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ABSTRACT

Financial indices are constructed to capture the strong common variation
in a large number of financial time series. Often, these measures are also
of interest themselves since they can be related to important underlying
economic concepts. We employ muitivariate statistical theory to define
indices that exploit the comovement within the data. Specifically, we
advocate the use of the GLS representing portfolio obtained from the best
{in the maximum likelihcod sense) one factor exact approximation to the
covariance matrix of the series. We show that an index constructed in this
way is robust to distribution assumptions and the true underlying
structure of the data. We apply our techniques to construct a sensible new

summary measure of exchange rate comovements.

1. {ntroduction

Casual observation suggests that many financial series move closely
together over time, at least in the short run. Bilatera! exchange rates
against one specified currency, interest rates on bonds with different
maturities, and share prices for different companies trading on the same
stock market constitute cbvious examples. In many cases of interest the
number of series invelved is typically rather large, and summary measures
are usually provided by means of index variables in an attempt to capture
their common variation (e.g. stock market indices, bond indices or

effective exchange rates).

Often, these measures are alsc of interest themselves since they can
be related to important underlying economic concepts. For instance, value
weighted stoeck market indices are usually employed to represent “the
market" in empirical work related to the Capital Asset Pricing Model
(CAPM). Similarly, trade weighted effective exchange rates are usually
analysed in relation to the effect of the currency movements on the
country’s balance of payments. Nevertheless, it has long been recognised
that these indices are not without disadvantages. First, and from a merely
descriptive point of view, they tend to be rather sensitive to the
weightings of their components, and do not always adequately reflect the
perceived comovements in the series. For this reason, alternative index
measures are also computed, e.g. equally weighted stock price indices.
Second, and from an economic peint of view, they are only approximations
to the theorsticzl concepts that they are supposed to represent, and in
some cases not necessarily very good omes. For instance, the weights used
to compute effective exchange rates are estimates derived from a
macreoecenometric model, which typicaily concentrate on the current account
and ignore the very important effects of International capital movements.
In the case of the stock market, the Reoll {1977) critique that the set of
assets available to investors includes many others besides stocks also
applies. Thirdly, if the dynamic structure characterising the prices of
many financial assets can be represented by a full-rank system of
integrated series, as the empirical evidence seems to suggest, alternative

indices, with however similar weights, will not be cointegrated, and hence




would diverge in the long run.

Given this background, it is worth thinking carefully about what the
best summary measure of the movements in the different series is, in some
well defined sense. Our contribution in this paper is to employ standard
multivariate statistical theory, and in particular principal components
and factor analysis, in order to answer this question on the basis of the
contemporaneous unconditional covariance matrix of the series. The
raticnale ¢omes from the fact that even though such a matrix contains
little information about serial correlation or higher order dynamics, it
has much to say about <cross-sectional correlation. Besides, In the
empirically not irrelevant case In which changes in the series are a
constant  plus  multivariate white noise, the contemporansous covariance
matrix contains all the relevant information about unconditional second

moments,

Specifically, we advocate the use of the first Generalised Least
Squares (GLS)} based factor representing portfolio obtained from the best
{in the Maximum likelihood sense) one factor exact approximation to the
variance-covariance matrix of the series. We show that this index is
similar in spirit to the first principal component of the data, but argue
that it is more adequate for capturing the common variation in the series
since a factor model always explains variances perfectly, and hence can
concentrate on covariances. Importantly, our results do not impose any
specific assumptions on moments or distributions other than covariance
statioparity. For instance, we do not assume that the data is generated as
a realization of & i.i.d. multivariate normal variate with constant mean
and an exact one factor representation for its covariance matrix. This is
important since nowadays most researches accept that financial data is
somewhat skewed, mildly serially correlated, substantially leptokurtic,
and with strong nonlinear dependence as measured &g by the

autocorrelations for the squares (see e.g. Boothe and Glassman (1987)).

The paper is divided as follows. In section 2 we discuss principal
components based methods, while in section 3 we look at the statistical

underpinnings of owr propesed factor analytic method. In section 4 we

carry out empirical applications to nominal bilateral exchange rates
against the US dollar and the British pound. Finally, section 3 concludes.

Preofs are gathered in the appendix.

2. Principal Component Methods for Measuring Co-movements in Financial
Time Series

iet’s consider a vector of M random variables, vy, (t=1,2,...} with M

t
potentially large, whose first differences, Aytxxt, follow a covariance
stationary multivariate stochastic process with mean &, full-rank
covariance matrix I and spectral density matrix flw). For simplicity, we
assume that yo is fixed and equal to 0. An empirically not irrelevant
exampie of such a process is a muitivariate random walk with drift, which
is obtained when (x -} is multivariate white noise.

Gur objective is to find a linear combination of x, such that it
explains most of its (co-)Jmovements. In the time series literature thers

is a standard solution to this dimension reduction problem based on the

spectral representation of Xy

X, = J’ T g%
-
where

EldX{w)dX{u}] = flw)

If our objective function is to approximate E[(x —cx)’(xt—cx)]=tr(§3] as

t
closely as possible by means of V(vt), where Vi is some linear combination

of x_, then we should choose
|8

B = j &1 g (wlaX(w)

1
e 4

1

where g (@) is the first eigenvector of flw) {(see e.g. Priestley (1981)}

1
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In the time domain, we can construct v, as Y ¥ p x where
r=] s=-00




. N s
Then we can obtain a cumulative index z, o represent y, as:

tS
'Z:ZVS

s=1

: s . . N

But since v, s generally a linear combination of present, past and
future values of x, {see footnote 1), it cannot be used on an on-line
basis to describe the comovements of the series as they happen. For

financial market participants, this is a major disadvantage.

