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1 Introduction

Many empirical studies with financial time series data indicate that the distribution

of asset returns is usually rather leptokurtic, even after controlling for volatility cluster-

ing effects. Nevertheless, the Gaussian pseudo-maximum likelihood (PML) estimators

advocated by Bollerslev and Wooldridge (1992) remain consistent for the conditional

mean and variance parameters in those circumstances, as long as both moments are

correctly specified. However, the normality assumption does not guarantee consistent

estimators of other features of the conditional distribution, such as its quantiles. This

is particularly true in the context of multiple financial assets, in which the probabil-

ity of the joint occurrence of several extreme events is regularly underestimated by the

multivariate normal distribution, especially in larger dimensions.

For most practical purposes, departures from normality can be attributed to two

different sources: excess kurtosis and skewness. In this sense, Fiorentini, Sentana and

Calzolari (2003) (FSC) discuss the use of the multivariate Student t distribution to model

excess kurtosis. Despite its attractiveness, though, the multivariate Student t, which is

a member of the elliptical family, rules out any potential asymmetries in the conditional

distribution of asset returns. Such a shortcoming is more problematic than it may

seem, because ML estimators based on incorrectly specified non-Gaussian distributions

may lead to inconsistent parameter estimates (see Newey and Steigerwald, 1997; and

Fiorentini and Sentana, 2007).

The main objective of our paper is to provide specification tests that assess the

adequacy of the multivariate Gaussian and Student t distributional assumptions. There

already exist some well known multivariate normality tests based on the skewness and

kurtosis of the data, such as the one in Mardia (1970). This test was originally intended

for models with homoskedastic disturbances and unrestricted covariance matrices. In

general dynamic models, though, it may suffer from asymptotic size distortions (see

Fiorentini, Sentana, and Calzolari, 2004; Bontemps and Meddahi, 2005). In addition, the

number of moment conditions of the skewness component of Mardia’s test is of order N3,

where N is the multivariate dimension. Hence, this test may show further size distortions

and low power when the cross-sectional dimension is relatively large. In this paper, we

avoid the curse of dimensionality by considering a family of distributions that allow for
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both excess kurtosis and asymmetries in the innovations, which at the same time nest the

multivariate normal and Student t. Specifically, we will use the rather flexible Generalised

Hyperbolic (GH) distribution introduced by Barndorff-Nielsen (1977), which nests other

well known cases as well, such as the Hyperbolic, the Normal Inverse Gaussian, the

Normal Gamma associated to the Variance Gamma process, the Multivariate Laplace

and their asymmetric generalisations, and whose empirical relevance has already been

widely documented in the literature (see e.g. Madan and Milne, 1991; Chen, Härdle,

and Jeong, 2004; Aas, Dimakos, and Haff, 2005; or Cajigas and Urga, 2007). Therefore,

we focus on those departures from both normal and Student t distributions that seem

to be relevant from an empirical point of view.

Our approach is related to Bera and Premaratne (2002), who also nest the Student

t by using Pearson’s type IV distribution in univariate static models. However, they do

not explain how to extend their approach to multivariate contexts, nor do they consider

dynamic models explicitly. Our choice also differs from Bauwens and Laurent (2005), who

introduce skewness by “stretching” the multivariate Student t distribution differently in

different orthants. However, the implementation of their technique becomes increasingly

difficult in large dimensions, as the number of orthants is 2N . Similarly, semi-parametric

procedures, including Hermite polynomial expansions, become infeasible for moderately

large N , unless one maintains the assumption of elliptical symmetry, and the same

is true of copulae methods. An alternative approach is followed by Bai (2003), who

tests parametric conditional univariate distributions by coupling the Kolmogorov test

with Khmaladze’s transformation. Unfortunately, its multivariate extension in Bai and

Zhihong (2008), which is not numerically invariant to the ordering of the factorisation

of the joint density into marginal and conditional components, is difficult to implement

for N greater than 2 when the shape parameters are unknown.

In contrast, given that the GH distribution can be understood as a location-scale

mixture of a multivariate Gaussian vector with a positive mixing variable that follows

a Generalised Inverse Gaussian (GIG) distribution (see Jørgensen, 1982, and Johnson,

Kotz, and Balakrishnan, 1994 for details), the number of additional parameters that we

have to introduce simply grows linearly with the cross-sectional dimension. In addition,

the mixture of normals interpretation also makes the GH distribution analytically rather

tractable, as illustrated by Blæsild (1981). This mixture interpretation has important
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implications from an asset allocation point of view too, because it implies that the

distribution of the returns to any portfolio will exclusively depend on its first three

moments, thereby replacing the traditional mean-variance paradigm by mean-variance-

skewness analysis (see Menćıa and Sentana, 2009).

In this framework, we obtain closed form expressions for the score tests and show

the asymptotic equivalence of their one-sided Kuhn-Tucker versions to the likelihood

ratio tests. We use this equivalence to derive the common asymptotic distribution of

the likelihood ratio and Kuhn-Tucker tests, which turns out to be standard despite the

non-standard features of the problem. Finally, we also study the finite sample properties

of our proposed tests with an extensive Monte Carlo analysis.

The rest of the paper is organised as follows. Section 2 describes the econometric

model and the GH distribution. We derive the normality tests in section 3, and the Stu-

dent t tests in section 4. Section 5 presents the results of our Monte Carlo experiments,

followed by our conclusions. Proofs and auxiliary results can be found in appendices.

2 The dynamic econometric model and the altern-

ative hypothesis

Discrete time models for financial time series are usually characterised by an explicit

dynamic regression model with time-varying variances and covariances. Typically, the

N dependent variables in yt are assumed to be generated as

yt = µt(θ) + Σ
1
2
t (θ)ε∗t ,

µt(θ) = µ (zt, It−1; θ) ,
Σt(θ) = Σ (zt, It−1; θ) ,

 (1)

where µ() and vech [Σ()] are N and N(N+1)/2-dimensional vectors of functions known

up to the p × 1 vector of true parameter values, θ0, zt are k contemporaneous condi-

tioning variables, It−1 denotes the information set available at t − 1, which contains

past values of yt and zt, Σ
1/2
t (θ) is some N × N “square root” matrix such that

Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ), and ε∗t is a vector martingale difference sequence satisfying

E(ε∗t |zt, It−1; θ0) = 0 and V (ε∗t |zt, It−1; θ0) = IN . As a consequence, E(yt|zt, It−1; θ0) =

µt(θ0) and V (yt|zt, It−1; θ0) = Σt(θ0).

