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CEMFI

<mencia@cemfi.es>

Enrique Sentana
CEMFI

<sentana@cemfi.es>

February 2004
Revised: July 2005

Abstract
We analyse the Generalised Hyperbolic distribution adequacy to model kurtosis
and asymmetries in multivariate conditionally heteroskedastic dynamic regression
models. We standardise this distribution, obtain analytical expressions for the
log-likelihood score, and explain how to evaluate the information matrix. We also
derive tests for the null hypotheses of multivariate normal and Student t innova-
tions, and decompose them into skewness and kurtosis components, from which we
obtain more powerful one-sided versions. Finally, we present an empirical applica-
tion to five NASDAQ sectorial stock returns that indicates that their conditional
distribution is asymmetric and leptokurtic, which can be successfully exploited for
risk management purposes.

Keywords: Inequality Constraints, Kurtosis, Multivariate Normality Test, Skew-
ness, Student t, Supremum Test, Tail Dependence.

JEL: C52, C32, G11

∗We are grateful to Manuel Arellano, Ole Barndorff-Nielsen, Luc Bauwens, Anil Bera, Rob Engle,
Gabriele Fiorentini, Eric Ghysels, Vassilis Hajivassiliou, Sébastien Laurent, Eric Renault, Luis Seco, Neil
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1 Introduction

The Basel Capital Adequacy Accord forced banks and other financial institutions

to develop models to quantify all their risks accurately. In practice, most institutions

chose the so-called Value at Risk (V@R) framework to determine the capital necessary

to cover their market risk exposure. As is well known, the V@R of a portfolio is defined

as the positive threshold value V such that the probability of the portfolio suffering a

reduction in wealth larger than V over some fixed time interval equals some prespecified

level κ < 1/2. Undoubtedly, the most successful V@R methodology was developed by

the RiskMetrics Group (1996). A key assumption of this methodology, though, is that

the distribution of the returns on primitive assets, such as stocks and bonds, can be

well approximated by a multivariate normal distribution after controlling for predictable

time-variation in their covariance matrix. However, many empirical studies with finan-

cial time series data indicate that the distribution of asset returns is clearly non-normal

even after taking volatility clustering effects into account. And although it is true that

we can obtain consistent estimators of the conditional mean and variance parameters

irrespective of the validity of the assumption of normality by using the Gaussian pseudo-

maximum likelihood (PML) procedure advocated by Bollerslev and Wooldridge (1992)

among others, the resulting V@R estimates could be substantially biased if the extreme

tails accumulate more density than a normal distribution can allow for. This is par-

ticularly true in the context of multiple financial assets, in which the probability of the

joint occurrence of several extreme events is regularly underestimated by the multivariate

normal distribution, especially in larger dimensions.

For most practical purposes, departures from normality can be attributed to two dif-

ferent sources: excess kurtosis and skewness. Excess kurtosis implies that extraordinary

gains or losses are more common than what a normal distribution predicts. Analogously,

if we assume zero mean returns for simplicity, positive (negative) skewness indicates a

higher (lower) probability of experiencing large gains than large losses of the same mag-

nitude. Therefore, the effects of non-normality are especially noticeable in the tails of the

distribution. In a recent paper, Fiorentini, Sentana and Calzolari (2003) (FSC) discuss

the use of the multivariate Student t distribution to model excess kurtosis. Despite its

attractiveness, though, the multivariate Student t distribution, which is a member of the

elliptical family, rules out any potential asymmetries in the conditional distribution of
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asset returns. Such a shortcoming is more problematic than it may seem, because ML

estimators based on incorrectly specified non-Gaussian distributions often lead to incon-

sistent parameter estimates (see Newey and Steigerwald, 1997). In this context, the main

objective of our paper is to assess the adequacy of the distributional assumption made by

FSC and other authors by considering an alternative family of distributions which allows

for both excess kurtosis and asymmetries in the innovations, but which at the same time

nests the multivariate Student t and Gaussian distributions. Specifically, we will use

the rather flexible Generalised Hyperbolic (GH) distribution introduced by Barndorff-

Nielsen (1977). Formally, the GH distribution can be understood as a location-scale

mixture of a multivariate Gaussian vector, in which the positive mixing variable follows

a Generalised Inverse Gaussian (GIG) distribution (see Jørgensen, 1982, and Johnson,

Kotz, and Balakrishnan, 1994, for details, as well as appendix D). Although the GH

distribution has been used to model the unconditional distribution of financial returns

(see e.g. Prause, 1998), to the best of our knowledge it has not yet been used in its more

general form for modelling the conditional distribution of financial time series, which is

the relevant one from a risk management perspective.

Our approach is related to Bera and Premaratne (2002), who also nest the Student t

distribution by using Pearson’s type IV distribution in univariate static models. However,

they do not explain how to extend their approach in multivariate contexts, nor do they

consider dynamic models explicitly. Our approach also differs from Bauwens and Laurent

(2002), who introduce skewness by “stretching” the multivariate Student t distribution

differently in different orthants. However, the implementation of their technique becomes

increasingly difficult in large dimensions, as the number of orthants is 2N , where N

denotes the number of assets. Similarly, semi-parametric procedures, including Hermite

polynomial expansions, become infeasible for moderately large N , unless one maintains

the assumption of elliptical symmetry, and the same is true of copulae methods.

The rest of the paper is organised as follows. We first give an overview of the original

GH distribution in section 2.1, and explain how to reparametrise it so that it has zero

mean and unitary covariance matrix. Then, in section 2.2 we describe the econometric

model under analysis, while in sections 2.3, 2.4 and 2.5 we discuss the computation of

the log-likelihood function, its score, and the information matrix, respectively. Section

3 focuses on testing distributional assumptions. In particular, we develop tests for both
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multivariate normal and multivariate Student t innovations against GH alternatives.

Section 4 presents the results of several Monte Carlo experiments. Finally we include an

empirical application to NASDAQ sectorial stock returns in section 5, followed by our

conclusions. Proofs and auxiliary results can be found in the appendix.

2 Maximum likelihood estimation

2.1 The Generalised Hyperbolic distribution

If the N × 1 random vector u follows a GH distribution with parameters ν, δ, γ,α,β

and Υ, which we write as u ∼ GHN (ν, δ, γ,α,β,Υ), then its density will be given by

fGH(u) =

(
γ
δ

)ν
(2π)

N
2 [β′Υβ + γ2]

ν−N
2 |Υ|

1
2 Kν (δγ)

{√
β′Υβ + γ2δq

[
δ−1(u−α)

]}ν−N
2

×Kν−N
2

{√
β′Υβ + γ2δq

[
δ−1(u−α)

]}
exp [β′ (u−α)] ,

where ν ∈ R, δ, γ ∈ R+, α,β ∈ RN , Υ is a positive definite matrix of order N , Kν (·)

is the modified Bessel function of the third kind (see Abramowitz and Stegun, 1965, p.

374, as well as appendix C), and q [δ−1(u−α)] =
√

1 + δ−2(u−α)′Υ−1(u−α).

To gain some intuition on the role that each parameter plays in the GH distribution,

it is useful to write u as the following location-scale mixture of normals

u = α + Υβξ−1 + ξ−
1
2Υ

1
2 r, (1)

where r ∼ N(0, IN), and the positive mixing variable ξ is an independent GIG with

parameters −ν, γ and δ, or ξ ∼ GIG (−ν, γ, δ) for short.1 Since u given ξ is Gaussian

with conditional mean α+Υβξ−1 and covariance matrix Υξ−1, it is clear that α and Υ

play the roles of location vector and dispersion matrix, respectively. There is a further

scale parameter, δ; two other scalars, ν and γ, to allow for flexible tail modelling; and

the vector β, which introduces skewness in this distribution.

Given that δ and Υ are not separately identified, Barndorff-Nielsen and Shephard

(2001b) set the determinant of Υ equal to 1. However, it is more convenient to set δ = 1

instead in order to reparametrise the GH distribution so that it has mean vector 0 and

covariance matrix IN . In addition, we must restrict α and Υ as follows:

1Although (1) is written in terms of the reciprocal of ξ by analogy with the usual presentation of
the Student t distribution, we could alternatively work with χ = ξ−1without loss of generality since the
reciprocal of a GIG random variable is also GIG (see appendix D).
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Proposition 1 (Standardisation) Let ε∗ ∼ GHN (ν, δ, γ,α,β,Υ). If δ = 1, α =
−c (β, ν, γ) β, and

Υ =
γ

Rν (γ)

[
IN +

c (β, ν, γ)− 1

β′β
ββ′

]
, (2)

where Rν (γ) = Kν+1 (γ) /Kν (γ), Dν+1 (γ) = Kν+2 (γ)Kν (γ) /K2
ν+1 (γ) and

c (β, ν, γ) =
−1 +

√
1 + 4[Dν+1 (γ)− 1]β′β

2[Dν+1 (γ)− 1]β′β
, (3)

then E (ε∗) = 0 and V (ε∗) = IN .

Thus, we can achieve a leptokurtic and asymmetric standardised multivariate distri-

bution with only N + 2 additional parameters.

One of the most attractive properties of the GH distribution is that it contains as

particular cases several of the most important multivariate distributions already used in

the literature. The most important ones are:

• Normal, which can be achieved in three different ways: (i) when ν → −∞ or (ii)

ν → +∞, regardless of the values of γ and β; and (iii) when γ →∞ irrespective of the

values of ν and β.

• Symmetric Student t, obtained when −∞ < ν < −2, γ = 0 and β = 0.

• Asymmetric Student t, which is like its symmetric counterpart except that the

vector β of skewness parameters is no longer zero.

• Asymmetric Normal-Gamma, which is obtained when γ = 0 and 0 < ν <∞.

• Normal Inverse Gaussian, for ν = −.5 (see Aas, Dimakos, and Haff, 2004).

• Hyperbolic, for ν = 1 (see Chen, Härdle, and Jeong, 2004)

More generally, the distribution of ε∗ becomes a simple scale mixture of normals,

and thereby spherical, when β is zero, with a coefficient of multivariate kurtosis that is

monotonically decreasing in both γ and |ν| (see appendix E). Like any scale mixture of

normals, though, the GH distribution does not allow for thinner tails than the normal.

Nevertheless, financial returns are very often leptokurtic in practice, as section 5 confirms.

Another important feature of the standardised GH distribution is that, although the

elements of ε∗ are uncorrelated, they are not independent except in the multivariate

normal case. In general, the GH distribution induces “tail dependence”, which operates

through the positive GIG variable in (1). Intuitively, ξ forces the realisations of all the

elements in ε∗ to be very large in magnitude when it takes very small values, which

introduces dependence in the tails of the distribution. In addition, we can make this
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dependence stronger in certain regions by choosing β appropriately. Specifically, we can

make the probability of extremely low realisations of several variables much higher than

what a Gaussian variate can allow for, as illustrated in Figures 1a-f, which compare the

densities of standardised bivariate normal with symmetric and asymmetric Student t

distributions. This is confirmed by Figure 2, which represents the so-called exceedance

correlation between the uncorrelated marginal components in Figure 1. Hence, the GH

distribution could capture the empirical observation that there is higher tail dependence

across stock returns in market downturns (see Longin and Solnik, 2001).

Finally, Blæsild (1981) showed that the marginal distributions of linear combinations

of GH variables (including the individual components) are also GH.2 In our notation,

his result can be stated as follows:

Proposition 2 Let ε∗ be distributed as a N × 1 standardised GH random vector with
parameters ν, γ and β. Then, for any vector w ∈ RN , with w 6= 0, s∗ = w′ε∗/

√
w′w is

distributed as a standardised GH scalar random variable with parameters ν, γ and

β(w) =
c (β, ν, γ) (w′β)

√
w′w

w′w + [c (β, ν, γ)− 1] (w′β)2/(β′β)
.

Note that only the skewness parameter, β(w), is affected, as it becomes a function

of the weights, w. This result is particularly useful in financial applications, since the

returns to any conceivable portfolio of a collection of assets will be a linear combination of

the returns on those primitive assets. It also implies that skewness is a “common feature”

of the GH distribution, in the Engle and Kozicki (1993) sense, as we can generate full-

rank linear combinations of ε∗ with the asymmetry confined to a single element.