The cointegration  Iiterature  suggests an alternative  related
procedure,. based solely on the spectral density matrix of X, at frequency
zero, f(0). The rationale is that if v, is cointegrated with M-1

cointegrating vectors, then the only common trend will be given by:

i

cr . _ .
z, = ql(O)yt = sf_jlql(O)xS

There are two potential problems with this measure. First, it is not
clear why the zero frequency should always be the right one to concentrate

, . . . cT
on in order to obtain an index, since z

t
ignores by construction all the short run movements. Seccnd, the empirical

is usually extremely smooth and

evidence suggests that for financial variables (0} may well have full
rank , so that the series do not seem to be cointegrated despite the fact
that they move very closely together in the "short run"z. For example,
Diebold, Gardeazabal and Yilmaz (1992) find that this is the case for

exchange rates.

Incidentally, note that the lack of cointegration makes our task even
more complicated as it implies that any two linear combinations of the

yt’s, however similar, are not going to be cointegrated, and wouid diverge

p__ = 2n J T q ()& d,
rs - ir

This possibility is behind the concept of common features recently

introduced by Engle and Korizky (1993).

in the long run. However, it may well be the case that the correlation
between changes in the two indices is very high, so they could both

provide very good measures of the changes in the series.

As a third alternative, we propose here cumulative indices related to
the first principal component of X, appropriately standardised so that
the weights add up to one. The rationale comes from the fact that even
though I contains little information about serial correlation, it has much
to say about cross-sectional correlation. Besides, in the empirically not
irrelevant case in which (xt—cx} is multivariate white noise, F{A)=C for

A0, and f(0)=E, and all three measures coincide.

If we write the spectral decomposition of Z as:

n0 a;

Z o= QMO = (ql QZ)[ H
L0 Mi L Q2
with M diagonal and Q orthonormal, and call vz=(q;£]‘1q;xs, where £ is a

vector of M ones, then the principal component based index will be given

t
P P3
b = .
vz = Lvg
s=1

There are two well known complementary interpretations of the first
principal component. First, qixt maximises V(w’xt) subject to w w=i.
Hence, zi is the index variable that explains most of the variances and
covariances in the changes of the series.

i S : 2 s .
An alternative interpretation of v, can be obtained if we project x_
L

on (a constant and) h’xt, where A is a Mx! vector. From least squares

We could aiso work with the first re-scaled principal component of Y,
directly, but the problem is that V(yt) is O{t) unless f{0)=0. Hence, to
aveid unnecessary complications when the sample size goes to infinity, we
prefer to define our indices as cumulative ones. Note that if {xt~<x) iz
white noise, V(yt}=t§:, and it makes no difference whether we work with v,

or x_.
1




regression theory we can decompose X, into:

x xt(?t} + et(?t]

t

I

where:
;(':(M = tx+b{A){A’xt—A’a}
b(a) = TA(EA)
v[f:tm)] = 2,0 = 2 NE
Ve, 0l = 2,00 = Z-EA(xZA) AE
cov[xt(a),et(h}} = Q0

In particular, b{q1)=q1, Zl(q1}=”1q1q.',l and 22(q1]=02M2Qé. Since
Zl[ql) is the rank 1 symmetric matrix that best approximates T in the
Frobenius norm® (see Magnus and Neudecker (1988)), what the first
principal component does is to find the linear combination of x, that
minimises the (norm of the) residual variance 22(7«], so that if we replace
X, by its fitted values from the above regression, the covariance matrix

of the fitted values is closest to .

The first principal component, however, may have some drawbacks as a
measure of the comovements between the variables. This is especially true
if we are more interested in explaining covariances than variances. As an
extreme example consider the case in which the changes in M-1 of the
variables are highly correlated with each other but the M-th one is
uncorrelated with the rest. As T ETOWS, the principal component, VZ’
converges to e since most of the variation in the data will be given by
this variable. This problem is well known, and to alleviate it many
researches suggest the use of the principal components obtained from the
spectral decomposition of the correlation matrix R=dg_1(2)2dg'1{2]. The
reason is that principal components are scale-dependent, and hence they
differ as one changes the scaling of the variables. Notice, though, that
the (reweighted) principal component, v:P, still will have a non-zero
weight on the M-th variable, but not a disproportionate one. In fact, if

the number of series M-, then the weight on the M-th wvariable will

M M
4 ; B e A e o - _ 2
That is, El(qll-iu1 ql{pt1 ql) minimises tr(£-88')= ¥ T (a‘ij 616j} .

i=lj=1

converge to zero.

3. Factor Analytic Methods for Measuring Co-movements in Financial Time

Series

Nevertheless, there is an alternative index variable that in such a
situation will indeed impose a weight of zero on the M-th variable for any
finite M>2. It is given by the cumulative index obtained from the first
Generalised Least Squares based factor representing portfolio
(appropriately scaled so that the weights add up to one) obtained from the
best (in the Maximum likelihood sense) one factor exact approximation to

Z. We shall define this measure in section 3.3.

Its rationale, though, depends on several properties of pseudo
maximum likelihood estimates of factor models, which we previously discuss
in section 3.2. Importantly, such properties do not depend on any specific
distributional assumptions on X, In particular, they do not require that
X, is i.i.d. Gaussian or that £ has an exact one factor representation.
This feature of our proposed index is particularly important in our case
since most empirical studies using financial data find that such data is
far from being normal or i.i.d. For instance, it is often found to be
somewhat skewed, mildly serially correlated, substantially leptokurtic,
and with strong dependence in its squares or absolute values (see e.g.

Boothe and Glassman (1987)) .

3.1. Numerical Properties of Pseudo-Maximum Likelihood Estimators of Exact

Zero Factor Models

Although our interest lies in models with one factor, it is
convenient to consider first the case of an exact zero factor model in
order to illustrate the different issues involved. Suppose that we have a
sample of T observations on the Mxl random vector X and would like to

fit by pseudo-maximum likelihood the model x, ~ i.i.d. N(a,I'), where a is

t
a Mx1 vector and I' a diagonal MxM matrix with typical element 3'_]" For such

a model to make sense, I' has to be positive semi-definite (i.e. yjzo Yj).




