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1 Introduction

The introduction of the new VIX index by the Chicago Board Options Exchange

(CBOE) in 2003 meant that volatility became widely regarded as an asset class on

its own. As is well known, VIX captures the volatility of the Standard & Poor’s 500

(S&P500) over the next month implicit in stock index option prices, and for that reason

it has become a widely accepted measure of stock volatility and a market fear gauge. In

addition, since March 26, 2004 it is possible to directly invest in volatility through futures

contracts on the VIX negotiated at the CBOE Futures Exchange (CFE). More recently,

several volatility related Exchange Traded Notes (ETNs) have provided investors with

equity-like long and short exposure to constant maturity futures on the VIX, and even

dynamic combinations of long-short exposures to different maturities (see Rhoads, 2011).

Although the poor performance of some of these assets during decreasing volatility pe-

riods have raised some concerns about their risks, by 2013 there were already about 30

ETNs with a market cap of around $3 billion and a trading volume on some of them of

close to $5 billion per day (see Alexander and Korovilas, 2013, for further details).

Volatility indices such as the VIX provide important examples of financial time series

where the original data is always positive but stationary in levels, with a slow reversion

to their long run mean. Many discrete and continuous time models have been proposed

to capture this strong persistence. An increasingly popular example is the discrete-time

Multiplicative Error Model (MEM) proposed by Engle (2002), which has been applied

not just to volatility modelling but also to trading volumes and durations (see Brownlees,

Cipollini, and Gallo, 2012, for a recent review). In this model, a positive random variable

is treated as the product of a time varying, recursive mean times a positive random error

with unit conditional mean. In this regard, Engle and Gallo (2006) show on the basis of

earlier results by Gourieroux, Monfort, and Trognon (1984) that the mean parameters

can be consistently estimated assuming a Gamma distribution for the error term even

when the true distribution is not Gamma, as long as the conditional mean is correctly

specified. Unfortunately, this pseudo-likelihood approach is insufficient when the interest

goes beyond the first conditional moment. For that reason, some authors have proposed

more flexible distributional assumptions (see e.g. De Luca and Gallo (2004, 2009) and

Lanne (2006)).
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One particularly important situation where the entire conditional distribution mat-

ters arises in assessing trading strategies involving VIX ETNs. Intuitively, risk averse

investors must take into account not only the expected value of the resulting payoffs,

which can be obtained from the mean forecasts generated by the MEM, but also some

suitable measures of the risks involved, which necessarily depend on features of the

conditional distribution beyond its mean. In this context, we develop a comprehensive

dynamic asset allocation framework to invest in precisely those financial instruments.

We begin by modelling the mean-reverting features of the VIX with a two component

MEM specification analogous to the GARCH model proposed by Engle and Lee (1999).

Then, we make use of a semi-nonparametric expansion of the Gamma density (Gamma

SNP or GSNP for short). SNP expansions were introduced by Gallant and Nychka (1987)

for nonparametric estimation purposes as a way to ensure by construction the positivity

of the resulting density (see also Fenton and Gallant, 1996; Gallant and Tauchen, 1999).

In our case, though, we follow León, Menćıa, and Sentana (2009) in treating the SNP

distribution parametrically as if it reflected the actual data generating process instead

of an approximating kernel. Next, we specify a stochastic discount factor (SDF) with

which we derive an equivalent risk-neutral measure that allows us to obtain closed-

form expressions for the prices of VIX futures ETNs. Using those three ingredients, we

study asset allocation strategies in ETNs tracking the VIX futures short and mid-term

indices. We compare our strategy with buy and hold positions on existing ETNs, some

of which are already dynamic combinations of the VIX futures indices, as well as other

strategies that have been previously proposed in the literature. Finally, we assess the

sensitivity of our results to the evaluation criterion, and compare our model with two

alternative approaches: (i) a reduced form model and (ii) the autoregressive Gamma

process proposed by Gourieroux and Jasiak (2006).

The rest of the paper is organised as follows. In the next section, we study the statis-

tical properties of the GSNP density. In Section 3, we describe our pricing framework,

relate the real and risk-neutral measures, and obtain futures prices. Section 4 presents

the empirical application. Finally, we conclude in Section 5. Proofs and auxiliary results

can be found in the appendices.
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2 Semi-nonparametric Gamma density expansions

Consider the Gamma distribution, whose probability density function (pdf) can be

expressed as

fG(x, ν, ψ) =
1

Γ(ν)ψν
xν−1 exp(−x/ψ), (1)

where Γ(·) denotes the Gamma function, ν are the degrees of freedom and ψ the scale

parameter. For the sake of brevity, we will denote this density as G(ν, ψ). Following

Gallant and Nychka (1987), we consider SNP expansions of this density (GSNP for

short):

fGSNP (x, ν, ψ, δ) = fG(x, ν, ψ)

[
m∑
j=0

δj

(
x

ψ

)j]2
1

d
, (2)

where δ = (δ0, δ1, · · · , δm)′, and d is a constant that ensures that the density integrates

to 1.

In order to interpret (2), it is convenient to expand the squared term. This yields

the following result:

Proposition 1 Let x be a GSNPm(ν, ψ, δ) variable with density fGSNP (x, ν, ψ, δ) given

by (2). Then

fGSNP (x, ν, ψ, δ) = fG(x, ν, ψ)
1

d

2m∑
j=0

γj(δ)

(
x

ψ

)j
, (3)

=
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
fG(x, ν + j, ψ), (4)

where

γj(δ) =

min{j,m}∑
k=max{j−m,0}

δjδj−k.

Using Proposition 1, it is straightforward to show that the constant of integration

can be expressed as

d =
2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
.

But since (2) is homogeneous of degree zero in δ, there is a scale indeterminacy that

we must solve by imposing a single normalising restriction on these parameters, such

as δ0 = 1, or preferably δ′δ = 1, which we can ensure by working with hyperspherical

coordinates.1

1In particular, ν0 = cos θ1; νi = (
∏i

k=1 sin θk) cos θi+1 for 0 < i ≤ m− 1; and νm =
∏m

k=1 sin θk,
where θk ∈ [0, π), for 1 < k ≤ m− 1, and θm ∈ [0, 2π).
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Proposition 1 allows us to interpret the GSNP distribution as a mixture of 2m + 1

Gamma distributions.2 We can exploit the mixture interpretation together with the

results in Appendix A.1 to write the moment generating function of a GSNP variable x

as

E [exp(nx)] =
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
(1− ψn)−(ν+j).

Similarly, its characteristic function can be expressed as

ψGSNP (iτ) =
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)
(1− iψn)−(ν+j),

where i is the usual imaginary unit. As a result, we can write the moments of x as

E(xn) =
ψn

d

2m∑
j=0

γj(δ)
Γ(ν + j + n)

Γ(ν)
.

Hence, it is straightforward to show that the condition

ψ = d

[
2m∑
j=0

γj(δ)
Γ(ν + j + 1)

Γ(ν)

]−1

(5)

ensures that E(x) = 1. Since we plan to use the GSNP distribution to model the residual

in MEM models, we assume in what follows that (5) holds to fix its scale.

By reordering the terms in (3) appropriately, we can also interpret the GSNP dis-

tribution as a finite order version of the Laguerre expansion of the Gamma distribution

discussed in appendix A. We can formally express this relationship as follows:

Proposition 2 Let x be a GSNPm(ν, ψ, δ) variable with density fGSNP (x, ν, ψ, δ) given

by (2). Then, this density can be expressed as a Laguerre expansion (A2) of order 2m

with coefficients

cn =
(−1)n

d

√
Γ(ν)n!

Γ(ν + n)

n∑
i=0

2m∑
j=0

(−1)i

i!