2.2 The dynamic econometric model

Barndorff-Nielsen and Shephard (2001a) use the (non-standardised) GH distribution

in the previous section to capture the unconditional distribution of returns on assets

whose price dynamics are generated by continuous time stochastic volatility models

in which the instantaneous volatility follows an Ornstein-Uhlenbeck process with Lévy

innovations. Discrete time models for financial time series, in contrast, are usually

characterised by an explicit dynamic regression model with time-varying variances and

covariances. Typically, the N dependent variables in yt are assumed to be generated as

yt = µt(θ) + Σ
1
2
t (θ)ε∗t ,

µt(θ) = µ (zt, It−1; θ) ,
Σt(θ) = Σ (zt, It−1; θ) ,

 (4)

2Likewise, the distribution of a subvector of ε∗ conditional on the values taken by a different subvector
is also GH (see Blæsild ,1981, for a proof, and Menćıa, 2005, for financial applications).
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where µ() and vech [Σ()] are N and N(N+1)/2-dimensional vectors of functions known

up to the p × 1 vector of true parameter values, θ0, zt are k contemporaneous condi-

tioning variables, It−1 denotes the information set available at t − 1, which contains

past values of yt and zt, Σ
1/2
t (θ) is some N × N “square root” matrix such that

Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ), and ε∗t is a vector martingale difference sequence satisfying

E(ε∗t |zt, It−1; θ0) = 0 and V (ε∗t |zt, It−1; θ0) = IN . As a consequence, E(yt|zt, It−1; θ0) =

µt(θ0) and V (yt|zt, It−1; θ0) = Σt(θ0).

In this context, FSC assumed that ε∗t followed a standardised multivariate Student

t distribution with ν0 degrees of freedom conditional on zt and It−1. Instead, we will

assume that the conditional distribution of the standardised innovations belongs to the

more general GH class. Hence, we will be able to assess the adequacy of their assumption

by allowing for both skewness and more flexible excess kurtosis in the distribution of ε∗t .

Importantly, given that ε∗t is not generally observable, the choice of “square root”

matrix is not irrelevant except in univariate GH models, or in multivariate GH models

in which either Σt(θ) is time-invariant or ε∗t is spherical (i.e. β = 0), a fact that

previous efforts to model multivariate skewness in dynamic models have overlooked (see

e.g. Bauwens and Laurent, 2002). Therefore, if there were reasons to believe that

ε∗t were not only a martingale difference sequence, but also serially independent, then

we could in principle try to estimate the “unique” orthogonal rotation underlying the

“structural” shocks. However, since we believe that such an identification procedure

would be neither empirically plausible nor robust, we prefer the conditional distribution

of yt not to depend on whether Σ
1/2
t (θ) is a symmetric or lower triangular matrix, nor

on the order of the observed variables in the latter case. This can be achieved by making

β a function of past information and a new vector of parameters b in the following way:

βt(θ,b) = Σ
1
2
′

t (θ)b. (5)

It is then straightforward to see that the resulting GH log-likelihood function will not

depend on the choice of Σ
1
2
t (θ).3 Finally, it is analytically convenient to replace ν and γ

by η and ψ, where η = −.5ν−1 and ψ = (1 + γ)−1, although we continue to use ν and γ

in some equations for notational simplicity.4

3Nevertheless, it would be fairly easy to adapt all our subsequent expressions to the alternative
assumption that βt(θ,b) = b ∀t (see Menćıa, 2003).

4An undesirable aspect of this reparametrisation is that the log-likelihood is continuous but non-
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2.3 The log-likelihood function

Let φ = (θ′, η, ψ,b)
′

denote the parameters of interest. The log-likelihood func-

tion of a sample of size T takes the form LT (YT |φ) =
∑T

t=1 l (yt|zt, It−1; φ), where

l (yt|zt, It−1; φ) is the conditional log-density of yt given zt, It−1 and φ. Given the non-

linear nature of the model, a numerical optimisation procedure is usually required to

obtain maximum likelihood (ML) estimates of φ, φ̂T say. Assuming that all the ele-

ments of µt(θ) and Σt(θ) are twice continuously differentiable functions of θ, we can use

a standard gradient method in which the first derivatives are numerically approximated

by re-evaluating LT (φ) with each parameter in turn shifted by a small amount, with an

analogous procedure for the second derivatives. Unfortunately, such numerical deriva-

tives are sometimes unstable, and moreover, their values may be rather sensitive to the

size of the finite increments used. This is particularly true in our case, because even if

the sample size T is large, the GH log-likelihood function is often rather flat for values of

the parameters that are close to the Gaussian case (see FSC). Fortunately, in this case it

is possible to obtain analytical expressions for the score vector (see appendix B), which

should considerably improve the accuracy of the resulting estimates (McCullough and

Vinod, 1999). Moreover, a fast and numerically reliable procedure for the computation

of the score for any value of φ is of paramount importance in the implementation of the

score-based indirect estimation procedures introduced by Gallant and Tauchen (1996).

2.4 The score vector

We can use EM algorithm - type arguments to obtain analytical formulae for the

score function st(φ) = ∂l (yt|zt, It−1; φ) /∂φ. The idea is based on the following dual

decomposition of the joint log-density (given zt, It−1 and φ) of the observable process

yt and the latent mixing process ξt:

l (yt, ξt|zt, It−1; φ) ≡ l (yt|ξt, zt, It−1; φ) + l (ξt|zt, It−1; φ)

≡ l (yt|zt, It−1; φ) + l (ξt|yt, zt, It−1; φ) ,

where l (yt|ξt, zt, It−1; φ) is the conditional log-likelihood of yt given ξt, zt, It−1 and φ;

l (ξt|yt, zt, It−1; φ) is the conditional log-likelihood of ξt given yt zt, It−1 and φ; and

finally l (yt|zt, It−1; φ) and l (ξt|zt, It−1; φ) are the marginal log-densities (given zt, It−1

differentiable with respect to η at η = 0, even though it is continuous and differentiable with respect to
ν for all values of ν. The problem is that at η = 0, we are pasting together the extremes ν → ±∞ into
a single point. Nevertheless, it is still worth working with η instead of ν when testing for normality.
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and φ) of the observable and unobservable processes, respectively. If we differentiate

both sides of the previous identity with respect to φ, and take expectations given the

full observed sample, IT , then we will end up with:

st(φ) = E

(
∂l (yt|ξt, zt, It−1; φ)

∂φ

∣∣∣∣ IT ; φ

)
+ E

(
∂l (ξt|zt, It−1; φ)

∂φ

∣∣∣∣ IT ; φ

)
(6)

because E [∂l (ξt|yt, zt−1, It−1; φ) /∂φ| IT ; φ] = 0 by virtue of the Kullback inequality.

In this way, we decompose st(φ) as the sum of the expected values of (i) the score of

a multivariate Gaussian log-likelihood function, and (ii) the score of a univariate GIG

distribution, both of which are easy to obtain (see appendix B for details).5

For the purposes of developing our testing procedures in section 3, it is convenient

to obtain closed-form expressions for st(φ) under the two important special cases of

multivariate Gaussian and Student t innovations.

2.4.1 The score under Gaussianity

As we saw before, we can achieve normality in three different ways: (i) when η → 0+

or (ii) η → 0− regardless of the values of b and ψ; and (iii) when ψ → 0, irrespective

of η and b. Therefore, it is not surprising that the Gaussian scores with respect to

η or ψ are 0 when these parameters are not identified, and also, that lim
η·ψ→0

sbt(φ) = 0.

Similarly, the limit of the score with respect to the mean and variance parameters,

limη·ψ→0 sθt(φ), coincides with the usual Gaussian expressions (see e.g. Bollerslev and

Wooldridge (1992)). Further, we can show that for fixed ψ > 0,

lim
η→0+

sηt(φ) = − lim
η→0−

sηt(φ) =

[
1

4
ς2t (θ)− N + 2

2
ςt(θ) +

N (N + 2)

4

]
+b′ {εt(θ) [ςt(θ)− (N + 2)]} , (7)

where εt(θ) = yt − µt(θ), ε∗t (θ) = Σ
− 1

2
t εt(θ) and ςt(θ) = ε∗′t (θ)ε∗t (θ), which confirms

the non-differentiability of the log-likelihood function with respect to η at η = 0 (see

footnote 4). Finally, we can show that for η 6= 0, lim
ψ→0

sψt(φ) is exactly one half of (7).

2.4.2 The score under Student t innovations

In this case, we have to take the limit as ψ → 1 and b → 0 of the general score

function. Not surprisingly, the score with respect to π, where π = (θ′, η)′, coincides with

5It is possible to show that the latent variable ξt could be fully recovered from observations on yt as
N →∞, which would greatly simplify the calculations implicit in expression (6).
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the formulae in FSC. But our more general GH assumption introduces two additional

terms: the score with respect to b,

sbt (π, 1, 0) =
η [ςt(θ)− (N + 2)]

1− 2η + ηςt(θ)
εt(θ), (8)

which we will use for testing the Student t distribution versus asymmetric alternatives;

and the score with respect to ψ, which in this case is identically zero despite the fact

that ψ is locally identified. We shall revisit this issue in section 3.2.

2.5 The information matrix

Given correct specification, the results in Crowder (1976) imply that the score vector

st(φ) evaluated at φ0 has the martingale difference property under certain regularity

conditions. In addition, his results also imply that under additional regularity conditions

(which in particular require that φ0 is locally identified and belongs to the interior of the

parameter space), the ML estimator will be asymptotically normally distributed with a

covariance matrix which is the inverse of the usual information matrix

I(φ0) = p lim
T→∞

1

T

T∑
t=1

st(φ0)s
′
t(φ0) = E[st(φ0)s

′
t(φ0)]. (9)

The simplest consistent estimator of I(φ0) is the sample outer product of the score:

ÎT (φ̂T ) =
1

T

T∑
t=1

st(φ̂T )s′t(φ̂T ).

However, the resulting standard errors and tests statistics can be badly behaved in finite

samples, especially in dynamic models (see e.g. Davidson and MacKinnon, 1993). We

can evaluate much more accurately the integral implicit in (9) in pure time series models

by generating a long simulated path of size Ts of the postulated process ŷ1, ŷ2, · · · , ŷTs ,

where the symbol ˆ indicates that the data has been generated using the GH maximum

likelihood estimates φ̂T . Then, if we denote by sts(φ̂T ) the value of the score function

for each simulated observation, our proposed estimator of the information matrix is

ĨTs(φ̂T ) =
1

Ts

Ts∑
ts=1

sts(φ̂T )s′ts(φ̂T ),

where we can get arbitrarily close in a numerical sense to the value of the asymptotic

information matrix evaluated at φ̂T , I(φ̂T ), as we increase Ts. Our experience suggests

that Ts = 100, 000 yields reliable results. In this respect, the simplest way to simulate
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a GH variable is to exploit its mixture-of-normals interpretation in (1) after sampling

from a multivariate normal and a scalar GIG distribution (see Dagpunar, 1998). We

shall investigate the finite sample performance of these alternative estimators of the

sampling variance of the ML estimators in section 4. In some special cases, though, it

is also possible to estimate I(φ0) as the sample average of the conditional information

matrix It(φ) = V ar [st(φ)| zt, It−1; φ]. In particular, analytical expressions for It(φ)

can be obtained in the case of Gaussian and Student t innovations.

2.5.1 The conditional information matrix under Gaussianity

In principle, we must study separately the three possible ways to achieve normality.

First, consider the conditional information matrix when η → 0+,[
Iθθt (θ, 0+, ψ,b) Iθηt (θ, 0+, ψ,b)
I ′θηt (θ, 0+, ψ,b) Iηηt (θ, 0+, ψ,b)

]
= lim

η→0+
V

[
sθt (θ, η, ψ,b)
sηt (θ, η, ψ,b)

∣∣∣∣ zt, It−1; φ

]
, (10)

where we have not considered either sbt(φ) or sψt(φ) because they are identically zero

in the limit. As expected, the conditional variance of the component of the score corre-

sponding to the conditional mean and variance parameters θ coincides with the expres-

sion obtained by Bollerslev and Wooldridge (1992). Moreover, we can show that

Proposition 3 Iθηt (θ, 0
+, ψ,b) = 0 and Iηηt (θ, 0+, ψ,b) = (N + 2) [.5N + b′Σt(θ)b].

Not surprisingly, these expressions reduce to the ones in FSC for b = 0.

Similarly, when η → 0− we will have exactly the same conditional information matrix

because limη→0− sηt (θ, η, ψ,b) = − limη→0+ sηt (θ, η, ψ,b), as we saw before.