Hence, the admissible parameter space is RMxERM, where R° is the
+ +
. i
non-negative orthant of R, For those parameter values for which I' is not

singular, our objective function will be proporticnal to:

T
)
LaTix,.x) = -M/2 logén - 1/2 log|T| -1/2T ¥ (x ~a)T ix -a) =
1=1
= -M/2 log2r - /2 log|T| -1/2 tr{F_IIST+(iTva)(iT—a}’I} = Llarix 5}

T T

where iT=1/T ¥ x, is the sample mean and S'r =T T (xtwi_r)(xt—}_{r)’ the
t=1 t=1

unrestricted pseudo ML estimate of I, the covariance matrix of X, -

Given that §<T wouid be the pseudo-MI. estimate of &, we can

concenirate the log-likelihood function teo:
LTS} = -M/2 log2m - 1/2 log|T| ~ /2 wir™'s |

In view of the diagonality of T, the concentrated log-likelihood

function can also be written as:

M
LYriS) = ¥ [-172 log2m - 172 logly .| ~ /2 s.. /7.]
. ;§1 g giafji 51775
z 2
where SjjT=1/T ¥ (xjt-{c.T). From the first order conditions, it is clear
tmy

that 7, =s,, =0, as expected.
Jr o4t

For completeness, we will analyse under what circumstances the
pseudo-ML estimator involves a singular I'. Although LC(}"{ST) breaks down
for [ singular, its value does not automaticaily become +w. Actually, it
is straightforward to prove that - 1/2 log[zrj] - 172 S‘jj'[/yj goes to -w
when 7. tends t¢ O for s, #0. Hence, y_=0 is only plausible if s.. =0.

J jir T ; jr
Therefore, S_r singular 1s a necessary conditien for 1"1_ singular, but it is
far from sufficient. In fact, only those singularities in the datz for
which dg(S_{) does not have fuil rank will produce a singular f‘r. In
particular, I“T will still have full rank when the number of series exceeds

the number of observations.

Thus, the pseudo-ML estimators of the exact zero factor model will be
§T=>"(T and iz_r=dg[ST), regardless of x, being Gaussian, independent or
identicaily distributed, regardiess of whether I is diagonal, and

regardless of ST being singular.

Using the analogy principle {see Manski (1988)), we can understand &_
3

and fr as estimators of population characteristics a and [ defined as:

arg max E[-M/2 log2n-1/2 log|T{-1/2 (xtva)'l"_l[xtwa)] = arg max L(a,Tla,X)
a, T a, I

where the expectation is taken with respect to the true disiribution of
X, It is then clear that a=g and [=dg(Z}, and this will be valid even if

dg(Z} is singular.

Under very mild regularity conditions on the serial dependence and
heterogeneity of x, {e.g. under ergodicity; see White (1984)), it is

possible to prove that piim 51":5:“ and plim fT=f=dg[E), as expected.

3.2 Numerical Properties of Pseudo-Maximum Likelihood Estimators of Exact

One Factor Models

Suppose now that we want to {it by pseudo-maximum likelihood the
model xt ~ ij.d, N{a,bb’+), where a and b are Mxl vectors and T a
diagonal MxM matrix with typical element ?j' Since bb'+I" is positive
semi~definite if and only if T is also positive semi-definite, the
admissible parameter space is now LR’ZMxR?f. Note that if rank(I)=M, then
rank(bb’+I)=M. Similarly, if rank(I'}<M-1, rank{tb’+I=M-1. However, if
there is only one Heywood case, i.e. -;J.D=0 for some Je, rank{bb’+[)=M

unless bjo is alsc zero.

For those parameter values that Imply rank(bb’+I')=M, the pseudo

log-likelthood function of the sample is properticnal to:

T
LT{a,b,Fixi,.,xT}ﬁ ~M/2 log2n-1/2 log|bb’+[|-1/2T F (xt~a}’(bb’+r)—‘(xt~a] =
t=1




=-M/2 log2n-1/2 log|bb’+'|-1/2 tr{(bb'+r)“[sT+(>'cT—a)(;'cT—a)’1}=L(a,b,rl:‘cT,sT)

Once more, ir would be the pseudo-ML estimate of a, and we can

concentrate the log-likelihood function to:
L6,TIS) = -M/2 log2n - 1/2 log[bb’+T| - 12 trl(66'+r)7's

In the appendix we derive the first order Kuhn-Tucker conditions for
the maximization of chb,l"IST) subject to I'=0 (see Al.1-4). The following
lemma characterises those solutions to the first order conditions which

3 : : 5
are in the interior of the parameter space

Lemma 1: If f‘T has full rank, the first order conditions (AlL.1), (AL3)

and an equality version of (AlL.2) are satisfied by the following

estimators:
& =172~ 172
bT_ T thvlT 1) (1a)
1"1_ = dg(ST—bTbT) (1b)
where
~ 511‘ ¢ 511‘
BRE = G :5{ ” } (10)
T T iT 2T 0 ﬁ I‘s,
2T 2T
is the spectral decomposition of f_;UZSTF;VZ

Lemma 1, which gives us an explicit solution for f"r in terms of ET
and vice versa, provides the basis for computational procedures that
obtain pseudo ML estimates of b and ' (see Magnus and Neudecker (1988) for
two such procedures). It assumes, though, that the solution is in the
interior of the admissible parameter space. However, idiosyncratic

variances often become zero during estimation. The following lemma states

° See also chapter 17, sections 12 and 13 of Magnus and Neudecker (1988)
for equivalent results in optimization problems that do not take into

account the inequality restrictions.