(
n+ ν − 1

n− i

)
Γ(ν + i+ j)ψi

Γ(ν)ψ̄
i γj(δ)

for n = 0, · · · , 2m.

Importantly, we systematically treat the GSNP distribution as a flexible parametric

distribution which remains non-negative for all possible values of x by construction.3

2This interpretation is consistent with Bowers (1966), who expands general density functions for
positive random variables using sums of Gamma densities. Interestingly, the mixing variable of the
equivalent mixture might have some negative weights, as in Steutel (1967) and Bartholomew (1969).
However, this causes no inconsistencies because by construction the GSNP density is positive for all
values of the parameters.

3The GSNP satisfies sufficient conditions for positivity. See Meddahi (2001) and León, Menćıa, and
Sentana (2009) for a discussion of necessary and sufficient conditions.
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3 Component MEM applied to the valuation of volatil-

ity futures

3.1 Real measure

Consider a non-traded volatility index whose value at time t is Vt > 0. We model

this variable using the Multiplicative Error Model (MEM) proposed by Engle (2002).

Specifically, we model the volatility index under the real measure P as

Vt = µt(θ)εt, µt(θ) = E(Vt|It−1), (6)

where It−1 denotes the information observed at t − 1, θ is a vector of parameters and

εt is a unit mean iid non-negative variable. Engle and Gallo (2006) show that we can

obtain a consistent estimator of θ using the Gamma distribution even though the true

distribution is not Gamma as long as µt(θ) is correctly specified. However, in our case we

are also interested in higher order moments because we want to study asset allocation

strategies. Therefore, we will assume that εt follows a GSNPm(ν, ψ, δ) as a natural

flexible generalisation of the Gamma distribution. As we mentioned before, we will use

the scale restriction (5) to ensure that εt has unit mean.

Figure 1a shows that historically the VIX has mean reverted, but experiencing highly

persistent swings. Figure 1b shows the more recent evolution of the VIX together with

that of the CBOE S&P500 3-month volatility index, or VXV for short. Both series dis-

play similar mean reverting features, which is natural given that they measure volatility

on the same variable at different horizons, but they do not coincide. For example, the

VIX reached a maximum value of 80.86 on November 20, 2008, which was around 10

points higher than the VXV. As highlighted by Schwert (2011), this indicates that during

the financial crisis the market did not expect the volatility of the S&P500 to remain at

such high levels forever.

In an earlier paper (Menćıa and Sentana, 2013), we modelled the VIX index in a

continuous time framework, finding that it is crucial to allow for mean reversion to a

time-varying long run mean, which in turn mean reverts more slowly (see also Amengual

and Xiu, 2013, Bardgett, Gourier, and Leippold, 2014, and Song and Xiu, 2016, for other

related continuous time models that explicitly look at the evolution of the VIX under the

real and risk neutral measures). In this paper, though, we prefer to use a discrete time

model because it allows us to uncouple the specification of the mean process from the

5



shape of the conditional distribution. Thus, we are able to easily modify the distribution

while keeping the autocorrelation structure of the model fixed.

In order to incorporate the aforementioned mean-reverting features in a discrete

time setting, we use the MEM analogue to the component GARCH model proposed by

Engle and Lee (1999). In particular, we model the conditional mean as the sum of two

components µt(θ) = ς t(θ) + st(θ). We parametrise the first component as

ς t(θ) = ω + ρς t−1(θ) + ϕ(Vt−1 − µt−1(θ)),

while

st(θ) = (α + β)st−1(θ) + α(Vt−1 − µt−1(θ)).

Hence, the second component mean reverts to zero, while the first one mean reverts

to ω/(1 − ρ). In turn, the coefficients ρ and (α + β) indicate the corresponding mean

reversion speeds, so that if ρ > α+β then ς t+n|t(θ) will be more persistent than st+n|t(θ).

The unconditional mean implied by this model is E[µt(θ)] = ω/(1−ρ). Using the results

in Engle and Lee (1999), we can show that the n-period ahead forecast can be easily

obtained in closed form as E(Vt+n|It) = ς t+n|t(θ) + st+n|t(θ), where

ς t+n|t(θ) = ω
1

1− ρ
+ ρn−1

[
ς t+1(θ)− ω

1− ρ

]
,

st+n|t(θ) = (α + β)n−1st+1(θ).

As a result, the convergence of E(Vt+n|It) to its long-run value ω/(1 − ρ) can be non-

monotonic.

3.2 Risk-neutral measure

We solve the problem of pricing derivatives on Vt by defining a stochastic discount

factor with an exponentially affine form

Mt−1,t ∝ exp(−αεt). (7)

Such a specification corresponds to the Esscher transform used in insurance (see Esscher,

1932). In option pricing applications, this approach was pioneered by Gerber and Shiu

(1994), and has also been followed by Buhlman, Delbaen, Embrechts, and Shyraev (1996,

1998), Gourieroux and Monfort (2006, 2007) and Bertholon, Monfort, and Pegoraro

(2003) among others. On this basis, we can easily characterise the risk-neutral measure

as follows:
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Proposition 3 Assume that the volatility index Vt follows the process given by (6) under

the real measure P, where the distribution of εt is a GSNPm(ν, ψ, δ) and (5) holds.

Then, if the stochastic discount factor is defined by (7), under the equivalent risk-neutral

measure Q we will have that Vt = µt(θ)εt, where εt ∼Q iid GSNPm(ν, ψQ, δQ), with

ψQ = ψ/(1 + αψ), δQ = (δQ0 , . . . , δ
Q
m)′ and δQi = δi(1 + αψ)i.

Hence, if we model µt(θ) as a Component-MEM process under P, the process under

Q will be another Component-MEM. However, the residual εQt will no longer have unit

mean because

EQ[εt] = κ =
ψ

d(1 + αψ)

2m∑
j=0

γj(δ
Q)

Γ(ν + j + 1)

Γ(ν)
(8)

will be generally different from 1. We can exploit this feature to extract from VIX futures

prices relevant economic information about the risk premia implicit in the CBOE market.

In order to price futures defined on Vt it is important to keep in mind that since Vt

is not a directly traded asset, there is no cost of carry relationship between the price of

the futures and Vt (see Grünbichler and Longstaff, 1996, for more details). Therefore,

absent any other market information, the price at time t of a futures contract maturing

at t+ n must be priced according to its risk-neutral expectation, i.e.

Ft,t+n = EQ(Vt+n|It). (9)

On this basis, we can obtain the following analytical formula for (9):

Proposition 4 The price at time t of a future written on the volatility index Vt+n under

the risk-neutral measure defined in Proposition 3 can be written as

Ft,t+n = κEQ[ς t+n(θ) + st+n(θ)|It],

where

EQ
[
ς t+n(θ)
st+n(θ)

∣∣∣∣ It] = (I2 −A1)−1
[
I2 −An−1

1

]
A0 + An−1

1

[
ς t+1(θ)
st+1(θ)

]
,

I2 is the identity matrix of order 2, A0 = ( ω 0 )′ and

A1 =

[
ρ+ ϕ(κ − 1) ϕ(κ − 1)
α(κ − 1) ακ + β

]
.

Thus, the futures price is an affine function of the two components of the MEM

process, whose coefficients depend on the time to maturity. Proposition 4 also shows

that the change of measure not only affects the mean of the residual, but also the term

structure of the forecasts of Vt+n for n > 1.
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4 Empirical application

4.1 Estimation

As we mentioned in the introduction, nowadays volatility is widely regarded as an

asset class on its own. But although the VIX is a not a directly tradeable asset, S&P

created VIX futures indices that are themselves tradeable. Their short term index mea-

sures the return from a daily rolling long position in the first and second VIX futures

contracts that replicates the evolution of a one-month constant-maturity VIX futures.

