture of normals

is always leptokurtic. The boundary case is of course υ = 1, in which case

b(0, 1, λ) = 3.

In fact, maximum kurtosis when δ = 0 is achieved for υ = 0 or for υ →∞, in which case we
obtain either

b(0, 0, λ) =
3

λ
or lim

υ→∞
b(0, υ, λ) =

3

1− λ.

Obviously, this kurtosis can be made arbitrarily large as λ approaches 0 or 1, but it is clearly

bounded for fixed λ.

The other interesting cases arise when υ = 0 and υ = 1. In the first case

a(δ, 0, λ) = δ (1− λ)
3 + (1− 2λ)λδ2

(1 + λ(1− λ)δ2)3/2
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and

b(δ, 0, λ) =
3

λ(1 + λ(1− λ)δ2)2
+

6δ2(1− λ)2

(1 + λ(1− λ)δ2)2
+
δ4λ(1− λ)(1− 3λ(1− λ))

(1 + λ(1− λ)δ2))2
,

while in the second case

a(δ, 1, λ) =
δ3(1− λ)λ(1− 2λ)

(1 + λ(1− λ)δ2)3/2

and

b(δ, 1, λ) =
3

(1 + λ(1− λ)δ2)2
+

6δ2λ(1− λ)

(1 + λ(1− λ)δ2)2
+
δ4λ(1− λ)(1− 3λ(1− λ))

(1 + λ(1− λ)δ2))2
.

It turns out that the range of skewness and kurtosis that a standardised mixture of two

normals can generate seems to be bounded by the following two parametric curves:

(a(δ, 1, λ), b(δ, 1, λ))

and

(a(δ, 0, λ), b(δ, 0, λ)),

where the range of δ is [0,∞). In fact, these curves intersect at the unconditional skewness-

frontier boundary when δ →∞.
Interestingly, it seems that skewness is always non-negative when λ ≤ 1/2. In contrast, for

λ > 1/2 skewness is initially positive for small values of δ, but then becomes negative as δ

increases. In turn, kurtosis bounded from below by 3 when λ ≤ 1
2 −

1
6

√
3, while it is bounded

from above by 3 on the negative skewness side if 12 ≤ λ ≤
1
2 + 1

6

√
3.

As we explained before, the mirror curves

(−a(|δ|, 1, λ), b(|δ|, 1, λ))

and

(−a(|δ|, 0, λ), b(|δ|, 0, λ)),

give us the skewness-kurtosis range when δ if negative.

D.2 Gram-Charlier distributions

D.2.1 Definition and moments

The first five raw Hermite polynomials are:

H0(z) = 1,

H1(z) = z,

H2(z) = z2 − 1,

H3(z) = z3 − 3z,

H4(z) = z4 − 6z2 + 3.
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When z ∼ N(0, 1), these have 0 mean and are orthogonal to each other. In turn,

H∗2 (z) =
z2 − 1√

2
,

H∗3 (z) =
z3 − 3z√

6
,

H∗4 (z) =
z4 − 6z2 + 3√

24
.

are called the standardised Hermite polynomials because their variance will be 1 for a standard

normal.

The Gram-Charlier density is defined as:

f(z) = φ(z)P (z), (D15)

φ(z) =
1√
2π
e−

1
2
z2 ,

P (z) = 1 +
ϕ√
6
H∗3 (z) +

υ√
24
H∗4 (z) = 1 +

ϕ

6

(
z3 − 3z

)
+

κ

24

(
z4 − 6z2 + 3

)
. (D16)

This density is such that

Ef (z) = 0,

Ef (z2) = 1,

Ef (z3) = ϕ,

Ef (z4) = 3 + κ.

D.2.2 Positivity restrictions

The problem is that P (z) in (D16) can be negative, in which case f(z) in (D15) will not be

a proper density.

For a given z, the skewness-excess kurtosis frontier that guarantees positivity must satisfy

the following two equations:

1 +
ϕ

6

(
z3 − 3z

)
+

κ

24

(
z4 − 6z2 + 3

)
= 0,

ϕ

2

(
z2 − 1

)
+
κ

6

(
z3 − 3z

)
= 0.

The first equation, which is given by P (z) = 0, defines a straight line in (ϕ, κ) space such that

in any neighbourhood of the solution we will find positive and negative densities. In contrast,

the second equation, which corresponds to ∂P (z)/∂z = 0, guarantees that we remain in the

frontier as we move in (ϕ, κ) space.