In practice, the multivariate Gaussian and Student t have been the two most popular

choices to model the distribution of the standardised innovations ε∗t . For the purposes
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of conducting specification tests of those two distributions, we postulate that under the

alternative ε∗t is conditionally distributed as a GH random vector, which nests both

Normal and Student t as particular cases. In addition, it also includes other well known

and empirically relevant special cases, such as symmetric and asymmetric versions of the

Hyperbolic (Chen, Härdle, and Jeong, 2004), Normal Gamma (Madan and Milne, 1991),

Normal Inverse Gaussian (Aas, Dimakos, and Haff, 2005) and Laplace distributions

(Cajigas and Urga, 2007).1

We can gain some intuition about the parameters of the GH distribution by consid-

ering its interpretation as a location-scale mixture of normals. If ε∗t is a GH vector, then

it can be expressed as

ε∗t = α + Υβξ−1
t + ξ

− 1
2

t Υ
1
2 rt, (2)

where α,β ∈ RN , Υ is a positive definite matrix of order N and rt ∼ iidN(0, IN). The

positive mixing variable ξt is an independent iid GIG with parameters −ν, γ and δ,

or ξt ∼ GIG (−ν, γ, δ) for short, where ν ∈ R, δ, γ ∈ R+ (see Appendix C). Since ε∗t

given ξt is Gaussian with conditional mean α+Υβξ−1
t and covariance matrix Υξ−1

t , it is

clear that α and Υ play the roles of location vector and dispersion matrix, respectively.

There is a further scale parameter, δ; two other scalars, ν and γ, to allow for flexible tail

modelling; and the vector β, which introduces skewness in this distribution.

Like any mixture of normals, though, the GH distribution does not allow for thinner

tails than the normal. Nevertheless, financial returns are typically leptokurtic in practice.

In order to ensure that the elements of ε∗t are uncorrelated with zero mean and unit

variance by construction, we consider a standardised version. Specifically, we set δ = 1,

α = −c (β, ν, γ) β and

Υ =
γ

Rν (γ)

[
IN +

c (β, ν, γ)− 1

β′β
ββ′

]
, (3)

where

c (β, ν, γ) =
−1 +

√
1 + 4[Dν+1 (γ)− 1]β′β

2[Dν+1 (γ)− 1]β′β
, (4)

Rν (γ) = Kν+1 (γ) /Kν (γ), Dν+1 (γ) = Kν+2 (γ)Kν (γ) /K2
ν+1 (γ) and Kν (·) is the modi-

fied Bessel function of the third kind (see Abramowitz and Stegun, 1965, p. 374, as well

as Appendix C). Thus, the distribution of ε∗t depends on two shape parameters, ν and

γ, and a vector of N skewness parameters, denoted by β. Under this parametrisation,

1See Appendix C for further details.
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the Normal distribution can be achieved in three different ways: (i) when ν → −∞ or

(ii) ν → +∞, regardless of the values of γ and β; and (iii) when γ → ∞ irrespective

of the values of ν and β. Analogously, the Student t is obtained when −∞ < ν < −2,

γ = 0 and β = 0.

Importantly, since ε∗t is not generally observable, the choice of “square root” matrix

is not irrelevant except in univariate GH models, or in multivariate GH models in which

either Σt(θ) is time-invariant or ε∗t is spherical (i.e. β = 0). But, if we parametrise β as

a function of past information and a new vector of parameters b in the following way:

βt(θ,b) = Σ
1
2
′

t (θ)b, (5)

then it is straightforward to see that the resulting distribution of yt conditional on It−1

will not depend on the choice of Σ
1
2
t (θ).2 From an asset allocation perspective, one

interesting feature of (5) is that b can be interpreted as the weights of the portfolio

that yields maximum asymmetry (see Menćıa and Sentana, 2009). In what follows, we

maintain the assumption that b is time-invariant (see Appendix A for a generalisation

of (5) that allows for time varying asymmetry parameters). Finally, it is analytically

convenient to replace ν and γ by η and ψ, where η = −.5ν−1 and ψ = (1 + γ)−1,

although we continue to use ν and γ in some equations for notational simplicity.3

3 Multivariate normality versus GH innovations

3.1 The score under Gaussianity

Let s′t(φ) = [s′θt(φ), sηt(φ), sψt(φ), s′bt(φ)] denote the score vector of the GH log-

likelihood function, where φ′ = (θ′, η, ψ,b′) (see Appendix C for explicit expressions). As

we mentioned before, we can achieve normality in three different ways: (i) when η → 0+

or (ii) η → 0− regardless of the values of b and ψ; and (iii) when ψ → 0+, irrespective

of η and b. Therefore, it is not surprising that the Gaussian scores with respect to

η or ψ are 0 when these parameters are not identified, and also, that lim
η·ψ→0

sbt(φ) = 0.

Similarly, the limit of the score with respect to the mean and variance parameters,

2Nevertheless, it would be fairly easy to adapt all our subsequent expressions to the alternative
assumption that βt(θ,b) = b ∀t (see Menćıa, 2003).

3An undesirable aspect of this reparametrisation is that the log-likelihood is continuous but non-
differentiable with respect to η at η = 0, even though it is continuous and differentiable with respect to
ν for all values of ν. The problem is that at η = 0, we are pasting together the extremes ν → ±∞ into
a single point. Nevertheless, it is still worth working with η instead of ν when testing for normality. See
the proof of Proposition 4 for an alternative reparametrisation.
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limη·ψ→0 sθt(φ), coincides with the usual Gaussian expressions (see e.g. Bollerslev and

Wooldridge (1992)). Further, we can show that for fixed ψ > 0,

lim
η→0+

sηt(φ) = − lim
η→0−

sηt(φ) =

[
1

4
ς2t (θ)− N + 2

2
ςt(θ) +

N (N + 2)

4

]
+b′ {εt(θ) [ςt(θ)− (N + 2)]} , (6)

where εt(θ) = yt−µt(θ), ε∗t (θ) = Σ
− 1

2
t (θ)εt(θ) and ςt(θ) = ε∗′t (θ)ε∗t (θ), which confirms

the non-differentiability of the log-likelihood function with respect to η at η = 0 (see

footnote 3). Finally, we can show that for η 6= 0, lim
ψ→0+

sψt(φ) is exactly one half of (6).

3.2 The conditional information matrix under Gaussianity

Again, we must study separately the three possible ways to achieve normality. First,

consider the conditional information matrix It(φ) when η → 0+,[
Iθθt (θ, 0+, ψ,b) Iθηt (θ, 0+, ψ,b)
I ′θηt (θ, 0+, ψ,b) Iηηt (θ, 0+, ψ,b)

]
= lim

η→0+
V

[
sθt (θ, η, ψ,b)
sηt (θ, η, ψ,b)

∣∣∣∣ zt, It−1; φ

]
,

where we have excluded the terms corresponding to b and ψ because both sbt(φ) and

sψt(φ) are identically zero in the limit. As expected, the conditional variance of the

component of the score corresponding to the conditional mean and variance parameters

θ coincides with the expression obtained by Bollerslev and Wooldridge (1992). Moreover,

we can show that

Proposition 1 The conditional information matrix of the GH distribution when η →
0+ is characterised by Iθηt (θ, 0

+, ψ,b) = 0 and Iηηt (θ, 0+, ψ,b) = (N + 2) [.5N +
2b′Σt(θ)b], so that E[Iηηt (θ, 0+, ψ,b)] = (N + 2) [.5N + 2b′Σ(θ)b] where Σ(θ) =
E [Σt(θ)] denotes the unconditional covariance matrix of the data.

