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1 The density function

Consider an N-dimensional random vector u, which can be expressed in terms of the

following Location-Scale Mixture of Normals (LSMN):
u=a+rp e Aoy (1)

where @ and 3 are N-dimensional vectors, Y is a positive definite matrix of order N,
r ~ N(0,Iy), and ¢ is an independent positive mixing variable. If the mixing variable
follows a Generalised Inverse Gaussian distribution (GIG), then the distribution of u
will be the Generalised Hyperbolic distribution (GH) introduced by Barndorff-Nielsen
(1977). More explicitly, if £ ~ GIG (—v,~,0) then the density of the N x 1 GH random
vector u will be given by
(%)y 7 1 vy

feu(u) = 5 — % T {\/,8 Y8 +~24q [(5 (u—a)]}

(2m)= [BYB+2" 2 X2 K, (67)

<K, 5 {VBTB+%q 67 (u—a)] pexp (8 (u—a), @)

where —0o < v <00,7>0,¢[0 ' (u—a)=/1+62(u—a)Y (u—a)and K, ()
is the modified Bessel function of the third kind (see Abramowitz and Stegun, 1965, p.
374, as well as Section 4).

Given that 6 and Y are not separately identified, Barndorff-Nielsen and Shephard
(2001) set the determinant of Y equal to 1. However, it is more convenient to set § = 1
instead in order to reparametrise the GH distribution so that it has mean vector 0 and
covariance matrix Iy. It is then straightforward to use Proposition 1 in Mencia and

Sentana (2009) to obtain a standardised GH distribution. Specifically, we set 6 = 1,
a=—c(B,v,7)B and

s Yy —1
IN+C(ﬁvv)

R, (v) B'B

Bo, (3)

where

_ —14++/1+4Dy(7) - 188
B = D, () - 188 W

where R, (7) = K,41(7) /K, (v) and Dyy1 (7) = Kopo (7) Ko (v) /K74 (7). Thus, the

distribution of u depends on two shape parameters, v and v, and a vector of N skewness

parameters, denoted by 3.



One of the most attractive properties of the GH distribution is that it contains as
particular cases several of the most important multivariate distributions already used in
the literature. The best known examples are:

e Normal, which can be achieved in three different ways: (i) when v — —oo or (ii)
v — 400, regardless of the values of v and 3; and (iii) when y — oo irrespective of the
values of v and 3.

e Symmetric Student ¢, obtained when —oco < v < —2, v =0 and 3 = 0.

e Asymmetric Student ¢, which is like its symmetric counterpart except that the
vector 3 of skewness parameters is no longer zero.

e Asymmetric Normal-Gamma, which is obtained when v =0 and 0 < v < oo (see
Madan and Milne, 1991).

e Normal Inverse Gaussian, for v = —.5 (see Aas, Dimakos, and Haff, 2005).

e Hyperbolic, for v = 1 (see Chen, Hérdle, and Jeong, 2008)

e Asymmetric Laplace, for v = 1 and v = 0 (see Cajigas and Urga, 2007).

2 Skewness and kurtosis of GH distributions

We can tediously show that

E [vec(e*e”) e’ = E[(e* ® €*) "]

= CS(/B’V7 ’Y) KV—}?;-;(;’YB é{}s (7) - 3D1/+1 (7) + 2| vec (/BBI) /8/
+c(Bv,7) [Dys1 (7)-1] (Kun+1In2) (B @ A) +¢(B,v,7) [Dys1 (7) -1 vec (A) B, (5)
and
E [vec (e ) ved (e*e™)| = F |e*e” @ e*e”]
Cim  [Een DKL) K () K20) AT
= )[R e R B 00 6, () 3] v (99 e (09
2 K3 (VKD (v)
+c (ﬁ7 v, 7) K5+1 (7) 2Du+1 (7) + 1:|
« {vec (BB') vec (A) +vee (A) ved (B8) + (Knn-+1v2) (38’ ® A] (Kyn-+Tx2))
+Du41 (1) {[A @ A] (Kyy + Iy2) + vec (A)ved (A)}, (6)
where
_ C(B,V, 7) —1 /
A= IN + ,8,,3 /Bﬁ )



and Ky is the commutation matrix (see Magnus and Neudecker, 1988). In this respect,
note that Mardia’s (1970) coefficient of multivariate excess kurtosis will be -1 plus the
trace of the fourth moment above divided by N(N + 2).

Notice that there are (N g %) and (N +?) non-repeated terms in (5) and (6), respectively

(see Yanez et al., 1999). For the particular case of N = 2, we can write these terms as

K3 (v) K7 (7)
K§+1 (7)

E(?) = (B, 7) [ —3Dyy1 () + 2] B +3c(Bsv, ) [Dusr () -1] ani B,

Blee) = @B [Fe L0 ap, )42 i,

+c(Bsv,7) [Dosa (7) -1] (2a1281 + a1152),

B[] = (B ) {KLH MWK Ko () KD (7)

3
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where we use subindices to denote the elements of €*, B and A.