The solution to the above system of equations in terms of ϕ and κ as a function of z is

ϕ(z) = −24
z3 − 3z

z6 − 3z4 + 9z2 + 9
,

κ(z) = 72
z2 − 1

z6 − 3z4 + 9z2 + 9
,
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where the denominator is

d(z) = 4
(
z3 − 3z

)2 − 3
(
z2 − 1

) (
z4 − 6z2 + 3

)
= z6 − 3z4 + 9z2 + 9.

This solution can be regarded as the parametric representation of the admissible skewness-

kurtosis frontier.

The simplest way to find the frontier values is to carry out a grid over z, and for each

value of z find out the corresponding values of ϕ(z) and κ(z). However, this does not work as

expected because we will often end up with two different values of ϕ(z) for the same value of

κ(z). Following Jondeau and Rockinger (2001), the solution is to restrict the range of z to be

[
√

3,∞). When z =
√

3, ϕ(z) and κ(z) become 0 and 4, respectively. In contrast, when z →∞
both ϕ(z) and κ(z) converge to 0. In practice, the grid should probably be logarithmic between
√

3 and 103 or so. The maximum skewness that can be achieved is 1.0493. Obviously, we get

the mirror image by changing the sign of z.

D.3 Simulation

A very simple way to simulate random variables with a Gram-Charlier distribution is by

using the usual inversion method, which exploits the fact that if Z is a random variable with

absolutely continuous distribution function FZ(.) and quantile function F−1Z (.), then U = FZ(Z)

is uniformly distributed between 0 and 1, while F−1Z (U) will follow the distribution of Z.

Given that ∫
H∗k (x)φ (x) dx =

−1√
k
H∗k−1 (x)φ (x) k ≥ 1 (D17)

(see León, Mencía and Sentana (2009)), and that H∗k (x)φ (x)→ 0 when x→ −∞ by virtue of

L’Hôpital rule, then ∫ z

−∞
H∗k (x)φ (x) dz = − 1√

k
H∗k−1 (z)φ (z) , k ≥ 1. (D18)

Consequently,

FZ(z) =

∫ z

−∞
f(x)dx =

∫ z

−∞
φ(x)P (x)dx = Φ(z)− ϕ

6
H∗2 (z)φ (z)− κ

24
H∗3 (z)φ (z) .

In practice, we simulate a uniform variate u, and numerically solve the equation

FZ(z) = u

with Φ−1(u) as starting value.

D.4 Generalised hyperbolic

Let ξt denote an i.i.d. Generalised Inverse Gaussian (GIG) random variable with parameters

−ν, τ and 1, or GIG(−ν, τ , 1) for short. Mencía and Sentana (2012) show that if zt|ξt is i.i.d.
N(0, 1), then

ε∗t = c(β, ν, τ)β

[
τξ−1t
Rν(τ)

− 1

]
+

√
τξ−1t
Rν(τ)

√
c(β, ν, τ)zt
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is a standardised Generalised Hyperbolic (GH) distribution with parameters β, ν and τ , where

c(β, ν, τ) =
−1 +

√
1 + 4β2[Dν+1(τ)− 1]

2β2[Dν+1(τ)− 1]

Rν(τ) =
Kν+1(τ)

Kν(τ)
,

Dν+1(τ) =
Kν+2(τ)Kν(τ)

Kν+1(τ)
,

and Kν(.) is the modified Bessel function of the third kind. In turn, the GH distribution is a

special case of the more general location scale mixtures of normals considered in Mencía and

Sentana (2009), in which ξt is a positive random variable with an arbitrary distribution.

Mencía and Sentana (2012) also provide expressions for the third and fourth moments of the

GH distribution, which in the univariate case reduce to

E(ε∗3t ) = c3(β,ν, τ)

[
Kν+3 (τ)K2

ν (τ)

K3
ν+1 (τ)

− 3Dν+1 (τ) + 2

]
β3 + 3c2(β, ν, τ) [Dν+1 (τ)− 1]β

and

E(ε∗4t ) = c4(β, ν, τ)

[
Kν+4 (τ)K3

ν (τ)

K4
ν+1 (τ)

− 4
Kν+3 (τ)K2

ν (τ)

K3
ν+1 (τ)

+ 6Dν+1 (τ)− 3

]
β4

+6c3(β, ν, τ)

[
Kν+3 (τ)K2

ν (τ)

K3
ν+1 (τ)

− 2Dν+1 (τ) + 1

]
β2 + 3Dν+1 (τ) c2(β, ν, τ).