10

under what circumstances a solution with one Heywood case, i.e.

rank('f'T)=M—1, will satisfy the first order Kuhn-Tucker conditions.

Lemma 2: If we reorder the variables so that the Heywood case corresponds

to the last variable, and partition ST accordingly as:

M-1
Sn'r Simr | ¢
> s
St Suvr s
the following estimators:
b s s M
B-i-= 1T _ 1M1l'/nznm (23)
b S (1
MT MMT
= -1
T 0 dg(S, _-s "~ s s' ) 0 (M-1
Foo 1T _ 11T “MMT IMT IMT (2b)
4 o 0 v 0o | a

will satisfy the first order conditions (Al.1-4) provided that

S;MTrlilrlT_[SllT_SMl\ilTslMT ;MT I;SIMTEO (2e)

If (2¢) is not satisfied, lemma 2 only proves that (2a-b) constitutes

a local maximum of a restricted one factor model in which one
idiosyncratic variance is fixed to =zero. But if it is satisfied,
unrestricting that idiosyncratic variance in the admissible positive
direction will decrease the log-likelihood function. Hence, (2a-b) will

also be a local maximum of the inequality restricted optimization problem.

But even if (2c¢) does not hold, lemma 2 may still explain why Heywood
cases arise during estimation. In particular, since (2a-b) satisfy the
condition dg(BTE;+f‘T)=dg(ST), the =zig-zag routine proposed in Magnus and
Neudecker (1988) based on alternating between (la) and (lb) will get stuck
at these parameter values. Similarly, the EM algorithm of Rubin and Thayer
(1982) will also get stuck at the same values, because the corresponding
factor estimate is s;{;;Z(xMt-;:Mt) with an estimated mean square error of

zero, and the OLS estimates in the regression of X, on a constant and this

11




factor estimate are the sample mean and (2a) respectively, with residual

variances given by (2b).

From a practical point of view, lemma 2 implies that on top of
interior solutions, there are M potential boundary solutions that may be
local maxima. Hence, condition {2¢) has to checked M times. For those
variables that satisfy it, the next step is to evaluate the likelihood

function to see whether they constitute the global maximum.

It is possible to come up with examples for which (2c} is not

satisfied, and others for which it is. As an extreme case, if M=2,
-1 AN
-5 " §' 8§
( 1T TMMT IMTIMT

with equality. Besides, it is not difficult to prove that (Z2a-b) will also

) is =2 scalar equal to l:n" and {2c) will always hold

be a global maximum. The intuition is that an unrestricted exact one
factoer model is underidentified for M=2, but a Heywood case makes it

exactly identified.

Note that lemmas i and 2 alsc characterise local extrema when S‘r is
singular. Such a singularity may occur for two reasons: either rank(Z)<M
{see Rao (1973)} or rank(Z)=M but the number of series, M, is greater than
the number of observations, T, in which case rank(ST}=T. This second
situation may arise Iin applications to stock prices, a:s the number of
individual shares traded in major stock markets can reach several
thousands. Nevertheless, in some very specizl instances when rank(ST}<M,
the global pseudo-MLE estimator implies a parameter configuration with

(bb’+I'} singuiar.

The assumed covariance matrix (bb’+I) will not have full rank if
either rank(I'}<M-1, so that there is more than one Heywood case, or if
rank({l')=M-1 but the corresponding b is also zero. A limiting argument
simiiar to the one employed for the zero factor model shows that the
second case constitutes a global maximum of the likelihood funection if and
only if dg(ST} has less than full rank. In the empirically relevant case
in which all variables have positive variences, the foliowing lemma
characterises when a solution with more than one Heywood case will be a

global maximum of the pseudo log-likelihood function.

12

Lemma 3: Suppose that k=Z variables are all proportional to each other. If
we recorder the variables so that the proporticnal ones are last, and

partition ST accordingly as:

s (M-k
1T T12T T IMT
’ (k-1
12T T22T 2MT
’ ’ E (L
IMT T 2MT  TMMT!
the following estimators:
e - 172
| \ s M-k
| 1Ty IMT MMT ¢
o~ o -1/2}
b_=1ib = |s_ S jo(k-l
T 2T ZMT MMT
~ 1/2 I
b 5 (1
MT MMT J
- - -1 . ~
r o0 dg(S, _-s " s s’ 1 0 O] Mk
1T 1T TMMT IMT IMT
I =10 060 = 0’ 0 0 k-1
o° 00 ! 0’ 00

yield an unbounded pseudo-log likelihood function.

Lemma 3 shows that a solution with more than one Heywood case will be
cobtained when several variables are proportional to each other. In this
case, the log-iikelihood function is unbounded. Again, ST singular is =z
necessary condition for (ET€;+f‘T) singular, but it is far from sufficient.
in fact, as it happened for the =zero factor model, only those
singularities in the data that the assumed covariance matrix can exactly

replicate will be pseude-ML solutions.

Although lemma 3 looks mere like an oddity, it could be potentialiy
relevant for exchange rate data. If a subset of currencies in our sample
maintain a totally unadjustable system of fixed parities amongst
themselves, their movements will be exactly proportional to each other,
and any of them will be chosen as the factor. Note, though, that lemma 3
is only valid in the lmit, and does not apply to target zone contextis

such as the European Exchange Rate Mechanism.