Under symmetry, the distribution of the standardised residuals €* is clearly elliptical,

as it can be written as €* = \/(/&y/v/ R, (Y)u, where ¢ ~ x% and ¢! ~ GIG (v, 1,7).
This is confirmed by the fact that the third moment becomes 0, while

Ele*e” @ e'e”] = Dyy1 (7) {{In @ In] (Knn + In2) + vec (Iy) ved (In)}.

In the symmetric case, therefore, the coefficient of multivariate excess kurtosis is simply

D, 11 (7)-1, which is always non-negative, but monotonically decreasing in v and |v|.



3 The score function

Let y; be a vector of N observed variables. To accommodate flexible specifications,
we assume the following conditionally heteroskedastic dynamic regression model:
1
ye = ,(0) + X7 (0)e;

Nt(e) =M (It—1§ 9) ) (7)
(0) =X (;_1;0),

where p() and vech [3()] are N and N (N + 1)/2-dimensional vectors of functions known
up to the p x 1 vector of true parameter values, 6y, I;_; denotes the information set
available at t — 1, which contains past values of y; and possibly other variables, 21/ 2(0)
is some N x N “square root” matrix such that 21/2(0)212/2/(9) = ¥,(0), and €7 is
a standardised GH vector martingale difference sequence satisfying F(ef|l;—1;60¢) = 0
and V(e}|l;—1;00) = Iy. As a consequence, E(y:|l;—1;00) = p,(00) and V (y:|I;—1;00) =
324(60).

Importantly, given that €} is not generally observable, the choice of “square root”
matrix is not irrelevant except in univariate GH models, or in multivariate GH models in
which either ¥,(0) is time-invariant or €] is spherical (i.e. 8 = 0). But, if we parametrise
B as a function of past information and a new vector of parameters b in the following
way:

B,(6,b) = B ()b, (8)

then it is straightforward to see that the resulting distribution of y; conditional on I;
will not depend on the choice of Et% (0). Finally, it is analytically convenient to replace
v and v by 7 and ¢, where n = —.5v~! and ¢ = (1 4+ 7)™}, although we continue to use
v and v in some equations for notational simplicity.

Using (2), we can express the density of y; as

1—|—N77

L (yillia: ) = 'y loa(2m) — 1 log|54(6)]| - log(y) + 5 log B, (+)

L los(c(@)) = log Ko (7) + Bey(6) + c()b'Sh(0)b

2
1 + Nn 0% ,
1 b
o hog | 7o <e>b+v]
1+ N
L h0g(@0) +hog Koy 1[0 | s atommion +2] | @




where

Q= 1+ 0 [4(0) + 20 )ber(6) + OV (O]

_Rl/ (7) Ct(¢) -1
7 a(P)b'E(0)b

If the mean vector and covariance matrix specifications in (7) were constant, it would

[b'e,(8) + c,(¢)b'X,(0)b]”

be potentially advantageous to use the EM algorithm for estimation purposes. In general
dynamic models, though, the EM is not as useful because it typically requires numerical
maximisation procedures at each M step. However, the EM principle can still be useful
to derive the score function of the GH distribution. In this context, the procedure
that we follow is divided in two parts. In the first step, we derive I (y;|&, I;—1; ¢) and
[ (&|I;-1; @) with respect to ¢. Then, in the second step, we take the expected value of
these derivatives given It = {y1,¥y2, -+ ,yr} and the parameter values.

Conditional on &, y; is the following multivariate normal:

t|&ty Le—1 ~ (0 +(0)cy 71_}#1*
il T ~ N |f0) 4 200 | s 1] e mie)]|.

1,

where ¢;(¢p) = ¢[%7 (0)b, v, 7] and

ci(p) — 1

3i(@) = Zu(0) + b'%,(0)b

,(0)bb',(6).

If we define p; = y; — p,(0) + c:(¢p)X:(0)b, then we have the following log-density

(vl toso) = g tos| SR - Jiog i) - § 7 Dpim g
/ b'3,(0)b vei(d)
P e R ()

Similarly, & is distributed as a GIG with parameters &|I, 1 ~ GIG (—v,, 1), with

a log-likelihood given by

L(&|li—1; @) = viogy —log2 —log K, () — (v + 1) log & — % (&t + 72é> .

In order to determine the distribution of & given all the observable information I,

we can exploit the serial independence of & given I;_1; ¢ to show that

) B f (yeéelli—1; b) . .
[ &llr; @) = F (yilloa: ) o f(yelée, Li—1; @) [ (&l Li-1; @)

o (o 1) (iovmon ) ).




which implies that

&I ¢ ~ GIG (g — v, \/Z;t((f; b'%,(0)b + 2, \/RV’;V)pQE:—1<¢)pt + 1) .