D.4.1 Asymmetric and symmetric versions of the Student t

The asymmetric t distribution is nested within theGH family when τ = 0 and−∞ < ν < −2.

If we define η = −1/(2ν), then for η < 1/4 we will have that

c(β, ν, τ) =
1− 4η

2η

√
1 + 8β2η/(1− 4η)− 1

2β2
,

lim
τ→∞

Rν(τ)

τ
= lim

τ→∞
Kν+1(τ)

τKν(τ)
=

η

1− 2η
,

Dν+1(τ) =
Kν+2(τ)Kν(τ)

Kν+1(τ)
=

1− 2η

1− 4η
.

Therefore, we can easily simulate an asymmetric standardised Student t distribution as:

ε∗t = c(β, ν, τ)β

[
(1− 2η)

ηξt
− 1

]
+

√
(1− 2η)

ηξt

√
c(β, ν, τ)zt,

where ξt ∼ i.i.d. Gamma with mean η−1 and variance 2η−1, and zt|ξt is i.i.d. N(0, 1).

If we further assume that η < 1/8, then

Kν+3 (τ)K2
ν (τ)

K3
ν+1 (τ)

=
(1− 2η)2

(1− 4η)(1− 6η)

Kν+4 (τ)K3
ν (τ)

K4
ν+1 (τ)

=
(1− 2η)3

(1− 4η)(1− 6η)(1− 8η)
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so the skewness and kurtosis coeffi cients of the asymmetric t distribution will be:

E(ε∗3t ) = 16c3(β,ν, τ)
η2

(1− 4η)(1− 6η)
β3 + 6c2(β, ν, τ)

η

1− 4η
β

and

E(ε∗4t ) = 12c4(β, ν, τ)
η2(10η + 1)

(1− 4η)(1− 6η)(1− 8η)
β4

+12c3(β, ν, τ)
η(2η + 1)

(1− 4η)(1− 6η)
β2 + 3

1− 2η

1− 4η
c2(β, ν, τ).

Not surprisingly, we can obtain maximum asymmetry for a given kurtosis by letting |β| → ∞. In
contrast, a standardised version of the usual symmetric Student t with 1/η degrees of freedom is

achieved when β = 0. Since limβ→0 c(β, ν, τ) = 1, in that case the coeffi cient of kurtosis becomes

E(ε∗4t ) = 3
1− 2η

1− 4η

for any η < 1/4.

D.4.2 Symmetric Laplace distribution

The asymmetric Laplace distribution is another special case of the GH distribution, which

is achieved when τ = 0 and ν = 1. In fact, it is a special case of the asymmetric normal-gamma

mixture, which allows ν to be any positive parameter. As is well known, the kurtosis coeffi cient

of a symmetric Laplace distribution is 6. In the univariate case, the Laplace distribution is also

a special case of the generalised error distribution (GED) with shape parameter fixed at 1, in

contrast to the Gaussian distribution, which is also a special GED case with parameter 2.

The symmetric Laplace distribution is very easy to generate as

ε∗t =
√
ξtzt,

where ξt is an i.i.d. exponential (i.e. a Gamma with mean 1 and variance 1), and zt|ξt is
i.i.d. N(0, 1). Alternatively, if ut denotes a (0, 1) uniform variate, then we can also simulate a

standardised symmetric Laplace random variable ε∗t as

− 1√
2
sign

(
ut −

1

2

)
ln

(
1− 2

∣∣∣∣ut − 1

2

∣∣∣∣) .
In effect, this procedure uses the fact that the absolute value of a Laplace is exponential, with

a closed-form quantile function, while its sign is a shifted and scaled Bernoulli random variable

that the values ±1 with probability 1/2 each.

E Econometric methods

E.1 Log-likelihood function, score vector, Hessian and information matrices

Let φ = (θ′,η)′ denote the p + r parameters of interest, which we assume variation free.

