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Abstract

We investigate the effects of dynamic heteroskedasticity on statistical factor anal-
ysis. We show that identification problems are alleviated when variation in factor
variances is accounted for. Our results apply to dynamic APT models and other
structural models. We also find that traditional ML estimation of unconditional
variance parameters remains consistent if the factor loadings are identified from
the unconditional distribution, but their standard errors must be robustified. We
develop a simple preliminary LM test for ARCH effects in the common factors,
and discuss two-step consistent estimation of the conditional variance parameters.
Finally, we conduct a detailed simulation exercise.
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1 Introduction

One of the most popular approaches to multivariate volatility assumes that
each observed series is a linear combination of a small number of dynamic het-
eroskedastic common factors plus an idiosyncratic term. Such models, which are
often compatible with standard factor analysis, are particularly appealing in fi-
nance, where multi-index models enjoy a long tradition. Although some of their
properties have already been analysed in detail (see Sentana (1998) and the refer-
ences therein), some crucial aspects have not been fully investigated yet. In this
respect, the purpose of the paper is to study in what sense the existence of time-
varying heteroskedasticity in the factors affects the usual inference procedures
employed in statistical factor analysis. In particular, we thoroughly reassess the
identification issue, which has important implications for empirical work related
to the Arbitrage Pricing Theory (APT), and it also has some bearing upon the
identification of simultaneous equations systems, structural vector autoregressions
and oblique factor models with constant conditional covariances. We also study
the properties of unconditional maximum likelihood (ML) estimators of the static
variance parameters devised for serially independent observations. In addition,
we propose a simple preliminary diagnostic test for ARCH effects in the common
factors, derive a two-step estimator of the remaining parameters, and investigate
the finite sample properties of the different estimators and tests by means of sim-
ulation methods.

The rest of the paper is organized as follows. We introduce the model in section
2. Then, in section 3, we analyse in detail its identifiability, discuss the properties
of traditional estimators, derive an LM test for ARCH in the common factors,
and propose a simple two-step estimator for the conditional variance parameters.
Finally, we carry out a Monte Carlo analysis in section 4. Proofs and auxiliary

results are gathered in an appendix.



2 Conditionally heteroskedastic factor models

Consider the following multivariate model:

x;, = Cf +w, (1)
f, 0 A, O
| Xy1~N ’
Wy 0 o T
where x; is a vector of N observable random variables, f; a vector of k£ unob-
served common factors, C the N x k matrix of factor loadings, with N > k and
rank (C) = k, w; a vector of N idiosyncratic noises conditionally orthogonal to
f;, I > 0a N x N positive semi-definite (p.s.d.) matrix of constant idiosyncratic
variances, A; a k x k diagonal matrix of (possibly) time-varying factor variances,
which generally involve some extra parameters ¥, with A = inf A; > 0, and X;_;
an information set that contains the values of x; up to time ¢t —1. Our assumptions
imply that the distribution of x; conditional on X;_; is normal with zero mean,
and covariance matrix 3; = CA,C’' + I". For this reason, we refer to the data
generation process specified by (1) as a conditionally heteroskedastic factor model.
Such a formulation nests several models widely used in the empirical literature,
which typically assume that the unobserved factors follow dynamic heteroskedas-
tic processes, but differ in the exact parametrisation of A; and I" (see Sentana
(1998)). Furthermore, if A; is constant, which usually corresponds to ¥ = 0, it
reduces to the static orthogonal factor model. But even if f; is conditionally het-
eroskedastic, provided that it is covariance stationary, the constancy of the factor
loadings implies an unconditionally orthogonal £ factor structure for x;, so that

the unconditional covariance matrix, ¥ =FE(X;), can be written as:
3 = CACHT (2)

where A = V(f;) = E(A;). This property makes the model considered here
compatible with traditional factor analysis (see e.g. Lawley and Maxwell (1971)).

2



3 Inference

3.1 Identification

An observationally equivalent (0.e.) model to (1) up to conditional second
moments must satisfy ¥; = C*AfCY +I'* V¢, with rank (C*) = k*, A" = inf A} >
0 and I'* > 0. Let us rewrite X, as X + %, with £ = inf 3, = CAC' + T, which
we assume positive definite (p.d.), and ¥, = CA,—A)C = Cldiag(X,)]C’ > 0,
where X; = A — A = vecd(A,) — vecd(A), diag(a) indicates the n x n diagonal
matrix containing the elements of the n x 1 vector a along the main diagonal,
vecd(A) denotes the n x 1 vector containing the diagonal elements of the n x n
matrix A, and dg(A) is a diagonal matrix containing the diagonal elements of A,
so that diaglvecd(A)] = dg(A). The identifiability of constant covariance matrices
of the form CAC’ + T has been extensively analysed in the literature (see e.g.
Anderson and Rubin (1956), Dunn (1973), Jennrich (1978), Bekker (1989), or
Wedge (1996)). Consideration of the time-varying term on its own allows us to

state the following independent result:

Proposition 1 If the stochastic processes in Xt are linearly independent (i.e.
36 €R* 640 : &X, = 0 Vt), all o.e. models to (1) (excluding column per-
mutations and sign changes) satisfy C*D* = C, Af — A" = D*(A; — A)D*
and T'* = X — C*A*C¥, where D* is a k* x k matriz, with k* > k, such that
D¥ = (D | 0), with D p.d. diagonal, and A* is any k* x k* p.s.d. diagonal matrix
such that the eigenvalues of A*C*X'C* are less than or equal to 1.