From here, we can use (66) and (67) to obtain the required moments. Specifically,
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E(§t|IT;¢) - i
\/VTPQEI_ p: +1

v (@) R, (7) -1
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R, (7)
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- e log K, \/Ry o) b3, (0)b + > P pr+1 i

If we put all the pieces together, we will finally have that
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3.1 Asymmetric ¢ limit

This case is obtained for v = 1 and 7 > 0. In terms of (1), £ would be a Gamma

1

variate with mean 7! and variance 2np~!. Using the limiting expression (61), we can

show that
i B )
v—1 7y 1—2n
1—2n
lim D, =
wlgll +1(7) 1— 4n

for n < 0.25. Introducing these results in (9), the asymmetric ¢ log-likelihood can be

expressed as

2
L (Catt()) + [ 1 L) 10g2 — log T (=
——log(c, —— | log2 —1lo —
5 g\ Cat,t 2 g g 2

1+ N 1-2
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N 1 N 1—-2
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1+ Nn
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1 log(Qat,t) + log Ky 5n {\/ 1
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and

. 1-2 —
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0
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Hence, we can write
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and

Oyl L5 ) (Cate(P) — 1) (1 — 4n) /
N VA ci(d)b'S(0)by/(1 — 4n)? + 8p(1 — 4n)b’2t(0)bb Z(0)
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y { [cate(®) — 1] (1 = dn) (b'py) b/, (0)
2t (@)D’ (0)by/ (1 — 41)2 + 8(1 — 4n)b'%,(6)b
P, L —4n :
Cart(@) /(1 —4n)? +8n(1 - 4n)b’2t(9)bb Et(e)}
(1 — 477) [2 -9 (]T7 ¢)] b/2t<0) (14)

VL= 4n)? +8n(1 — 4n)b'’=,(0)b
In the case of the derivative with respect to 7, we can again use the reflection formula

(59) and the limiting expression (61) of K, (7), to show that

Olog K, (7) 0log K_45/n(7) _ dlog K‘5/,7(fy)
n on on

-1 1 log2 log~y
= 530\ o) 57t 53
2n 2n 2n 2n

holds as 1 goes to one, where ¥ (-) is the digamma function. Using similar arguments

for R, (), we can show that

. 0logR, (7) 1
lim =
Pp—1 on n(l —2n)
lim aDlI“rl (7) — 2
R (2
and
dcy(@) Catt (@) — 1

lim =
v—1  0n ny/ (1 —4n)2 + 8n(1 — 4n7)b'S,(0)b

If we introduce these results in (11), we obtain

Olat (yil Ii-1; @) . N 1 1 log 2
on ~ 2n(1 —2n) - 2n2¢ o) " ap

, B 1 Cat,t(¢) —1
+ (b 3:(0)b QCat,t(¢)> ny/ (1 —4n)% + 8n(1 — 4n)b’2,(0)b
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Using the same limiting expressions, we can show for small v that

dlog K,(7) 1
oY - 2pY(1 =)

alog R, (’7) _ —1
o0 e-9) (16)
8DV—H (7)
oY

(15)

=0

and

dei(@)
oY

If we introduce these results in (12), we finally obtain

Olat (y¢| Li—1; @) n(l — 1)
oY (1 —=2n)y*’

which tends to zero as v tends to 1.

=0.

=g (IT> ¢)

3.2 Student t limit

We now take the limit b — 0 on the asymmetric ¢ log-likelihood. Using L’Hospital

rule, it can be shown that, as b — 0, ¢,:+(¢) — 1 and

lim Cat,t(d)) —1 _

) 1
b—0 b/2t<9>b " ( 7)

Hence, ¥7(¢) tends to X;(0) and p; tends to €,(6) and Q4+ becomes

Qstt = %‘ii% Qaty =1+ 1 _77277%(0)‘ (18)

Since the argument of the Bessel function of the third kind in (13) tends to zero as

b — 0, we can use (61) to show that

1-2 1 N
lOg K,/,.5N |:\/ . ncat,t(qﬁ)b’Et(e)ant,t} ~ — 10g2 + logF <% + 5)
1+ N 1 /1-2
— 277 " lOg |:§\/ 1 ncat,t(d))blzt(B)ant,tJ . (19)
If we introduce (18) and (19) in (13) and take the limit b — 0, we obtain
N 1 N 1-2
i @) = 5 lou(m) — 5 log 5(6)] ~ 5 tog (%)
1+ N 1 1+ N
+logT A —logl'{ — | — + nlog 1+ 7 «(0)],
2n 2n 4n 1—2n
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which is the log-likelihood of the symmetric Student ¢ distribution. Hence, the score
with respect to 8 and 7 will coincide with the values given in Fiorentini, Sentana, and

Calzolari (2003). Once again, (65) can be used to show that

| . (=2 +Np)
A, Bl 8) = o e

| 1 n(1=2n) +n%(6)