Not surprisingly, these expressions reduce to the ones in FSC for b = 0.

Similarly, when η → 0− we will have exactly the same conditional information matrix

because limη→0− sηt (θ, η, ψ,b) = − limη→0+ sηt (θ, η, ψ,b), as we saw before.

Finally, when ψ → 0+, we must exclude sbt(φ) and sηt(φ) from the computation

of the information matrix for the same reasons as above. However, due to the propor-

tionality of the scores with respect to η and ψ under normality, it is trivial to see that

Iθψt (θ, η, 0,b) = 0, and that Iψψt (θ, η, 0+,b) = 1
4
Iηηt (θ, 0+, ψ,b) = 1

4
Iηηt (θ, 0−, ψ,b).

Importantly, once we estimate the mean and variance parameters θ, we can use the

previous closed form expressions to evaluate the information matrix without resorting

to either the outer product of the score or the Hessian matrix.
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Let θ̃T denote the ML estimator of θ obtained by maximising the Gaussian log-

likelihood function. Since our normality tests will require the root T consistency of this

estimator, we will rely on the following result.

Proposition 2 Let θ̃T denote the Gaussian ML estimator of θ. If ε∗t |zt, It−1,θ0 is iid
N(0, IN) and the regularity conditions A.1 in Bollerslev and Wooldridge (1992) are satis-

fied, then
√
T (θ̃T −θ0) → N(0, I−1

θθ ), where Iθθ is the unconditional information matrix
under normality.

We use such high level regularity conditions because we want to leave unspecified

the conditional mean vector and covariance matrix in order to maintain full generality.

Primitive conditions for specific multivariate models can be found for instance in Ling

and McAleer (2003).

3.3 The supremum tests

The derivation of the Lagrange multiplier (LM) and Likelihood Ratio (LR) tests for

multivariate normality versus GH innovations is complicated by two unusual features.

First, since the GH distribution can approach the normal distribution along three dif-

ferent paths in the parameter space, i.e. η → 0+, η → 0− or ψ → 0+, the null hypothesis

can be posed in three different ways. In addition, some of the other parameters become

increasingly underidentified along each of those three paths. In particular, η and b are

not identified in the limit when ψ → 0+, while ψ and b are underidentified when η → 0±.

Unfortunately, the reparametrisation of η and ψ in terms of either hyperbolic or polar

coordinates, as suggested by King and Shively (1993), does not reduce the multiplicity

of testing directions in our case.4

One standard solution in the literature to deal with testing situations with underiden-

tified parameters under the null involves fixing the underidentified parameters to some

arbitrary values, and then computing the appropriate test statistic for those values.

For the case in which normality is achieved as η → 0+, we can use the results in

sections 3.1 and 3.2 to show that for given values of ψ and b, the LM test will be the

usual quadratic form in the sample averages of the scores corresponding to θ and η,

s̄θT

(
θ̃T , 0

+, ψ,b
)

and s̄ηT
(
θ̃T , 0

+, ψ,b
)
, with weighting matrix the inverse of the uncon-

ditional information matrix, which can be obtained as the unconditional expected value

4Under hyperbolic coordinates, a0 = ηψ, a1 = −.5 log(ψ/η) for η > 0 and a1 = −.5 log(−ψ/η)
for η < 0, which would yield normality for a0 = 0 or a1 → ±∞ for the two signs of η. With polar
coordinates, η = b0 cos(b1) and ψ = b0 sin(b1), which yield normality for b0 → 0, b1 → 0, b1 → π/2 or
b1 → π.
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of the conditional information matrix in Proposition 1. But since s̄θT

(
θ̃T , 0

+, ψ,b
)

= 0

by definition of θ̃T , and Iθηt (θ0, 0
+, ψ,b) = 0, we can show that

LM1

(
θ̃T , ψ,b

)
=

[√
T s̄ηT

(
θ̃T , 0

+, ψ,b
)]2

E[Iηηt (θ0, 0+, ψ,b)]
.

We can operate analogously for the other two limits, thereby obtaining the test

statistic LM2

(
θ̃T , ψ,b

)
for the null η → 0−, and LM3

(
θ̃T , η,b

)
for ψ → 0+. Somewhat

remarkably, all these test statistics share the same formula, which only depends on b.

Proposition 3

1. The LM Normality tests for fixed values of the underidentified parameters and
known θ0 can be expressed as:

LM1

(
θ0, ψ,b

)
= LM2

(
θ0, ψ,b

)
= LM3

(
θ0, η,b

)
= LM (θ0,b)

= (N + 2)−1

(
N

2
+ 2b′Σ(θ0)b

)−1
{√

T

T

∑
t

[
1

4
ς2t (θ0)−

N + 2

2
ςt(θ0) +

N (N + 2)

4

]

+b′
√
T

T

∑
t

εt(θ0) [ςt(θ0)− (N + 2)]

}2

, (7)

which converges in distribution to a chi-square with one degree of freedom for a
given b under the null hypothesis of normality.

2. If in addition the regularity conditions of Proposition 2 hold, then the above results
will remain true if we substitute θ̃T for θ0.

The fact that we obtain the same test regardless of the path that we follow to obtain

normality is worth remarking, as this feature is not shared by tests of normality vs. a

discrete mixture of normals (see Cho and White, 2007). The rationale is that the null hy-

pothesis of normality effectively imposes the single restriction η ·ψ = 0 on the parameter

space. Importantly, note that (7) is numerically invariant to the chosen factorisation of

Σt(θ), as expected from (5).

Perhaps not surprisingly, we can prove the following result for the corresponding LR

test:

Proposition 4

1. Under the null of normality and sequences of local alternatives, the LR Normality
tests for fixed values of the unidentified parameters b is asymptotically equivalent
to the Kuhn-Tucker (KT) test

KT
(
θ0,b

)
= 1(s̄ηT

(
θ0, 0,b

)
≥ 0) · LM

(
θ0,b

)
, (8)

where 1(·) is the indicator function.
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2. In addition, if the regularity conditions of Proposition 2 hold, then the above results
will remain true if we substitute θ̃T for θ0.