Finally, when ψ → 0, we must exclude sbt(φ) and sηt(φ) from the computation of

the information matrix for the same reasons as above. However, due to the propor-

tionality of the scores with respect to η and ψ under normality, it is trivial to see that

Iθψt (θ, η, 0,b) = 0, and that Iψψt (θ, η, 0,b) = 1
4
Iηηt (θ, 0+, ψ,b) = 1

4
Iηηt (θ, 0−, ψ,b).

2.5.2 The conditional information matrix under Student t innovations

Since sψt (π, 1,0) = 0 ∀t, the only interesting components of the conditional infor-

mation matrix under Student t innovations correspond to sθt(φ), sηt(φ) and sbt(φ).

In this respect, we can use Proposition 1 in FSC to obtain Iππt(θ, η > 0, 1,0) =

V [sπt(π, 1,0)|zt, It−1; π, 1,0]. As for the remaining elements, we can show that:
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Proposition 4 Iηbt (θ, η > 0, 1,0) = 0,

Iθbt (θ, η > 0, 1,0) =
−2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)

∂µ′
t(θ)

∂θ
,

Ibbt (θ, η > 0, 1,0) =
2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)
Σt(θ).

3 Testing the distributional assumptions

3.1 Multivariate normality versus GH innovations

The derivation of a Lagrange multiplier (LM) test for multivariate normality versus

GH -distributed innovations is complicated by two unusual features. First, since the

GH distribution can approach the normal distribution along three different paths in the

parameter space, i.e. η → 0+, η → 0− or ψ → 0, the null hypothesis can be posed

in three different ways. In addition, some of the other parameters become increasingly

unidentified along each of those three paths. In particular, η and b are not identified in

the limit when ψ → 0, while ψ and b are unidentified when η → 0±.

There are two standard solutions in the literature to deal with testing situations with

unidentified parameters under the null. One approach involves fixing the unidentified

parameters to some arbitrary values, and then computing the appropriate test statistic

for those given values. This approach is plausible in situations where there are values

for the unidentified parameters which make sense from an economic or statistical point

of view. Unfortunately, it is not at all clear a priori what values for b and ψ or η are

likely to prevail under the alternative of GH innovations. For that reason, we follow here

the second approach, which consists in computing the LM test statistic for the whole

range of values of the unidentified parameters, which are then combined to construct

an overall test statistic (see Andrews, 1994). In our case, we compute LM tests for all

possible values of b and ψ or η for each of the three testing directions, and then take

the supremum over those parameter values, the motivation being that this is precisely

what the ordinary likelihood ratio (LR) test will do in those circumstances at a larger

computational cost (see Hansen, 1991). As we will show in the next subsections, we can

obtain closed-form analytical expressions for the supremum of the LM test statistics, as

well as for its asymptotic distribution, in contrast to what happens in the general case.

3.1.1 LM test for fixed values of the unidentified parameters

Let θ̃T denote the ML estimator of θ obtained by maximising a Gaussian log-

likelihood function. For the case in which normality is achieved as η → 0+, we can

11



use the results in sections 2.4.1 and 2.5.1 to show that for given values of ψ and b,

the LM test will be the usual quadratic form in the sample averages of the scores cor-

responding to θ and η, s̄θT

(
θ̃T , 0

+, ψ,b
)

and s̄ηT

(
θ̃T , 0

+, ψ,b
)
, with the inverse of

the unconditional information matrix as weighting matrix, which can be obtained as

the unconditional expected value of the conditional information matrix (10). But since

s̄θT

(
θ̃T , 0

+, ψ,b
)

= 0 by definition of θ̃T , and Iθηt (θ0, 0
+, ψ,b) = 0, we can show that

LM1

(
θ̃T , ψ,b

)
=

[√
T s̄ηT

(
θ̃T , 0

+, ψ,b
)]2

E[Iηηt (θ0, 0+, ψ,b)]
.

We can operate analogously for the other two limits, thereby obtaining the test

statistic LM2

(
θ̃T , ψ,b

)
for the null η → 0−, and LM3

(
θ̃T , η,b

)
for ψ → 1. Somewhat

remarkably, all these test statistics share the same formula, which only depends on b:

Proposition 5 (LM normality test)

LM1

(
θ̃T , ψ,b

)
= LM2

(
θ̃T , ψ,b

)
= LM3

(
θ̃T , η,b

)
= LM

(
θ̃T ,b

)
= (N + 2)−1

(
N

2
+ 2b′Σ̂b

)−1
{√

T

T

∑
t

[
1

4
ς2t (θ̃T )− N + 2

2
ςt(θ̃T ) +

N (N + 2)

4

]

+b′
√
T

T

∑
t

εt(θ̃T )
[
ςt(θ̃T )− (N + 2)

]}2

,

where Σ̂ is some consistent estimator of Σ(θ0) = E [Σt(θ0)], such as 1
T

∑
t

εt(θ̃T )ε′t(θ̃T ).

Under standard regularity conditions, LM
(
θ̃T ,b

)
will be asymptotically chi-square

with one degree of freedom for a given b under the null hypothesis of normality, which

effectively imposes the single restriction η · ψ = 0 on the parameter space.

3.1.2 The supremum LM test

By maximising LM
(
θ̃T ,b

)
with respect to b, we obtain the following result:

Proposition 6 (Supremum test)

sup
b∈RN

LM(θ̃T ) = LMk(θ̃T ) + LMs(θ̃T ),

LMk(θ̃T ) =
2

N (N + 2)

{√
T

T

∑
t

[
1

4
ς2t (θ̃T )− N + 2

2
ςt(θ̃T ) +

N (N + 2)

4

]}2

, (11)

LMs(θ̃T ) =
1

2 (N + 2)

{√
T

T

∑
t

εt(θ̃T )
[
ςt(θ̃T )− (N + 2)

]}′

Σ̂−1

×

{√
T

T

∑
t

εt(θ̃T )
[
ςt(θ̃T )− (N + 2)

]}
, (12)
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which converges in distribution to a chi-square random variable with N + 1 degrees of
freedom under the null hypothesis of normality.

The first component of the sup test, i.e. LMk(θ̃T ), is numerically identical to the

LM statistic derived by FSC to test multivariate normal versus Student t innovations.

These authors reinterpret (11) as a specification test of the restriction on the first two

moments of ςt(θ0) implicit in

E

[
N(N + 2)

4
− N + 2

2
ςt(θ0) +

1

4
ς2t (θ0)

]
= E[mkt(θ0)] = 0, (13)

and show that it numerically coincides with the kurtosis component of Mardia’s (1970)

test for multivariate normality in the models he considered (see below). Hereinafter, we

shall refer to LMk(θ̃T ) as the kurtosis component of our multivariate normality test.

In contrast, the second component of our test, LMs(θ̃T ), arises because we also allow

for skewness under the alternative hypothesis. This symmetry component is asymp-

totically equivalent under the null and sequences of local alternatives to T times the

uncentred R2 from either a multivariate regression of εt(θ̃T ) on ςt(θ̃T ) − (N + 2) (Hes-

sian version), or a univariate regression of 1 on
[
ςt(θ̃T )− (N + 2)

]
εt(θ̃T ) (Outer product

version). Nevertheless, we would expect a priori that LMs(θ̃T ) would be the version of

the LM test with the smallest size distortions (see Davidson and MacKinnon, 1983).

It is also useful to compare our symmetry test with the existing ones. In particular,

the skewness component of Mardia’s (1970) test can be interpreted as checking that

all the (co)skewness coefficients of the standardised residuals are zero, which can be

expressed by the N(N + 1)(N + 2)/6 non-duplicated moment conditions of the form:

E[ε∗it(θ0)ε
∗
jt(θ0)ε

∗
kt(θ0)] = 0, i, j, k = 1, · · · , N (14)

But since ςt(θ0) = ε∗′t (θ0)ε
∗
t (θ0), it is clear that (12) is also testing for co-skewness.

Specifically, LMs(θ̃T ) is testing the N alternative moment conditions

E{εt(θ0)[ςt(θ0)− (N + 2)]} = E[mst(θ0)] = 0, (15)

which are the relevant ones against GH innovations.

A less well known multivariate normality test was proposed by Bera and John (1983),

who considered multivariate Pearson alternatives instead. However, since the asymmetric

component of their test also assesses if (14) holds, we do not discuss it separately.
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All these tests were derived for nonlinear regression models with conditionally ho-

moskedastic disturbances estimated by Gaussian ML, in which the covariance matrix of

the innovations, Σ, is unrestricted and does not affect the conditional mean, and the con-

ditional mean parameters, % say, and the elements of vech(Σ) are variation free. In more

general models, though, they may suffer from asymptotic size distortions, as pointed out

in a univariate context by Bontemps and Meddahi (2005) and Fiorentini, Sentana, and

Calzolari (2004). An important advantage of our proposed normality test is that its

asymptotic size is always correct because both mkt(θ0) and mst(θ0) are orthogonal by

construction to the Gaussian score with respect to θ evaluated at θ0.

By analogy with Bontemps and Meddahi (2005), one possible way to adjust Mardia’s

(1970) formulae is to replace ε∗3it (θ) by H3[ε
∗
it(θ)] and ε∗2it (θ)ε∗jt(θ) by H2[ε

∗
it(θ)]H2[ε

∗
it(θ)]

(i 6= j) in the moment conditions (14), where Hk(·) is the Hermite polynomial of order k.

Alternatively, we can correct the asymptotic size by treating (14) as moment conditions,

with the Gaussian scores defining the PML estimators θ̃T (see Newey (1985) and Tauchen

(1985) for the general theory, and appendix F for specific details).

Finally, note that both LMk(θ̃T ) and LMs(θ̃T ) are numerically invariant to the way

in which the conditional covariance matrix is factorised, unlike the statistics proposed

by Lütkephohl (1993), Doornik and Hansen (1994) or Kilian and Demiroglu (2000), who

apply univariate Jarque and Bera (1980) tests to ε∗it(θ̃T ).

3.1.3 A one-sided, Kuhn-Tucker multiplier version of the supremum test

As we discussed in section 2.1, the class of GH distributions can only accommodate

fatter tails than the normal. In terms of the kurtosis component of our multivariate

normality test, this implies that as we depart from normality, we will have

E [mkt(θ0)|θ0, η0 > 0, ψ0 > 0] > 0. (16)

In view of the one-sided nature of the kurtosis component, we will follow FSC and suggest

a Kuhn-Tucker (KT) multiplier version of the supremum test that exploits (16) in order

to increase its power by making it asymptotically equivalent to the (sup) LR test (see

also Andrews, 2001). Specifically, we recommend the use of

KT (θ̃T ) = LMk(θ̃T )1
(
m̄kT (θ̃T ) > 0

)
+ LMs(θ̃T ),

where 1(·) is the indicator function, and m̄kT (θ) the sample mean of mkt(θ0). Asymp-

totically, the probability that m̄kT (θ̃T ) becomes negative is .5 under the null. Hence,
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KT (θ̃T ) will be distributed as a 50:50 mixture of chi-squares with N and N + 1 degrees

of freedom because the information matrix is block diagonal under normality. To obtain

p-values for this test, we can use the expression Pr (X > c) = 1− .5Fχ2
N

(c)− .5Fχ2
N+1

(c)

(see e.g. Demos and Sentana, 1998)

3.1.4 Power of the normality test

Although we shall investigate the finite sample properties of the different multivariate

normality tests in section 4, it is interesting to study their asymptotic power properties.

However, since the block-diagonality of the information matrix between θ and the other

parameters is generally lost under the alternative of GH innovations, for the purposes

of this exercise we only consider models in which µt(θ) and Σt(θ) are constant but

otherwise unrestricted, so that we can analytically compute the information matrix. In

more complex parametrisations, though, the results are likely to be qualitatively similar.

The results at the usual 5% significance level are displayed in Figures 3a to 3d for

ψ = 1 and T = 5, 000 (see appendix F for details). In Figures 3a to 2b, we have

represented η on the x-axis. We can see in Figure 3a that for b = 0 and N = 3,

the test with the highest power is the one-sided kurtosis test, followed by its two-sided

counterpart, the KT test, the sup test, and finally the skewness test. On the other hand,

if we consider asymmetric alternatives in which b is proportional to a vector of ones ι,

such as in Figure 3b, which is not restrictive because the power of our normality test

only depends on b through its Euclidean norm, the skewness component of the normality

test becomes important, and eventually makes the KT test, the sup test and even the

skewness test itself more powerful than both kurtosis tests. Not surprisingly, we can also

see from these figures that if we apply our tests to a single component of the random

vector, their power is significantly reduced.