13




Using the analogy principle again, we can understand ér’ ET and I:T as

estimators of population characteristics a, b and [° defined as:

arg max E[ -M/2 log2m - 1/2 log|bb'+'| - 1/2 {xt—a}’(bb’ﬂ‘}"i{xt-a) I =
a,b, I’
= arg max L{a,b,I"je«,%)
a,b, Tl

It is then clear that 5=<x, and also that lemmas ! to 3 apply to the
population characteristics © and T if we replace ST by Z. Furthermore,
under mild regularity conditions, 4t is alsc possible to prove that they

are the plims of a_, & and [ .
T T T

Finally, note that if we scale the variables X, by premultiplying
with a diagenal non-singular matrix D, the pseudo maximum likelihood
estimates of an exact one factor model based on the scaled variables Ij)x_L
are given by DaT, }Z)bT and DI‘TD, and the same will be true of the
population characteristics. This is the closely related to the invariance

property of ML estimates
3.3 Generalised Least Squares Factor Representing Portfolios

if T has fun rank, the population first Generalised Least Squares

factor representing portfolio is defined as

On the other hand, if rank(T)=M-1, v(; will ceoincide with the variable
whase idiosyncratic variance is zero, Finally, if rank(f")<M-l, the factor
representing portfolio can be obtained as any linear combination of the
variables that are proportional to each other with weights that add up to

cne. In what follows, we make the assumption that T is regular.
The rationaie for using the first factor representing portfolic even

though & one factor model is possibly misspecified stems from the

following propesitions that relate it to principal components theory:

14

PR '%’F‘lxt . vf: be the GLS first factor

representing portfolio. Then v‘é is proportional t¢ the ({theoretical} first
~-1/2

»
principal component of the scaled variables xtzl" X,
Again, there is an =alternative way of looking at this resuit, which

is given in the following proposition:

Proposition 2: The covariance matrix of the possibly misspecified one

- Y - AR V) s . .
factor model T b b+ =[v1—i)p1pl+1 best approximates Z=

ER VRSV . . . .
Friegprise in the Frobenius norm among all symmetric matrices of the form

337 +1.

M
Coroilary 1I: Z;=(v]—11p1pi minimises ¥ (Gijwclij}z among all symmetric

iFj
matrices with rank 1.

Corollary 2: If one component of X, say the M-th one, is uncorrelated

with all the others, then V: has a zero weight on it.

The difference between the first principal component based on the
standardized variables and the first factor representing portfolios is
therefore a subtle one. Instead of scaling the wvariables by their standard
deviations, what the pseudo-maximum likelihood procedure is doing is to
chose the scaling so that the unexplained variance is the same across
assets. The advantage of this scaling solution is that since we fit the
variances perfectly well all the time, we c¢an concentrate on the
covariances. This becomes particularly obvious if some variables have zero
correlations with all the others. Cerollary 2 shows that they will have no

weight in our index measure.

Another look at these indices can be obtained if we follow the
inverse route, and relate principal components to GLS portfolios.
Propositions 3 and 4 make it clear, but first we need another preliminary

result:

Lemma 4: If rank(£)>], the pseudo maximum likelihood parameter estimates




of an exact one factor model with scalar idiosyneratic variance xt~i.i.d.
-1 oz e

N(a,bb'+51) satisfy £T:;:T and 6T=§rl/2ql{§' TR
Proposition 3: The (theoretical) first principal component based on the
covariance matrix of %, is proportional to the first GLS based factor
representing portfotio fi=(13’13)_£3’xt computed on the basis of [pseudo)
maximum likeithoed parameters estimates obtained by fitting the restricted
mod(}ai . i.i.d. N{a,bb’+yI).
¥

Proposition 4: The (theoreticall first principal component based on the
correlation matrix of %, is proporticnal to the first GLS based factor
representing portfolic computed on the basis of {pseudo} maximum
likelihcod parameters estimates obtained by fitting the restricted model
xt'vi.i.d. N(a,bb’+ydg(E)).

The nesting of the assumed models of propositions 3 and 4 in the
unrestricted one factor model of proposition 1 provides ancther reason for
preferring the {unrestricted) GLS factor representing portfolios. For if

the latter is misspecified, the former are even worse.

Much stronger results can be obtained if we strengthen the
assumptions about the data generating process. Going to the other extreme,
if we assume that X, is serially uncorrelated and I has indeed an exact

one factor structure, j.e. that

xtzm+bft+s\:t (3)

where ft can be interpreted as the true underlying index, then our
suggested procedure is optimally designed to extract the common component,

f., from the observed variadles. I we define f(;:(b’{“ﬁlb)"ib’r‘_ixt, then
f: is the representing portfolio with highest correlation with the

underiying factor for any finite number of assets M. If we assume that M

is actually unbounded, then we can also derive large M results which show

S _ . M -
if rank(Z)=1, then arTmO and b‘r M 9
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that both the GLS and the principal components estimates of ft are mean
square error convergent for the true underlying index ({see Sentana
(1994)). For finite samples, though, the alternative Xalman fiiter
estimate fi=(h+b’1"lb)_1b’2"1xt, where A=V(f‘t}, is the most efficient in
the mean square error sense among all porifolios with constant weightings.
But since f: is proporticnal to f:, they both coincide once re-scaled so
that their weights add up to one.

Furthermore, I": remains relatively efficient in models with more
complex mean and variance dynamics. For instance, if the true medel is a
conditionally heteroskedastic one factor model of the form:

x, |1 )

Vi~ Dlaba,,, b+

111-17 Teie1

(see e.g. Diebold and Neritove {1989) and Harvey, Ruiz and Sentana {1992},

where It_l contains the past values of the series, is the

conditional variance of the factor and T

A

tlt-3
-t the conditional variance of
the idiosyncratic terms, the factor representing portfolio with highest

conditional correlation is given by the conditional GLS portfolio

cG -1 -1, -1 . . . .
=(b’ ’ , which  will enerally  have time-varyin
ft (b rtlt—lb] b rtit-lxt i g ¥ t ving
weights even when re-scaled. In this context, the results in Sentana
Walel