Ignoring initial conditions, and assuming that σ2t (θ) is strictly positive, the log-likelihood func-

tion of a sample of size T based on a particular parametric distributional assumption will take
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the form LT (φ) =
∑T

t=1 lt(φ), with lt(φ) = dt(θ) + ln f [εt(θ),η], where dt(θ) = −1/2 lnσ2t (θ),

ε∗t (θ) = εt(θ)/σt(θ) and εt(θ) = yt − µt(θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. If µt(θ), σ2t (θ) and f(ε∗,η)

are differentiable, then we can use the fact that

∂dt(θ)/∂θ = −12 · σ
−2
t (θ) · ∂σ2t (θ)/∂θ = −Zst(θ)

and

∂ε∗t (θ)/∂θ = −σ−1t (θ) · ∂µt(θ)/∂θ−12σ
−2
t (θ) · ∂σ2t (θ)/∂θ · ε∗t (θ)

= −Zlt(θ)− Zst(θ)ε∗t (θ),

to show that

sθt(φ) =
∂dt(θ)

∂θ
+
∂ ln f [ε∗t (θ),η]

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ),

sηt(φ) = ∂ ln f [ε∗t (θ),η] /∂η = ert(φ),

where

elt(θ,η) = −∂ ln f [ε∗t (θ),η] /∂ε∗,

est(θ,η) = −{1 + ε∗t (θ) · ∂ ln f [ε∗t (θ),η] /∂ε∗} ,

depend on the specific distributional assumption.

Let ht(φ) denote the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. Assuming twice differ-

entiability of the different functions involved, we will have

hθθt(φ) =
∂Zlt(θ)

∂θ′
elt(φ) +

∂Zst(θ)

∂θ′
est(φ) + Zlt(θ)

∂elt(φ)

∂θ′
+ Zst(θ)

∂est(φ)

∂θ′
(E19)

hθηt(φ) = Zlt(θ)
∂elt(φ)

∂η′
+ Zst(θ)

∂est(φ)

∂η′
(E20)

hηηt(φ) = ∂2 ln f [ε∗t (θ),η] /∂η∂η′,

where

∂Zlt(θ)/∂θ′ = −12 · σ
−3
t (θ) · ∂µt(θ)/∂θ·∂σ2t (θ)/∂θ′ + σ−1t (θ) · ∂2µ2t (θ)/∂θ∂θ′,

∂Zst(θ)/∂θ′ = −12 · σ
−4
t (θ) · ∂σ2t (θ)/∂θ · ∂σ2t (θ)/∂θ′ + 1

2 · σ
−2
t (θ) · ∂2σ2t (θ)/∂θ∂θ′,

∂elt(φ)/∂θ′ = ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · Z′lt(θ) + ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · ε∗t (θ) · Z′st(θ)

∂est(φ)/∂θ′ = {∂ ln f [ε∗t (θ),η] /∂ε∗ + ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · ε∗t (θ)}Z′lt(θ)

+{∂ ln f [ε∗t (θ),η] /∂ε∗ · ε∗t (θ) + ∂2 ln f [ε∗t (θ),η] /∂ε∗∂ε∗ · ε2∗t (θ)} · Z′st(θ)

and ∂2 ln f(ε∗, η)/∂ε∗∂ε∗, ∂2 ln f(ε∗, η)/∂ε∗∂η′ and ∂ ln f(ε∗, η)/∂η∂η′ depend on the specific

distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for

the Student t).
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Given correct specification, et(φ) = [e′dt(φ), ert(φ)]′ evaluated at the true parameter values

is an iid sequence, and therefore, the score vector st(φ) will be a vector martingale difference

sequence. Then, the results in Crowder (1976) imply that, under suitable regularity conditions,

the asymptotic distribution of the feasible ML estimator will be
√
T (φT −φ0)→ N [0, I−1(φ0)],

where I(φ0) = E[It(φ0)|φ0], where

It(φ) = −E [ht(φ)|zt, It−1;φ] = V [st(φ)|zt, It−1;φ] = Zt(θ)M(η)Z′t(θ),

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,

and

M(η) =

 Mll(η) Mls(η) Mlr(η)
Mls(η) Mss(η) Msr(η)
M′lr(η) M′sr(η) Mrr(η)

 ,

with

Mll(η) = V [elt(φ)|φ] = E
[
∂2 ln f(ε∗t ;η)/∂ε∗∂ε∗′

∣∣η] , (E21)

Mls(η) = E[elt(φ)est(φ)′|φ] = E
[
ε∗t · ∂2 ln f(ε∗t ;η)/∂ε∗∂ε∗′

∣∣η] , (E22)