As for the score with respect to b, we can introduce (17) in (14) and obtain

Ols (Yt| I y; ¢)

= [1— fa(r, ¢)]ey(0)

ob’
nls:(6) — (N +2)]
0
1 — 21+ n(8) =(0).
where
14+ Nn

.fst (]Tad)) = tl)ii)%fat ([T7¢) = 1 —27’]—|—7’]§t(0)

3.3 Extremum test of Student ¢ versus symmetric GH innova-
tions

Let us consider the limit under Student ¢ innovations of the second derivative of the
log-likelihood with respect to 1. First, we compute the score with respect to 1 under
symmetric GH innovations (b = 0):

Olsgr (yi| Li-1;¢) _ N Olog R, (v) 1+Nn  OlogK, (v)

oY 2 oY 2 (1 =) 9y
U7, @) [Olog R, (7) 1 R, (7)
2 |: N + Y (1— ¢):| st(0) + g (Ir, P) 5 (20)

If we differentiate (20) with respect to ¢ we obtain

Plsgn (yi L-1;¢) _ NO?log Ry (y)  (1+Nn)(1—2¢) 9*log K, (7)
o2 2 o2 22 (1 — 1p)° oY?

fUr @) [PlogR, (v)  (1-2¢)
2 [ oy wm—w] u(6)
10f(r.¢) [DlogR, (7)1
2 o0 { o0 ¢<1—w>}§t(0)
R,(y) 1 0R,(y)] , 99r,®) R, (7)
e R T 2y

In order to compute the limit of (21) when v tends to one, we need to refine the limiting

expressions (15) and (16). Using (64), we can expand R, () around v = 0 as

3

~ " _ N 3 4
Ry (7) = 1 Il s s o v +0(v").
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This expansion is valid for v = —.5/n when 1 > 0. In terms of ¢, we can expand around

Y =1 with

n(l=v) ™ —6n+1 2 3
R, ~——=|1—-(yp—1 -1 Ol(y —1 . 22
()2 T 1= =)+ T S w1 Ol - 1] 2
We can also obtain,
dlogR,(vy) = -1 B
s 10w, (23)
and
9?log R, (7) —1 61° — 6n+ 1
~ O —1).
T e e (T Ty R
We can introduce (22) in (60) and obtain
dlog K, (v) 1
—— ~ ——— 4+ 0y -1
99 T R
PlogK, (v) U (1—2¢)
o T 1o meraowp 0T
If we introduce these expressions in (21), we can obtain
lim Plau (ye| Li—1; @) __n Nn?
vl 0y Cl=2p (I-2)(1—4p)
fr, ¢) —2n* —
R (1 L RRAC Rl e

Thus, once we introduce the values of f (Ir, ¢) and g (I, ¢) under the Student ¢ distri-

bution, we finally obtain

lim Plsen (yilli1;9) _ a w(6) — N (1 —2n) 12 [N — 6(6)]
p—1 o2 (1—=2n)(1—4n) 1-2n+ns(0) (1—2n) 1+ (N-2)n)

3.4 Gaussian limits

3.4.1 First case: n — 0%

To obtain this limit, we rely on (63). Since v = —.5/n is negative in this limit, we
need to exploit the reflection property (59) when we apply (63). However, this is not
necessary when computing the ratios of Bessel functions in E (§|Ir; ¢), E (ft_ "Iz qb)
and E (log &|I7; @), because .5N — v goes to 400 as n — 0.

In particular, after tedious but otherwise straightforward algebra, we can write for

small n > 0
R, (v) =+ 290" + (4y —¥°)n* + O(n*), (24)

13



Dyi1 (7) =1+ 2n+ 87 + O(n?), (25)
and
(@) =1 —2b'S,(8)bn + [8(b'E(0)b)* — 8b'X,(0)b]n* + O(n°). (26)

Also using (63), together with (24) and (26), it is possible to show that the following

two Taylor expansions hold:

fUr,¢) = 1+ (N —q(0) —2b'e, +2)n+ O(n), (27)
g(Ir,¢) = 1+ (2b'e;+4(0) — N)n+ O(n?). (28)

If we introduce these results in (10) and take the limit n — 0, we can show that the
resulting limit is the score of the Gaussian log-likelihood. Similarly it is possible to show

that lim, o+ [0l(y| [;—1; ¢)/Ob] = 0. In addition, we can also obtain from (63) that

ot 0y (1 — )

and

i 2108 K (7) _ 1

n—0% o N 2n(1 — o)’
which imply that lim, o+ [0l(y¢| [;—1; @) /0] = 0.