In turn, the mid term index takes long positions in the fourth, fifth, sixth and seventh

month VIX futures contracts (see Standard & Poor’s, 2012, and Appendix B for further

details). As can be seen from Figure 2, both indices experienced large gains from the

beginning of their history until the peak of the financial crisis in the Autumn of 2008.

From then on, though, they have lost most of their value due to the reversion of the VIX

to lower volatility levels. In the same figure we also display the contrarian strategies,

which would yield losses of value in the first half of the sample, and substantial gains

after volatility started to decrease. Given that a comparison of the original futures in-

dices with their tracking ETNs shows that the counterparty risk implicit in the latter is

negligible, in what follows we will ignore such tracking errors and directly model the two

S&P500 VIX futures indices.

We will also model the VIX directly, and infer the distribution of the futures index

returns conditional on the values of this volatility index. In this way, we can exploit the

much larger historical information available on the VIX4 (see Figure 1a). Specifically,

let yt denote the two dimensional vector which contains the VIX futures index returns

at time t. Using the results from Section 3.2, we assume the following pricing structure,

yt = EQ(yt|Vt, It−1) + εt, (10)

where EQ(yt|Vt, It−1) denotes the expected value of the index returns at time t given

Vt (the VIX) and the information available at time t − 1, and εt the corresponding

pricing errors, which simply reflect the fact that no model will be able to fit actual

market futures prices perfectly. In addition, given that Bates (2000) and Eraker (2004)

4Another advantage is that we could value other indices different from the ones used in the estimation.
In addition, by modeling the contract daily returns instead of the indices, we can avoid the distortions
that compounding errors from different days would create.
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convincingly argue that if an asset is mispriced at time t, then it is likely to be mispriced

at t+ 1, we assume that εt|Vt, It−1 ∼ N(ρfεt−1,Σf ).

We obtain the model prices by exploiting the fact that the two futures index returns

are portfolios of nf VIX futures contracts maturing at T1, T2, · · ·Tnf
. Hence, we can

express the price of the ith element in yt as

EQ(yit|Vt, It−1) =

nf∑
j=1

ζ i,Tj−tFt,Tj(θ),

where Ft,Tj(θ) are the model-based futures prices and the loadings ζ i,Tj−t deterministi-

cally depend on the time to maturity Tj− t (see Standard & Poor’s, 2012, and Appendix

B for further details).

Although there is no sequential cut in parameters, we can nevertheless decompose

the joint log-likelihood as

l(yt, Vt|It−1) = l(yt|Vt, It−1) + l(Vt|It−1), (11)

where l(yt|Vt, It−1) denotes the Gaussian log-likelihood of the two futures index returns

given the current value of the VIX and It−1, and l(Vt|It−1) the marginal likelihood of the

VIX given It−1. We model l(Vt|It−1) by assuming that Vt−∆ follows a Component-MEM

process with a GSNPm(ν, ψ, δ) conditional distribution given It−1. We introduce the

constant shift ∆ because the VIX cannot take values close to zero as they would imply

constant equity prices over one month for all the constituents of the S&P500.5 Thus,

we can obtain large gains in fit by assigning zero probability to those events in which

Vt < ∆. Importantly, the assumed Gaussianity of l(yt|Vt, It−1) means that its optimal

value depends exclusively on the second moment matrix of the differences between the

actual returns on the two indices and the returns predicted by the different models. Given

that financial market participants are mostly interested in the forecasting ability of a

model to predict the returns of portfolios of those indices, which depends on a quadratic

form in that matrix evaluated at the portfolio weights, the conditional component of the

log-likelihood function has a direct economic interpretation.

We use 5,847 daily VIX index observations from December 11, 1990, until February

28, 2014. In turn, we look at 2,060 observations on the S&P 500 VIX short and mid-

term futures indices starting December 20, 2005 until the same final date. We have

5The minimum historical end-of-day value of the VIX has been 9.31 on December 22, 1993.
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carried out all the calculations using Matlab in a desktop PC. Table 1 compares the

parameter estimates and asymptotic standard errors that we obtain with the Gamma

distribution and a symmetrically normalised GSNP(2) density in which we fix the scale

of δ using hyperspherical coordinates, so that the number of free shape parameters is

3. The parameters of the conditional mean are similar for both distributions. This is

reasonable given that the Gamma distribution, which only uses a single distributional

parameter, yields consistent estimates of the conditional mean under misspecification

(once again, see Engle and Gallo, 2006). However, likelihood ratio tests show that the

additional shape parameters of the GSNP densities provide hugely significant gains. In

addition, those gains are confirmed by the values of the Bayesian information criterion

(BIC) despite the penalty for the added complexity of the GSNP densities.

Table 1 also reports one-component versions of the MEM model in (6) in which the

conditional mean evolves according to the recursive equation

µt(θ) = ω + ρµt−1(θ) + ϕ(Vt−1 − µt−1(θ))

using both a Gamma and a GNSP distribution for the innovations. As expected, one

component models provide a poor fit, particularly for the futures contracts.

As we mentioned in the introduction, though, we are not the first to suggest distri-

butions for the standard innovations εt in the MEM model (6) other than the Gamma.

In particular, De Luca and Gallo (2004) consider a mixture of two exponentials for high

frequency intra-trade durations while Lanne (2006) proposed a two component Gamma

mixture multiplicative error model for realised volatility. Another important difference

between those models is that while the former fully disentagles mean dynamics and

distributional features, the latter allows for different conditional means for each of the

Gamma mixture components. We have estimated both these models with our data aug-

mented with an Esscher transform for the purposes of mapping the physical to the risk

neutral measure necessary for pricing the underlying futures contracts. The results that

we obtain suggest that Lanne (2006) model also provides a better fit than either the one-

or two-component Gamma models for the VIX series but its ability for pricing futures is

clearly below par. Given that this model has three parameters more than our preferred

choice, the differences in the log-likelihood function with the GSNP model in Table 1 are

exacerbated when looking at the BIC values (-6610.20 vs -6688.14). In contrast, De Luca

and Gallo (2004) model offers a very poor match (BIC=-12067.48), which reflects the
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fact that density of an exponential mixture is necessarily monotonically decreasing while

the distribution of εt in the VIX has a clear interior mode.

Figure 3 contains a qq-type plot that assesses the ability of the different models that

we have considered so far to fit the VIX series by looking at the cumulative distribution

function of the probability integral transforms (PITs) of the one-period ahead forecast

errors. The advantage of this plot is that the PITs should be uniform for the true

model regardless of its distribution. Although the differences are not huge, except for

the mixture of exponentials, the plot confirms that the Gamma distribution provides the

second worst fit. Overall, our results suggest that having one or two components does

not make much of a difference for the fit of the VIX, which seems to depend more on the

assumed distribution. In contrast, the fit of the futures prices seems to depend mostly

on the dynamics of the mean. In view of this evidence, in what follows we will focus

more on a component MEM with a GSNP density for the innovations.

Figure 4 displays the temporal evolution of the conditional mean of the VIX, µt(θ),

and its two components, ς t(θ) and st(θ) that this model generates. As expected from the

results in Table 1, the first component, which can be interpreted as a “moving mean”,

is substantially more persistent than the second component, whose path mostly reflects

oscillations around the “moving mean”. Those deviations, though, can be substantially

positive in crisis periods, such as in the fourth quarter of 2008 or coinciding with the

most severe episodes of the European sovereign debt crisis in 2010 and 2012.