In contrast, we have represented bi on the x-axis in Figures 3c and 3d. There we can

clearly see the effects on power of the fact that b is not identified in the limiting case of

η = 0. When η is very low, b is almost unidentified, which implies that large increases

in bi have a minimum impact on power, as shown in Figure 3c for η = .005 and N = 3.

However, when we give η a larger value such as η = .01 (see Figure 3d), we can see how

the power of those normality test that take into account skewness rapidly increases with

the asymmetry of the true distribution. Hence, we can safely conclude that, once we get

away from the immediate vicinity of the null, the inclusion of the skewness component
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of our test can greatly improve its power. On the other hand, the power of the kurtosis

test, which does not account for skewness, is less sensitive to increases in bi. Similar

results are obtained for N = 1, which we do not present to avoid cluttering the pictures.

Finally, we have also compared the power of our sup test with those of the moment

versions of Mardia’s (1970) and Lütkephohl (1993) tests, where this time we have as-

sumed that b = (b1, 0, 0)′ under the alternative for computational simplicity. The results

show the superiority of our proposed test against both symmetric and asymmetric GH

alternatives (see Figures 3e and 3f, respectively), which confirms the fact that it is testing

the most relevant moment conditions.

3.2 Student t tests

3.2.1 Student t vs symmetric GH innovations

As we saw before, the Student t distribution is nested in the GH family when ψ = 1

and b = 0. We can use this fact to test the validity of the distributional assumptions

made by FSC and other authors. In this respect, a test of H0 : ψ = 1 under the main-

tained hypothesis that b = 0 would be testing that the tail behaviour of the multivariate

t distribution adequately reflects the kurtosis of the data.

As we mentioned in section 2.4.2, though, it turns out that sψt(π, 1,0) = 0 ∀t, which

means that we cannot compute an LM test for H0 : ψ = 1. To deal with this unusual

type of testing situation, Lee and Chesher (1986) propose to replace the LM test by

what they call an “extremum test” (see also Bera, Ra, and Sarkar, 1998). Given that

the first-order conditions are identically 0, their suggestion is to study the restrictions

that the null imposes on higher order conditions. In our case, we will use a moment test

based on the second order derivative

sψψt (π, 1,0) =
η2

(1− 2η) (1− 4η)

ςt(θ)−N (1− 2η)

1− 2η + ηςt(θ)
+

η2 [N − ςt(θ)]

(1− 2η) (1 + (N − 2) η)
, (17)

the rationale being that E [sψψt (π0, 1,0) |zt, It−1,π0, ψ0 = 1,b0 = 0] = 0 under the null

of standardised Student t innovations with η−1
0 degrees of freedom, while

E [sψψt (π0, 1,0) |π0, ψ0 < 1,b0 = 0] > 0 (18)

under the alternative of standardised symmetric GH innovations.

Let π̄T = (θ̄
′
T , η̄T )′ denote the parameters estimated by maximising the symmetric

Student t log-likelihood function. The statistic that we propose to test for H0 : ψ = 1
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versus H1 : ψ 6= 1 under the maintained hypothesis that b = 0 is given by

τkT (π̄T ) =

√
T s̄ψψT (π̄T , 1,0)√
V̂ [sψψt (π̄T , 1,0)]

, (19)

where V̂ [sψψt (π̄T , 1,0)] is a consistent estimator of the asymptotic variance of sψψt (π̄T , 1,0)

that takes into account the sampling variability in π̄T . Under the null hypothesis of

Student t innovations with more than 4 degrees of freedom,6 it is easy to see that

the asymptotic distribution of τkT (π̄T ) will be N (0, 1). The required expression for

V [sψψt (π̄T , 1,0)] is given in the following result:

Proposition 7 (Student t symmetric test) If ε∗t is conditionally distributed as a
standardised Student t with η−1

0 > 4 degrees of freedom, then

√
T s̄ψψT (π̄T , 1,0)

d→ N
{
0, V [sψψt(π0, 1,0)]−M′(π0)I−1

ππ(π0, 1,0)M(π0)
}
,

where Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix in FSC,

V [sψψt(π0, 1,0)] =
8N (N + 2) η6

0

(1− 2η0)
2 (1− 4η0)

2 (1 + (N + 2) η0) (1 + (N − 2) η0)
,

and

M(π0) = E

[
Mθt(π0)
Mηt(π0)

]
= E

[
E [sθt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1; π0, 1,0]
E [sηt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1; π0, 1,0]

]
,

where

Mθt(π0) =
4 (N + 2) η4

0 (1− 2η0)
−1 (1− 4η0)

−1

[1 + (N + 2) η0][1 + (N − 2) η0]

∂vec′[Σt(θ0)]

∂θ
vec[Σ−1

t (θ0)],

Mηt(π0) =
−2N (N + 2) η3

0 (1− 2η0)
−2 (1− 4η0)

−1

(1 +Nη0) [1 + (N + 2) η0]
.

But given (18), and the fact that ψ can only be less than 1 under the alternative, a

one-sided test against H1 : ψ < 1 should again be more powerful in this context.

Finally, it is also important to mention that although sψt (π0, ψ,b) = 0 ∀t, we can

show that ψ is third-order identifiable at ψ = 1, and therefore locally identifiable, even

though it is not first- or second-order identifiable (see Sargan, 1983). More specifically,

we can use the Barlett identities to show that

E

[
∂2sψt(π0, 1,0)

∂ψ2
|π0, 1,0

]
= −E

[
∂sψt(π0, 1,0)

∂ψ
· sψt(π0, 1,0)|π0, 1,0

]
= 0,

but

E

[
∂3sψt(π0, 1,0)

∂ψ3
|π0, 1,0

]
= −3V

[
∂sψt(π0, 1,0)

∂ψ
|π0, 1,0

]
6= 0.

6If .25 < η0 < .5 the variance of [N − ςt(θ)] becomes unbounded. Given that the expected value of
this term remains 0 under the alternative hypothesis, the obvious solution is to base the test on the first
component of (17) only. The exact implementation details are available on request.
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3.2.2 Student t vs asymmetric GH innovations

By construction, the previous test maintains the assumption that b = 0. However, it

is straightforward to extend it to incorporate this symmetry restriction as an explicit part

of the null hypothesis. The only thing that we need to do is to include E[sbt (π, 1,0)] = 0

as an additional condition in our moment test, where sbt (π, 1,0) is defined in (8). The

asymptotic joint distribution of the two moment conditions that takes into account the

sampling variability in π̄T is given in the following result

Proposition 8 (Student t asymmetric test) If ε∗t is conditionally distributed as a
standardised Student t with η−1

0 degrees of freedom, then[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]
d→ N [0,V(π0)] ,

where

V(π0) =

[
Vbb (π0) Vbψ (π0)
V ′bψ (π0) Vψψ (π0)

]
=

{
Ibb(π0, 1,0) 0

0′ V [sψψt(π0, 1,0)]

}
−
[
I ′πb(π0, 1,0)I−1

ππ(π0, 1,0)Iπb(π0, 1,0) I ′πb(π0, 1,0)I−1
ππ(π0, 1,0)M(π0)

M′(π0)I−1
ππ(π0, 1,0)Iπb(π0, 1,0) M′(π0)I−1

ππ(π0, 1,0)M(π0)

]
, (20)

Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix derived in FSC,
Iπb(π0, 1,0) = E[Iπbt(π0, 1,0)] and Ibb(π0, 1,0) = E[Ibbt(π0, 1,0)] are defined in
Proposition 4, and M(π0) and V [sψψt(π0, 1,0)] are given in Proposition 7.

Therefore, if we consider a two-sided test, we will use

τgT (π̄T ) =

[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]′
V−1 (π̄T )

[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]
, (21)

which is distributed as a chi-square with N + 1 degrees of freedom under the null of

Student t innovations. Alternatively, we can again exploit the one-sided nature of the

ψ-component of the test. However, since V (π0) is not block diagonal in general, we must

orthogonalise the moment conditions to obtain a partially one-sided moment test which

is asymptotically equivalent to the LR test (see e.g. Silvapulle and Silvapulle, 1995).

Specifically, instead of using directly the score with respect to b, we consider

s⊥bt (π̄T , 1,0) = sbt (π̄T , 1,0)− Vbψ (π̄T )V−1
ψψ (π̄T ) sψψt (π̄T , 1,0) ,

whose sample average is asymptotically orthogonal to
√
T s̄ψψT (π̄T , 1,0) by construction.

Note, however, that there is no need to do this orthogonalisation when E [∂µt(θ0)/∂θ0] =

0, since in this case Vbψ (π0) = 0 because Iπb(π0, 1, 0) = 0 (see Proposition 4).
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It is then straightforward to see that the asymptotic distribution of

τoT (π̄T ) = T s̄⊥′bt (π̄T , 1,0)

[
Vbb (π̄T )−

Vbψ (π̄T )V ′bψ (π̄T )

Vψψ (π̄T )

]−1

s̄⊥bt (π̄T , 1,0)

+τ 2
kT (π̄T )1 [s̄ψψT (π̄T , 1,0) > 0] , (22)

is another 50:50 mixture of chi-squares with N and N + 1 degrees of freedom under the

null, because asymptotically, the probability that s̄ψψT (π̄T , 1,0) is negative will be .5 if

ψ0 = 1. Such a one-sided test benefits from the fact that a non-positive s̄ψψT (π̄T , 1,0)

gives no evidence against the null, in which case we only need to consider the orthogo-

nalised skewness component. In contrast, when s̄ψψT (π̄T , 1,0) is positive, (22) numeri-

cally coincides with (21).

On the other hand, if we only want to test for symmetry, we may use

τaT (π̄T ) =
√
T s̄′bT (π̄T , 1,0)V−1

bb (π̄T )
√
T s̄bT (π̄T , 1,0) , (23)

which can be interpreted as a regular LM test of the Student t distribution versus the

asymmetric t distribution under the maintained assumption that ψ = 1 (see Menćıa,

2003). As a result, τaT (π̄T ) will be asymptotically distributed as a chi-square distribution

with N degrees of freedom under the null of Student t innovations.

Given that we can show that the moment condition (15) remains valid for any ellip-

tical distribution, the symmetry component of our proposed normality test provides an

alternative consistent test for H0 : b = 0, which is however incorrectly sized when the

innovations follow a Student t. One possibility would be to scale LMs(θ̃T ) by multiply-

ing it by a consistent estimator of the adjusting factor [(1 − 4η0)(1 − 6η0)]/[1 + (N −

2)η0 + 2(N + 4)η2
0]. Alternatively, we can run the univariate regression of 1 on mst(θ̄T ),

or the multivariate regression of εt(θ̄T ) on ςt(θ̄T )− (N + 2), although in the latter case

we should use standard errors that are robust to heteroskedasticity. Not surprisingly, we

can show that these three procedures to test (15) are asymptotically equivalent under

the null. However, they are generally less powerful against local alternatives of the form

b0T = b0/
√
T than τaT (π̄T ) in (23), which is the proper LM test for symmetry.

Nevertheless, an interesting property of a moment test for symmetry based on (15) is

that
√
Tm̄sT (θ̄T ) and

√
T s̄ψψT (π̄T , 1,0) are asymptotically independent under the null

of symmetric Student t innovations, which means that there is no need to orthogonalise

them in order to obtain a one-sided version that combines both of them.
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4 A Monte Carlo comparison of finite sample size

properties and standard error estimators

In this section, we assess the finite sample size properties of the testing procedures

discussed above, as well as the quality of the different standard error estimators, by means

of several extensive Monte Carlo exercises, with an experimental design borrowed from

Sentana (2004), which aimed to capture some of the main features of the conditionally

heteroskedastic factor model in King, Sentana, and Wadhwani (1994).

Finite sample sizes of the normality tests The trivariate model that we simulate

and estimate under Gaussianity is given by the following equations:

yit = µi + cift + vit i = 1, 2, 3,

where ft = λ
1/2
t f ∗t , vit = γ

1/2
it v∗it (i = 1, 2, 3),

λt = α0 + α1(f
2
t−1|t−1 + ωt−1|t−1) + α2λt−1,

γit = φ0 + φ1

[
(yit−1 − µi − cift−1|t−1)

2 + c2iωt−1|t−1

]
+ φ2γit−1, i = 1, 2, 3,

(f ∗t , v
∗
1t, v

∗
2t, v

∗
3t)|It−1 ∼ N(0, I4), and ft−1|t−1 and ωt−1|t−1 are the conditional Kalman

filter estimate of ft and its conditional MSE, respectively. Hence, the conditional mean

vector and covariance matrix functions associated with this model are of the form

µt(θ) = µ,
Σt(θ) = cc′λt + Γt,

(24)

where µ′ = (µ1, µ2, µ3), c′ = (c1, c2, c3), and Γt = diag(γ1t, γ2t, γ3t). As for parameter

values, we have chosen µi = .2, ci = 1, α1 = φ1 = .1, α2 = φ2 = .85, α0 = 1 − α1 − α2

and φ0 = 1 − φ1 − φ2. Although we have considered other sample sizes, for the sake

of brevity we only report the results for T = 1000 observations based on 15,000 Monte

Carlo replications. Further details are available on request.