But since in large samples 1(s̄ηT
(
θ̃T , 0,b

)
≥ 0) will be 0 approximately half the time

under the null, the common asymptotic distribution of the LR and KT tests will be

a 50:50 mixture of 0 and a chi-square with one degree of freedom. Once again, note

that the single degree of freedom reflects the fact that normality effectively imposes the

restriction η · ψ = 0. This is confirmed by the fact that the log-likelihood contours are

parallel to the axes in η, ψ space for values of η or ψ close to 0.

Testing for fixed values of the underidentified parameters is plausible in situations

where there are values of the underidentified parameters that make sense from an eco-

nomic or statistical point of view. Unfortunately, it is not at all clear a priori what values

of b are likely to prevail under the alternative of GH innovations. For that reason, we

now follow a second approach, which consists in computing either the LR or the LM

test statistic for the whole range of values of the underidentified parameters, which are

then combined to construct an overall test statistic (see Andrews, 1994). In our case, we

compute these tests for all possible values of b for each of the three testing directions,

and then take the supremum over those parameter values.

Let us start with the LM test. It turns out that we can maximise LM
(
θ̃T ,b

)
with

respect to b in closed form, and also obtain the asymptotic distribution of the resulting

test statistic:

Proposition 5

1. The supremum of the LM Normality test (7) with respect to b can be expressed as

sup
b∈RN

LM(θ0,b) = LMk(θ0) + LMs(θ0), (9)

LMk(θ0) =
2

N (N + 2)

{√
T

T

∑
t

[
1

4
ς2t (θ0)−

N + 2

2
ςt(θ0) +

N (N + 2)

4

]}2

,

(10)

LMs(θ0) =
1

2 (N + 2)

{√
T

T

∑
t

εt(θ0) [ςt(θ0)− (N + 2)]

}′

Σ−1(θ0)

×

{√
T

T

∑
t

εt(θ0) [ςt(θ0)− (N + 2)]

}
, (11)

which converges in distribution to a chi-square random variable with N +1 degrees
of freedom under the null hypothesis of normality.
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2. In addition, if the regularity conditions of Proposition 2 hold, then the above results
will remain true if we substitute θ̃T for θ0.

The first component of the sup LM test, i.e. LMk(θ̃T ), is numerically identical to the

LM statistic derived by FSC to test multivariate normal versus Student t innovations.

These authors reinterpret (10) as a specification test of the restriction on the first two

moments of ςt(θ0) implicit in

E

[
N(N + 2)

4
− N + 2

2
ςt(θ0) +

1

4
ς2t (θ0)

]
= E[mkt(θ0)] = 0, (12)

and show that it numerically coincides with the kurtosis component of Mardia’s (1970)

test for multivariate normality in the models he considered (see below). Hereinafter, we

shall refer to LMk(θ̃T ) as the kurtosis component of our multivariate normality test.

In contrast, the second component of the sup LM test, LMs(θ̃T ), arises because we

also allow for skewness under the alternative hypothesis. This symmetry component is

asymptotically equivalent under the null and sequences of local alternatives to T times

the uncentred R2 from either a multivariate regression of εt(θ̃T ) on ςt(θ̃T ) − (N + 2)

(Hessian version), or a univariate regression of 1 on
[
ςt(θ̃T ) − (N + 2)

]
εt(θ̃T ) (Outer

product version). Nevertheless, we would expect a priori that LMs(θ̃T ) would be the

version of the LM test with the smallest size distortions (see Davidson and MacKinnon,

1983).

As we discussed in Section 2, the class of GH distributions can only accommod-

ate fatter tails than the normal. In terms of the kurtosis component of our sup LM

multivariate normality test, this implies that as we depart from normality, we will have

E [mkt(θ0)|θ0, η0 > 0, ψ0 > 0] > 0. (13)

While a (sup) LR test will take this feature into account by construction in maximising

the GH log-likelihood function, we need to modify the sup LM test if we want to reflect

the one sided nature of its kurtosis component, as FSC do in the case of the Student t.

For that reason, we would recommend a KT multiplier version of the sup LM test that

exploits (13) in order to increase its power and make it asymptotically equivalent to the

(sup) LR test (see also Hansen, 1991 and Andrews, 2001). More formally:

Proposition 6
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1. The (sup) LR test of Gaussian vs. GH innovations is asymptotically equivalent
under the null of normality and sequences of local alternatives to the following
(sup) Kuhn-Tucker test:

KT (θ0) = LMk(θ0)1
(
m̄kT (θ0) > 0

)
+ LMs(θ0), (14)

where 1(·) is the indicator function, and m̄kT (θ0) the sample mean of mkt(θ0).

2. If the regularity conditions of Proposition 2 hold, then the above results will remain
true if we substitute θ̃T for θ0.

Asymptotically, the probability that m̄kT (θ̃T ) becomes negative is .5 under the null.

Consequently, KT (θ̃T ) and the (sup) LR test will be distributed as a 50:50 mixture of

chi-squares with N and N+1 degrees of freedom because the information matrix is block

diagonal under normality. In practice, the LR test is computationally more burdensome.

Given that the underidentifiability of η, ψ and b under the null implies that the GH

log-likelihood function is numerically rather flat in the neighbourhood of the normality

region, in principle we would need to estimate the model under the alternative hypothesis

starting from a dense grid of values for those N + 2 parameters. In practice, however,

it will not be possible to consider a grid of values for b even in small cross-sectional

dimensions. In this sense, the main advantage of the sup KT test is that it only requires

the estimation of the model under the null hypothesis. In any case, we can use the

expression Pr (X > c) = 1 − .5Fχ2
N

(c) − .5Fχ2
N+1

(c) to obtain p-values for the sup KT

and sup LR tests (see e.g. Demos and Sentana, 1998).

As in other testing situations (see Engle, 1984, page 804), the score tests will retain

their optimal power against certain non normal alternatives other than the GH. For

instance, consider a multivariate distribution with the following density function:

f(yt|It−1; θ) =
exp(−ςt(θ)/2)

(2π)N/2 |Σt(θ)|1/2

[
1 + η

(
1
4
ς2t (θ)− N+2

2
ςt(θ) + N(N+2)

4

)
+ηb′εt(θ) (ςt(θ)− (N + 2))

]
. (15)

This distribution can be interpreted as a multivariate Hermite expansion of the normal

distribution in which asymmetry is a common feature.5 In this case, normality is also

obtained for η = 0, regardless of b. More formally:

Proposition 7 If the conditional distribution of yt is given by (15), then the LM and
KT tests for fixed b will be given by (7) and (8), respectively. In addition, the sup LM
test and the (sup) KT test will be given by (9) and (14), respectively.

5See Kiefer and Salmon (1983) for the analogous reinterpretation of the Jarque and Bera (1980) test
as a test against a univariate Hermite expansion of the normal density.
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In contrast, the (sup) LR test should require the maximisation of (15) under the

alternative hypothesis.