The matrix D is related to the scaling of the factors. Since this is largely irrel-
evant, we impose in what follows that vecd(A) = vecd(I;) = ¢; by analogy with

the homoskedastic case.! Without further restrictions, though, the model is not

'Tf the unconditional variance is unbounded, as in Integrated GARCH-type models, other
scaling assumptions can be made. For instance, we can fix A, or the norm of each column of C.



fully identified, as we can transfer unconditional variance from the idiosyncratic
terms to the common factors via A*. The most common assumptions made to
differentiate the “common” and “specific” parts of X; are that k* = k and T is
diagonal. However, as the following proposition shows, diagonality of I' is not
always sufficient to guarantee identifiability in this context. Let c¢; denote the
[*" column of C, and define vecl as the operator which stacks columnwise the

elements of the strict lower triangle of a square matrix.

Proposition 2 If T' is diagonal, and Xt linearly independent, then the only ad-
missible A* in Proposition 1 when k* =k and D =1 is A iff the N(N —1)/2 x k
matriz with vecl(cic}) as I column (I =1,...,k) has full column rank k.

Underidentification with I' diagonal trivially arises when N =k = 1; e.g. if
11; follows the GARCH(1,1) model 011y = ag + 123, | + (101111, We can write
o1 as [ag/(1 = By) —w] +[a1 )72, ,B{xft,j +w] for any w € [0, /(1 — 34)]. For

larger N, though, identification becomes easier:

Corollary 1 If k* = k =1, T diagonal, and \11; not constant, then (1) is iden-
tified (up to “scale”) iff N > 2 and at least two factor loadings are nonzero.

In particular, if N = 2 and x1; and x5, are not conditionally uncorrelated, iden-
tification is achieved as long as A1, varies over time (cf. Lemma 5.2 in Anderson
and Rubin (1956), or section 5 in Scherrer and Deistler (1998)).

If the unconditional covariance matrix is partly identified even if we ignore
the time-variation in the conditional variances (see e.g. Theorems 5.1 - 5.8 in

Anderson and Rubin (1956)), a stronger result can be obtained:

Proposition 3 If CC’' and T' are uniquely identified from the unconditional co-
variance matrix, and the stochastic processes in Ay are linearly independent, C is
untque up to column permutations and sign changes.

The main difference is that while in Proposition 1 we are implicitly assuming
that none of the original factors has constant variance, here we allow for one (but
only one) Ay to be constant V¢. If the processes in A; were linearly dependent,
though, identification problems would re-appear. Given the parametrisations used

in practice, it is difficult to envisage such situations, unless several factor variances
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are constant. Nevertheless, consider as an example a model in which for all time
periods, a group of ko factors (1 < kg < k) is characterised by a scalar covariance
matrix AgxIi,, while the others have an unrestricted diagonal covariance matrix
Ay;. If we partition C conformably as C = (C, | Cz), where C; and C; are N x k;

and N X ks respectively, with k; + ks = k, the following result can be stated:

Proposition 4 If CC’' and T’ are uniquely identified from the unconditional co-
variance matriz, and the stochastic processes in (Xi;, Mert) are linearly indepen-
dent, Cy is unique up to column permutations and sign changes.

If ks = k and Mgt = 1, we return to the static factor model, where even when
CC' and T are separately identified, C may be only identified up to rotation by
an arbitrary k x k orthogonal matrix Q. In this respect, note that the imposition
of unnecessary restrictions on C as in traditional factor analysis to ensure that the
only admissible Q is I}, may produce misleading results. An important implication
of our propositions is that if such restrictions are nevertheless made, at least they
can be tested. However, the accuracy with which C can be estimated depends
on how much linearly independent variability there is in A;, for if its elements are
essentially constant, identifiability problems will reappear.

Our results can be applied to other closely related models, such as x; = CA;7
+Cf+w; (see e.g. Engle et al. (1990) or King et al. (1994)), where the columns
of C and the “price of risk” coefficients in 7 corresponding to factors with lin-
early independent time-varying variances are identifiable (up to sign changes and
permutations) from Proposition 3. They also apply to models with N common
factors, I' = 0 and linear mean dynamics, such as the static simultaneous equation
system Agx; = f;, or the “structural” VAR process x; = Z;io Bu,_;, By =1,
u; = Cf;, where in both cases f; can be understood as the conditionally or-
thogonal “fundamental” shocks driving x;. If we estimate these models without
considering the time-variation in A;, neither Ay nor C are identifiable without

extra restrictions, such as Ag, C or 722 B;C lower triangular (see Blanchard



and Quah (1989)). But if some elements of f; have time-varying variances and
this is explicitly recognized in estimation, then Proposition 4 implies that the
corresponding columns of C are identifiable. Alternatively, Proposition 4 says
that the set of conditionally uncorrelated disturbances that can be written as a
time-invariant linear combination of the innovations in x; is unique when ky<1.
Finally, it turns out that most of the identifiability in fact derives from the
conditional covariances of conditionally orthogonal factors being constant over
time. Specifically, let A; be a p.d. matrix of possibly time-varying factor variances
but constant conditional covariances. Then, given that A= dg(jit), Proposition
1 remains valid with A* p.s.d. but not necessarily diagonal. In this respect, notice
the generality of Proposition 1, which only relies on the constancy of C and the
conditional covariances of the factors, and the linearly independent time-variation

of their variances, but not on any particular parametrisation for \;.2

3.2 Estimation of unconditional variance parameters

Ignoring initial conditions, the log-likelihood function of a sample of size T' of

observations generated from model (1) takes the form Lr(¢) = Zthl li(¢®), where:

li(p) =— gln 27 — %ln |ICAC' + T — %x; (CA,C' +T) 'x (3)