Figures 4a-4c summarise our findings for the different multivariate normality tests,

as well as their asymmetric and kurtosis components, by means of Davidson and MacK-

innon’s (1998) p-value discrepancy plots, which show the difference between actual and

nominal test sizes for every possible nominal size. As expected, the tests based on the

original Mardia (1970) and Lütkephohl (1993) expressions, which were derived under

the assumption that the covariance matrix of the innovations is constant, unrestricted

and does not affect the conditional mean, suffer very large size distortions in a condi-

tionally heteroskedastic model such as this. At the same time, if we interpret their tests

as moment tests, and adjust them appropriately, their size distortions essentially disap-

pear. More importantly for our purposes, the actual finite sample sizes of the one-sided
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and two-sided versions of our proposed multivariate normality test also seem to be very

close to their nominal levels, with the possible exception of the one-sided version of the

kurtosis test, which seems to be somewhat conservative for larger nominal sizes.

Finite sample sizes of the Student t tests In this case we maintain the conditional

mean and variance specification in (24), but generate the standardised innovations ε∗t

from a trivariate Student t distribution with 10 degrees of freedom. Figure 5a shows

the p-value discrepancy plots of the one- and two-sided versions of the Student t tests

discussed in section 3.2, together with those of their asymmetric and kurtosis compo-

nents. The most striking feature of these graphs is the fact that the actual sizes of the

“kurtosis” tests based on τkT (π̄T ), which is defined in (19), are well below their nomi-

nal sizes. This is due to the fact that the sampling distribution of τkT (π̄T ) is not well

approximated by a standard normal, as illustrated in Figure 5b. In contrast, the actual

sizes of the asymmetry component are very much on target, while those of the joint tests

inherit part of the size distortions of the kurtosis tests.

Finite sample properties of standard error estimators in GH models Finally,

we assess the performance of three possible ways of estimating the standard errors in

GH models, namely, outer-product of the gradient (O), numerical Hessian (H) and

information (I) matrix, which we obtain by simulation using the ML estimators as if they

were the true parameter values, as suggested in section 2.5. Once again, we maintain

the conditional mean and variance specification in (24), but this time we generate the

standardised innovations ε∗t from a trivariate asymmetric Student t distribution with η =

.1 and b = −.1ι. Since the purpose of this exercise is to guide empirical work, our target

is the sampling covariance matrix of the ML estimators, VT (φ̂T ), which we estimate

as the Monte Carlo covariance matrix of φ̂T in 30,000 samples of 1,000 observations

each. Given the large number of parameters involved, we summarise the performance

of the estimators of VT (φ̂T ) by looking at the sampling distributions of vech′[V E
T (φ̂T )−

VT (φ̂T )]vech[V E
T (φ̂T ) − VT (φ̂T )] and vecd′[V E

T (φ̂T ) − VT (φ̂T )]vecd[V E
T (φ̂T ) − VT (φ̂T )],

where E is either O, H or I.7 The results, which are presented in Figures 6a and 6b,

respectively, show that the I standard errors seem to be systematically more reliable

than either the O or numerical H counterparts.

7In the case of a single parameter, the mean of the sampling distribution of these two norms reduce
to the mean square error of the different estimators of its sampling variance.
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5 Empirical application

We now apply the methodology derived in the previous sections to the returns on

five sectorial NASDAQ indices, namely banks, other finance, industrials, insurance and

transportation, which we obtained from www.finance.yahoo.com. Specifically, our data

consists on daily excess returns for the period January 5th, 1982 - June 3rd, 2005 (5898

observations), where we have used the Eurodollar overnight interest rate as safe rate

(Datastream code ECUSDST). The model used is a generalisation of the one in the

previous section (see (24)), in which the mean dynamics are captured by a diagonal

VAR(1) model with drift, and the covariance dynamics by a conditionally heteroskedastic

single factor model in which the conditional variances of both common and specific factors

follow GQARCH(1,1) processes to allow for leverage effects (see Sentana, 1995).

We have estimated this model under three different conditional distributional as-

sumptions on the standardised innovations ε∗t : Gaussian, Student t and GH. We first

estimated the model by Gaussian PML, and then computed the Kuhn-Tucker normality

test KT (θ̃T ) described in section 3.1.3, which is reported in Table 1. Notice that we

can easily reject normality because both the skewness and kurtosis components of the

test lead to this conclusion. Next, we estimated a multivariate Student t model using

the analytical formulae that FSC provide. The results show that the estimate for the

tail thickness parameter η, which corresponds to slightly more than 8 degrees of free-

dom, is significantly larger than 0. This finding is confirmed by the LR test. Then, on

the basis of the Student t ML estimates, we have computed the statistics τkT (π̄T ) and

τaT (π̄T ) presented in section 3.2, with V̂ [sψψt (π̄T , 1,0)] estimated with the analogue

of the simulation procedure described in section 2.5. The results in Table 1 show that

we can reject the Student t assumption because of the value we obtain for the skewness

component τaT (π̄T ). However, the one-sided version of the ψ component of the test is

completely unable to reject the Student t specification against the alternative hypothesis

of symmetric GH innovations because s̄ψψT (π̄T , 1,0) < 0.

Finally, we re-estimated the model under the assumption that the conditional distri-

bution of the innovations is GH by using the analytical formulae for the score provided

in appendix B, which introduces as additional parameters ψ and the five-dimensional

vector b. Since the ML estimate of ψ is 1, and η̂T is positive, the estimated conditional

distribution is effectively an asymmetric t. Therefore, it is not surprising that the com-
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mon parameter estimates are very similar to those of the symmetric Student t model. In

any case, and an LR test would also reject the Student t specification, although the gains

in fit obtained by allowing for asymmetry (as measured by the increments in the log-

likelihood function) are not as important as those obtained by generalising the normal

distribution in the leptokurtic direction.

The rejection of the null of normality that we find could be exacerbated by misspec-

ification of the first and especially second conditional moments. If our specification of

the model dynamics is correct, however, the marked distributional differences that we

have found should not affect the consistency of the Gaussian PML estimators of θ. With

this in mind, we have computed the conditional (log) standard deviations that the three

estimated models generate for the portfolio of the sectorial returns that best replicates

(in the usual tracking error sense) the excess returns on the aggregate NASDAQ index.

Reassuringly, the correlation coefficients between the three series are extremely high (al-

most 1 between the two non-Gaussian models, and over .99 between each of them and the

Gaussian one). Still, the results depicted in Figure 7a indicate that both the symmetric

and asymmetric t distributions tend to produce somewhat less extreme values.

Another way to check that our multivariate dynamic specification is adequate is to

compare the conditional variance that it implies for the NASDAQ tracking portfolio

with the one we could obtain by fitting a univariate model to its excess returns. In

this respect, Figure 7b compares the conditional (log) standard deviation implied by

the multivariate Gaussian PML estimates with the ones obtained by fitting an AR(1)-

GQARCH(1,1) model to this series. Once again, the temporal evolution is very similar,

although the correlation between the two series is slightly lower (.955), which reflects the

fact that the univariate model cannot differentiate common from idiosyncratic shocks.

As mentioned in the introduction, one of the main reasons for using the GH distri-

bution is to compute the quantiles of the one-period-ahead predictive distributions of

portfolio returns required in V@R calculations. To determine to what extent the GH

distribution is more useful than either the normal or t distribution in this respect across

all conceivable quantiles, we have computed the empirical cumulative distribution func-

tion of the probability integral transforms of the NASDAQ tracking portfolio returns

generated by the three fitted distributions (see Diebold, Gunther and Tay 1998). Figure

8a shows the difference between the corresponding cumulative distributions and the 45
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degree line. Under correct specification, those differences should tend to 0 asymptot-

ically. Unfortunately, a size-corrected version of the usual Kolmogorov-type test that

takes into account the sample uncertainty in the estimates of the underlying parameters

is rather difficult to obtain in this case. Nevertheless, the graph clearly indicates that the

multivariate asymmetric t distribution does indeed provide a better fit than its symmet-

ric counterpart, or indeed the normal. In this respect, it is important to emphasize that

our estimating criterion is multivariate, and not particularly targeted to this portfolio.

However, it could be that the encouraging results that we have found were specific

of the particular portfolio considered. For this reason, we have repeated the same exer-

cise with 5,000 different portfolio whose weights were randomly chosen from a uniform

distribution on the unit sphere. Figure 8b, which compares the empirical distribution

function across those 5,000 portfolios of the Kolmogorov statistics, clearly shows that

the multivariate asymmetric t distribution dominates in the first-order stochastic sense

the symmetric t distribution, which in turn dominates the multivariate normal. Hence,

we can argue that the GH distribution provides a more adequate representation of the

conditional distribution of NASDAQ portfolios than the multivariate Student t, and es-

pecially than the multivariate Gaussian distribution, but without substantially affecting

the estimated conditional standard deviations.

6 Conclusions

In this paper we develop a rather flexible parametric framework that allows us to

account for the presence of skewness and kurtosis in multivariate dynamic heteroskedas-

tic regression models. In particular, we assume that the standardised innovations of

the model have a conditional Generalised Hyperbolic (GH ) distribution, which nests as

particular cases the multivariate Gaussian and Student t distributions, as well as other

potentially asymmetric alternatives. To do so, we first standardise the usual GH dis-

tribution by imposing restrictions on its parameters. Importantly, we make sure that

our model is invariant to the orthogonalisation used to compute the square root of the

conditional covariance matrix. Then, we give analytical formulae for the log-likelihood

score, which simplify its computation, and at the same time make it more reliable. In

addition, we explain how to evaluate the unconditional information matrix.

On the basis of these first and second derivatives, we obtain multivariate normal-
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ity and Student t tests against alternatives with GH innovations. In this respect, we

show how to overcome the identification problems that the use of the GH distribution

entails. Moreover, we decompose both our proposed test statistics into skewness and

kurtosis components, which we exploit to derive more powerful one-sided versions. We

also evaluate in detail the power of several versions of the normality tests against GH

alternatives, and conclude that the inclusion of the skewness component of our test yields

substantial power gains unless we are very close to the null hypothesis.

We also assess the finite sample size properties of the different testing procedures

that we propose by means of extensive Monte Carlo exercises. Our results indicate that

the asymptotic sizes of our normality tests are very reliable in finite samples. However,

we also find that the kurtosis component of the Student t test is too conservative. In

addition, we show that the (simulated) information matrix systematically provides more

accurate standard errors than either the OPG or numerical Hessian expressions.

Finally, we present an empirical application to NASDAQ sectorial stock returns,

which suggests that their conditional distribution is asymmetric and leptokurtic. More

importantly, we show that the GH distribution is more adequate than the symmetric

Student t, and especially the Gaussian distribution from a risk management perspective.

A fruitful avenue for future research would be to consider bootstrap procedures (see

e.g. Kilian and Demiroglu, 2000). In addition, it would be interesting to develop se-

quential estimators of the asymmetry and kurtosis parameters introduced by the GH

assumption, which would keep constant the conditional mean and variance parameters

at their Gaussian PML estimators along the lines of Fiorentini and Sentana (2005). At

the same time, it would also be useful to assess the biases of the Student t-based ML

estimators of the conditional mean and variance parameters when the true conditional

distribution of the innovations is in fact a different member of the GH family. Finally,

although in order to derive our distributional specification tests we have maintained the

implicit assumption that the first and second moments adequately capture all the model

dynamics, it would also be worth extending Hansen’s (1994) approach to a multivari-

ate context, and explore time series specifications for the parameters characterising the

higher order moments of the GH distribution.
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Appendix

A Proofs of Propositions

Proposition 1

If we impose the parameter restrictions of Proposition 1 in equation (1), we get

ε∗ = c (β, ν, γ) β

[
γξ−1

Rν (γ)
− 1

]
+

√
γξ−1

Rν (γ)

[
IN +

c (β, ν, γ)− 1

β′β
ββ′

] 1
2

r (A1)

Then, we can use the independence of ξ and r, together with the fact that E(r) = 0,

and the expression for E (ξ−1) from (D1) to show that ε∗ will also have zero mean.