Mss(η) = V [est(φ)|φ] = E
[
ε∗2t · ∂2 ln f(ε∗t ;η)/∂ε∗∂ε∗′|η

]
− 1, (E23)

Mlr(η) = E[elt(φ)e′rt(φ)|φ] = −E
[
∂2 ln f(ε∗t ;η)/∂ε∗∂η′|η

]
,

Msr(η) = E[est(φ)e′rt(φ)|φ] = −E
[
ε∗t∂

2 ln f(ε∗t ;η)/∂ε∗∂η′|η
]
,

and

Mrr(η) = V [ert(φ)|φ] = −E
[
∂2 ln f(ε∗t ;η)/∂η∂η′|φ

]
.

In the Student t case, this matrix is simply

M(η) =


ν(ν+1)

(ν−2)(ν+3) 0 0

0 (ν+1)
(ν+3) − 6ν2

(ν−2)(ν+1)(ν+3)

0 − 6ν2

(ν−2)(ν+1)(ν+3)
ν4

4

[
ψ′
(
ν
2

)
− ψ′

(
ν+1
2

)]
− ν4[ν2+(ν−4)−8]

2(ν−2)2(ν+1)(ν+3)

 .

where ψ(.) is the di-gamma function (see Abramowitz and Stegun (1964)), which under normality

reduces to

M(η) =

 1 0 0
0 1 0
0 0 3/2

 .

E.2 Gaussian pseudo maximum likelihood estimators

Let θ̃T = arg maxθ LT (θ,0) denote the Gaussian pseudo-ML (PML) estimator of the con-

ditional mean and variance parameters θ in which % is set to zero. As we mentioned in the

introduction, θ̃T remains root-T consistent for θ0 under correct specification of µt(θ) and σ2t (θ)

even though the conditional distribution of ε∗t |zt, It−1;φ0 is not Gaussian, provided that it has
bounded fourth moments. Proposition 2 in Fiorentini and Sentana (2007) derives the asymptotic

distribution of the pseudo-ML estimator of θ when ε∗t |zt, It−1;φ0 is i.i.d.:
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Proposition 6 If ε∗t |zt, It−1;φ0 is i.i.d. D(0,1, %0) with κ0 < ∞, and the regularity conditions
A.1 in Bollerslev and Wooldridge (1992) are satisfied, then

√
T (θ̃T − θ0)→ N [0, C(φ0)], where

C(φ) = A−1(φ)B(φ)A−1(φ),

A(φ) = −E [hθθt(θ,0)|φ] = E [At(φ)|φ] ,

At(φ) = −E[hθθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(0)Z′dt(θ),

B(φ) = V [sθt(θ,0)|φ] = E [Bt(φ)|φ] ,

Bt(φ) = V [sθt(θ; 0)| zt, It−1;φ] = Zdt(θ)K(κ)Z′dt(θ),

and K (ϕ,κ) =V [edt(θ,0)| zt, It−1;φ] =

[
1 ϕ(%)

ϕ(%) κ(%)− 1

]
, (E24)

which only depends on % through the population coeffi cients of asymmetry and kurtosis

ϕ(%) = E(ε∗3t |%). (E25)

κ(%) = E(ε∗4t |%). (E26)

Given that ϕ(%) = 0 and κ = 2/(ν − 4) for the Student t distribution with ν degrees of

freedom, it trivially follows that in that case Bt(φ) reduces to

1

σ2t (θ)

∂µt(θ)

∂θ
Σ−1t (θ)

∂µt(θ)

∂θ′
+

ν − 1

2(ν − 4)

1

σ4t (θ)

∂σ2t (θ)

∂θ

∂σ2t (θ)

∂θ′
.