¢ =(c',v,¢"), c =vec(C),v =vecd(T') and A,=diag[X;(p)]. Note that we re-
strict I' to be diagonal and in principle p.d. in view of the discussion in section
3.1, but allow A; to depend on ,c and ~. In this context, a standard factor
analytic routine can be regarded as estimating the unconditional variance param-
eters ¢ and v as (¢,9) =argmaxc, Ly(c,7,0). If (a) I" and C are identified (up

to rotation) from unconditional moments (b) %Zle xx, B o= CoCl + I,

2In this respect, Proposition 1 in Sentana (1998) can be obtained as an application of our
Proposition 1 to the factor GARCH case. Similarly, Proposition 1 in Rigobon (2000) can also be
obtained as a special case of our Proposition 3 when A; follows a switching regime model.



where the 0 subscripts indicate true values, (c) T~/2 3] vech(x,x}, — ) has a
limiting normal distribution and (d) the matrix (I'§ ® T'S) is nonsingular, where
I§ =Ty—Cy(CyT'y'Cy)~*Cl is the rank N — k covariance matrix of the GLS esti-
mates of the idiosyncratic factors w&= x, — (C{ Ty 'Cp) ' CyTy 'x;, and © denotes
Hadamard product, then theorem 12.1 in Anderson and Rubin (1956) and theorem
2 in Kano (1983) imply that (&, 4) are asymptotically normally distributed around
vec(CoQo) and vecd(Ty), where Qg is the orthogonal matrix that imposes on Cy
the restrictions used in estimation to avoid the usual rotational indeterminacy.®
However, even though the expected value of the score of the estimated model
evaluated at ¢, is 0 under our assumptions, it does not preserve the martingale
difference property when there are ARCH effects in the common factors because
the first derivatives are proportional to vech(x;x}) (see the appendix). Hence,
standard errors computed assuming conditional homoskedasticity will be wrong,

and it is necessary to robustify them taking into account the serial correlation in

vech(xx}).

3.3 A simple test for ARCH in the common factors

If the factors were observable, we could carry out standard ARCH tests on
them. We can derive similar tests using their expected values evaluated at param-
eter configurations consistent with the null, i.e. fy;(c,v,0) = E(f|Xs;c,v,0) =
C'Y 'x;. If we regard fy;(c,~,0) as k particular linear combinations of the
elements in x;, their true distribution will be given by fy.(c,v,0)| X1,y ~
N{0,C'E7! [Codiag [Ai(¢py)] Cp + T'y] -1C}, so that £ (c, 7, 0) will be homoske-

dastic if A¢(¢) is constant over time. Hence, we can test whether moment con-

3Primitive conditions for (b) and (c) in univariate dynamic heteroskedastic contexts are only
beginning to emerge. In particular, theorem 5.1 in Giraitis et al. (2000) implies that if z14 is a
strictly stationary strong ARCH(00) process with zero mean and a bounded unconditional fourth

_ d
moment, T-V2 5 [23,— V(zy)] 5 N[0,3°72  cov(aty, o))



ditions such as cov j2t|t(c,’y,0), fj2t_1|t_1(c,'y,0)] =0,5=1,...,k hold. More-
over, given that f;;(c,v,0) will follow a weak GARCH process as long as the
j row of C’S71Cy is not 0 (see Nijman and Sentana (1996)), such tests have
non-trivial power because fj:(c,~y,0) will show serial correlation in the squares
under the alternative. In practice, we shall base the tests on f'ﬂt = f;:(¢,4,0),
where ¢ and 4 are the estimators discussed in the previous section. Neverthe-
less, when conditions (a)-(d) hold, it is straightforward to show that (i) the
asymptotic null distribution is unaffected because the covariance matrix of the
moment restrictions defining the static variance parameters and the moment re-
strictions being tested is block diagonal under the null (see the appendix), and
(i) ¢'S71Cy & Q)CHX51Cy, a full rank matrix. We also show that if & is not
merely root-1" consistent for vec(CyQp), but actually for cg, then the aforemen-
tioned moment test is precisely the standard LM test of conditional homoskedas-
ticity vs ARCH-type behaviour in the common factors based on the score of (3)
evaluated under Hy. In particular, we can compute a two-sided LM test against
ARCH(1) in each common factor as T' times the uncentred R? from the regression
of either 1 on (JEth\t + Wjjae — 1) times (fj%t_l‘t_l + @jj4-11t-1 — 1) (outer-product
version), or (fj2t|t + Wi — 1) on (fft_l‘t_l + @jjt—1jt—1 — 1) (Hessian version),
where Q:(p) = V(£|Xy; 9) = [A(@) ' + (C’F’lc)]_l. More powerful variants
of these tests can be obtained by taking into account the sign of the relevant

regression coefficient (see Demos and Sentana (1998b)).

3.4 Estimation of conditional variance parameters

On the basis of well-known results from Durbin (1970), we can show that if
¢ and 4 are root-7T" consistent for ¢y and «,, we can obtain root-7" consistent
but inefficient estimates of the conditional variance parameters by maximising (3)

with respect to 1 keeping ¢ and -y fixed at those consistent estimates. However,



since the asymptotic covariance matrix is not generally block-diagonal between
static and dynamic variance parameters when 1),# 0, standard errors will be
underestimated by the usual expressions. Asymptotically correct standard errors
can be computed from an estimate of the inverse information matrix corresponding
to (3) evaluated at these two-step estimators (cf. Lin (1992)). Note that if we
were to iterate the two-step procedure and achieved convergence, we would obtain
the fully efficient conditional ML estimates of all model parameters.*

Obviously, if the initial estimates of ¢ are only consistent for vec(CyQq) be-
cause C is not uniquely identifiable from the unconditional covariance matrix (e.g.
if £ > 2 and C unrestricted), then the two-step estimator of 1 will be inconsis-
tent. One possibility would be to replace € by a consistent estimator based on
an alternative objective function that took into account the autocorrelation in
vech(x;x}). Unfortunately, the evidence from univariate ARCH models suggests

that the resulting estimators are likely to be rather inefficient.