Analogously, we will have that

V (ε∗) =
γ2c2 (β, ν, γ)E (ξ−2)

R2
ν (γ)

ββ′ +

√
γ

Rν (γ)
E
(
ξ−2
) [

IN +
c (β, ν, γ)− 1

β′β
ββ′

]
,

where E (ξ−2) is also obtained from (D1). Replacing the expressions for E (ξ−1) and

E (ξ−2), and substituting c (β, ν, γ) by (3), we can finally show that V (ε∗) = IN . �

Proposition 2

Using (A1), we can write s∗ as

s∗ = c (β, ν, γ)
w′β√
w′w

[
γξ−1

Rν (γ)
− 1

]
+

√
γξ−1

Rν (γ)

w′
√

w′w

[
IN +

c (β, ν, γ)− 1

β′β
ββ′

] 1
2

rt.

But since the third term in this expression is the product of the square root of a GIG

variable times a univariate normal variate, rt say, we can also rewrite s∗ as

s∗ = c (β, ν, γ)
w′β√
w′w

[
γξ−1

Rν (γ)
− 1

]
+

√
γξ−1

Rν (γ)

√
1 +

c (β, ν, γ)− 1

β′β

(w′β)2

w′w
rt (A2)

Given that s∗ is a standardised variable by construction, if we compare (A2) with the

general formula for standardised GH variables in (A1), then we will conclude that the

parameters η and ψ are the same as in the multivariate distribution, while the skewness

parameter is now a function of the vector w. Finally, the exact formula for β(w) can be

easily obtained from the relationships

c [β(w), ν, γ] β(w) = c (β, ν, γ)
w′β√
w′w

,

c [β(w), ν, γ] = 1 +
c (β, ν, γ)− 1

β′β

(w′β)2

w′w
,

where c [β(w), ν, γ] = [−1 +
√

1 + 4 (Dν+1 (γ)− 1) β2(w)]/ {2 [Dν+1 (γ)− 1] β2(w)}. �

30



Proposition 3

To compute the score when η goes to zero, we must take the limit of the score function

after substituting the modified Bessel functions by the expansion (C3), which is valid in

this case. We operate in a similar way when ψ → 0, but in this case the appropriate

expansion is (C2). Then, the conditional information matrix under normality can be

easily derived as the conditional variance of the score function by using the property

that, if ε∗t is distributed as a multivariate standard normal, then it can be written as

ε∗t =
√
ζtut, where ut is uniformly distributed on the unit sphere surface in RN , ζt is

a chi-square random variable with N degrees of freedom, and ut and ζt are mutually

independent. �

Proposition 4

The proof is straightforward if we rely on the results in the appendix of Fiorentini and

Sentana (2005), who indicate that when ε∗t is distributed as a standardised multivariate

Student t with 1/η0 degrees of freedom, it can be written as ε∗t =
√

(1− 2η0)ζt/(ξtη0)ut,

where ut is uniformly distributed on the unit sphere surface in RN , ζt is a chi-square

random variable with N degrees of freedom, ξt is a gamma variate with mean η−1
0 and

variance 2η−1
0 , and the three variates are mutually independent. These authors also

exploit the fact that X = ζt/ (ζt + ξt) has a beta distribution with parameters a = N/2

and b = 1/ (2η0) to show that

E [Xp (1−X)q] =
B (a+ p, b+ q)

B (a, b)
,

E [Xp (1−X)q log (1−X)] =
B (a+ p, b+ q)

B (a, b)
[ψ (b+ q)− ψ (a+ b+ p+ q)] ,

where ψ (·) is the digamma function and B (·, ·) the usual beta function. �

Proposition 5

For fixed b and ψ, the LM1 test is based on the average scores with respect to η and

θ evaluated at 0+ and the Gaussian maximum likelihood estimates θ̃T . But since the

average score with respect to θ will be 0 at those parameter values, and the conditional

information matrix is block diagonal, the formula for the test is trivially obtained. The

proportionality of the log-likelihood scores corresponding to η evaluated at 0± and θ̃T

with the score corresponding to ψ evaluated at 0 and θ̃T leads to the desired result. �
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Proposition 6

LM
(
θ̃T ,b

)
can be trivially expressed as

LM
(
θ̃T ,b

)
=
Tb+′m̄T (θ̃T )m̄T (θ̃T )b+

(N + 2)b+′DTb+
, (A3)

where b+ = (1,b′)′, m̄T (θ̃T ) =
[
m̄kT (θ̃T ), m̄sT (θ̃T )

]
, m̄kT (θ) and m̄sT (θ) are the sample

means of mkt(θ) and mst(θ), which are defined in (13) and (15), respectively, and

DT =

[
N/2 0

0′ 2Σ̂T

]
.

But since the maximisation of (A3) with respect to b+ is a well-known generalised eigen-

value problem, its solution will be proportional to D−1
T m̄T . If we select N/[2m̄kT (θ̃T )]

as the constant of proportionality, then we can make sure that the first element in b+ is

equal to one. Substituting this value in the formula of LM
(
θ̃T ,b

)
yields the required

result. Finally, the asymptotic distribution of the sup test follows directly from the fact

that
√
Tm̄kT (θ0) and

√
Tm̄sT (θ0) are asymptotically orthogonal under the null, with

asymptotic variances N(N + 2)/2 and 2(N + 2)Σ, respectively. �

Propositions 7 and 8

We can use again the results of Fiorentini and Sentana (2005) mentioned in the proof

of Proposition 4, together with the results in Crowder (1976), to show that

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 d→ N

0, E

Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


 ,

where

Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 =

 Iππt(π0, 1,0) Iπbt(π0, 1,0) Mt(π0)
I ′πbt(π0, 1,0) Vt−1 [sbt(π0, 1,0)] 0
M′

t(π0) 0′ V [sψψt(π0, 1,0)]


under the null hypothesis of Student t innovations. To account for parameter uncertainty,

consider the function

g2t (π̄T ) =

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
−
[
I ′πb(π0, 1,0)
M′(π0)

]
I−1

ππ(π0, 1,0)sπt (π̄T , 1,0)

=

[
−I ′πb(π0, 1,0)I−1

ππ(π0, 1,0) IN 0
−M′(π0)I−1

ππ(π0, 1,0) 0′ 1

] sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

=A2(π0)

 sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

 .
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We can now derive the required asymptotic distribution by means of the usual Taylor

expansion around the true values of the parameters

0 =

√
T

T

∑
t

g2t (π̄T ) =

√
T

T

∑
t

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
= A2(π0)

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


+A2(π0)E

 ∂

∂π′

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

√T (π̄T − π0) + op (1) ,

where it can be tediously shown by means of the Barlett identities that

E

 ∂

∂π′

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 = −

 Iππ(π0, 1,0)
I ′πb(π0, 1,0)
M′(π0)

 .

As a result

√
T

T

∑
t

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
= A2(π0)

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 ,
from which we can obtain the asymptotic distributions in the Propositions. �

B The score using the EM algorithm

The EM-type procedure that we follow is divided in two parts. In the maximisa-

tion step, we derive l (yt|ξt, zt, It−1; φ) and l (ξt|zt, It−1; φ) with respect to φ. Then,

in the expectation step, we take the expected value of these derivatives given IT =

{(z1,y1) , (z2,y2) , · · · , (zT ,yT )} and the parameter values.

Conditional on ξt, yt is the following multivariate normal:

yt|ξt, zt, It−1 ∼ N

[
µt(θ) + Σt(θ)ct(φ)b

[
γ

Rν (γ)

1

ξt
− 1

]
,

γ

Rν (γ)

1

ξt
Σ∗
t (φ)

]
,

where ct(φ) = c[Σ
1
2
′

t (θ)b, ν, γ] and

Σ∗
t (φ) = Σt(θ) +

ct(φ)− 1

b′Σt(θ)b
Σt(θ)bb′Σt(θ)

If we define pt = yt − µt(θ) + ct(φ)Σt(θ)b, then we have the following log-density

l (yt|ξt, zt, It−1; φ) =
N

2
log

[
ξtRν (γ)

2πγ

]
− 1

2
log |Σ∗

t (φ)| − ξt
2

Rν (γ)

γ
p′tΣ

∗−1
t (φ)pt

+b′pt −
b′Σt(θ)b

2ξt

γct(φ)

Rν (γ)
.
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Similarly, ξt is distributed as a GIG with parameters ξt|zt, It−1 ∼ GIG (−ν, γ, 1),

with a log-likelihood given by

l (ξt|zt, It−1; φ) = ν log γ − log 2− logKν (γ)− (ν + 1) log ξt −
1

2

(
ξt + γ2 1

ξt

)
.

In order to determine the distribution of ξt given all the observable information IT ,

we can exploit the serial independence of ξt given zt, It−1; φ to show that

f (ξt|IT ; φ) =
f (yt,ξt|zt, It−1; φ)

f (yt|zt, It−1; φ)
∝ f (yt|ξt, zt, It−1; φ) f (ξt|zt, It−1; φ)

∝ ξ
N
2
−ν−1

t × exp

{
−1

2

[(
Rν (γ)

γ
p′tΣ

∗−1
t (φ)pt + 1

)
ξt +

(
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

)
1

ξt

]}
,

which implies that

ξt|IT ;φ ∼ GIG

(
N

2
− ν,

√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2,

√
Rν (γ)

γ
p′tΣ

∗−1
t (φ)pt + 1

)
.

From here, we can use (D1) and (D2) to obtain the required moments. Specifically,

E (ξt|IT ; φ) =

√
γct(φ)
Rν(γ)

b′Σt(θ)b + γ2√
Rν(γ)
γ

p′tΣ
∗−1
t pt + 1

×RN
2
−ν

[√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

√
Rν (γ)

γ
p′tΣ

∗−1
t pt + 1

]
,

E

(
1

ξt

∣∣∣∣ IT ; φ

)
=

√
Rν(γ)
γ

p′tΣ
∗−1
t pt + 1√

γct(φ)
Rν(γ)

b′Σt(θ)b + γ2

× 1

RN
2
−ν−1

[√
γct(φ)
Rν(γ)

b′Σt(θ)b + γ2

√
Rν(γ)
γ

p′tΣ
∗−1
t pt + 1

] ,
E ( log ξt| IT ; φ) = log

(√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

)
− log

(√
Rν (γ)

γ
p′tΣ

∗−1
t pt + 1

)

+
∂

∂x
logKx

[√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

√
Rν (γ)

γ
p′tΣ

∗−1
t pt + 1

]∣∣∣∣∣
x=N

2
−ν

.

If we put all the pieces together, we will finally have that

∂l(yt|Yt−1; φ)

∂θ′
= −1

2
vec′[Σ−1

t (θ)]
∂vec[Σt(θ)]

∂θ′
− f(IT ,φ)p′tΣ

∗−1
t (φ)

∂pt
∂θ′

−1

2

ct(φ)− 1

ct(φ)b′Σt(θ)b
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
vec′ (bb′)

∂vec[Σt(θ)]

∂θ′
+ b′

∂pt
∂θ′

+
1

2
f(IT ,φ)[p′tΣ

∗−1
t (φ)⊗ p′tΣ

∗−1
t (φ)]

∂vec[Σ∗
t (φ)]

∂θ′

−1

2

g(IT ,φ)√
1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

vec′ (bb′)
∂vec[Σt(θ)]

∂θ′
,
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∂l (yt|Yt−1; φ)

∂b
= − ct(φ)− 1

ct(φ)b′Σt(θ)b
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
b′Σt(θ)

−f (IT ,φ) ct(φ)p′t + ε′t + f (IT ,φ)
ct(φ)− 1

b′Σt(θ)b
(b′pt)

×

{
[ct(φ)− 1] (b′pt)

c2t (φ)b′Σt(θ)b
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
b′Σt(θ)

+
p′t
ct(φ)

− 1√
1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

b′Σt(θ)

}

+
[2− g (IT ,φ)]√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
b′Σt(θ),

∂l (yt|Yt−1; φ)

∂η
=
N

2

∂ logRν (γ)

∂η
+

(
b′Σt(θ)b− 1

2ct(φ)

)
∂ct(φ)

∂η
+

log (γ)

2η2

−∂ logKν (γ)

∂η
− 1

2η2
E [log ξt|YT ; φ]− f (IT ,φ)

2

{
∂ logRν (γ)

∂η
p′tΣ

∗−1
t (φ)pt

+
∂ct(φ)

∂η

[
b′Σt(θ)b− (b′εt)