E.3 Semiparametric estimators of θ

González-Rivera and Drost (1999) obtain the semiparametric effi cient score and the corre-

sponding effi ciency bound for univariate models:

Proposition 7 If ε∗t |zt, It−1;θ0,%0 is i.i.d. (1, 0) with density function f(ε∗t ;%), where % are
some shape parameters and % = 0 denotes normality, such that both its Fisher information
matrix for location and scale

Mdd (%) = V [edt(θ,%)|zt, It−1;θ,%]

= V

{[
elt(θ,%)
est(θ,%)

]∣∣∣∣θ,%} = V

{[
−∂ ln f [ε∗t (θ);%]/∂ε∗

−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗t (θ)}

]∣∣∣∣θ,%}
and the matrix of third and fourth order central moments

K (%) = V [edt(θ,0)| zt, It−1;θ,%] (E27)

are bounded, then the semiparametric effi cient score will be given by:

Zdt(θ0,%0)edt(θ0,%0)− Zd(θ0,%0)
[
edt(θ0,%0)−K (0)K−1(ϕ, κ)edt(θ0,0)

]
, (E28)

while the semiparametric effi ciency bound is

S(φ0) = Iθθ(θ0,%0)− Zd(θ0,%0)
[
Mdd (%0)−K (0)K1(ϕ, κ)K (0)

]
Z′d(θ0,%0), (E29)

where + denotes Moore-Penrose inverses, and Iθθ(θ,%) = E
[
Zdt(θ)Mdd(%)Z′dt(θ)|θ,%

]
.

In practice, f [ε∗t (θ);%] has to be replaced by a non-parametric density estimator, which is

typically obtained by kernel methods.

Hodgson and Vorkink (2001), Hafner and Rombouts (2007) and other authors have suggested

semi-parametric estimators of θ which limit the admissible distributions of ε∗t |zt, It−1;φ0 to the
class of symmetric ones. Proposition 7 in Fiorentini and Sentana (2007) provides the resulting

elliptically symmetric semiparametric effi cient score and the corresponding effi ciency bound:
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Proposition 8 When ε∗t |zt, It−1,φ0 is i.i.d. s(0,1,%0) with 1 < κ0 < ∞, the elliptically sym-
metric semiparametric effi cient score is given by:

s̊θt(φ0) = Zdt(θ0)edt(φ0)

−Ws(φ0)

{
− [1 + εt(θ0)∂ ln f [ε∗t (θ);%]/∂ε∗]− 2

κ0 − 1

[
ε2t (θ0)− 1

]}
, (E30)

where

Ws(φ0) = Zd(φ0)

(
0
1

)
= E[Zdt(θ0)|φ0]

(
0
1

)
= E

{
1

2σ2t (θ)

∂σ2t (θ)

∂θ

∣∣∣∣φ0} , (E31)

while the elliptically symmetric semiparametric effi ciency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W
′
s(φ0) ·

[
Mss(%0)−

4

κ0 − 1

]
. (E32)

In practice, edt(φ) has to be replaced by a semiparametric estimate obtained from the density

of ε∗t that imposes symmetry. The simplest way to do this is by averaging the non-parametric

density estimators at ε∗t and −ε∗t . Alternatively, one can estimate the common density of ±ε∗t
from the density of the Box-Cox transformation k−1|ε∗t |k − 1 for some k ≥ 0.

E.4 Student t-based (pseudo) maximum likelihood estimators

Let θ̃T = arg maxθ,η LT (θ,η) denote the t-based pseudo-ML (t-PML) estimator of the condi-

tional mean and variance parameters θ obtained by assuming that the conditional distribution

is t(0, 1, η). Proposition 5 in Fiorentini and Sentana (2019) shows that this estimator is as-

ymptotically equivalent to the Gaussian PML estimator when the conditional distribution is

platykurtic. They also show that if the conditional mean and variance can be parametrised as

in Linton (1993) and Newey and Steigerwald (1997), then some of the reparametrised mean and

variance parameters will be consistently estimated even if the true conditional distribution is

not a Student t. In our context, the robustness of the Student t serial correlation tests under

conditional symmetry follows from the fact that the only parameter that is inconsistently esti-

mated is ω in those circumstances. More generally, its robustness under possibly asymmetric

distributions derives from the fact that we can reparametrise the mean of (1) as δ
√
ω + ρyt−1.

Therefore, the t-based ML estimator of ρ continues to be consistent even if the estimators of

ω and π are inconsistent. The argument for the α is slightly different, because a Student log-

likelihood function can only estimate γ = α/ω consistently in those circumstances. Nevertheless,

given that α is 0 under the null, the t-based ML estimator of α continues to be consistent even

if the estimators of ω and π are inconsistent.