Vans

(1994} indicate that f:c is significantly more correlated than £ oply if

there is very substantial variation over time in A and I‘t

tit-1 fe-i

Similarly, if the data generating process is a dynamic one factor
medel of the form given by (3) augmented with a nondegenerate transition

equation fer z"t such as:

u {4)

o=l vy

t
(see e.g. Engle and Watson (1981} or Pefia and Box (i987)), our proposed
factor estimate, which incorrectly assumes that p=0, may not be too bad
even for large [pl as compared to the updated Kalman filter estimate, f'ix,
obtained recursively from equations {3} and (4}, As =an illustration,
Figure 1 plots the efficiency of f: relative to that of f:y‘ for different

values of p, and a parameter configuration which corresponds to our
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estimates for US dollar exchange rates in section 4. Quah and Sargent
(1993) have recently suggested the use of measures closely related to f:x
as indices of business c¢ycle movements in real economic variables like
sectoral employment. Figure 1 indicates that modelling the dynamics to
obtain better indices may not necessarily be worth the extra effort,

especially i the time series modei for f‘t is unknown.

Note that in both examples the unconditional covariance matrix of xt,
which has the exact one factor form, contains a substantial proportion of
the information on cross-correlations, and nc potentially confounding

information on dynamic correlations.

In practice, one has to work with the sample variance-covariance
matrix of the data or its ML alternative, ST. The analysis in this section
can be trivially repeated for these sample analogues. One potential
disadvantage of our method versus principal components is that it requires
the computation of the pseudo ML estimates of the factor model. However,
the EM algorithm of Dempster, Laird and Rubin (1977) and Rubin and Thayer
(1982) provides a cheap and reliable estimation method. As a matter of
fact, this method performs even better for large M (see Demos and Sentana
(19923).

4. Empirical Application

We apply the techniques outlined in the previous sections to exchange
rate data for the US and the UK. Agents are interested in a single summary
measure of a country’'s exchange rate for at least two reasons. First,
movements In exchange rates can have a significant impact on trade and
inflation. Second, it is of some interest, especiaily for financial market
participants, to know whether the strength of a particular currency
reflects its own “intrinsic strength' or just the weakness of one
particular currency with a large weight in its basket. Finding the
appropriate weights to construct an effective exchange rate index is by no
means a straightforward task. The standard practice is to use trade

weights constructed by looking at the bilateral trade flows between two
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countries. More sophisticated variants allow for third country effects.
However, clearly such procedures are an approximation to the "true”
unobserved weights. Moreover, as we have already mentioned, different
weights may well give very different index levels in the long run. Table 1
compares the US Federal Reserve’s effective exchange rate weights with
those of the Bank of England, and they are differeat. Still, while these
indices may give a fair indication of the trade competitiveness of a
currency, they may not be so good at measuring a2 currency’s “intrinsic"
strength, since they do not take into account the massive capital flows

that tead to dominate trade Tlows.

We use monthly data for the period 1973:06 to 1991:04 of bilateral
exchange rates against the US Dollar for 23 countries to compute our
alternative indices. The currencies are the Australian Dollar, the
Austrian Schilling, the Belgian Franc, the Canadian Doilar, the Danish
Krone, the Finnish Markka, the French Franc, the Deustchemark, the Greek
Drachma, the Hong Kong Dollar, the irish Punt, the [talian Lirz, the
Japanese Yen, the Dutch Guilder, the New Zealand Dollar, the Norwegian
Krena, the Portuguese Escudo, the Singapore Doliar, the South African
Rand, the Spanish Peseta, the Swedish Krone, the Swiss Franc and the Pound

Sterling.

We start by comparing the exchange rate indices constructed from the
first principal component of the correlation and covariance matrix of the
log differences of the bilateral exchange rates, We use the following
precedure to construct the indices. First, we take the first principal
component of the differenced data and find the weights on each currency.
We then standardised the weights so that they added up to unity, and
rescaled the principal component. The new rescaled principal component was
cumulated to construct the indices. We plot the principal component series
with the Federal Reserve trade weighted exchange rate (in logs) in Figure
2. Note that although changes in the three series are very closely
correlated (correlation ceefficient 0.98), the principal component based
indices suggest that the doilar rose to much higher levels, and is still
at & much higher level than implied by the Fsderal Reserve's seriss at the

end of the sample. This is because the principal component measures give
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too high a weight to certain currencies that were even weaker against the
doilar. Most would argue that the series that one gets out of the

principal compenent approach are just too implausible,

Next we proceed to construct an index based on the pseudo-MLE
procedure discussed in section 3.3. In cur most simple model we assume no
drift [(i.e. =0} and & constant variance. We go on to relax these
restricticns below. The results are plotted in Figure 37 The levels of
the two series tend to be much closer together, and they peak at roughly
the same level. Besides, the pseudo-MLE index does appear to identify
commonly perceived periods of dollar weakness and strength. As one would
expect, tho-ugh, there is still variation between the two indices. The
third column of table 1 present the weights on the bilateral currencies
for our proposed index. As can be seen these weights are different from
noth the Bank of England’'s and the Federal Reserve’s, Notice that our
appreach allows us to consider more series than are in the other indices.
We also computed new indices assuming the existence of a drift and a
time-varying variance for the common factor that we assume of the
GARCH{1,1) form (Bollersiev (1986)). Remarkably, the results were very

similar {see figure 4}

We then went on to repeat the whole exercise for UK data. The
findings were very similar, in that the indices based on the first
principal component of the covariance or correlation matrices were very
different from the official Bank of England trade-weight index {see figure
5). These indices were rather implausible and did not appear to identify
commonly perceived periods of sterling strength and wezkness. In contrast,
the index based on the pseudo-MLE factor analytic approach seemed to be
far more sensible {see figure 6). The average weights of the Bank of

England and our index are presented in table 2.