Table 1 also shows that we obtain a negative and significant risk premium parameter

with the two-component GSNP model. To analyse its implications, we use the results

from Proposition 4 to plot in Figure 5 the coefficients of the affine prediction formulas

of the VIX at different horizons under both the real and risk-neutral measures. We can

observe that the loadings on the short term factor decrease very quickly, whereas the

long run component has a strong effect even at very long horizons. In other words, the

VIX mean-reverts more slowly towards a higher mean under Q than under P. Thus, we

can conclude that it incorporates investors’ risk-aversion by introducing more harmful

prospects for the evolution of the VIX. Our results are consistent with the parameter

estimates of the continuous time model in Menćıa and Sentana (2013), and therefore

confirm earlier findings by Andersen and Bondarenko (2007), among others, who show

that the VIX almost uniformly exceeds realised volatility because investors are on average
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willing to pay a sizeable premium to acquire a positive exposure to future equity-index

volatility.

4.2 Asset allocation

The surge in interest on volatility futures ETNs might seem surprising on the basis

of the evolution of the iPath S&P 500 VIX short term futures ETN (VXX), which,

introduced on January 29, 2009, was the first VIX related equity-like ETN. The VXX,

which is a 1-month constant-maturity VIX futures tracker, yielded an 8.6% profit during

its first month of existence, but from then on until January 2013 it experienced losses of

close to 100% due to the fall in volatility over this period. Its poor performance led some

commentators to question the potential benefits of VIX futures ETNs (see e.g. Dizard,

2012). However, a short position on a 1-month constant maturity VIX futures has been

available since December 2010 through the XIV ETN. Not surprisingly, by January 2013

this inverse ETN had yielded 95% accumulated profits, which confirms that volatility

derivatives might give rise to significant but risky returns. The real problem, though,

is how to choose the most appropriate investment strategy using only the information

available at each point in time. For that reason, in this section we study asset allocation

strategies for investors seeking exposure to the two VIX futures indices based on the

model we have estimated in the previous section. Although a more precise model in

the statistical sense does not always lead to better financial performance (see Engle

and Colacito (2006) and Sentana (2005) for a theoretical example and counterexample,

respectively), we believe the exercise can still shed light on the usefulness of our model

in a relevant real life application.

Consider an investor whose wealth at t − 1 is At−1, and denote by wt the 2 × 1

vector of portfolio weights chosen with information known at t− 1. Then, the investor’s

wealth at t will be At = At−1(1 + w′tyt), where w′tyt is the return of the portfolio. We

set
∑nf

j=1 |wjt| = 1 to fix the leverage of the portfolio, which implies that the investor

allocates all her initial wealth in the two assets. Importantly, we consider the sum of

the absolute value of the weights instead of the sum of the signed values because a short

position is in practice a long position on the inverse ETN. Geometrically, this means

that in R2 the weights lie on a rhombus centred at the origin with vertices (±1, 0) and

(0,±1). Subject to this scaling restriction, we consider an investor who chooses wt−1 to
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maximise the conditional Sharpe Ratio (SR):

SR =
E(w′tyt|It−1)√
V ar(w′tyt|It−1)

. (12)

Unfortunately, the conditional distribution of yt given It−1 alone that appears in

(12) is not directly available in our setting. In contrast, we know the distribution of

yt conditional on Vt and It−1. For that reason, we compute the moments of any given

function g(·) of w′tyt via the law of iterated expectations as follows

E[g(w′tyt)|It−1] =

∫ ∞
∆

E[g(w′tyt)|Vt, It−1]f(Vt|It−1)dVt, (13)

where we exploit that

w′tyt ∼ N [ρfw
′
tεt−1 + w′tE

Q(yt|Vt, It−1),w′tΣfwt]

conditional on Vt and It−1 to obtain the expectation in the integrand.6 Importantly, (13)

confirms that the SR depends on the entire conditional distribution of the VIX given its

past history even though it only involves the first two moments of yt.

Given that the parameters reported in Table 1 have been obtained using the whole

sample, we avoid any look-ahead bias by considering a feasible allocation procedure which

re-estimates the parameters of the Component MEM - GSNP(2) distribution at each

day in the sample using prior historical data only. Thus, we rebalance our investment

strategies each day using feasible parameter estimates. In order to have sufficient data

at the beginning of the sample, we only consider trading days from January 2, 2008,

until the end of the sample. Nevertheless, our sample includes the bulk of the financial

crisis.

Figure 6a shows the accumulated value of the SR maximising strategy (GSNP-SR for

short) assuming that the initial wealth on January 2, 2008, was $100. The gains from

this strategy are vastly superior to those obtained from just investing in either the direct

or inverse indices. As we mentioned before, the original short and mid indices performed

better until December 2008, mainly because the VIX consistently grew during 2008.

However, as the VIX started to reverse to lower levels in 2009, the short and mid-term

indices rapidly lost value. In contrast, our dynamic strategy automatically rebalances

the portfolio to deal with mean reversion.

6In practice, we compute the required integrals with Matlab’s adaptive Gauss-Kronrod numerical
quadrature procedure.
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To assess the extent to which the performance of the GSNP-SR strategy is driven

by the use of a more flexible distribution, we have repeated the exercise using a Gamma

distribution. The results show a slight deteroriation in performance, which confirms

that for the purposes of predicting futures prices, the conditional distribution of the VIX

plays a non-negligible but secondary role.

In Figure 6b we consider the strategies of two different ETNs that combine long and

short positions on the indices: XVIX and XVZ. The XVIX, launched by UBS, follows a

long-short static strategy that allocates −0.5 to the short term VIX futures index and

1 to the mid term index. Barclays XVZ follows a more sophisticated dynamic strategy

that rebalances the investment weights on the short and mid-term indices depending

on whether the S&P500 volatility term structure is in contango or backwardation (see

Standard & Poor’s, 2011; UBS, 2012, for further details).7 In addition, we consider the

CVIX and CVZ strategies, which are two artificial indices proposed by Alexander and

Korovilas (2013). The CVIX allocates 75% of capital to the XVIX and 25% of capital

to the XVZ. Alexander and Korovilas (2013) choose these weights arguing that 75%

(25%) is the proportion of days that the S&P500 volatility term structure is in contango

(backwardation). The CVZ index follows a dynamic strategy which holds the XVIX

when the S&P500 volatility term structure is in contango, and the XVZ when it is in

backwardation. Figure 6b shows that these long-short strategies perform better than the

pure long strategies, at least until April 2012. Moreover, the accumulated gains from the

CVZ index were slightly superior to those of the GSNP-SR strategy until the summer of

2010. However, at this point the VIX, which had been growing steadily in response to

the European sovereign crisis, started a downward trend that lasted until the spring of

2012, when it stabilised. Interestingly, this change of trend deteriorated the performance

of the CVZ index without affecting the GSNP-SR strategy. As a result, the accumulated

gains at the end of the sample are more than twice as big for the GSNP-SR strategy

than for the CVZ index.

It is also illustrative to look at the temporal evolution of the positions on the short

and long contracts implied by all those strategies. The scaling constraint
∑2

j=1 |wjt| = 1

allows us to do this by using a single series for each trading strategy which reflects the

ratio of the two weights. Figure 7 contains a rolling monthly window of the arctangent

7On a given day there is contango if the VIX (or one-month volatility) is below the VXV index.
Backwardation occurs when the VXV is higher than the VIX.
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of that ratio. In that graph 100% long positions on the short- and mid-term contracts

correspond to angles of 0 and 90◦, respectively, while the corresponding short positions

are represented by angles of 180◦ and -90◦. More generally, negative angles indicate

short positions in the mid term contract combined with long positions in the short term

contract while the opposite is true for values above 90◦. Although we never observed

them, short positions in both contracts would correspond to angles between -90◦ and

-180◦. As can be seen, our optimal strategy is somewhat similar to a short version of the

XVZ fund. In particular, it tended to be long in the long term contract and short in the

short-term one during the global financial crisis, but it has often taken the contrarian

position afterwards.