4 Monte Carlo evidence

We generated 8000 samples of 240 observations (plus 100 initial ones) of a
trivariate single factor model. Since the performance of the estimators depends
on Cy and I'y mostly through (C()I‘SICO), we set co=(1,1,1)", To=7,I, 7o = 2
or 1/2; corresponding to low and high signal to noise ratios, \; = (1 — ag — §,) +
ao(f2 41 Fwi1j-1) +Bode-1, and (ao,0q) = (0,0), (.2,.6) or (.4,.4), which repre-
sent constant variances, persistent but smooth GARCH behaviour, and persistent
but volatile conditional variances respectively (v, = 1/2, a9 = .2, 5, = .6 matches

roughly what we tend to see in the empirical literature). Note that \; differs from

4Such an iterated estimation procedure is closely related to the zig-zag estimation method
suggested in Demos and Sentana (1992), which combined the EM algorithm to estimate the static
factor parameters conditional on the values of the conditional variance parameters, followed by
the direct maximisation of (3) with respect to ¥ holding ¢ and ~ fixed.



a standard GARCH(1,1) model in that the unobserved factors are replaced by their
best (in the conditional mean square error sense) estimates fi—1j1—1, and the term
wi—1jt—1 is included to reflect the uncertainty in the factor estimates (see Harvey et
al., 1992). We use the same underlying random numbers in all designs to minimise
experimental error, and maximise the log-likelihood (3), with initial values ob-
tained via the EM algorithm in Demos and Sentana (1998a). For scaling purposes,
we use 2 + c2 + c2 = 1. We use the re-parametrisation v, = (v;)%, a = sin®(6;)
and 3 = sin?(6,)(1 — ) to guarantee 7, > 0 and 0 < 8 <1 —a < 1. We also
set A1 to E()\;) to start up the recursions, but since this implies that § is not
identified if & = 0, we set 3 = 0 whenever & = 0. Given that these parameter
values lie on the boundary of the admissible range, to compute standard errors we
use case 2, theorem 2 of Self and Liang (1987), which implies that the asymptotic
distribution of the ML estimators of (5, «,c’,v’) when oy = 5, = 0 should be
a (1,3, 1) mixture of (i) the usual asymptotic distribution, (ii) the asymptotic
distribution of a restricted ML estimator which sets a = § = 0, and (iii) the
asymptotic distribution of a restricted ML estimator which only sets 3 = 0.
Table 1 presents mean biases and standard deviations across replications for
conditional (C) and unconditional (U) ML estimates of the static factor model
parameters. Note that although they all are very mildly downward biased, the
more variable )\; is, the better CML estimates are relative to UML ones. Never-
theless, the differences are minor for the sample size used. Given the large number
of parameters, we summarise the performance of the estimates of the asymptotic
covariance matrix of the estimators by computing the experimental distribution
of some simple test statistics. In particular, we test c;=co=cs, and v,=v,=73,
and should obtain asymptotic x3 distributions under the null. Standard errors for
CML estimates are computed from the Hessian, while the usual sandwich estima-

tor with a 4-lag triangular window is employed for UML estimates. The results,
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not reported for conciseness, suggest that the size distortions are not very large.

Our experimental design also allows us to analyse the performance of the LM
tests for ARCH. The size properties under the null of the one-sided and two-
sided versions of the outer-product and Hessian-based forms are summarised in
Figure 1 using Davidson and MacKinnon’s (1998) p-value discrepancy plots.
As expected, the outer-product versions have much larger distortions than the
Hessian-based ones, whose sizes are fairly accurate. The evidence on power for
the Hessian-based one-sided and two-sided tests is presented in Figure 2 using
Davidson and MacKinnon’s (1998) size-power curves. As can be seen, power
is an increasing function of both the value of «, and the signal-to-noise ratio.
Also, our results confirm that one-sided versions are always more powerful than
two-sided ones, although not overwhelmingly so (cf. Demos and Sentana (1998b)).

Asymptotically, the proportions of @ = 0 and & # 0, 3 = 0 should be (2,1)

201
if ap=0,=0, and (0,0) otherwise. But Table 2 shows that =0 and 3=0 occur
more frequently in finite samples, especially when the signal-to-noise ratio is small.
These results are confirmed in Table 3, which presents mean biases and standard
deviations across replications for the conditional and two-step (2S) ML estimates
of section 3.4 (the figures for 3 correspond to & # 0). Note that the &'s are rather
more accurate than the B/s. Also note that the biases for the CML estimates of
« are smaller than for the 2S ones, although the latter have smaller Monte Carlo
variability. In contrast, the downward biases in § are larger for CML estimates,
which, to some extent, reflects the larger proportion of zero ,5’/3 in Table 2.