" The pseudo ML estimates used with US and UK data correspond to an

interior optimum. No Heywood case solution was found tc be a local optimum

in either dataset, as coendition (2¢} was never satisfied.
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Notice that since the changes in the {log) nominal exchange rates
against sterling are a lineer transformation of the changes in the (log)
nominal exchange rates against the US dollar, an exact factor model cannot
hold for both the US dollar and Sterling unless the factor loadings for
all currencies are exactly one {see Manhieu and Schotman (19%92)). We
therefore emphasise the pseudo-maximum likelihood nature of our approach.
Nevertheless cur findings are rather remarkable in that despite having
necessarily a misspecified model, the estimated factors are very

plausibie.

As a crude indicator of the plausibility of the 230 overidentifying
covariance restrictions implicit in cur exact one factor model, we
computed a likelihocod ratio test against the alternative that Z is fully
unrestricted. The test statistics for the US and UK datasets are 8i6.! and
1364.4 respectively, which would be highly significant at conventional xz
levels. One sheould not take these results literally, though, because the
LR test in misspecified meoedels is not often robust (see White (1982}). In
any case, it is worth emphasising once more that we still get sensible
indices for both exchange rates, which confirms that models can be useful

even when they are wrong.

One candidate theory to explain our results is a model In which
shocks to each currency are only mildly correlated. More formally, suppose
that there is a countably infinite collection of countries, and that
changes in the values of their currencies zgainst some unspecified bundle
of goods, due to say money supply shocks as in Domowitz and Hakkio (1984},
are g_enerated according to an approximate factor model (cf. Chamberlain
and Rothschild (1983)) with =zero factors. In this context, it is easy to
prove that changes in M bilateral nominal exchange rates against any
specified currency would have a one factor appreximate factor model, in
which the common factor could be interpreted as shocks to the chosen

. 3 : -
numeraire currency . Although we estimate one factor exact factor models,

Mannieu and Schotman (1992) have recently considered a special case of

this model in which shocks to each currency are completely uncorrelated,
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the cross-sectional consistency results in  Chamberiain and Rothschild
(1983) and Sentana {1994) imply that a relatively large M allows us to
obtain plausible estimates of the common factors even though we ignore the

mild correlations in idiosyncratic terms.

5. Conclusions

Financial indices are often constructed in order to capture the
common variation of a large number of financial time series. However, if
these series are not cointegrated, then alternative indices with different
weighting schemes wili diverge in the long run. Since a "true" weighting
scheme may not even exist, let alone be observed, we advocate a weighting
scheme that maximises the comovement within the data. An index constructed
in this view can be viewed as a useful complement to more standard

measures,

We successfully apply cur techniques to construct a summary measure
of exchange rate comovement, but they can be readily applied to other time
series. Two obvicus examples spring to mind. First, since many researchers
in finance use both value-weighted and equally-weighted indices to measure
the co-movements in stock prices, our proposed measure would provide an
obvious complement. Second, many central bankers target several measures
of money, on the grounds that the definition of "true” money supply Iis
unknown. Using our technique a money supply index could be usefully
constructed which maximises the co-variation in the different measures,

and would be a weighted average of ail the components.

but it implies a variance covariance matrix in which all covariances

coincide.
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Appendix
First order Kuhn-Tucker Conditions for Exact One Factor Models

Magnus and Neudecker {1988) show that the differential of Lc(b,TIST)

is:
dL(b,TIS ) = -1/2 tr{[[bb’+?]—1~(bb’+F‘)-IST[bb’+I‘]"1H{db}b’+b(db’]+d1“]}

Taking into account that ?j cannot be negative, the first order

Kuhn-Tucker conditions will be:

(5T5;+f'T)"6T - (STE’T+fT)“sT(STS’T+fT)“ET=0 (AL1}
dg[[GTB;H"“T]'J—(STE;_H“‘T)_IST(STE%H"?]"I}&O (A1.2)
szo {A1.3)

dgl{B B7+1 )7(8_B:+F 7S (B B:+F )71 F =0 (414}

Froof of Lemma I

By virtue of the Woodbury formula

(5_52+F ) -(B B2+F ) s (B B24F )7 =
T T TT T TTTT T
=%-1/2 ~ mel e melf2 moi/2meel o~ m  n a al107
- r:' [I (VI 1}VJ.T plTpsz T rT (vlT pITpIT+P2TN2T ZT} T -
B2, an a meif2
=0 ( PirPir PZTN2TP2T}F?

[t is then straightforward to check that (All} is satisfied. To

prove (Al2), note that the above expression can be written as
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|
|
z

D v AETVI_ R & '
Py plT_PererzT)‘ T Ty (Fy#, Bi-S 00

(I+(V -l)p Tpl_r—v
which has a zero diagonal in view of {1b}). Finally note that since:

~ =1/2 =172 o120
- - f - -1 :
b b £ r STFT ( ]pl_p i 1‘

=172
S
T TT T

FU/Z = 5 10y 1ﬂ FiE
Pry

such a I“‘T will indeed be positive.
Proof of Lémma 2

First of ail note that fll‘ in {2b) is always nonnegative because ST
is positive semi-definite. For the parameter values in (2a) and {2b}, the

assumed covariance mairix can be written as:

-1 , L » 3

fdglS. -5 5 s s s s
(6 5 4F ) = 11T MMT IMT IMT MMT IMT 1MT T 1MT |
T T i , ]
i 3 S H
B 1MT MMT
which, using the partitioned inverse formula, yields:
1 -1 gl
r r -8
(5 5’+f“ )*1 _ 1 MMT 1 IMT
TT ol g w1 LT o Pl
MMT IMT 1 MMT  MMT IMT 1 1mT

Then, straightforward algebra shows that:

s BB+ =56
T T T T T T

so that (AlLl) will indeed be satisfied. Similarly, it is easy to check
that the {1,1) block of (5_5+F)7-(5_82+F )7's (5.6’ +1‘ 7
TT T T T'T