E.5 Kotz-based (pseudo) maximum likelihood estimators

The original Kotz distribution (see Kotz (1975)) is a member of the spherical family, and

thereby symmetric in the univariate case. Its main distinctive characteristic is that ε∗2 follows

a gamma distribution with mean 1 and variance (3κ0 + 2), where

κ = E(ε∗4|η)/3− 1
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is the coeffi cient of multivariate excess kurtosis of ε∗ (see Mardia (1970)), which is trivially 0

under normality. In fact, the Kotz distribution nests the normal distribution when κ = 0, in

which ε∗2 follows with a chi square distribution with one degree of freedom, but it can also

be either platykurtic (κ < 0) or leptokurtic (κ > 0), although in the second case the Jensen

inequality restriction E(ε∗4) ≥ E(ε∗2) = 1 implies that κ ≥ −2/3. Such a nesting provides an

analytically convenient generalisation of the normal. Specifically, the kernel of the distribution

of ε∗2 is

g(ε∗2;κ) = − 3κ
2(3κ + 2)

ln ε∗2 − 1

3κ + 2
ε∗2,

while the constant of integration becomes

c(κ) = − ln Γ

(
1

3κ + 2

)
− 1

3κ + 2
ln(3κ + 2)

(see Amengual and Sentana (2011)). Therefore, the density of a leptokurtic Kotz distribution

has a pole at 0, and an antimode in the platykurtic case, which is a potential drawback from an

empirical point of view.

The contribution of the tth observation to the log-likelihood function is

lt(θ,κ) = −1

2
lnσ2t (θ) + c(κ) + g(ε∗2t ;κ).

As a result, the damping factor becomes

δ(ε∗2;κ) =
1

3κ + 2

(
3κ
ε∗2

+ 2

)
.

Let θ̃T = arg maxκ LT (θ,κ) denote the t-based pseudo-ML (t-PML) estimator of the condi-

tional mean and variance parameters θ obtained by assuming that the conditional distribution

is a standardised version of the univariate Kotz(0, 1,κ).

Straightforward algebra shows that the ML estimator of the mean sets to 0 the following

moment condition
1

3κ + 2
[3κε̌∗−1T (θ) + 2ε̄∗T (θ)] = 0,

where ε̌∗−1T (θ) = T−1
∑T

t=1 ε
∗−1
t (θ) is the reciprocal of the harmonic mean of the standardised

residuals and ε̄∗T (θ) their arithmetic one. Therefore, the ML estimator makes a combination of

the arithmetic and harmonic mean of the standardised residuals equal to 0. In contrast, the ML

estimator of the variance can be concentrated out of the log-likelihood function as:

ω(π) =
1

T

T∑
t=1

(xt − π)2

Finally, the score with respect to the excess kurtosis parameter κ is

sκt(θ,κ) = ε∗2t − ln ε∗2t +

[
ψ

(
1

3κ + 2

)
+ ln(3κ + 2)− 1

]
,

where ψ (.) is the digamma (or Gauss psi) function (see Abramowitz and Stegun (1964)).
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We can combine the moments of a gamma and reciprocal gamma random variables to show

that

mll(κ) =
9κ + 2

(3κ + 1)(3κ + 2)
, (E33)

as long as κ > −1/3,

mss(κ) =
κ + 2

3κ + 2
,

and msr(κ) = 0 ∀κ, as in the Gaussian case, so that the information matrix is block diagonal
between the mean, variance and shape parameters.

To sample the Kotz innovations, we exploit the fact that ε∗t =
√
ξtut, where ut is a shifted

and scaled Bernoulli random variable that the values ±1 with probability 1/2 each, and ξt is a

univariate Gamma with mean 1 and variance (3κ + 2).

Like in the Student t case, all mean parameters will be consistently estimated if the true

conditional distribution is symmetric, while only ρ will remain consistent under asymmetry. And

while ω will be inconsistently estimated unless the true distribution is Kotz, γ = α/ω will be

consistently estimated regardless.

E.6 Laplace-based (pseudo) maximum likelihood estimators

The Laplace (or double exponential) distribution, which is also a member of the generalised

hyperbolic distribution, contains no shape parameters. As is well known, the ML estimator of

the location parameter is given by the sample median, med(y1, . . . , yT ). In turn, the estimator

of the variance parameter ω is given by the twice the square of the mean absolute deviation

around the median. Specifically,

ω̂T = 2

[
1

T

T∑
t=1

|yt −med(y1, . . . , yT )|
]2
.

Although the lack of shape parameters implies that the Laplace distribution is not very

flexible, the fact that it is symmetric implies that the robustness properties of the pseudo ML

estimators of ρ and γ are exactly the same as in the Student and Kotz-based log-likelihood

functions.