By construction, both the LR and the KT tests will be unable to yield power for

symmetric departures from normality with tails thinner than the normal. In those cases,

though, the sup LM test (9) will retain non-trivial power, since it does not maintain the

assumption of non-negative excess kurtosis under the alternative hypothesis. Proposition

7 also implies that our test would capture departures from normality as long as the

coefficients of the Hermite expansion (15) of the density are different from zero. Hence,

our approach would not yield power if (15) included some additional orthogonal terms but

the coefficients on εt(θ) (ςt(θ)− (N + 2)) and 0.25ς2t (θ)−0.5(N+2)ςt(θ)+0.25N (N + 2)

were zero.

It is also useful to compare our symmetry test with the existing ones. In particular,

the skewness component of Mardia’s (1970) test can be interpreted as checking that

all the (co)skewness coefficients of the standardised residuals are zero, which can be

expressed by the N(N + 1)(N + 2)/6 non-duplicated moment conditions of the form:

E[ε∗it(θ0)ε
∗
jt(θ0)ε

∗
kt(θ0)] = 0, i, j, k = 1, · · · , N (16)

But since ςt(θ0) = ε∗′t (θ0)ε
∗
t (θ0), it is clear that (11) is also testing for co-skewness.

Specifically, LMs(θ̃T ) is testing the N alternative moment conditions

E{εt(θ0)[ςt(θ0)− (N + 2)]} = E[mst(θ0)] = 0, (17)

which are the relevant ones against GH innovations. In order to interpret these moment

conditions, we can rewrite the N elements of Σ
−1/2
t (θ)mst(θ0) as

√
6H3(ε

∗
it(θ)) +

√
2

N∑
j=1
j 6=i

H1(ε
∗
it(θ))H2(ε

∗
jt(θ)), (18)

for i = 1, · · · , N , where Hk(·) is the Hermite polynomial of order k. Hence, (17)

takes into account both the univariate skewness of each variable and its co-skewness

H1(ε
∗
it(θ))H2(ε

∗
jt(θ)) with the remaining variables. Compared to (16), though, (18) does

not consider terms of the form H1(ε
∗
it(θ))H1(ε

∗
jt(θ))H1(ε

∗
lt(θ)) for i 6= j 6= l. Similarly, we

can obtain the following analogous decomposition for the kurtosis component mkt(θ0):

√
24

N∑
i=1

H4(ε
∗
it(θ)) + 4

N∑
i=1

N∑
j=1︸ ︷︷ ︸

i6=j

H2(ε
∗
it(θ))H2(ε

∗
jt(θ)). (19)
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Thus, the kurtosis component considers the marginal kurtosis of each element as well as

all the co-kurtosis terms H2(ε
∗
it(θ))H2(ε

∗
jt(θ)).

A less well known multivariate normality test was proposed by Bera and John (1983),

who considered multivariate Pearson alternatives instead. However, since the asymmetric

component of their test also assesses if (16) holds, we do not discuss it separately.

The test proposed by Mardia (1970) was derived for nonlinear regression models with

conditionally homoskedastic disturbances estimated by Gaussian ML, in which the cov-

ariance matrix of the innovations, Σ, is unrestricted and does not affect the conditional

mean, and the conditional mean parameters, % say, and the elements of vech(Σ) are

variation free. In more general models, though, they may suffer from asymptotic size

distortions, as pointed out in a univariate context by Bontemps and Meddahi (2005) and

Fiorentini, Sentana, and Calzolari (2004). An important advantage of our proposed nor-

mality test is that its asymptotic size is always correct because both mkt(θ0) and mst(θ0)

are orthogonal by construction to the Gaussian score with respect to θ evaluated at θ0.

By analogy with Bontemps and Meddahi (2005, 2010), one possible way to ad-

just Mardia’s (1970) formulae is to replace ε∗3it (θ) by H3[ε
∗
it(θ)] and ε∗2it (θ)ε∗jt(θ) by

H2[ε
∗
it(θ)]H1[ε

∗
jt(θ)] (i 6= j) in the moment conditions (16). Alternatively, we can correct

the asymptotic size by treating (16) as moment conditions, with the Gaussian scores

defining the PML estimators θ̃T (see Newey, 1985 and Tauchen, 1985 for the general

theory, and Appendix C.6 for specific details).

Finally, note that both LMk(θ̃T ) and LMs(θ̃T ) are again numerically invariant to

the way in which the conditional covariance matrix is factorised, unlike the statistics

proposed by Lütkephohl (1993), Doornik and Hansen (1994) or Kilian and Demiroglu

(2000), who apply univariate Jarque and Bera (1980) tests to ε∗it(θ̃T ).

3.4 Power of the normality test

Although we shall investigate the finite sample properties of the different multivariate

normality tests in section 5, it is interesting to study their asymptotic power properties.

However, since the block-diagonality of the information matrix between θ and the other

parameters is generally lost under the alternative of GH innovations, for the purposes

of this exercise we only consider models in which µt(θ) and Σt(θ) are constant but

otherwise unrestricted, so that we can analytically compute the information matrix. In

more complex parametrisations, though, the results are likely to be qualitatively similar.
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The results at the usual 5% significance level are displayed in Figures 1a to 1d for

ψ = 1 and T = 5, 000 (see Appendix C for details). In Figures 1a and 1b we have

represented η on the x-axis. We can see in Figure 1a that for b = 0 and N = 3,

the test with the highest power is the one-sided kurtosis test, followed by its two-sided

counterpart, the KT test, the sup LM test, and finally the skewness test.6 On the other

hand, if we consider asymmetric alternatives in which b is proportional to a vector of ones

ι, such as in Figure 1b, which is not restrictive because the power of our normality test

only depends on b through its Euclidean norm, the skewness component of the normality

test becomes important, and eventually makes the KT test, the sup LM test and even

the skewness test itself more powerful than both kurtosis tests. Not surprisingly, we can

also see from these figures that if we apply our tests to a single component of the random

vector, their power is significantly reduced.

In contrast, we have represented bi on the x-axis in Figures 1c and 1d. There we can

clearly see the effects on power of the fact that b is not identified in the limiting case of

η = 0. When η is very low, b is almost underidentified, which implies that large increases

in bi have a minimum impact on power, as shown in Figure 1c for η = .005 and N = 3.

However, when we give η a larger value such as η = .01 (see Figure 1d), we can see how

the power of those normality tests that take into account skewness rapidly increases with

the asymmetry of the true distribution. Hence, we can safely conclude that, once we get

away from the immediate vicinity of the null, the inclusion of the skewness component

of our test can greatly improve its power. On the other hand, the power of the kurtosis

test, which does not account for skewness, is less sensitive to increases in bi. Similar

results are obtained for N = 1, which we do not present to avoid cluttering the pictures.