We have also simulated a six-variate model with two factors in which \j;; =
(1 — g — By + Oéo(fft,ut,l + wirg—1je—1) + BoAiri—1, Aoz = 1 and To=9,L.
Note from Proposition 3 that c is identified without further restrictions, pro-

vided that o # 0 and we take into account the time-variation in conditional

variances. We have selected v, = 2 or 1/2, and (ap, 5y) = (.4,.4) or (.2,.6), and
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c,=(0,0,0,1,1,1;1,1,1,0,0,0), which corresponds to two models like the one con-
sidered in the previous subsection put together, or cj= (i, i, i, 1,1,1;1,1,1, i, i, i),
which introduces “correlation” in the columns of C. Given that this model is four
times as costly to estimate as the previous one, we only generated 2000 samples
of 240 observations each. The remaining details are as in section 4.1.°

Table 4 presents mean biases and standard deviations across replications for
CML and UML estimates, as well as a restricted ML estimator which imposes the
same identifying restriction as the UML estimator, i.e. cgo = 0 . Such an estima-
tor is efficient when the overidentifying restriction is true, but inconsistent if it is
false. More precisely, RML and UML estimators of ¢ are consistent for a rotation
of ¢g such that [CoQole2 = 0. The first panel of Table 4 contains the results for
the designs with Cy “orthogonal”. Not surprisingly, the RML estimator is clearly
the best as far as estimates of the factor loadings are concerned, but the UML
estimator performs very similarly, except when there is significant variability in
A11,¢, which is in line with the single factor model results. In contrast, the CML
estimator is the worst performer when the signal to noise ratio and the variability
in A1 are low, but comes very close to the RML in the opposite case.® This
behaviour is not unexpected, given that the identifiability of the CML estimator
comes from A;;; changing over time, while for the other two estimators it comes
from the restriction cgo = 0. It seems, though, that the latter identifiability con-
dition is more informative than the former, which should be borne in mind in
empirical work. There are only minor differences, though, between the estimates
of the idiosyncratic variance parameters. Obviously, their Monte Carlo standard

deviations increase with 7, but the coefficients of variation remain approximately

5One additional issue was that occasionally some idiosyncratic variances were estimated as
0 (see Sentana (2000)). The incidence of Heywood cases increased with ~,, and especially cgo.
Nevertheless, since at worst only 35 out of 2000 replications had this problem, we replaced them
by new ones.

6Since the CML estimates of ¢ are not identified if o = 0, the reported values are for & # 0.
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the same. The second panel of Table 4 contains the results for the other designs.
Note that the different estimates of ; are hardly affected. As expected, though,
the behaviour of both RML and UML estimators of C radically changes, as they
clearly become inconsistent. In contrast, the performance of the CML estimator
of ¢ is basically the same as in the first panel. We computed the experimental
distribution of some simple test statistics to summarise the performance of the es-
timates of the asymptotic covariance matrix of these estimators. In particular, we
test c11=Cp1=C31; C41=C51=Cg1; C12=C22=C32; Y1 ="o="73 and ,=75="7¢. Given that
our choices of ¢, imply that the plims of all the estimators satisfy these restric-
tions even when cgy # 0, they should all have asymptotic x3 distributions. The
results, not reported for conciseness, suggest that the size distortions associated
with the UML estimator, are small, but larger than for the others.

Our design also allows us to consider the finite sample distribution of the
likelihood ratio (LR) test for the restriction cgo = 0. The p-value discrepancy plot
in Figure 3 shows that nominal sizes are fairly accurate at the 5% level, though less
so when 7, is small. For very large significance levels, however, the size distortions
are higher, as the test takes the value 0 whenever & = 0. Its distribution under
the alternative is far more interesting, and provides a summary indicator of the
determinants of the information in our identifiability restrictions. Figure 4 present
the size-power curves for the four experimental designs in which cge # 0, with the
required implicit size-corrections based on the closest match (cf. Davidson and
MacKinnon (1998)). The absolute power of the test is small, since the Monte Carlo
variability in the joint estimator of cgo is large relative to the re-scaled value of
this parameter (~ .14) for the sample size considered (see Table 4). Nevertheless,
the power of the test increases with the signal-to-noise ratio, and especially, with
the variability of the conditional variance of the factor. This confirms the crucial

role that changes in Aj;; play in the identifiability of the model.
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Table 5 presents the proportion of estimates of o and ( at the boundary of
the parameter space, which should be 0 asymptotically. But as before, & = 0,
and especially ﬁ = 0 occur more frequently in finite samples, especially when
the signal-to-noise ratio is small. These results are confirmed in Table 6, which
presents mean biases and standard deviations across replications for CML, RML,
and the 2S estimators of o and 3 of section 3.4. Once more, the s are estimated
rather more accurately than the 3's, which reflects the larger proportion of zero
,5’/3 in Table 5. As in Table 4, though, there are significant differences between
the two panels. While the performance of the CML estimators is by and large
independent of whether or not cgs = 0, the behaviour of RML and 2S estimators

radically changes, and they clearly become inconsistent (see section 3.4).