2

c2t (φ)b′Σt(θ)b

]}

−b′Σt(θ)b

2
g (IT ,φ)

{
∂ct(φ)

∂η
− ct(φ)

∂ logRν (γ)

∂η

}
,

and

∂l (yt|Yt−1; φ)

∂ψ
=
N

2

∂ logRν (γ)

∂ψ
+

N

2ψ (1− ψ)
+

(
b′Σt(θ)b− 1

2ct(φ)

)
∂ct(φ)

∂ψ

+
1

2ηψ (1− ψ)
− ∂ logKν (γ)

∂ψ
− f (IT ,φ)

2

{[
∂ logRν (γ)

∂ψ
+

1

ψ (1− ψ)

]
p′tΣ

∗−1
t (φ)pt

+
∂ct(φ)

∂ψ

[
b′Σt(θ)b− (b′εt)

2

c2t (φ)b′Σt(θ)b

]}

−b′Σt(θ)b

2
g (IT ,φ)

{
− ct(φ)

ψ (1− ψ)
+
∂ct(φ)

∂ψ
− ct(φ)

∂ logRν (γ)

∂ψ

}
+ g (IT ,φ)

Rν (γ)

ψ2
,

where

f (IT ,φ) = γ−1Rν (γ)E (ξt|IT ; φ) ,

g (IT ,φ) = γR−1
ν (γ)E

(
ξ−1
t |IT ; φ

)
,

∂vec[Σ∗
t (φ)]

∂θ′
=
∂vec[Σt(θ)]

∂θ′
+
ct(φ)− 1

b′Σt(θ)b
{[Σt(θ)bb′ ⊗ IN ] + [IN ⊗Σt(θ)bb′]} ∂vec[Σt(θ)]

∂θ′

+
ct(φ)− 1

[b′Σt(θ)b]2

{
1√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
− 1

}

×vec [Σt(θ)bb′Σt(θ)] vec′ (bb′)
∂vec[Σt(θ)]

∂θ′
,
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∂pt
∂θ′

= −∂µt(θ)

∂θ′
+ ct(φ) [b′ ⊗ IN ]

∂vec[Σt(θ)]

∂θ′

+
ct(φ)− 1

b′Σt(θ)b

1√
1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

Σt(θ)bvec′ (bb′)
∂vec[Σt(θ)]

∂θ′
,

∂ct(φ)

∂ (b′Σt(θ)b)
=
ct(φ)− 1

b′Σt(θ)b

1√
1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

,

∂ct(φ)

∂η
=

ct(φ)− 1

[Dν+1 (γ)− 1]
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

∂Dν+1 (γ)

∂η
,

and
∂ct(φ)

∂ψ
=

ct(φ)− 1

[Dν+1 (γ)− 1]
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

∂Dν+1 (γ)

∂ψ
.

C Modified Bessel function of the third kind

The modified bessel function of the third kind with order ν, which we denote as

Kν (·), is closely related to the modified Bessel function of the first kind Iν (·), as

Kν (x) =
π

2

I−ν (x)− Iν (x)

sin (πν)
. (C1)

Some basic properties of Kν (·), taken from Abramowitz and Stegun (1965), are

Kν (x) = K−ν (x),Kν+1 (x) = 2νx−1Kν (x)+Kν−1 (x), and ∂Kν (x) /∂x = −νx−1Kν (x)−

Kν−1 (x). For small values of the argument x, and ν fixed, it holds that

Kν (x) ' 1

2
Γ (ν)

(
1

2
x

)−ν
.

Similarly, for ν fixed, |x| large and m = 4ν2, the following asymptotic expansion is valid

Kν (x) '
√

π

2x
e−x

{
1+

m-1

8x
+

(m-1) (m-9)

2! (8x)2 +
(m-1) (m-9) (m-25)

3! (8x)3 + · · ·
}
. (C2)

Finally, for large values of x and ν we have that

Kν(x) '
√

π

2ν

exp (−νl−1)

l−2

[
(x/ν)

1 + l−1

]−ν [
1-

3l-5l3

24ν
+

81l2-462l4+385l6

1152ν2
+ · · ·

]
, (C3)

where ν > 0 and l =
[
1 + (x/ν)2]− 1

2 . Although the existing literature does not discuss

how to obtain numerically reliable derivatives of Kν(x) with respect to its order, our

experience suggests the following conclusions:

• For ν ≤ 10 and |x| > 12, the derivative of (C2) with respect to ν gives a better

approximation than the direct derivative of Kν(x), which is in fact very unstable.

• For ν > 10, the derivative of (C3) with respect to ν works better than the direct

derivative of Kν(x).
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• Otherwise, the direct derivative of the original function works well.

We can express such a derivative as a function of Iν(x) by using (C1) as:

∂Kν(x)

∂ν
=

π

2 sin (νπ)

[
∂I−ν(x)

∂ν
− ∂Iν(x)

∂ν

]
− π cot (νπ)Kν(x)

However, this formula becomes numerically unstable when ν is near any non-negative

integer n = 0, 1, 2, · · · due to the sine that appears in the denominator. In our experience,

it is much better to use the following Taylor expansion for small |ν − n|:

∂Kν(x)

∂ν
=
∂Kν(x)

∂ν

∣∣∣∣
ν=n

+
∂2Kν(x)

∂ν2

∣∣∣∣
ν=n

(ν − n)

+
∂3Kν(x)

∂ν3

∣∣∣∣
ν=n

(ν − n)2 +
∂4Kν(x)

∂ν4

∣∣∣∣
ν=n

(ν − n)3 ,

where for integer ν:

∂Kν(x)

∂ν
=

1

4 cos (πn)

[
∂2I−ν(x)

∂ν2
− ∂2Iν(x)

∂ν2

]
+ π2 [I−ν(x)− Iν(x)] ,

∂2Kν(x)

∂ν2
=

1

6 cos (πn)

[
∂3I−ν(x)

∂ν3
-
∂3Iν(x)

∂ν3

]
+

π2

3 cos (πn)

[
∂I−ν(x)

∂ν
-
∂Iν(x)

∂ν

]
-
π2

3
Kn(x),

∂3Kν(x)

∂ν3
=

1

8 cos (πn)

{[
∂4I−ν(x)

∂ν4
− ∂4Iν(x)

∂ν4

]
−4π2

[
∂2I−ν(x)

∂ν2
− ∂2Iν(x)

∂ν2

]
− 12π4 [I−ν(x)− Iν(x)]

}
+ 3π2∂Kn(x)

∂ν
,

and

∂4

∂ν4
Kν(x) =

1

8 cos (πn)

{
3

2

[
∂5I−ν(x)

∂ν5
− ∂5Iν(x)

∂ν5

]
-10π2

[
∂3I−ν(x)

∂ν3
− ∂3Iν(x)

∂ν3

]
-4π4

[
∂I−ν(x)

∂ν
− ∂Iν(x)

∂ν

]}
+6π2∂

2Kn(x)

∂ν2
− π4Kn(x).

Let ψ(i) (·) denote the polygamma function (see Abramowitz and Stegun, 1965). The

first five derivatives of Iν(x) for any real ν are as follows:

∂Iν(x)

∂ν
= Iν(x) log

(x
2

)
−
(x

2

)ν ∞∑
k=0

Q1(ν + k + 1)

k!

(
1

4
x2

)k
,

where

Q1 (z) =

{
ψ (z) /Γ (z) if z > 0
π−1Γ (1− z) [ψ (1− z) sin (πz)− π cos (πz)] if z ≤ 0

∂2Iν(x)

∂ν2
= 2 log

(x
2

) ∂Iν(x)
∂ν

− Iν(x)
[
log
(x

2

)]2
−
(x

2

)ν ∞∑
k=0

Q2(ν + k + 1)

k!

(
1

4
x2

)k
,

37



where

Q2(z) =


[ψ′ (z)− ψ2 (z)] /Γ (z) if z > 0

π−1Γ (1− z)
[
π2 − ψ′ (1− z)− [ψ (1− z)]2

]
sin (πz)

+2Γ (1− z)ψ (1− z) cos (πz) if z ≤ 0

∂3Iν(x)

∂ν3
= 3 log

(x
2

) ∂2Iν(x)

∂ν2
− 3

[
log
(x

2

)]2 ∂Iν(x)
∂ν

+
[
log
(x

2

)]3
Iν(x)

−
(x

2

)ν ∞∑
k=0

Q3(ν + k + 1)

k!

(
1

4
x2

)k
,

where

Q3(z) =


[ψ3 (z)− 3ψ (z)ψ′ (z) + ψ′′ (z)] /Γ (z) if z > 0
π−1Γ (1− z) {ψ3 (1− z)− 3ψ (1− z) [π2 − ψ′ (1− z)] + ψ′′ (1− z)} sin (πz)
+Γ (1− z) {π2 − 3 [ψ2 (1− z) + ψ′ (1− z)]} cos (πz) if z ≤ 0

∂4Iν(x)

∂ν4
= 4 log

(x
2

) ∂3Iν(x)

∂ν3
− 6

[
log
(x

2

)]2 ∂2Iν(x)

∂ν2
+ 4

[
log
(x

2

)]3 ∂Iν(x)
∂ν

−
[
log
(x

2

)]4
Iν(x)−

(x
2

)ν ∞∑
k=0

Q4(ν + k + 1)

k!

(
1

4
x2

)k
,

where

Q4(z) =



[
-ψ4 (z) + 6ψ2 (z)ψ′ (z)− 4ψ (z)ψ′′ (z)− 3 [ψ′ (z)]2 + ψ′′′ (z)

]
/Γ (z) if z > 0

π−1Γ (1− z) {−ψ4 (1− z) + 6π2ψ2 (1− z)− 6ψ2 (1− z)ψ′ (1− z)

−4ψ (1− z)ψ′′ (1− z)− 3 [ψ′ (1− z)]2 + 6π2ψ′ (1− z)
−ψ′′′ (1− z)− π4} sin (πz) + Γ (1− z) 4ψ3 (1− z)− 4π2ψ (1− z)
+12ψ (1− z)ψ′ (1− z) + 4ψ′′ (1− z) cos (πz) if z ≤ 0

and finally,

∂5Iν(x)

∂ν5
= 5 log

(x
2

) ∂4Iν(x)

∂ν4
− 10

[
log
(x

2

)]2 ∂3Iν(x)

∂ν3
+ 10

[
log
(x

2

)]3 ∂2Iν(x)

∂ν2

−5
[
log
(x

2

)]4 ∂Iν(x)
∂ν

+
[
log
(x

2

)]5
Iν(x)−

(x
2

)ν ∞∑
k=0

Q5(ν + k + 1)

k!

(
1

4
x2

)k
,

where

Q5(z) =


{
ψ5 (z)− 10ψ3 (z)ψ′ (z) + 10ψ2 (z)ψ′′ (z) + 15ψ (z) [ψ′ (z)]2

−5ψ (z)ψ′′′ (z)− 10ψ′ (z)ψ′′ (z) + ψ(iv) (z)
}
/Γ (z) if z > 0

π−1Γ (1− z) fa (z) sin (πz) + Γ (1− z) fb (z) cos (πz) if z ≤ 0

with

fa (z) = ψ5 (1− z)− 10π2ψ3 (1− z) + 10ψ3 (1− z)ψ′ (1− z) + 10ψ2 (1− z)ψ′′ (1− z)

+15ψ (1− z) [ψ′ (1− z)]2 + 5ψ (1− z)ψ′′′ (1− z) + 5π4ψ (1− z)
−30π2ψ (1− z)ψ′ (1− z) + 10ψ′ (1− z)ψ′′ (1− z)− 10π2ψ′′ (1− z) + ψ(iv) (1− z) ,

and

fb (z) = −5ψ4 (1− z) + 10π2ψ2 (1− z)− 30ψ2 (1− z)ψ′ (1− z)

−20ψ (1− z)ψ′′ (1− z)− 15 [ψ′ (1− z)]2 + 10π2ψ′ (1− z)− 5ψ′′′ (1− z)− π4.
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D Moments of the GIG distribution

If X ∼ GIG (ν, δ, γ), its density function will be

(γ/δ)ν

2Kν (δγ)
xν−1 exp

[
−1

2

(
δ2

x
+ γ2x

)]
,

where Kν (·) is the modified Bessel function of the third kind and δ, γ ≥ 0, ν ∈ R,

x > 0. Two important properties of this distribution are X−1 ∼ GIG (−ν, γ, δ) and

(γ/δ)X ∼ GIG
(
ν,
√
γδ,

√
γδ
)
. For our purposes, the most useful moments of X when

δγ > 0 are

E
(
Xk
)

=

(
δ

γ

)k
Kν+k (δγ)

Kν (δγ)
(D1)

E (logX) = log

(
δ

γ

)
+

∂

∂ν
Kν (δγ) . (D2)

The GIG nests some well-known important distributions, such as the gamma (ν > 0,

δ = 0), the reciprocal gamma (ν < 0, γ = 0) or the inverse Gaussian (ν = −1/2).