Finally, we have also compared the power of our tests with those of the moment

versions of Mardia’s (1970) and Lütkephohl (1993) tests, where this time we have as-

sumed that b = (b1, 0, 0)′ under the alternative for computational simplicity. The results

show the superiority of our proposed tests against both symmetric and asymmetric GH

alternatives (see Figures 1e and 1f, respectively), which confirms the fact that they are

testing the most relevant moment conditions.

6Given that the asymptotic power of the sup LR and sup KT test will be identical under local
alternatives such as the ones that we are implicitly considering in these figures, we have drawn them
together.
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4 Student t tests

As we saw before, the Student t distribution is nested in the GH family when η > 0

ψ = 1 and b = 0. In this particular case, η can be interpreted as the reciprocal of

the degrees of freedom of the Student t distribution. We can use this fact to test the

validity of the distributional assumptions made by FSC and other authors. Again, we

will consider both LR and score tests.

4.1 The score under Student t innovations

In this case, we have to take the limit as ψ → 1− and b → 0 of the general score

function. Not surprisingly, the score with respect to π, where π = (θ′, η)′, coincides with

the formulae in FSC. But our more general GH assumption introduces two additional

terms: the score with respect to b,

sbt (π, 1, 0) =
η [ςt(θ)− (N + 2)]

1− 2η + ηςt(θ)
εt(θ), (20)

which we will use for testing the Student t distribution versus asymmetric alternatives;

and the score with respect to ψ, which in this case is identically zero despite the fact

that ψ is locally identified. We shall revisit this issue in section 4.3.

4.2 The conditional information matrix under Student t innov-
ations

Since sψt (π, 1,0) = 0 ∀t, the only interesting components of the conditional in-

formation matrix under Student t innovations correspond to sθt(φ), sηt(φ) and sbt(φ).

In this respect, we can use Proposition 1 in FSC to obtain Iππt(θ, η > 0, 1,0) =

V [sπt(π, 1,0)|zt, It−1; π, 1,0]. As for the remaining elements, we can show that:

Proposition 8 The information matrix of the GH distribution, evaluated at η > 0 and
ψ = 1 is characterised by Iηbt (θ, η > 0, 1,0) = 0,

Iθbt (θ, η > 0, 1,0) =
−2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)

∂µ′
t(θ)

∂θ
,

Ibbt (θ, η > 0, 1,0) =
2 (N + 2) η2

(1− 2η) (1 + (N + 2) η)
Σt(θ).

As in the case of normality, we can use the previous closed form expressions to

evaluate the information matrix without resorting to either the outer product of the

score or the Hessian matrix.
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Let π̄T = (θ̄
′
T , η̄T )′ denote the parameters estimated by maximising the symmet-

ric Student t log-likelihood function. We will assume throughout this section that the

regularity conditions in Crowder (1976) apply, so that
√
T (π̄T − π0) is asymptotically

normal with mean zero and covariance matrix I−1
ππ, where Iππ is the unconditional in-

formation matrix under Student t innovations.7

4.3 Student t vs symmetric GH innovations

A test of H0 : ψ = 1 under the maintained hypothesis that b = 0 would be testing

that the tail behaviour of the multivariate t distribution adequately reflects the kurtosis

of the data. As we mentioned in section 4.1, though, it turns out that sψt(π, 1,0) = 0

∀t, which means that we cannot compute the usual LM test for H0 : ψ = 1. To deal

with this unusual type of testing situation, Lee and Chesher (1986) propose to replace

the LM test by what they call an “extremum test” (see also Bera, Ra, and Sarkar, 1998).

Given that the first-order conditions are identically 0, their suggestion is to study the

restrictions that the null imposes on higher order conditions. In our case, we will use a

moment test based on the second order derivative

sψψt (π, 1,0) =
η2

(1− 2η) (1− 4η)

ςt(θ)−N (1− 2η)

1− 2η + ηςt(θ)
+

η2 [N − ςt(θ)]

(1− 2η) (1 + (N − 2) η)
, (21)

the rationale being that E [sψψt (π0, 1,0) |zt, It−1,π0, ψ0 = 1,b0 = 0] = 0 under the null

of standardised Student t innovations with η−1
0 degrees of freedom, while

E [sψψt (π0, 1,0) |π0, ψ0 < 1,b0 = 0] > 0 (22)

under the alternative of standardised symmetric GH innovations.

The statistic that we propose to test for H0 : ψ = 1 versus H1 : ψ 6= 1 under the

maintained hypothesis that b = 0 is given by

τkT (π̄T ) =

√
T s̄ψψT (π̄T , 1,0)√
V̂ [sψψt (π̄T , 1,0)]

, (23)

where V̂ [sψψt (π̄T , 1,0)] is a consistent estimator of the asymptotic variance of

sψψt (π̄T , 1,0) that takes into account the sampling variability in π̄T . Under the null

7In particular, Crowder (1976) requires: (i) π0 ∈ int Π is locally identified, where Π is a bounded
subset of Rp+1; (ii) the Hessian matrix is non-singular and continuous throughout some neighbourhood
of π0; (iii) there is uniform convergence of the integrals involved in the computation of the mean vector
and covariance matrix of st(π); and (iv) −E−1

[
−T−1

∑
t ∂st(π)/∂π′]T−1

∑
t ∂st(π)/∂π′ p→ Ip+1,

where E−1
[
−T−1

∑
t ∂st(π)/∂π′] is positive definite on a neighbourhood of π0.
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hypothesis of Student t innovations with more than 4 degrees of freedom, it is easy to

see that the asymptotic distribution of τkT (π̄T ) will be N (0, 1). The required expression

for V [sψψt (π̄T , 1,0)] is given in the following result:

Proposition 9

1. If ε∗t is conditionally distributed as a standardised Student t with η−1
0 > 4 degrees

of freedom, then

√
T s̄ψψT (π0, 1,0)

d→ N {0, V [sψψt(π0, 1,0)]} ,

for known π0, where

V [sψψt(π0, 1,0)] =
8N (N + 2) η6

0

(1− 2η0)
2 (1− 4η0)

2 (1 + (N + 2) η0) (1 + (N − 2) η0)
.

2. If in addition the regularity conditions in Crowder (1976) hold, then

√
T s̄ψψT (π̄T , 1,0)

d→ N
{
0, V [sψψt(π0, 1,0)]−M′(π0)I−1

ππ(π0, 1,0)M(π0)
}
,

where Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix in FSC
and

M(π0) = E

[
Mθt(π0)
Mηt(π0)

]
= E

[
E [sθt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1; π0, 1,0]
E [sηt(π0, 1,0)sψψt(π0, 1,0)| zt, It−1; π0, 1,0]

]
,

with

Mθt(π0) =
4 (N + 2) η4

0 (1− 2η0)
−1 (1− 4η0)

−1

[1 + (N + 2) η0][1 + (N − 2) η0]

∂vec′[Σt(θ0)]

∂θ
vec[Σ−1

t (θ0)],

Mηt(π0) =
−2N (N + 2) η3

0 (1− 2η0)
−2 (1− 4η0)

−1

(1 +Nη0) [1 + (N + 2) η0]
.