Figure 6 is useful to compare investments beginning on the first day of the sample.

However, it does not reliably rank investments initiated at other points in the sample

because accumulated gains are sensitive to the starting point. For that reason, we also

compare the realised daily returns, which do not suffer from this problem. Table 2 shows

descriptive statistics of the different strategies over the whole sample. The first column

shows that in terms of annualised ex-post SR, the GSNP-SR strategy yields the highest

values, followed by the two-component Gamma and the CVZ, which is another dynamic

strategy. In turn, the second column shows the low proportion of days with positive

returns that would result from directly investing in the futures indices. Finally, the last

columns of Table 2 show some quantiles of realised returns. The numbers indicate that

the main benefit offered by the GSNP-SR strategy is that it substantially reduces the left

tail. Specifically, we can see that the left-tail quantiles of the SR maximising strategy are

higher than in the competing models. Not surprisingly, though, this result is achieved

at the cost of giving away part of the benefits offered by some of the other strategies in

the right tail.

Figures 8 and 9 show the sample SR and the proportion of positive returns over one-

year rolling moving windows. Those figures confirm that the aggregate results observed

in Table 2 for the whole sample are relatively stable across different subperiods. For

example, Figure 8 shows that the GSNP-SR strategy is consistently among the strategies

with highest SR’s. The specific values, though, experience substantial swings over the

sample, which partly reflect the difficulties in precisely estimating Sharpe ratios with

such short sample spans. The rolling SR from the GSNP-SR strategy reached peak
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levels during the second halves of 2010 and 2013. In contrast, Figure 8a shows that

although going short on the original indices was a good strategy during the last year of

the sample, such a strategy performed very poorly in 2010 and 2011. Similarly, CVZ

yields high SR’s in 2010, but negative values afterwards (Figure 8b). Finally, Figure

9a once again shows that long positions on the indices yield too many negative returns,

with only a high proportion of days with positive returns at the very beginning of the

sample, when the VIX was still at its highest historical values. The long-short static and

dynamic strategies shown in Figure 9b perform better, but they still suffer very large

swings over the sample.

4.3 Additional comparisons

In this subsection, we consider three alternative modifications of our asset allocation

procedure. In the first one, we maintain the GSNP distributional assumption, but change

the investor’s preferences for an alternative profitability measure known as the Upside

Potential Ratio (UPR). For a given return threshold r, the GSNP-UPR approach involves

choosing the portfolio weights that maximise the conditional UPR, defined as

UPR(r) =
E[max(0,w′tyt − r)|It−1]√
E[min(0,w′tyt − r)2|It−1]

. (14)

Intuitively, the preferences implied by (14) penalise more heavily than the SR the un-

certainty coming from the left tail.

The second robustness check that we consider consists of maximising the conditional

SR, but based on a reduced form model that disregards the risk neutral valuation ap-

proach developed in Section 3.2. In particular, we directly estimate a bivariate Gaussian

ARMA(2,1)-GARCH(1,1) with constant conditional correlation on the short and mid

VIX futures return indices.

Lastly, we consider an alternative maximisation of the SR using another model not

based on the MEM structure. In particular, we model Vt − ∆ using a first order Au-

toregressive Gamma process (ARG). This discrete time process, which was originally

proposed by Gourieroux and Jasiak (2006), can be interpreted as the discrete time coun-

terpart to the popular square root process (see Cox, Ingersoll, and Ross, 1985). Specif-

ically, in this model the conditional distribution of the VIX is a non-central chi-square.

We show in Appendix C that we can easily price futures on the VIX in this setting using

another Esscher transform.
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Table 3 compares the performance of the realised returns of these three alternative

approaches with those of the GSNP-SR strategy. We can observe that the GSNP-UPR

strategy is able to yield a higher realised SR and UPR, and a very similar proportion

of days with positive returns. In contrast, the strategy based on the bivariate ARMA-

GARCH model yields much smaller values for the SR and UPR, although the proportion

of days with positive returns is slightly higher in this case. Finally, the ARG process,

estimated with the pricing error structure in (10), yields a slightly higher SR and UPR

than the ARMA-GARCH model, but they are still noticeably smaller than those obtained

with the GSNP framework.

Figure 10a shows that investing $100 on January 2, 2008, would have yielded similar

gains at the end of the sample under both the GSNP-SR and GSNP-UPR strategies.

However, the ARMA-GARCH bivariate model and the ARG process would have yielded

much smaller gains. In the ARMA-GARCH case, it is mainly due to its bad performance

in 2008. In the ARG case, the restrictive AR(1) time series structure does not seem to

adapt well to the decreasing futures prices over the last year of the sample. Figures 10b

and 10c show the evolution of the realised SR and UPR, respectively, computed over one-

year moving windows. We can observe that the GSNP-SR and GSNP-UPR strategies

are very similar in terms of the SR, while the GSNP-UPR strategy is slightly superior

in terms of the UPR. Once again, the strategy based on the bivariate ARMA-GARCH

model clearly underperforms in 2008, while the ARG framework performs poorly in 2013.

The ARMA-GARCH model works better over the following years, but it systematically

yields lower performance statistics than the strategies based on the GSNP distribution.

5 Conclusions

We develop a theoretical framework for covariance stationary but persistent positively-

valued processes combining a semi-nonparametric expansions of the Gamma distribution

with a component version of the Multiplicative Error Model. In addition, we define an

exponentially affine stochastic discount factor that allows us to price futures on the VIX

index in closed form. Our estimated parameters indicate a short run component that

mean-reverts to zero and a long run component, which mean-reverts more slowly towards

a long run mean. We also find that the GSNP expansion yields significant improvements

in fit relative to the original Gamma distribution, and it also performs better than other
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distributions suggested in the literature. Overall, our results suggest that having one or

two components does not make much of a difference for the fit of the VIX, which seems

to depend more on the assumed distribution. In contrast, the fit of the futures prices

seems to depend more on the dynamics of the mean.

We then apply our framework to a dynamic portfolio allocation for VIX Exchange

Traded Notes that maximises the one-day ahead conditional Sharpe Ratio, which de-

pends on the GSNP expansion through a convolution formula. Our results show that

the GSNP strategy yields realised returns with the highest ex-post SRs over the whole

sample. In effect, our strategy manages to increase the left tail quantiles of the return

distribution at the cost of having a somewhat thinner right tail than other strategies. We

also observe that we generally obtain a superior performance with our GSNP strategy

when we assess performance over rolling one-year sample sub-periods.

Finally, we investigate the extent to which our results are related to our choice of

performance measure and modelling approach. To do so, we consider the Upside Po-

tential Ratio (UPR) as an alternative performance measure, maintaining the GSNP

distributional assumption. In addition, we check the impact of the GSNP distribu-

tion by keeping the SR preferences but considering either a bivariate ARMA-GARCH

model that we directly estimate on the VIX futures index returns, or an Autoregressive

Gamma process. We find that the alternative preferences yield minor improvements in

performance, but the elimination of our flexible distributional assumption clearly leads

to underperformance relative to GSNP-based strategies.

Monte Carlo simulations looking at the reliability of the ML parameter estimators

and standard errors in finite samples would consitute a valuable addition. Another

fruitful avenue for future research would be to consider multivariate expansions, which

could be used to invest simultaneously in ETNs on different volatility indices. It would

also be interesting to explore time varying specifications of the shape parameters, as well

as long memory alternatives to the MEM.
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Menćıa, J. and E. Sentana (2013). Valuation of VIX derivatives. Journal of Financial

Economics 108, 367–391.