Importantly, all the moments of this distribution are finite, except in the reciprocal

gamma case, in which (D1) becomes infinite for k ≥ |ν|. A complete discussion on this

distribution, including proofs of (D1) and (D2), can be found in Jørgensen (1982).

E Skewness and kurtosis of GH distributions

We can tediously show that

E [vec (ε∗ε∗′) ε∗′] = E [(ε∗ ⊗ ε∗) ε∗′]

= c3(β,ν, γ)

[
Kν+3 (γ)K2

ν (γ)

K3
ν+1 (γ)

− 3Dν+1 (γ) + 2

]
vec (ββ′) β′

+c(β,ν, γ) [Dν+1 (γ) -1] (KNN+IN2) (β ⊗A)A′+c(β,ν, γ) [Dν+1 (γ) -1] vec (AA′) β′,

and

E [vec (ε∗ε∗′) vec′ (ε∗ε∗′)] = E [ε∗ε∗′ ⊗ ε∗ε∗′]

= c4(β,ν, γ)

[
Kν+4 (γ)K3

ν (γ)

K4
ν+1 (γ)

− 4
Kν+3 (γ)K2

ν (γ)

K3
ν+1 (γ)

+ 6Dν+1 (γ)− 3

]
vec (ββ′) vec′ (ββ′)

+c2(β, ν, γ)

[
Kν+3 (γ)K2

ν (γ)

K3
ν+1 (γ)

− 2Dν+1 (γ) + 1

]
×{vec (ββ′) vec′ (AA′) +vec (AA′) vec′ (ββ′) + (KNN+IN2) [ββ′ ⊗AA′] (KNN+IN2)}

+Dν+1 (γ) {[AA′ ⊗AA′] (KNN + IN2) + vec (AA′) vec′ (AA′)} ,

39



where

A =

[
IN +

c(β,ν, γ)− 1

β′β
ββ′

] 1
2

,

and KNN is the commutation matrix (see Magnus and Neudecker, 1988). In this respect,

note that Mardia’s (1970) coefficient of multivariate excess kurtosis will be -1 plus the

trace of the fourth moment above divided by N(N + 2).

Under symmetry, the distribution of the standardised residuals ε∗ is clearly elliptical,

as it can be written as ε∗ =
√
ζ/ξ
√
γ/Rν (γ)u, where ζ ∼ χ2

N and ξ−1 ∼ GIG (ν, 1, γ).

This is confirmed by the fact that the third moment becomes 0, while

E [ε∗ε∗′ ⊗ ε∗ε∗′] = Dν+1 (γ) {[IN ⊗ IN ] (KNN + IN2) + vec (IN) vec′ (IN)} .

In the symmetric case, therefore, the coefficient of multivariate excess kurtosis is simply

Dν+1 (γ)-1, which is always non-negative, but monotonically decreasing in γ and |ν|.

F Power of the normality tests

We can determine the power of the sup test by rewriting it as a quadratic form in[
2/[N (N + 2)] 0′

0 Σ̂−1/[2 (N + 2)]

]
evaluated at m̄T

(
θ̃T

)
= [m̄kT

(
θ̃T

)
, m̄′

sT

(
θ̃T

)
]′, where θ̃T must be interpreted as a

PML estimator of θ0 = (µ′
0, vech

′(Σ0))
′ under the alternative of GH innovations. Hence,

its asymptotic distribution will be given by the robust formulae provided by Bollerslev

and Wooldridge (1992), which, in terms of the Gaussian score can be written as

√
T
[
θ̃T − θ0

]
= A−1 (θ0)

√
T s̄θT (θ0, 0, 0,0) + op (1) ,

where

A (φ0) =
∂µ′

∂θ
Σ−1∂µ

∂θ
+

1

2

∂vec′Σ

∂θ

[
Σ−1 ⊗Σ−1

] ∂vecΣ
∂θ

.

Hence, the usual Taylor expansion around the true parameter values yields

√
Tm̄T

(
θ̃T

)
=
[
−B (θ0)A−1 (θ0) IN+1

]√
T

[
s̄θT (θ0, 0, 0,0)

m̄T (θ0)

]
+ op (1) , (F1)

where B (θ0) = −E [∂m̄T (θ0) /∂θ
′]

Fortunately, A (φ0), B (θ0), as well as the mean and variance of s̄θt (θ0) and m̄T (θ0)

under the alternative can be computed analytically by using the location-scale mixture

of normals interpretation of the GH distribution. In particular, we can write

ε∗t = c(φ)b (ht − 1) +
√
htArt,
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ςt = ε∗′t ε∗t = c2(φ) (ht − 1)2 b′b + 2c(φ)
√
ht (ht − 1)b′Art + htr

′
tA

′Art,

with ht = ξ−1
t γ/Rν (γ), and

A =

[
IN +

c(φ, ν, γ)− 1

b′b
bb′
] 1

2

,

where rt|zt, It−1 ∼ N (0, IN) and ξt|zt, It−1 ∼ GIG[.5η−1, ψ−1(1 − ψ), 1] are mutually

independent. But since both ξt and rt are iid, then ε∗t and ςt = ε∗′t ε∗t will also be iid.

As a result, given that all the moments of normal and GIG random variables are finite

(except when ψ = 1, in which case some moments may become unbounded for large

enough η; see appendix D), we can apply the Lindeberg-Lévy Central Limit Theorem to

show that the asymptotic distribution of
√
Tm̄T

(
θ̃T

)
is N [m(θ0, η, ψ,b), V (θ0, η, ψ,b)],

where the required expressions can be computed from (F1). In particular, we can use

Magnus (1986) to evaluate the moments of quadratic forms of normals, such as r′tA
′Art.

Finally, we can use Koerts and Abrahamse’s (1969) implementation of Imhof’s proce-

dure for evaluating the probability that a quadratic form of normals is less than a given

value (see also Farebrother, 1990).

To obtain the power of the KT test, we will use the following alternative formulation

KT

T
=

2

N (N + 2)
m̄2
kT

(
θ̃T

)
· 1
(
m̄kT

(
θ̃T

)
≥ 0
)

+
1

2 (N + 2)
m̄′
sT

(
θ̃T

)
Σ̂−1m̄sT

(
θ̃T

)
.

Hence, the distribution function of the KT statistic can be expressed as

Pr

(
KT

T
< x

)
=

∫ ∞

−∞
Pr

(
KT

T
< x

∣∣∣∣ m̄kt = l

)
fk (l) dl, (F2)

where fk (·) is the pdf of the distribution of the kurtosis component. But since the joint

asymptotic distribution of
√
Tm̄T

(
θ̃T

)
is normal, so that the conditional distribution of

√
Tm̄sT

(
θ̃T

)
given

√
Tm̄kT

(
θ̃T

)
will also be normal, the KT test can also be written

as a quadratic form of normals for each value of the kurtosis component. As a result, we

can use Imhof’s procedure again to evaluate

Pr

[
1

2 (N + 2)
m̄sT

(
θ̃T

)
Σ̂−1m̄sT

(
θ̃T

)
< x− 2

N (N + 2)
l2 · 1 (l ≥ 0)

∣∣∣∣ m̄kt = l

]
= Pr

(
KT

T
< x

∣∣∣∣ m̄kt = l

)
.

Once we know this conditional probability, we can evaluate the integral in (F2) by

numerical integration with a standard quadrature algorithm.
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Table 1
Maximum likelihood estimates of a conditionally heteroskedastic factor model for 5

NASDAQ sectorial indices

Gaussian Student t Asymmetric t
Parameter SE SE SE
η 0 - 0.1239 0.005 0.131 0.005
ψ 0 - 0 -
b1 0 - 0 - -0.029 0.020
b2 0 - 0 - 0.070 0.027
b3 0 - 0 - -0.077 0.014
b4 0 - 0 - -0.018 0.017
b5 0 - 0 - 0.041 0.013
Log-likelihood -64581.7382 -63566.4432 -63555.1033

Normality tests

Test p-value
Kurtosis 44809.590 0.000
Skewness 314.775 0.000
Sup-LM 45124.370 0.000
Kuhn-Tucker 45124.370 0.000

Student t tests

Test p-value
sψψ -7.512 1.000
Skewness 13.072 0.023
Kuhn-Tucker 13.070 0.032

Note: sψψ denotes the “kurtosis” test based on τkT (π̄T ).
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Figure 1a: Standardised bivariate normal den-
sity
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Figure 1b: Contours of a standardised bivari-
ate normal density

Figure 1c: Standardised bivariate Student t
density with 10 degrees of freedom (η = .1)
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Figure 1d: Contours of a standardised bivari-
ate Student t density with 10 degrees of free-
dom (η = .1)

Figure 1e: Standardised bivariate asymmetric
Student t density with 10 degrees of freedom
(η = .1) and β = (−3,−3)′
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Figure 1f: Contours of a standardised bivari-
ate asymmetric Student t density with 10 de-
grees of freedom (η = .1) and β = (−3,−3)′
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Figure 2: Exceedance correlation for a standardised bivariate normal distribution, Student t

distribution with 10 degrees of freedom (η = .1) and Asymmetric t distribution with η = .1
and β = (−3,−3)

Notes: The exceedance correlation between two variables ε∗
1

and ε∗
2

is defined as corr(ε∗
1
, ε∗

2
| ε∗

1
>

κ, ε∗
2

> κ) for positive κ and corr(ε∗
1
, ε∗

2
| ε∗

1
< κ, ε∗

2
< κ) for negative κ (see Longin and Solnik,

2001)
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Figure 3a: Power of the normality tests under sym-
metric t alternatives
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Figure 3b: Power of the normality tests under asym-
metric t alternatives (bi = .75, ∀i)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bi

Figure 3c: Power of the multivariate normality tests
against asymmetric t alternatives with increasing
skewness (η = .005, N = 3)
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Figure 3d: Power of the multivariate normality tests
against asymmetric t alternatives with increasing
skewness (η = .01, N = 3)
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Figure 3e: Power of Sup-LM, Mardia and Lütkepohl
normality tests against symmetric t alternatives
(N = 3).
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Figure 3f: Power of Sup-LM, Mardia and Lütkepohl
normality tests against asymmetric t alternatives
(N = 3).

Notes: Thicker lines represent the power of the trivariate tests. Figures 3b-3d share the legend of figure 3a, while
figure 3f shares the legend of figure 3e.
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Figure 4a: p-value discrepancy plots of the joint normality tests
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Figure 4b: p-value discrepancy plots of the skewness components of the joint normality tests
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Figure 4c: p-value discrepancy plots of the kurtosis components of the joint normality tests

Notes: p-value discrepancy plots obtained from a Monte Carlo study with 15, 000 simulations of samples with

T = 1, 000. Size distortions in Mardia and Lütkepohl tests have been corrected in their adjusted versions and

plotted with thicker lines.
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Figure 5a: p-value discrepancy plots of the Student t tests
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Figure 5b: kernel estimation of the density of the symmetric Student t test

Notes: p-value discrepancy plots obtained from a Monte Carlo study with 15, 000 simulations with T = 1, 000.
sψψ denotes the “kurtosis” test based on τkT (π̄T ).
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Notes: Obtained from a Monte Carlo study with 1, 000 replications of sample size T = 1, 000, except VT (φ̂
T
), which

is the sampling variance of the ML estimators in 30,000 samples of the same size. E refers to the standard errors
obtained by either the outer-product of the gradient (O), numerical Hessian (H), or the simulated unconditional
information matrix.
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Figure 7a: Comparison of the multivariate estimates of the (log)standard deviation of the NASDAQ tracking
portfolio
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Figure 7b: Comparison of univariate and multivariate Gaussian estimates of the (log)standard deviation of the
NASDAQ tracking portfolio
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Figure 8a: P-value discrepancy plots of the empirical cumulative distribution function of probability integral

transform of returns on the NASDAQ tracking portfolio
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Figure 8b: Empirical cumulative distribution function of Kolmogorov tests for 5,000 random portfolios

Notes: The weights of the random portfolios are sampled from a uniform distribution on the unit sphere