E.7 Discrete mixtures of normals-based (pseudo) maximum likelihood esti-
mators

The EM algorithm discussed by Dempster, Laird and Rubin (1977) allows us to obtain initial

values as close to the optimum as desired. The recursions are as follows:

λ̂
(n

=
1

T

∑T

t=1
w(yt;φ

(n−1)
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µ̂
(n
1 =

1

λ̂
(n

1

T

T∑
t=1

ytw(yt;φ
(n−1), µ̂

(n
2 =

1

1−λ̂(n
1

T

T∑
t=1

yt[1−w(yt;φ
(n−1)],

σ̂
2(n
1 =

1

λ̂
(n

1

T

T∑
t=1

y2tw(yt;φ
(n−1)−

(
µ̂
(n
1

)2
, σ̂

2(n
2 =

1

1−λ̂(n
1

T

T∑
t=1

y2t [1−w(yt;φ
(n−1)]−

(
µ̂
(n
2

)2
,

where

w(yt;φ) =

λ
σ1
φ
(
yt−µ1
σ1

)
λ
σ1
φ
(
yt−µ1
σ1

)
+ 1−λ

σ2
φ
(
yt−µ2
σ2

)
=

λ
σ∗1(η)

φ
[
ε∗t (θs,0)−µ∗1(η)

σ∗1(η)

]
λ

σ∗1(η)
φ
[
ε∗t (θs,0)−µ∗1(η)

σ∗1(η)

]
+ 1−λ

σ∗2(η)
φ
[
ε∗t (θs,0)−µ∗2(η)

σ∗2(η)

] = w[ε∗t (θs, 0);η]

and φ(.) denotes the standard normal density.

From those recursions it is easy to check that

π̂(n = µ̂
(n
1 λ̂

(n
+ µ̂

(n
2 (1− λ̂(n) =

1

T

∑T

t=1
yt,

σ̂2(n = [(µ̂
(n
1 )2 + σ̂

2(n
1 ]λ̂

(n
+ [(µ̂

(n
2 )2 + σ̂

2(n
2 ](1− λ̂(n)− (π̂(n)2

=
1

T

∑T

t=1
y2t −

(
1

T

∑T

t=1
yt

)2
,

for all n regardless of the values of φ(n−1. This means that λ̂
(n
, υ̂(n = σ̂

2(n
2 /σ̂

2(n
1 and

δ̂
(n

=
µ̂
(n
1 − µ̂

(n
2√

λ̂
(n
σ̂
2(n
1 + (1− λ̂(n)σ̂

2(n
2

will yield the EM recursions for a mixture model parametrised in terms of π, ω2 and λ, δ and

υ, which are the parameters of the standardised version in Supplemental Appendix D.1.

Since the ML estimators constitute the fixed point of the EM recursions, (i.e. φ = φ(∞),

another implication of the above result is that π̂ and ω̂ coincide with the Gaussian PML estima-

tors. As a result, we can maximise the log-likelihood function with respect to λ, δ and υ keeping

π̂ and σ̂2 fixed at their Gaussian pseudo ML values. Interestingly, this somewhat surprising

result will continue to be true even in a complete log-likelihood situation in which we would

observe not only yt but also st. In addition, it is straightforward to prove that the same result

holds for finite mixtures of normals with more than two components.

As a result, the ML estimators of π and ω continue to be consistent under distributional

misspecification. Similarly, the estimators of ρ and α = ωγ will also remain consistent in that

case too, as explained in Fiorentini and Sentana (2019).

Nevertheless, the log-likelihood function of a mixture distribution has a pole for each obser-

vation. Specifically, it will go to infinity if we set µ̂1 = yt and let σ̂21 go to 0. In practice, we deal

with this issue by starting the EM algorithm from many different starting values. In addition,

there is a trivial identification issue that arises by exchanging the labels of the components. We

solve this problem by restricting υ to the range (0, 1) so that the first component is the one with

the largest variance.
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(B) AR(1) alternatives. Student t DGPs
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FIGURE S2: Local power of unpredictability in mean tests at 5% level
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(C) AR(1) alternatives. Normal mixture DGPs
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(A) GARCH(1,1) alternatives. Gaussian DGP
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FIGURE S3: Local power of unpredictability in variance tests at 5% level
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