Lee and Chesher (1986, page 145) show the equivalence between (23) and the cor-

responding LR test under the null and sequences of local alternatives in unrestricted

contexts. However, similarly to what occurs to the normality tests, we can only compare

the LR test with a one-sided Extremum test that exploits (22). Hence, the statistic

τ 2
kT (π̄T )1 [s̄ψψT (π̄T , 1,0) > 0] will be asymptotically equivalent to a LR test of symmet-

ric Student t vs. symmetric GH innovations, and their asymptotic distribution will be

a chi-square with one degree of freedom with probability 1/2 and 0 otherwise. For this

reason, we again recommend the one sided version over the two sided counterpart.8

8In our case, the equivalence between the LR and the extremum test can be formally proved by
reparametrising the GH distribution in terms of ψ∗ = .5(ψ− 1)2, instead of ψ. This change of variables
does not affect the LR test, but the score with respect to ψ∗ will be sψψT (π̄T , 1,0) under Student t
innovations. Hence, τ2

kT (π̄T )1 [s̄ψψT (π̄T , 1,0) > 0] can be interpreted as a KT test under this repara-
metrisation, which is equivalent to the LR test. See Lee and Chesher (1986) for more details.
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Finally, it is also important to mention that although sψt (π0, 1,b) = 0 ∀t, we can

show that ψ is third-order identifiable at ψ = 1, and therefore locally identifiable, even

though it is not first- or second-order identifiable (see Sargan, 1983). More specifically,

we can use the Barlett identities to show that

E

[
∂2sψt(π0, 1,0)

∂ψ2
|π0, 1,0

]
= −E

[
∂sψt(π0, 1,0)

∂ψ
· sψt(π0, 1,0)|π0, 1,0

]
= 0,

but

E

[
∂3sψt(π0, 1,0)

∂ψ3
|π0, 1,0

]
= −3V

[
∂sψt(π0, 1,0)

∂ψ
|π0, 1,0

]
6= 0.

4.4 Student t vs asymmetric GH innovations

By construction, the previous test maintains the assumption that b = 0. However, it

is straightforward to extend it to incorporate this symmetry restriction as an explicit part

of the null hypothesis. The only thing that we need to do is to include E[sbt (π0, 1,0)] = 0

as an additional condition in our moment test, where sbt (π0, 1,0) is defined in (20). The

asymptotic joint distribution of the two moment conditions that takes into account the

sampling variability in π̄T is given in the following result

Proposition 10

1. If ε∗t is conditionally distributed as a standardised Student t with η−1
0 > 4 degrees

of freedom, then[ √
T s̄bT (π0, 1,0)√
T s̄ψψT (π0, 1,0)

]
d→ N

[
0,

[
Ibb(π0, 1,0) 0

0′ V [sψψt(π0, 1,0)]

]]
,

for known π0, where Ibb(π0, 1,0) = E[Ibbt(π0, 1,0)] and V [sψψt(π0, 1,0)] are
defined in Propositions 8 and 9, respectively.

2. If in addition the regularity conditions of Proposition 1 in FSC hold, then[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]
d→ N [0,V(π0)] ,

where

V(π0) =

[
Vbb (π0) Vbψ (π0)
V ′

bψ (π0) Vψψ (π0)

]
=

{
Ibb(π0, 1,0) 0

0′ V [sψψt(π0, 1,0)]

}
−

[
I ′πb(π0, 1,0)I−1

ππ(π0, 1,0)Iπb(π0, 1,0) I ′πb(π0, 1,0)I−1
ππ(π0, 1,0)M(π0)

M′(π0)I−1
ππ(π0, 1,0)Iπb(π0, 1,0) M′(π0)I−1

ππ(π0, 1,0)M(π0)

]
,

(24)

Iππ(π0, 1,0) = E[Iππt(π0, 1,0)] is the Student t information matrix derived in
FSC, Iπb(π0, 1,0) = E[Iπbt(π0, 1,0)] is defined in Proposition 8 and M(π0) is
given in Proposition 9.
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Therefore, if we consider a two-sided test, we will use

τgT (π̄T ) =

[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]′
V−1 (π̄T )

[ √
T s̄bT (π̄T , 1,0)√
T s̄ψψT (π̄T , 1,0)

]
, (25)

which is distributed as a chi-square with N + 1 degrees of freedom under the null of

Student t innovations. However, we must again exploit the one-sided nature of the ψ-

component of the test to obtain a statistic that is asymptotically equivalent to a LR

test of Symmetric Student t vs. Asymmetric GH innovations. Since V (π0) is not block

diagonal in general, we must orthogonalise the moment conditions (see e.g. Silvapulle

and Silvapulle, 1995). Specifically, instead of using directly the score with respect to b,

we consider

s⊥bt (π̄T , 1,0) = sbt (π̄T , 1,0)− Vbψ (π̄T )V−1
ψψ (π̄T ) sψψt (π̄T , 1,0) ,

whose sample average is asymptotically orthogonal to
√
T s̄ψψT (π̄T , 1,0) by construction.

Note, however, that there is no need to do this orthogonalisation when E [∂µt(θ0)/∂θ0] =

0, since in this case Vbψ (π0) = 0 because Iπb(π0, 1, 0) = 0 (see Proposition 8).

It is then straightforward to see that the asymptotic distribution of

τoT (π̄T ) = T s̄⊥′bt (π̄T , 1,0)

[
Vbb (π̄T )−

Vbψ (π̄T )V ′
bψ (π̄T )

Vψψ (π̄T )

]−1

s̄⊥bt (π̄T , 1,0)

+τ 2
kT (π̄T )1 [s̄ψψT (π̄T , 1,0) > 0] (26)

will be another 50:50 mixture of chi-squares with N and N + 1 degrees of freedom

under the null, because asymptotically, the probability that s̄ψψT (π̄T , 1,0) is negative

will be .5 if ψ0 = 1. Such a one-sided test benefits from the fact that a non-positive

s̄ψψT (π̄T , 1,0) gives no evidence against the null, in which case we only need to consider

the orthogonalised skewness component. In contrast, when s̄ψψT (π̄T , 1,0) is positive,

(26) numerically coincides with (25). The asymptotic null distribution of the LR test of

Symmetric Student t vs. Asymmetric GH innovations will be the same. Importantly,

note once more that (26) is numerically invariant to the chosen factorisation of Σt(θ),

as expected from (5).