Rhoads, R. (2011). Trading VIX derivatives: trading and hedging strategies using VIX

futures, options and exchange traded notes. New York: John Wiley and Sons.

Schwert, G. W. (2011). Stock volatility during the recent financial crisis. European

Financial Management 17, 789–805.

Sentana, E. (2005). Least squares predictions and mean-variance analysis. Journal of

Financial Econometrics 3 (1), 56–78.

Song, Z. and D. Xiu (2016). A tail of two option markets: state-price densities and

volatility risk. Journal of Econometrics 190, 176–196.

Standard & Poor’s (2011). S&P 500 dynamic VIX futures methodology.

Standard & Poor’s (2012). S&P Dow Jones indices: S&P 500 VIX futures indices

methodology.

Steutel, F. W. (1967). Note on the infinite divisibility of exponential mixtures. The

Annals of Mathematical Statistics 38 (4), 1303–1305.

Stuart, A. and K. Ord (1977). Kendall’s Advanced Theory of Statistics (6th ed.), Vol-

ume 1. London: Griffin.

UBS (2012). UBS AG exchange traded access securities (E-TRACS) daily long-short

21



VIX ETN due November 30, 2040. Amendment No. 2 dated January 11, 2012 to

prospectus supplement dated November 30, 2010.

22



A Further distributional results

A.1 Properties of the Gamma distribution

Assume that x is a Gamma random variable whose pdf is given by (1). We sum-

marise here the main properties of this distribution, as described in Johnson, Kotz, and

Balakrishnan (1994). Its moment generating function is

E [exp(nx)] = (1− ψn)−ν ,

for n < ψ−1, while its characteristic function is ψG(iτ) = (1− iψn)−ν . Therefore, we can

express the moments of x as

E(xn) = ψn
Γ(ν + n)

Γ(ν)
. (A1)

A.2 Gamma-based Gram Charlier expansions

The Gamma distribution can be used in place of the normal distribution as the parent

distribution in a Gram Charlier expansion. In particular, if we consider a non-negative

random variable y, under certain assumptions its density function h(y) can be expressed

as the product of a Gamma density times an infinite series of polynomials,

h(y) = fG(y, ν, ψ̄)
∞∑
j=0

cjPj(y, ν, ψ̄), (A2)

where Pj(y, ν, ψ̄) denotes the polynomial of order j that forms an orthonormal basis

with respect to the Gamma distribution, so that E[Pj(y, ν, ψ̄)] = 0, V [Pj(y, ν, ψ̄)] = 1

and E[Pj(y, ν, ψ̄)Pk(y, ν, ψ̄)] = 0, for all j, k ≥ 0 and j 6= k (see Johnson, Kotz, and

Balakrishnan, 1994).

Following Bontemps and Meddahi (2012), we can express those polynomials as

P0(y, ν, ψ̄) = 1,

P1(y, ν, ψ̄) =
ψ̄
−1
y − ν√
ν

,

P2(y, ν, ψ̄) =
[(ψ̄
−1
y)2 − 2(ν + 1)ψ̄

−1
y + ν(ν + 1)]√

2ν(ν + 1)
,

and in general

Pn(y, ν, ψ̄) =
(ψ̄
−1
y − ν − 2n− 2)Pn−1(y, ν, ψ̄)−

√
(n− 1)(ν + n− 2)Pn−2(y, ν, ψ̄)√

n(ν + n− 1)
.

23



Given that

Pn(y, ν, ψ̄) = (−1)nLn(ψ̄
−1
y, ν − 1)

√
Γ(ν)n!

Γ(ν + n)
, (A3)

where Ln(·, ·) is the generalised Laguerre polynomial of order n, we will refer to (A2)

as the Laguerre expansion of the density of y. The orthonormal properties of these

polynomials imply that we can obtain the coefficients of the expansion as

cn =

∫ ∞
0

Pn(y, ν, ψ̄)h(y)dy. (A4)

A.3 Truncated Laguerre expansions

A truncated Laguerre expansion is another finite version of (A2) which treats the c′js

as free parameters. Specifically,

h(x) = fG(x, ν, ν−1)

[
1 +

k∑
j=2

cjPj(x, ν, ν
−1)

]
, (A5)

where we have imposed that c1 = 0 and ψ̄ = 1/ν so that this distribution has unit mean

too. Unfortunately, this approach does not ensure the non-negativity of the resulting

density function, a property that is satisfied by construction by the GSNP distribution.

In this sense, Amengual, Fiorentini, and Sentana (2013) have studied the parametric

restrictions that the cj coefficients must satisfy to ensure positivity in second and third-

order Laguerre expansions.

Since both the GSNP distribution and the truncated Laguerre expansion have unit

mean, one may ask which of them can generate a wider range of higher order moments.

We address this question by comparing the coefficients of variation, skewness and kurtosis

of the two distributions, which we will denote as τ , φ and λ, respectively. In particular,

we compare (A5) for k = 3 with a GSNP distribution of order m = 2 since both have

the same number of free parameters. Figures A1a to A1c show the regions generated

by both distributions on the τ − φ, τ − λ and φ − λ spaces. We have computed these

regions using numerical methods. Specifically, for the GSNP, we simulate values for δ

in the unit sphere for a dense grid of values for ν, and compute the envelope of the

coefficients on the τ − φ, τ − κ and φ− κ spaces. For the Laguerre expansion we obtain

the envelopes by combining a dense grid for ν with another dense grid for the frontier,

as parametrised by Amengual, Fiorentini, and Sentana (2013). We also use the results

in Appendix A.1 to derive the values generated by the Gamma distribution, which are
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τG =
√

1/ν, φG =
√

4/ν and κG = 3 + 6ν−1. Finally, we also include the lower

bounds that no properly-defined density can exceed derived in Appendix A.4. As can be

observed, both distributions provide similar flexibility for coefficients of variation smaller

than 0.5. For larger coefficients of variation, the GSNP turns out to be superior in terms

of feasible values of skewness and kurtosis. Interestingly, the flexibility of the Laguerre

distribution relative to the Gamma distribution decreases drastically for coefficients of

variation larger than around 1.8. In contrast, we do not observe this phenomenon in the

GSNP distribution. In terms of skewness and kurtosis, the Laguerre expansion remains

less flexible than the GSNP, but the differences are smaller.

Finally, another way of adding flexibility would be to shift the expanded distribution

by a constant amount ∆, as in our empirical application. This shift would affect τ , but

not φ or λ.

A.4 Feasible moments of distributions

Stuart and Ord (1977) explain that regardless of the shape of the distribution, the

skewness-kurtosis relationship

κ ≥ 1 + φ2 (A6)

must hold. In a similar spirit, we can apply the Cauchy-Schwarz inequality to show that

for a positive random variable x:

[E(x3/2x1/2)]2 ≤ E(x3)E(x),

so that µ′22 ≤ µ′1µ
′
3. If we introduce in this expression the relationships between the

central and non-central moments, µ′2 = µ2 + µ′21 and µ′3 = µ3 + 3µ′1µ2 + µ′31 , we can show

that

φ ≥ τ − τ−1. (A7)

Finally, if we combine (A7) with (A6), we can show that κ ≥ 1 + [max{τ − τ−1, 0}]2.