As for the score with respect to 7, once again we can obtain from (63) that

dlog R, () 1

G = p 22+ (818" + O(n") (29)
and
dlog K, (v) log(ny) . 1 ~* 1
G = Tt~ g g O, (30)

Then, if we rewrite (11) as

ol (Yt| I;_q; ¢) 1
o = — 2—7]23 log &|Yr; ] —

f(IT7¢)% ~ b'%(6)b
2 2 2

g (U1, @) »3, (31)

where

2 Oy 2e(9))  In
Llog(y)  dlog K, (v)
2n? o
_Olog Ry (1) e de() |, (b'er)’
S TR Tl L G cz<¢>bfzt<e>b]
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and

_Oale) .\ 0log Ry (7)
=, () an

we can use (24), (26), (29) and (30) to obtain the following expansions:

o logn N -1 ’72 1 / 2 /
“ = + ot N+ 5 =5 = 2(b'Z(0)b)" + b'%,(0)b + O(n), (32)
+2b'%,(8)b — 4(b'S,(0)b)? + O(n), (33)
1
3 = —5—2+O<n>, (34)

Elog&|Yr; @] = —logn + [N —6(0) — 2b'e, — 1]n
N — 2§t(0) - 4b/€t + 4(b/2t(0)b)(b/€t)
+ +2(b'%(0)b)s(0) + 2(b'e:)<(0) 7’ +O0(n). (35)
—2(b'2(0)b)N + 7% + 562(0) — 5N? — 3
If we introduce (27), (28), (32), (33), (34) and (35) in (31) we can check that the elements

with a pole at n = 0 cancel out, while the remaining terms yield

. 8l(yt|ft_1;¢) 1, N +2 N(N+2)
lim . _ ST
ni 0+ an 4glt (9) 2 (0) + 4

+b'{€4(0) [«(0) — (N +2)]} .

3.4.2 Second case: n — 0~

To obtain this limit, we also rely on (63). Notice that ¥ = —.5/n is positive in this
case. Hence, we can directly apply (63). However, we need to consider (59) when com-
puting the ratios of Bessel functions in E (&§|I1; @), E (5{1|]T; qb) and F (log&|Ir; @),
because now .5N — v goes to —oo as n — 0.

In particular, we can write for small n < 0

1+ =292+ O(nt)

R, (7) - ; (36)
Dy (7) =1 =20+ 49"n> + O(n"), (37)
ci(@) =1+ 2b'S,(0)bn + 8(b'S.(0)b)*n* + O(n?). (38)

Also using (63), together with (36) and (38), it is possible to show that the following

two Taylor expansions hold:

fr,¢) = 1+ (=N +(0)+2be, —2)n+O0(n?), (39)
g(Ir,¢) = 1+ (=2b'ey —q(0) + N)n+ O(n). (40)
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If we introduce these results in (10) and take the limit 7 — 07, we can show that the
resulting limit is the score of the Gaussian log-likelihood. Similarly it is possible to show

that lim,,_o-[0l(y| Ii—1; ¢)/Ob] = 0. In addition, we can also obtain from (63) that

iy Qlos B (y) 1
n—0- Oy Pl =)’

and
i Qlog Ky (y) 1
n—0~ oY 2n(1 =)’
which imply that lim, - [0l(y¢| [—1; ¢)/0¢] = 0.

As for the score with respect to 1, once again we can obtain from (63) that

Olog R, -1
—ga 0 _ - +29°n — 67°n* + O(n*) (41)
1 n
and
OlogK, (y) —log(-my) 1 9 1
an o + 2 + 5 & + O(n) (42)

Then, if we consider the components of the score as written in (31), we can use (36),

(38), (41) and (42) to obtain the following expansions:

_ log(-m?)  (N+1) : 2
M= SR AR (6)h)
—b'3(6)b — %2 + % + O(n), (43)
L, DTOb - —G(6) - (44)
U
s = % +4b'%,(8)b + O(n), (45)
E(log&|Yr; ] = —log(—ny*) + [2b'e; + () — N — 1]

N —8b'e; — 4¢,(0) — 4b'%,(0)b + 4(b'X,(0)b)(b'e;)
+2(b'%(0)b)s:(0) + 6(b'e;)s:(6)
—2NDb'3,(0)b — 4N (b'e;) — 2N (0) + 4(b’r—:t)2
=7+ (3/2)67(0) + (N?/2) + (1/3)

If we introduce (39), (40), (43), (44), (45) and (46) in (31) we can check that the elements

. P HO0).  (46)

with a pole at n = 0 cancel out, while the remaining terms yield

ol (Yt‘ Iy ¢)
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3.4.3 Third case: ) — 0

To obtain this limit, we rely on (62), since in this case the order of the Bessel function
remains fixed while its argument goes to infinity.