TT T
-1 -1 =-1
rr (s -s s & 1
1T 1T T  MMT IMT 1MT T
whereas
-2 === -1 s -1
s s T AS -s "~ s s I s

MMT IMT 1T 1T 11T MMT IMT 1M7Y 1T 1MT
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is its M,M element. Hence, the M-1 first conditions in {AlLZ) will be

satisfied with eqguality, whereas the last one will be satisfied by {2¢).
Proof of Lemma 3

If we define & as the k-1 wvector of proportionality factors for X,

(i.e. ¥ .=8x ], we can write S_ as
2t ML T

S s &’ _
11T mr 17
S, = | 88 s ‘
T MY Mw xm'r
- 5 ! l
| Tisr Tmmr Syt ]

For ez=0, let’s define the sequence of estimators

- -1/2
MT O MMT
~ 1/2 ~
b_(g) = =5
T MMT T
1/2
MMT
it _o0o0
Poar _ .
Tle)=;0 1 0 with ' _=dg(S__-s s s
T ! T 1T MMT IMT iMT
P00 00

Since B _5'+F (£} has full rank unless e=0, [5.57+F (2))7'S_ can be
i TT T T

computed for any £>0. Tedious algebra shows that it will be given by:

a1 -1 N

r (8 -s ' s s 0 0
1T 11T OMMT IMT IMT

o 0 0
-1, -1, =&-t -1 R

3 -5 ~g S S 3
MMT IMT “MMT IMT 1T 51T MMT AMT 1MT -

whose trace is always M-k+l. On the other hand, ETE;_*}'I‘:T{E} is increasingly
singular as £20, so !ETE;ﬁfT[e)I goes to 0O, and the log-likelibood
function goes to +wo. The optimality of this solution is confirmed by the

fact that in this case the left hand side of (2c¢} is propoertional to
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= g P s sarae

-(S “ls g
1T IMT

s Iy -s
MMT IMT 1T 1T 11T  MMT IMT IMT

which goes to +o as £ goes to 0.

Proof of Proposition 1:

From the population version of lemma 1, (E’F'Ig)'lg’f_lx,f
{vl—l}_vzp’lf_vzxt, and V(f_l/zxt)ﬂ%VZEF'VZ.

Proof of Proposition 2:

Straigﬁtf‘orward if we notice that the spectral decomposition of

T2 Y21 is simply P(N-I)P’.

Proof of Corollary 1:

M M

5% - - ‘Z_ * o * * _ -

From proposition 2, tr(Z -I Zl) _AEI(Gii 1 Glii) + -IEJ(GU Glij) .
i=

But from Lemma 1 and the invariance property of ML estimates,

o, .~l-c, .. =
ii 1ii

2 2

0.
Proof of Corollary 2:

We just need to show that b, =0. But from Corollary 1, it is clear

M

*
that since o =0 for i#M, this must be indeed the case.

M

Proof of Lemma 4:

A trivial modification of lemma 1, since the spectral decomposition

of 77's_ is simply Q_37'M_Q.
71 AT ToT

Proof of Proposition 3:

Straightforward from the population version of lemma 4.
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Proof of Proposition 4:

Straightforward from the population version of lemma 4, and the invariance
property of ML estimates if we notice that xt~i.i.d. N(a,bb’+ydg(Z)) is
equivalent to dg_l(Z]xtfvi.i.d. N(c,dd’+y1), where c=dg (S)a and
d=dg " (=)b.
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Australia
Austria
Belgium
Canada
Denmark
Finland
France
Germany
Greece
Hong Kong
Ireland
Ttaly

Japan
Netherlands
New Zealand
Norway
Portugal
Singapore
South Africa
Spain
Sweden
Switzerland

UK

Correlation with
Weights for {1}

Correlation with
Weights for {2}

Table 1: US Effective Exchange Rate Weights

Federal Reserve
Weights {%)
(1

6.4
9.1

131
20.8

9.0
13.6
83

42
3.6
119

1.0

0.81

Bank of England MLE Weights

Weights (%)
@)

0.7
2.8
18.7
0.7
Q.3
83
14.5

0.5
5.6
259
28

0.6

1.6
2.1
28
120

6.81

1.0

(%)
&)

0.1
208
3.5
0.3
10.0
2.2
36
26.6
07
04

1.2
0.6
182
02
28
0.8
0.4
0.2
a8
16
22
07

0.39

.10

Cormrelation of bilateral US §
Rates with PMLE Factor
Estimates

0.230
0.950
0.933
0.235
0.977
0.863
0.930
6.993
0.702
0.320
0.879
0.301
0.645
0.988
0.361
0.896
0.776
0.444
6.377
0.713
0.831
4.898
(.688

Anstralia
Ausiria
Belgium
Canada
Denmark
Finland
France
Germany
Greece
Hong Kong
Ireland
Traly

Japan
Netherlands
New Zealand
Norway
Portugal
Singapore
South Africa
Spain
Sweden
Switzerland

UK

Correlation with
Weights for (1)

Table 2: UK Effective Exchange Rate Weights

Bank of England
Weights (%)
0)]

12
33
1.9
1.5
1.5
11.8
208

z4
7.7
8.3
58

1.3

20
3.8
5.5
204

1.0

MLE Weights
(%}
@

0.2
22.1
33
0.4
10.3
2.0
35
28.1
0.6
0.4
22
1.1
0.5
16.2
0.2
2.5
0.8
0.5
0.2
0.8
L5
25
0.4

0.37

Correlation of Bilateral
Sterling Rates with
PMLE Factor Estimates

0.334
0.986
(.895
G.430
6.966
0,788
0.856
0.990
0.616
0.454
0.794
0.726
0533
0.978
0.290
6.839
6.672
0.494
0.368
0.609
0.763
0.838
0423
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