5 Conclusions

We investigate the effects of dynamic heteroskedasticity on inference proce-
dures in factor analysis. We find that if the variation of conditional moments is
explicitly recognised in estimation, identification problems are often alleviated.
We also find that the ML estimators of the unconditional variance parameters
derived for i.:.d. observations remain consistent if the factor loadings are identi-
fied from the unconditional distribution, but their asymptotic covariance matrix
has to be estimated taking into account the serial correlation in vech(x;x}). We
develop a simple moment test for the presence of ARCH in the common factors,
relate it to the standard LM test, and propose more powerful one-sided versions.
We also discuss two-step ML estimators of the conditional variance parameters
that keep the static variance parameters fixed at some initial consistent estimates,
and explain how to compute correct standard errors. Finally, we investigate the
finite sample properties of the different estimators and hypothesis tests by simu-

lation methods. Our results suggest that: (i) the relative efficiency of conditional

14



versus unconditional ML estimators of ¢ and ~ increases with the variability in
conditional variances; (ii) standard errors of the estimates are fairly accurate; (iii)
size distortions of the LM test for ARCH are far smaller for Hessian-based versions
than for outer-product ones; (iv) the power of this test is an increasing function of
a and the signal-to-noise ratio, with one-sided versions being preferred; (v) ARCH
and GARCH parameters are estimated as 0 more frequently than they should, es-
pecially when the signal-to-noise ratio is small; and (vi) although time-variation in
factor variances ensures identification in practice, traditional conditions are more

informative, as long as they are correct.
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Appendix
Proof of Proposition 1

Given that by assumption rank(C*) = k*, if we regard CA,C’ = C*A;C¥
as a system of linear equations in K;“, the only solution is ./ijf = D*A,D” ,
with D*= (C¥C*)"'C*C, C*D*A,D*C* = CA,C’ (see Magnus and Neudecker
(1986), theorem 2.13). But since &X, = 0 V¢ iff § = 0, the necessary and
sufficient condition above is equivalent to C*D* = C. Diagonality of ./i;f‘ then
requires Y), Xll,td;‘ld;fl =0forj >idi=1...,kandt = 1,...,7. For a
given 4,7 (j > 1), these restrictions can be expressed as Kdej = 07, where

—

— — / —
AT = ()\1, ey )\T> is a T' X k matrix with typical row )\;, 07 a vector of T zeros

and dj; = (djld;fl, o dl ;‘k)/ a kx1 vector. Given that the rank of KT is k when
the processes in Xt are linearly independent, the only solution to such a set of T
homogenous linear equations is dj; = 0y irrespective of ¢ and j. Therefore, there
cannot be two elements in any column of D* which are different from 0, which
means that each column of C is proportional to some column of C*. Given that
rank (C) = k, we can find a permutation matrix P* of order £* > k such that the
first k rows of P*D* are a full rank diagonal matrix, D say, its last £* — k rows
are zero, C*P* = (C% | C3;), with C; = CD™!, and P*A;P* = O;t g ,

with K?t — DA,D. If we now add and subtract C*A*C* to X; and group terms,
we can equate I'* with 3 — C*A*C¥, A%, with A%, + A%, and A%, with A%, >0
Vt. Finally, the upper limit condition on A* follows from Lemma 2a in Sentana

(1998), which provides a necessary and sufficient condition for I'* to remain p.s.d.

g
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Proof of Proposition 2

Since from Proposition 1 all o.e. models satisfy I'* = T'+ C(A — A")C’ when
k* = k and D = I, diagonality of I'* requires ZL(AH — \p)cacyy = 0 for
j>1i,1=1,..., k. If we express these restrictions as Cvecd(A — A") =0, where

Cisa N(N —1)/2 x k matrix with typical column vecl(c;c)) (I =1,...,k), the
result follows from the fact vecd(A — A*) = 0 iff the rank of Cisk. O

Proof of Proposition 3

It is well known that if CC’ is identified and vecd(A) = ¢y, the only potential
o.e. models must satisfy C* = CQ, where Q is an k£ X k orthogonal matrix
with typical element g¢;;. Since the covariance matrix of the transformed factors
is A; = QA,Q’, conditional orthogonality requires Zle Aiuqagqy = 0 for j >
i, = 1,...,kand t = 1,...,T. Applying the same argument as in the proof
of Proposition 1, we can show that if A; is linearly independent, there cannot
be two elements in any column of Q which are different from 0. Given that Q
is orthogonal, the only admissible matrices are permutations of Cholesky square

11/2] = +1 for ¢ = j and 0 otherwise. O

roots of Iy, where [I;

Proof of Proposition 4

The only difference with Proposition 3 is that since A; = (X}, Aerst}, ), the rel-
evant equation system is .l_\.qu‘j = Op, where AT = (5\1, . S\T)/ isa T'x(ki+1)
matrix with typical row 5\; = (M1gs - Merkrts Mekt), and Qij = (¢i1q51, - - - » Qiky Liks »
Zf:kﬁl qilq;~l) a (k1 + 1) x 1 vector. Given that the rank of KT is k1 + 1 by as-
sumption, then for all j > 4,4 =1,...,k we must have ¢;q; =0for [ =1,...,k
and also Zf:kl 11 9aq; = 0. The first set of restrictions implies that there cannot

be two elements in the first k; columns of Q which are different from 0. If we

partition Q in four blocks conformably, then, given that Q is orthogonal, if we
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exclude mere permutations of the factors, it must be the case that Qq; = I,];{ 2,

Q21 =0, Q12 = 0 and Q2 is orthogonal. O

The score and information matrix of a conditionally heteroskedastic
factor model

Bollerslev and Wooldridge (1992) show that the score s;(¢) =0l;(¢p)/0¢ of any
conditionally heteroskedastic multivariate model with zero conditional mean is

given by 10ved 3] /0¢ [ '@, ] vec [x;x], — X¢], which in our case yields

vec [ x,x; 3, 'CA, — 3, 'CA]
tvecd [ 'x,x, 27 — 37 +
0

10A(®)

> 06 veed [C'S; ' xx, 5, 'C — C'S; ' C]

Assuming that rank(I') =N, we can use the Woodbury formula to prove that
E;IXtX:fZ;lCAt - Z;cht = Fil [th£|t - C (ft\tft/hf + Qt|t>]