In particular, we can write for small 1)

R,,(’y)zl—i—(%—i—v)iﬂ—i—(%—i—u—i—?)lﬂQﬂLOw?’), (47)
Dos () = 140407 = (5 2w+ ) v O, (49
c(@) =1 —-b'Z(0)by + [2(b'E,(0)b)? — b'S,(0)b]y? + O(?). (49)

Also using (62), together with (47) and (49), it is possible to show that the following

two Taylor expansions hold:

P = 1 (5 - P - vet ) v 0w (50)

r ) = 1o (eSO X),
st (

ble, + <& — N _ (b/5,(0)b)(be,)
b'S:(0)b)c (6 b’ 0 b'>: (0
+ _( Et(Q) )st(6) _ (b’et)st(0) + N( E;( )b) wQ —|—O(w3) (51)
A C) 4+ N2
8 8

If we introduce these results in (10) and take the limit ¢» — 0, we can show that the
resulting limit is the score of the Gaussian log-likelihood. Similarly it is possible to show

that limy_[0l(y¢| I1—1; ¢)/Ob] = 0. In addition, we can also obtain from (62) that

Ph—0 (977
i 2108 K (1) _ 0.
V0 on

and

Elog &|Yr; @] = —logv + O(v),

which imply that limy_o[0l(y:| I;—1; ¢)/On] = 0.

As for the score with respect to 1, we can obtain from (62) that

and

o 2 % 8 2



Then, if we rewrite (12) as

Ol (y¢| Li—1; ’ b'%.(6)b
(ygfbld)) _ Ql_f(fjg ¢)92— 22( ) g(IT7¢)Q3

where

_ NalogR, (y) , 1\ 0c(9)
S R +('[)Et('g)b_zcxcf))) O

1 ~ Olog K, (7) N N
2 (1 =) N 2 (1—4)

_ dlog R, (7) N 1 dc(P)
oY ¥ (1=1v) oY

+

(b’at)2
cf(qﬁ)b’Et(O)b 7

02

} PSS (S)pi + b'S,(0)b

and
a(p) | Oa(e) dlog R, (v)
T AT G T
we can use (47), (49), (52) and (53) to obtain the following expansions:

03 = —

_ -l N-2w-1 3N (N
01 = W—FT—FT—F(E—)V
/ 2
o)+ PR S o) (55)
8 2
s(0) +2(b'e;) + (b'3,(0)b) n 3(b'%.(0)b)
P 2

3@2(9) + (b'Z,(8)b)y + 2(b'e;)v

+6(0)r — 2(b'E,(0)b)? + 2(b'e,)? + O(v), (56)
-1 3
Q3:?—§—V+O(¢)- (57)

If we introduce (50), (51) (55), (56) and (57), in (54), we can check that the elements

+3(b/€t) +

with a pole at ¢ = 0 cancel out, while the remaining terms yield

. al(}’tlltfl;q,)) . 1 .. al()’t”&l?‘ﬁ)
lim = — lim .
$—0 o 2 n—0+ on

4 Modified Bessel function of the third kind

The modified Bessel function of the third kind with order v, which we denote as
K, (+), is closely related to the modified Bessel function of the first kind I, (), as

_ Tl (x) =1, (:1:)

2 sin(7wv)

K, (z) (58)
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Some basic properties of K, (-), taken from Abramowitz and Stegun (1965), are

Ky (z) = K., (x), (59)

K, (z) = 2va 'K, (z) + K,_ (v)

and
0K, _
aa:(‘”) = —v 'K, (2) - K, (2),
0K, (x _
% = K, (o) +va 'K, (2).
Hence,
m"g@—fm — Ry (x)+ v, (60)

where R, (z) = K,1(z)/K,(x). For small values of the argument z, and v fixed, it holds
that

K, (z) ~ %r ) (%x) o (61)

Similarly, for v fixed, |z| large and m = 412, the following asymptotic expansion is valid

_ T e [ ml (D) (m9) | (ml) (m-9) (m-25)
Ky(x)_\/; {1+ T 2 (8)7 + 31 (82)° + } (62)

Finally, for large values of x and v we have that

wio) = [ [

=73 2 4 6
1- 31-51 + 811°-4621*43851
>< )

24v 115%1/2
_ 3037513 —36960315+7657651" —4254251° 4
41472003

(63)

where v > 0 and | = [1 + (:1:/1/)2} %. Both (62) and (63) are convergent infinite series.
The rule followed by higher order terms can be obtained in Abramowitz and Stegun
(1965, page 378).