B S&P 500 VIX indices

The volatility indices developed by S&P are based on a time series that they define

as index excess return. Let ξt denote this index, which can be expressed as

ξt = ξt−1(1 + CDRt),
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where CDRt is the contract daily return given by

CDRt =
TDWOt

TDWIt−1

− 1,

where TDWOt denotes the total dollar weight obtained on t. For simplicity, we focus

on the short term index, which is determined as follows:

TDWOt = CRWm,t−1Fm,t + CRWn,t−1Fn,t,

where Fm,t and Fn,t are the Futures prices of the m and n contracts at t. For the sake

of concreteness, assume that m is the shortest maturity of the two. The contract roll

weights of the VIX contracts at t are defined as

CRWm,t = 100
dr

dt
,

CRWn,t = 100
dt− dr
dt

,

where dr is the number of business days remaining until the maturity of contract m,

including t but not the day on which m matures, dt is the number of business days

between the contract immediately prior to m (i.e. m − 1) and m. This second period

includes the day in which m− 1 matures, but not the day in which m matures.

Similarly, the total dollar weight invested on t− 1 is defined as

TDWIt−1 = CRWm,t−1Fm,t−1 + CRWn,t−1Fn,t−1.

Entirely analogous derivations apply to the mid-term index, the only difference being

that they involve four different futures contracts (see Standard & Poor’s, 2012, for more

details).

C Futures pricing based on the ARG process

Let Vt follow an Autoregressive Gamma process of order 1 under the real measure,

or ARG(1) for short. Then, it can be shown that the distribution of 2Vt/c conditional

on It−1 is a non-central chi-square with noncentrality parameter 2βVt−1 and degrees of

freedom 2δ. If we consider the exponentially affine stochastic discount factor

Mt−1,t = exp(−αVt),

then it can be easily shown that 2(1 + 2α)Vt/c will be, under the risk-neutral mea-

sure, a non-central chi-square with degrees of freedom 2δ and non-centrality parameter
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2βVt−1/(1 + 2α). In practice, this process can be reinterpreted as an ARG(1) process

with parameters δQ = δ,

cQ =
c

1 + 2α
, βQ =

β

1 + 2α
.

Hence, the futures price can be written as

Ft,t+n = EQ[Vt+n|It] = cQ,nδ + cQ,nβQ,nVt,

where

cQ,n =
1− cnQβ

n
Q

1− cQβQ
cQ, βQ,n =

cn−1
Q βnQ(1− cQβQ)

1− cnQβ
n
Q

.

D Proofs of propositions

D.1 Proposition 1

We can show through tedious but straightforward algebra that[
m∑
j=0

δj

(
x

ψ

)j]2

=
2m∑
j=0

γj(δ)

(
x

ψ

)j
.

Then, we can use (1) to show that(
x

ψ

)j
fG(x, ν, ψ) =

1

Γ(ν)ψν+j x
ν+j−1 exp(−x/ψ)

=
Γ(ν + j)

Γ(ν)
fG(x, ν + j, ψ).

D.2 Proposition 2

Introducing (4) in (A4), we can express the coefficients of the Laguerre expansion as

cn =
1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)

∫ ∞
0

Pn(y, ν, ψ̄)fG(y, ν + j, ψ)dy. (D8)

If we write Pn(y, ν, ψ̄) in terms of the n-order Laguerre polynomial, as in (A3), we obtain

cn = (−1)n

√
Γ(ν)n!

Γ(ν + n)

1

d

2m∑
j=0

γj(δ)
Γ(ν + j)

Γ(ν)

∫ ∞
0

Ln(ψ̄
−1
y, ν − 1)fG(y, ν + j, ψ)dy.

Then, if we use the following property

Ln(ψ̄
−1
y, ν − 1) =

n∑
i=0

(−1)i

i!

(
n+ ν − 1

n− i

)
(ψ̄
−1
y)i.
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from Abramowitz and Stegun (1965) (page 775), then we obtain∫ ∞
0

Ln(ψ̄
−1
y, ν−1)fG(y, ν+j, ψ)dy =

n∑
i=0

(−1)i

i!

(
n+ ν − 1

n− i

)
ψ̄
−i
∫ ∞

0

yifG(y, ν+j, ψ)dy,

(D9)

where ∫ ∞
0

yifG(y, ν + j, ψ)dy = ψi
Γ(ν + i+ j)

Γ(ν + j)
(D10)

from (A1). Introducing (D9) and (D10) in (D8), we obtain the final result.

D.3 Proposition 3

The risk-neutral density of εt will be proportional to

fGSNP (εt, ν, ψ, δ) exp(−αεt),

= fG(εt, ν, ψ) exp(−αεt)

[
m∑
j=0

δj

(
εt
ψ

)j]2

It can be easily shown that fG(εt, ν, ψ) exp(−αε) ∝ εν−1 exp
(
−ε/ψQ), where ψQ =

ψ/(1 + αψ). Similarly, we can write
m∑
j=0

δj

(
εt
ψ

)j
=

m∑
j=0

δj(1 + αψ)j
(
εt

ψQ

)j
.

Hence, we can always define δQj = δj(1 + αψ)j. This proves that the resulting density is

a GSNPm(ν, ψQ, δQ).

D.4 Proposition 4

If we use (8), we can show that

Ft,t+n = EQ[Vt+n|I(t)] = κEQ[ς t+n(θ) + st+n(θ)|It]

and

EQ[ς t+n(θ)|It+n−2] = ω + [ρ+ ϕ(κ − 1)]ς t+n−1(θ) + ϕ(κ − 1)st+n−1(θ).

Similarly, we can obtain

EQ[st+n(θ)|It+n−2] = α(κ − 1)ς t+n−1(θ) + [ακ + β]st+n−1(θ).

Hence, we have

EQ
[
ς t+n(θ)
st+n(θ)

∣∣∣∣ It+n−2

]
= A0 + A1

[
ς t+n−1(θ)
st+n−1(θ)

]
.

By applying the law of iterated expectations recursively to condition on It+n−3, It+n−4, · · · , It,

we can obtain the final result after some straightforward algebraic manipulations.
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Table 1

Maximum likelihood estimates of Component-MEM models

1c-Gamma 1c-GSNP(2) 2c-Gamma 2c-GSNP(2)
s.e. s.e. s.e. s.e.

α 0.662 0.010 0.666 0.010
β 0.286 0.011 0.282 0.011
ω 0.125 0.002 0.124 0.002 0.025 0.002 0.025 0.002
ρ 0.992 0.001 0.992 0.001 0.998 0.000 0.998 0.000
ϕ 0.706 0.004 0.711 0.004 0.221 0.009 0.224 0.009
∆ 5.064 0.136 5.089 0.173 5.179 0.134 5.386 0.160
ν 137.314 4.275 116.934 4.995 139.903 4.113 115.187 4.556
θ1 0.018 0.001 0.019 0.001
θ2 3.137 0.000 3.137 0.000
Risk premium 0.338 0.147 0.292 0.106 -0.387 0.159 -0.248 0.113
σshort 0.022 0.000 0.022 0.000 0.019 0.000 0.019 0.000
σmid 0.014 0.000 0.014 0.000 0.012 0.000 0.012 0.000
ρshort,mid 0.748 0.008 0.748 0.008 0.689 0.009 0.689 0.009

ρf 0.997 0.001 0.997 0.001 0.99 0.002 0.99 0.002

Likelihood 2615.329 2864.242 3183.954 3465.495
LR test 497.827 563.083

BIC -5057.185 -5520.316 -6159.732 -6688.137

Notes: The estimation uses VIX data from December 11, 1990, until February 28, 2014, as well as

data on the S&P 500 VIX short and mid-term futures indices from December 20, 2005 until the same

final date. “Gamma” denotes those MEM models whose conditional distribution given the information

known at t− 1 is Gamma, while in “GSNP(2)” the conditional distribution is a SNP expansion of order

2 of the Gamma distribution. 1c and 2c denote one and two component-MEM models, respectively.