%X 3 = B =T [(x — Cfye) (x¢ — Cfy)' + CQ,,C' — T T
C'S, 'xxi%, 'C - C'S'C = A (B + Qi) — A ALY

As a simple yet important example, consider the ARCH(1)-type conditional
variance specification \;;; = (1 — a;1) + OKjl(f]zt_l‘t_l + wjjt—11t—1), in which ¢' =
(11, @21, ..., 1) (see Harvey et al. (1992)). If @p =0, so that Ai(c,v,0) =
I V¢, we obtain dA}(c,~,0)/dc =0, IX(c,~,0)/dv = 0 and OX;(c,~,0)/d¢p =
dg (fi-1ji-1(c, 7, O)fiflﬁfl(c, ~,0) + Q_1¢-1(c,7,0) — I].

Therefore, since E (CyX; xx;35"Co — CiE;'Co) = 0, the orthogonality
conditions implicit in the last & elements of the score are simply cov| fﬁ‘t(cg, Yo, 0),
fftfl‘tfl(co,'yo,O)] = 0. Moreover, since f;;(vec(CoQo), vy, 0) = Q/Oft‘t(cg,’)’o, 0),
the same interpretation holds if we replace Cy by CyQp.

Bollerslev and Wooldridge (1992) also prove that Hi(¢p) = 02l;(¢)/0pd¢’
satisfies E [Hy(¢,)|Xi—1] = —10ved [E¢] /0p(E;'@%; )ovec %] /0¢'. When
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0’1 (¢0) _ MP0) v s -
&Ly CLON(B0) et
_El(?@b@v’ |Xt1} =3 0w 'z 'oC's™

Therefore, if we apply the law of iterated expectations, it is clear that the in-
formation matrix is block diagonal between static and dynamic variance param-
eters under the null of conditional homoskedasticity. Alternatively, this result
can be derived directly from the form of the score by noticing that when 1,= 0,
vech(xyx; — ) is serially independent over time. Therefore, it remains valid if

we replace Cy by CyQp. Finally, it is also worth noting that under conditional

homoskedasticity
—F [%MH} = (C{E,1CoaEy ) + (C) 2, 03, Co) Kk
—F {agl;((;i‘j) |Xt1] = EV(Z,'CorXZyh)
_E la(;f;gfby‘j) |Xt_1} = %(251@201)

where Ky is the commutation matrix of orders N and k (see Magnus and

Neudecker (1988)).
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a0:0.0
5o=0.0

ap=0.2
8o=0.6

a0:0.4
Bo=0.4

bias
std.dev.

bias
std.dev.

bias
std.dev.

Table 1: One Factor Model

Mean biases and standard deviations

for unconditional variance parameters

’7():0.5 ’7():2.0
Y Y
CML UML CML UML CML UML CML UML
-.0006  -.0006 | -.0036  -.0036 | -.0054 -.0051 | -.0297 -.0287
.0265 .0265 .0729 .0730 .0789 0771 .3093 3025
-.0006  -.0006 | -.0036  -.0036 | -.0055  -.0054 | -.0290 -.0292
.0269 .0270 .0720 .0729 .0795 .0786 .3045 .3034
-.0006  -.0006 | -.0035 -.0037 | -.0055  -.0058 | -.0282  -.0300
0277 .0282 .0700 .0729 .0795 .0818 .2913 .3047

C = (01+CQ+03)/3

7=+ +1)/3




Table 2: One Factor Model

Proportion of estimates at the boundary of the parameter space

aOZO.O, 0:0.0
a0:0.2,ﬂ0:0.6
a0:0.4, 020.4

7020.5 7022.0
a=0,3=0 a#03=0 a=0,=0 a#£0,8=0
CML 28 CML 25 CML 28 CML 2§

556 .5h7 | 265 264 | 552 552 | .286  .282
022 027 | .091 086 | .118 137 [ .198  .167
003 005 | .074 070 | .049 059 | .218 .185




a0:0.2
Bo=0.6

ap=0.4
Bo=0.4

bias
std.dev.

bias
std.dev.

Table 3: One Factor Model

Mean biases and standard deviations

for conditional variance parameters

’}/0:0.5 ’70:2.0
CML 25 CML 25 CML 25 CML 25
.007 -.002 | -.106 -.103 019  -.007 | -.183 -.162
112 104 253 .250 172 .149 302 .299
-.004 -.030 | -.043 -.039 | -.015 -.065 | -.081 -.058
151 134 .196 195 222 190 257 .257




Cal

Cb1

Ca2

Cb2

Cal

Cb1

Ca2

Cb2

bias
s.d.

bias
s.d.

bias
s.d.

bias
s.d.

bias
s.d.

bias
s.d.

bias
bias
s.d.

bias
s.d.

bias

Table 4: Two Factor Model
Mean biases and standard deviations

for unconditional variance parameters

co = (0,0,0,1,1,1;1,1,1,0,0,0)"