Although the existing literature does not discuss how to obtain numerically reliable
derivatives of K, (z) with respect to its order, our experience suggests the following
conclusions:

e For v < 10 and |z| > 12, the derivative of (62) with respect to v gives a better
approximation than the direct derivative of K, (x), which is in fact very unstable.

e For v > 10, the derivative of (63) with respect to v works better than the direct
derivative of K, (z).
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e Otherwise, the direct derivative of the original function works well.
We can express such a derivative as a function of I, (x) by using (58) as:

0K, (x) T [81_,,(1') 0L (x)
v ov

ov  2sin(vr)

] — 7ot (vrr) K, (z)

However, this formula becomes numerically unstable when v is near any non-negative
integer n = 0,1, 2, --- due to the sine that appears in the denominator. In our experience,

it is much better to use the following Taylor expansion for small v — n|:

OK,(z) 0K, (x) 0?K,(z)
o v vn o |, _., (v=n)
PK,(x K, (x
T2 oy 5Dy,
where for integer v:
OK,(x) 1 0?I_,(z) 0°I,(x) )
Ov  4cos(mn) [ a2 a2 (o) = L),
PK,(z) 1 OPI_,(x) 03, () N 72 ol_,(x) 0L, (x)] =* Ko (2)
ov?  6cos(mn) a3 s 3 cos (mn) v ov | 3 )
PK,(r) 1 N y(x) O'I(x)
o3  8cos(mn) ovt ovt
0?1 ,(x)  0%I,(x) 0K, ()
42 v\T) Oy 194 _ 20fn
4 { 502 52 ] 127 [I_,(x) Iy(x)]}+37r P
and
8—4K (z) = 1 3P (x) 0°L,(v)
ovt " 8cos (mn) | 2 ovd ovd
PI_,(x) L(v) ol_,(x) OI,(x) 0K, ()
2 v . v A v . v 2 n 4
-107 [ 53 505 ] A { 5 By :|}—|—67T 52 T K, (x).

Let ¢ () denote the polygamma function (see Abramowitz and Stegun, 1965). The

first five derivatives of I,(x) for any real v are as follows:

L pan (3) - (5) 5 20 ()

where
Y ()/T(2)ifz>0
Qi(z) = { 70 (1 —2) [ (1 — 2)sin (72) — weos (72)] if 2 <0

27 (x T Uz T\ 72 T\ = Qa2 (v 2 ’
Tt () % e e (- G S ()

k=0
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where

[v' (2) =9* (2)] /T (2) if 2> 0
Qa(z) = T (1—z2) [m =/ (1—2)— [ (1 - z)ﬂ sin (7z)
+2F( —2)(1— )cos( z) if 2 <0

o 3)] b

T = v (3) 5 -2 s ()]
_(g) (y—;'k—l—l) G 2) |

k=0

[¥° (2) = 3¢ (2) ¥ (2) + 9" (2)] /T (2) if 2> 0
Qs(2) =4 7' T(L—2){*(1—2) =3¢ (1= 2) [7* — ¢' (1 = 2)] + " (1 — 2)} sin (m2)
+0 (1 —2){m* =3 [* (1 —2)+ ' (1 — 2)]}cos (m2) if 2 <0

7R = o () 782 ol (5 4 ) 25

- fioe (3)) o - (5)" S S (1)

where

[0 (2) + 602 (2) ' (2) — 49 (2) " (2) = 3[¢ (2))* + 4" (2)] /T (2) if 2> 0
7T (1 —2){=¢* (1 —2) +67%* (1 — 2) — 6% (1 — 2) ¢ (1 — 2)
Qulz) =& 4 (1= 2) 4" (1~ 2) — 3¢/ (1 - ) + 6% (1 — 2)
—" (1 —2) —m'}sin(mz) + T (1 — 2)4* (1 — 2) — 4x%) (1 — 2)
+12¢ (1 —2)Y' (1 —2) + 49" (1 — z) cos (mz) if 2 <0

and finally,
T =51on (5) g 10 [ (%)T T oo (5)] s

o (5] 5 e () m - () 4 ()

where
{v° (2) — 10¢° (Z)¢'(2)+10¢2( )W( )+15¢( ) [ ()
Qs(2) = =50 (2)¥" (2) = 100 (2) 9" (2) + 9 (2) } /T () if 2> 0
7T (1 — 2) fo (2)sin(72) + T (1 — 2) fb( Jeos (rz) if 2 <0
with

fo(2) =07 (1 —2) = 10723 (1 — 2) + 1093 (1 — 2)¢' (1 — 2) + 10¢* (1 — 2) " (1 — 2)
+15¢ (1= 2) [ (1= 2) + 50 (1 — 2) " (1 = 2) + 5t (1 — 2)
—307% (1 — 2) ¢ (1 — 2) + 104" (1 — 2) " (1 — 2) — 102" (1 — 2) + ™) (1 — 2),
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and

fo(2) = =5 (1 — 2) + 107%¢Y? (1 — 2) — 3092 (1 — 2) ' (1 — 2)
—200 (1 —2)9" (1 —2) = 15[ (1 — 2)]* + 1072 (1 — 2) — 5" (1 — 2) — 7.

The ratio of two Bessel functions R,(x) deserves particular attention. Jgrgensen
(1982) shows that
R (r) = R%(z) — (2v + 1)z 'R, (z) — 1. (64)

Once again, (61) can be used to show that
R,(z) ~ 2uz™! (65)

for small z and fixed v > 0.