Standard errors have been computed from the outer product of the analytical score. LR tests show the

likelihood ratio tests of the Gamma distribution vs. the GSNP model for the 1c and 2c versions. BIC

denotes the Bayesian Information Criterion.
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Table 3

Profitability measures of the realised returns of alternative dynamic asset allocation

strategies.

SR Ret>0(%) UPR

GSNP-SR 1.868 57.7 9.027
GSNP-UPR 1.917 57.2 9.582
ARMA-GARCH 0.781 58.5 7.288
ARG-SR 1.063 56.0 8.235

Notes: The sample used is 1-Jan-2008 to 27-Feb-2014. SR denotes the Sharpe Ratio, while UPR

denotes the Upside Potential Ratio with zero as the return threshold. Both the SR and UPR are

expressed in annualised terms. The column labelled “Ret> 0 (%) indicates the proportion of days with

positive returns. GSNP-SR (GSNP-UPR) denotes the returns obtained by maximising the conditional

SR (UPR), based on the parameters obtained from a Component MEM for the VIX with a GSNP(2)

expansion of the Gamma distribution. ARMA-GARCH denotes the returns obtained by maximising

the conditional SR, based on the parameters obtained from a bivariate ARMA(2,1)-GARCH(1,1) with

constant conditional correlation, estimated on the short and mid VIX future index returns. ARG-SR

denotes the returns obtained by maximising the conditional SR, based on the parameters obtained

from a first order Autoregressive Gamma process. The parameters are estimated each day using the

information available at that point.
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Figure 1: Historical evolution of the VIX index

(a) Dec 1990- Jan 2013
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(b) Comparison with VXV (Dec 2007- Jan 2013)
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Figure 2: Historical evolution of S&P 500 VIX futures indices

(a) Short term index
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(b) Mid-term index
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Note: The black lines show the evolution of the original S&P 500 VIX futures indices,

while the red lines show the evolution of indices with exactly the opposite returns from

the original ones.



Figure 3: Probability integral transforms of different VIX conditional distributions
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Note: Gam, GSNP and “Exp Mixture” denote a MEM for the VIX with a Gamma

distribution, a GSNP(2) expansion of the Gamma distribution, and a mixture of two

exponential distributions, respectively. 1c and 2c denote one and two component-MEM

models, respectively. “Gamma Mixture” denotes the mixture of two Gamma distributions

in which each component of the mixture follows a different two-component MEM.



Figure 4: Conditional mean decomposition under the two-component GSNP model
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Note: The estimated model is a two-component GSNP MEM, which has a short-run

component st and a long run component ςt. GSNP denotes a Component MEM for the

VIX with a GSNP(2) expansion of the Gamma distribution.



Figure 5: Coefficients of the affine prediction formulas of the VIX at different horizons
under the real and risk-neutral densities

(a) Intercept
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(b) Coefficients on the short and long-run components
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Note: The estimated model is a two-component GSNP MEM, which has a short-run

component st and a long run component ςt. The x-axis represents the time horizon in

days.



Figure 6: Evolution of investment strategies accumulated gains

(a) GSNP vs. buy and hold strategies
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(b) GSNP vs. long-short static and dynamic strategies
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Note: All the strategies start from an initial investment of $100. “Short” and “Mid”

denote the S&P 500 VIX short and mid futures indices. “-1×” denote short sales on those

indices. XVIX is a UBS ETN following a long-short static strategy on the VIX futures

indices, while XVZ is a Barclays ETN following a dynamic strategy. CVIX and CVZ are

investment strategies proposed by Alexander and Korovilas (2013). GSNP-SR and GAM-

SR denote the returns obtained by maximising the conditional Sharpe Ratio, based on the

parameters obtained from a two-component MEM for the VIX with a GSNP(2) expansion

of the Gamma distribution, and a Gamma distribution, respectively. The parameters are

estimated each day using the information available at each point.



Figure 7: Evolution of portfolio weights
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Note: 30-day moving averages of daily weights. “Short” and “Mid” denote the S&P 500

VIX short and mid futures indices. “-1×” denote short sales on those indices. XVIX is a

UBS ETN following a long-short static strategy on the VIX futures indices, while XVZ is

a Barclays ETN following a dynamic strategy. CVIX and CVZ are investment strategies

proposed by Alexander and Korovilas (2013). GSNP-SR and GAM-SR denote the returns

obtained by maximising the conditional Sharpe Ratio, based on the parameters obtained

from a two-component MEM for the VIX with a GSNP(2) expansion of the Gamma

distribution, and a Gamma distribution, respectively. The parameters are estimated each

day using the information available at each point.



Figure 8: Sharpe Ratio of realised returns over a one-year moving window

(a) GSNP vs. buy and hold strategies
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(b) GSNP vs. long-short static and dynamic strategies
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Note: “Short” and “Mid” denote the S&P 500 VIX short and mid futures indices. “-

1×” denote short sales on those indices. XVIX is a UBS ETN following a long-short

static strategy on the VIX futures indices, while XVZ is a Barclays ETN following a

dynamic strategy. CVIX and CVZ are investment strategies proposed by Alexander and

Korovilas (2013). GSNP-SR and GAM-SR denote the returns obtained by maximising

the conditional Sharpe Ratio, based on the parameters obtained from a two-component

MEM for the VIX with a GSNP(2) expansion of the Gamma distribution, and a Gamma

distribution, respectively. The parameters are estimated each day using the information

available at each point.



Figure 9: Proportion of days with positive realised returns over a one-year moving
window (%)

(a) GSNP vs. buy and hold strategies
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(b) GSNP vs. long-short static and dynamic strategies
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Note: “Short” and “Mid” denote the S&P 500 VIX short and mid futures indices. “-

1×” denote short sales on those indices. XVIX is a UBS ETN following a long-short

static strategy on the VIX futures indices, while XVZ is a Barclays ETN following a

dynamic strategy. CVIX and CVZ are investment strategies proposed by Alexander and

Korovilas (2013). GSNP-SR and GAM-SR denote the returns obtained by maximising

the conditional Sharpe Ratio, based on the parameters obtained from a two-component

MEM for the VIX with a GSNP(2) expansion of the Gamma distribution, and a Gamma

distribution, respectively. The parameters are estimated each day using the information

available at each point.



Figure 10: Profitability measures of the realised returns of alternative dynamic asset
allocation strategies.

(a) Accumulated gains since Jan-2008
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(b) Realised Sharpe Ratio over one-year moving windows
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(c) Realised Upside Potential Ratio over one-year moving windows
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Note: Both the Sharpe Ratio (SR) and Upside Potential Ratio (UPR) are expressed in

annualised terms. GSNP-SR (GSNP-UPR) denotes the returns obtained by maximising

the conditional SR (UPR), based on the parameters obtained from a Component MEM

for the VIX with a GSNP(2) expansion of the Gamma distribution. ARMA-GARCH

denotes the returns obtained by maximising the conditional SR, based on the parameters

obtained from a bivariate ARMA(2,1)-GARCH(1,1) with constant conditional correlation,

estimated on the short and mid VIX future index returns. ARG-SR denotes the returns

obtained by maximising the conditional SR, based on the parameters obtained from a first

order Autoregressive Gamma process. The parameters are estimated each day using the

information available at each point.



Figure A1: Regions of the coefficients of variation, skewness and kurtosis credit institutions

(a) Variation vs. Skewness
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(b) Variation vs. Kurtosis
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(c) Skewness vs. Kurtosis
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Notes: τ, φ and κ denote the coefficients of variation, skewness and kurtosis, respectively. The lines

labelled “Frontier” denote the limits that no density can surpass. “Laguerre” denotes a truncated

third order Laguerre expansion of the Gamma distribution, while “GSNP2” denotes a second order

SNP expansion of the Gamma distribution.