Oé()ZO.Q 60:().6 a0:O.4 50:().4
’}/0:0.5 ’7022.0 ’}/0:0.5 ’}/0:2.0
CML RML UML CML RML UML CML RML UML CML RML UML
.0014 -.0013 -.0012] .0215 -.0001 -.0004[ .0026 -.0014 -.0014] .0136 -.0003 -.0004
1349 .05564 0556 .1912 .1006 .1003| .1018 .057Y0 .0577] .1603 .1005 .1034
-.0120 -.0033 -.0034]-.0004 -.0147 -.01491-.0011 -.0035 -.0037[-.0307 -.0145 -.0159
.0600 .0279 .0282] .1365 .0814 .0829] .0578 .0286 .0295] .1187 .0803 .0858
-.01v8 -.0016 -.0016(-.0549 -.0117 -.0117[-.0069 -.0015 -.0016 [-.0347 -.0113 -.0117
.0611 .0269 .0269| .1513 .0810 .0809| .0306 .027v1 .0271] .1208 .0808 .0807
.0033 -.0005 -.0006] .0098 -.0026 -.0020[-.0004 -.0003 -.0005] .0036 -.0018 -.0012
1285 .0405 .0407| .1934 .1010 .1011| .0835 .0396 .0408] .1556 .0974 .0974
-.0068 -.0057 -.0098[-.0437 -.0428 -.0441]-.0059 -.0058 -.0059[-.0429 -.0417 -.0444
0724 .0723 .0730| .3141 .3100 .3136| .0712 .0712 .0730| .3048 .3018 .3142
o=t LLELLL L 1)
04020.2 50:0.6 a0:0.4 5020.4
70:0.5 ’}/0:2.0 7020.5 70:2.0
CML RML UML CML RML UML CML RML UML CML RML UML
-.0121 .0955 .1040]-.0038 .0920 .0987[-.0072 .0955 .1076]-.0045 .0s41 .1007
1296 .0424 0417 .1820 .0815 .0809| .0939 .0473 .0455] .1526 .0841 .0838
-.0158 -.0373 -.0394[-.0457 -.0437 -.0468]-.0079 -.0360 -.0415[-.0305 -.0406 -.0486
0622 .0296 .0297| .1305 .0787 .0785| .0439 .0315 .0317| .1057 .0778 .0813
-.0151 .0151 .0150[-.0062 -.0021 -.0035[-.0048 .0149 .0150[-.0337 -.0009 -.0038
.0611 .0309 .0312| .1655 .0997 .1012| .0324 .0306 .0313] .1326 .0977 .1018
-.0142 -1339 -.1418[-.0164 -.1433 -.1561 [-.0075 -.1210 -.1417[-.0210 -.1260 -.1566
1293 .0480 .0485| .1916 .1344 .1399| .0796 .0473 .0488] .1564 .1283 .1413
-.0060 -.0063 -.0060]-.0017 -.0519 -.05624]-.0060 -.0067 -.0061]-.0505 -.0525 -.0037
0725 0726 .0732] .3269 .3267 .3210| .0711 .0715 .0732] .3117 .3266 .3114

Ca1 = (C11 + €21 + ¢31)/3, e = (ca1 + ¢51 + C61)/3, Ca2 = (12 + 22 + €32) /3,
g = (Caz + C52)/2, 7 = § 2oy Vi




Table 5: Two Factor Model

Proportion of estimates at the boundary of the parameter space

Co = (Oa Oa Oa 1a 1a 17 1a 1> 1> 0) 0>O)/

7020.5 70:2.0
a=0,8=0 a&+£0,3=0 a=0,8=0 a&+£0,3=0
CML RML 2S CML RML 2S CML RML 28 CML RML 2S
20=0.2,60=0.6 [ .034 034 .038] .114 .088 .084] .146 .145 .153[ .226 .190 .166
0=0.4,60=0.4] .004 .004 .004| .097 .077 .072| .064 .064 .072| .260 .222 .188
c=(31%1L151,11% 1)
’}/0:0.5 ’}/0:2.0
a=0,8=0 &+40,3=0 a=0,8=0 a&+£0,3=0

CML RML 2S5 CML RML 25 CML RML 2S CML RML 2S

o0=0.2,50=0.6 | .034 .048 .054| .095 .124 .117
op=0.4,50=0.4| .004 .011 .015| .095 .099 .093

156
.062

167
.095

195
109

201 225 .183
297 227 186




060:0.2
£o=0.6

a0:0.4
Bo=0.4

060:0.2
Bo=0.6

a0:0.4
Bo=0.4

bias

std.dev.

bias

std.dev.

bias

std.dev.

bias

std.dev.

Mean biases and standard deviations

Table 6: Two Factor Model

for conditional variance parameters

¢ = (0,0,0,1,1,1;1,1,1,0,0,0)

’}/0:0.5 ’7():2.0
«@ I5] « I6]
CML RML 2S CML RML 2S CML RML 2S CML RML 2S
.025 .007 -.003|-.128 -.109 -.106| .062 .025 -.014]-.219 -.192 -.166
A15 0 0112 103 .259 .248  .246| .192 .181 .146| .305 .301 .301
.010 -.003 -.032|-.067 -.047 -.041| .017 -.012 -.081] -.108 -.089 -.055
150 0150 131 197 193 193 224 226 .186] .258 .256 .258
c=(31%131L15111%+ 11y
’}/0:0.5 ’7():2.0
«@ I5] « I6]
CML RML 2S CML RML 2S CML RML 2S CML RML 2S
.027 -.021 -.030(-.116 -.120 -.115| .064 -.013 -.047]-.201 -.207 -.175
120 .108  .100| .256  .273  .269| .208 .164 .134| .306 .312 311
.012 -.061 -.088|-.065 -.027 -.019| .017 -.079 -.144]-.095 -.074 -.036
156 .150 133 202 .214 215 .234 .217 .176] .266 271 .275




Figure 1: Test for ARCH in common factor

P-value discrepancy plots
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Figure 3: Likelihood Ratio Test for overidentifying restriction
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Figure 4: Likelihood Ratio Test for overidentifying restriction
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