5 Moments of the GIG distribution

If X ~GIG (v,6,7), its density function will be
(v/0)" 1 (4 2
2KV((57)$ exp 5 x—i—vx ,
where K, (-) is the modified Bessel function of the third kind and 6,7 > 0, v € R,
x > 0. Two important properties of this distribution are X! ~ GIG (-v,,d) and

(v/6)X ~ GIG (1/, V0, \/75). For our purposes, the most useful moments of X when

0y > 0 are
} S\* K, (6
o) = (1) i 9
E(logX) = log (%) + %Ky (07) . (67)

The GIG nests some well-known important distributions, such as the gamma (v > 0,
d = 0), the reciprocal gamma (v < 0, 7 = 0) or the inverse Gaussian (v = —1/2).
Importantly, all the moments of this distribution are finite, except in the reciprocal
gamma case, in which (66) becomes infinite for £ > |v|. A complete discussion on this
distribution can be found in Jgrgensen (1982), who also presents several useful Gaussian

approximations based on the following limits:

Vorl(ve/6) — 1] 7= N, 1)

V ovlog (yx/0) iy N(0,1)
2

v 2V | votoo

2V {m 72} N )

_21/3/2 [ 52:| oo

5 x—i—g — N(0,1)
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6 Power of the normality tests
We can determine the power of the sup test by rewriting it as a quadratic form in
2/[N (N + 2)] X 0
0 Y/[2(N +2)]
evaluated at mp (éT) = [mur (éT),m;T (9~T)]’, where 6, must be interpreted as a PML
estimator of 8y = (up, vech'(Xg))" under the alternative of GH innovations. Hence, its
asymptotic distribution will be given by the robust formulae provided by Bollerslev and

Wooldridge (1992), which, in terms of the Gaussian score can be written as
VT |87 — 8] = A7 (85) VT 507 (8,,0,0,0) + 0, (1),

where
ou' .0 1 OvedX® ovecx
Al(g,) = Ll > et s :

00 00 2 00 00

Hence, the usual Taylor expansion around the true parameter values yields

= ez

VT (8r) = [ ~B(60) A~ (8) Ty.x |VT [ geTéfTO’(g’o ()) 0) } +o,(1), (68)
where B (0y) = —F [0m7 (0) /00']

Fortunately, A (¢,), B (0y), as well as the mean and variance of Sg; (6y) and mr (8y)
under the alternative can be computed analytically by using the location-scale mixture

of normals interpretation of the GH distribution. In particular, we can write
5: = C(¢)b (ht — 1) + \/ htAI't7

G = E:/EI = Cz(¢) (ht — 1)2 b/b -+ 2C(¢)\/h_t(ht — 1) b/AI't + htrgA/Art,
with hy = & 'v/R, (7), and

C(¢a1/7,7>_1

1

2
bb’
b’b ’

A= |Iy+

where 14|z, I, 1 ~ N (0,Iy) and &z, [;_1 ~ GIG[.5n7 1,9~ (1 — ¢),1] are mutually
independent. But since both &, and r; are iid, then €} and ¢; = €/} will also be iid. As a
result, given that all the moments of normal and GIG random variables are finite (except
when ¢ = 1, in which case some moments may become unbounded for large enough 7;
see Jorgensen, 1982), we can apply the Lindeberg-Lévy Central Limit Theorem to show
that the asymptotic distribution of v Ty (éT) is Nim(6g,n,1,b),V(69,n,1,b)], where
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the required expressions can be computed from (68). In particular, we can use Magnus
(1986) to evaluate the moments of quadratic forms of normals, such as r;A’Ar;.

Finally, we can use Koerts and Abrahamse’s (1969) implementation of Imhof’s pro-
cedure for evaluating the probability that a quadratic form of normals is less than a
given value (see also Farebrother, 1990).

To obtain the power of the KT test, we will use the following alternative formulation

KT A ) _
T = N(]\?—{—Q)ka(OT) -1(ka <0T> ZO) +

1 3 ~ A 4 ~
mm;T(eT)E lmST(OT).

Hence, the distribution function of the KT statistic can be expressed as

KT & KT

where fj, (+) is the pdf of the distribution of the kurtosis component. But since the joint

Myt = l) fr (D) dl, (69)

asymptotic distribution of /Ty (éT) is normal, so that the conditional distribution of
\/TmsT (éT) given \/kaT (0~T) will also be normal, the KT test can also be written as
a quadratic form of normals for each value of the kurtosis component. As a result, we

can use Imhof’s procedure again to evaluate

1 -~ ~ 2
p 1 (00) X Ym0 — 2-1(1>0)|mu =1
1"|:2(N+2)mT( T) mT( T)<$ N(N 12 ( 0)‘mk;t ]
KT
= PI’(T<I mkt:l)

Once we know this conditional probability, we can evaluate the integral in (69) by nu-

merical integration with a standard quadrature algorithm.
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