On the other hand, if we only want to test for symmetry, we may use

τaT (π̄T ) =
√
T s̄′bT (π̄T , 1,0)V−1

bb (π̄T )
√
T s̄bT (π̄T , 1,0) , (27)

which can be interpreted as a regular LM test of the Student t distribution versus the GH

distribution under the maintained assumption that ψ = 1. In this particular case, the
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GH distribution is known as the Asymmetric t (see Menćıa, 2003). As a result, τaT (π̄T )

will be asymptotically distributed as a chi-square distribution with N degrees of freedom

under the null of Student t innovations, and it will be asymptotically equivalent to a LR

test of Symmetric Student t vs. Asymmetric t innovations.

Given that we can show that the moment condition (17) remains valid for any ellipt-

ical distribution, the symmetry component of our proposed normality test provides an

alternative consistent test for H0 : b = 0, which is however incorrectly sized when the

innovations follow an elliptical but non-Gaussian distribution. To avoid size distortions,

one possibility would be to scale LMs(θ̃T ) by multiplying it by a consistent estimator of

the adjusting factor

2N(N + 2)

E(ς3t (θ0))− 2(N + 2)E(ς2t (θ0)) +N(N + 2)2
(28)

which becomes [(1 − 4η0)(1 − 6η0)]/[1 + (N − 2)η0 + 2(N + 4)η2
0] for the Student t.

Alternatively, we can run the univariate regression of 1 on mst(θ̄T ), or the multivariate

regression of εt(θ̄T ) on ςt(θ̄T ) − (N + 2), although in the latter case we should use

standard errors that are robust to heteroskedasticity.9 Not surprisingly, we can show

that these three procedures to test (17) are asymptotically equivalent under the null.

However, they are only valid if there are finite moments up to the sixth order (i.e.

η < 1/6), and will be generally less powerful against local alternatives of the form

b0T = b0/
√
T than τaT (π̄T ) in (27), which is the proper LM test for symmetry.

Nevertheless, an interesting property of a moment test for symmetry based on (17)

is that
√
Tm̄sT (θ̄T ) and

√
T s̄ψψT (π̄T , 1,0) are asymptotically independent under the

null of symmetric Student t innovations, which means that there is no need to resort to

orthogonalisation in order to obtain a one-sided version that combines both of them.

5 A Monte Carlo comparison of finite sample size

and power properties

In this section, we assess the finite sample size and power properties of the testing

procedures discussed above by means of several extensive Monte Carlo exercises, with

an experimental design borrowed from Sentana (2004), which aimed to capture some of

9This approach extends to the multivariate case the results of Godfrey and Orme (1991), who test
for asymmetry of regression residuals without assuming normality.
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the main features of the conditionally heteroskedastic factor model in King, Sentana,

and Wadhwani (1994).

Finite sample size of the normality tests We first simulate the following Gaussian

model:
yit = µi + cift + vit i = 1, · · · , N,

where ft = λ
1/2
t f ∗t , vit = γ

1/2
it v∗it (i = 1, · · · , N),

λt = α0 + α1(f
2
t−1|t−1 + ωt−1|t−1) + α2λt−1,

γit = φ0 + φ1

[
(yit−1 − µi − cift−1|t−1)

2 + c2iωt−1|t−1

]
+ φ2γit−1, i = 1, · · · , N,

(f ∗t , v
∗
1t, · · · , v∗Nt)|It−1 ∼ N(0, IN+1), and ft−1|t−1 and ωt−1|t−1 are the conditional Kalman

filter estimate of ft and its conditional MSE, respectively. Hence, the conditional mean

vector and covariance matrix functions associated with this model are of the form

µt(θ) = µ,
Σt(θ) = cc′λt + Γt,

(29)

where µ′ = (µ1, · · · , µN), c′ = (c1, · · · , cN), and Γt = diag(γ1t, · · · , γNt). As for para-

meter values, we have chosen µi = .2, ci = 1, α1 = φ1 = .1, α2 = φ2 = .85, α0 = 1−α1−α2

and φ0 = 1− φ1 − φ2. We report results for N = 3, N = 10, T = 1, 000 and T = 10, 000

based on 10,000 Monte Carlo replications, which allows us to precisely estimate actual

sizes.10 Further details are available on request.

Given that the asymptotic distributions that we have derived in previous sections may

be unreliable in finite samples, we compute both asymptotic and bootstrap p-values. In

this regard, it is important to note that Andrews (2000, p. 404) shows that the size of

bootstrap tests remains asymptotically valid when some of the parameters are on the

boundary of the parameter space, even though the sampling distribution of the estimators

provided by the bootstrap is invalid. We consider a parametric bootstrap procedure with

1,000 samples for all tests except the LR test, for which we could only use 100 samples for

computational reasons.11 Given that the GH log-likelihood function is very flat around

the normality region, one has to be very careful in choosing starting values. We consider

a fine grid of 20× 5 different initial values for the pair (η, ψ) to maximise the likelihood

under the alternative. But since it was computationally infeasible to implement a similar

10For instance, the 95% confidence interval for a nominal size of 5% would be (4.6%,5.4%).
11Even so, the computation of the bootstrap p-value of the LR test took about 15 minutes in a MS

Windows PC node with a 2.8GHz processor. To speed up the computations, we employed a cluster
of ten such nodes, which limited the computational time to approximately two weeks per Monte Carlo
design. Using 1,000 bootstrap samples would provide more reliable results but at the cost of increasing
the computational burden tenfold.
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grid search for the vector of asymmetry parameters, we only considered a single initial

b given by the value that leads to the sup LM test (see the proof of Proposition 5).12

Proposition 1 implies that both the sup LM and the LR tests are asymptotically

independent of the Gaussian PML estimators of the conditional mean and variance para-

meters regardless of the model specification. In contrast, the original Mardia (1970) and

Lütkephohl (1993) expressions were derived under the assumption that the covariance

matrix of the innovations is constant but otherwise unrestricted, and does not affect the

conditional mean. To deal with this problem, we have interpreted those tests as moment

tests, and adjusted them appropriately so that their size distortions disappear. Specific-

ally, we orthogonalise the Mardia (1970) and Lütkephohl (1993) expressions with respect

to the Gaussian scores of θ. Thanks to this orthogonality, we do not need to reestimate

θ in each bootstrap sample, which would be computationally infeasible in this Monte

Carlo exercise. The main drawback of this approach is that it does not benefit from

the higher order refinements that the bootstrap provides. In this sense, we recommend

reestimating θ in actual empirical applications where such computational considerations

are generally irrelevant.

Figures 2-4 summarise our findings for the different multivariate normality tests in

the trivariate model with T = 1, 000. We use Davidson and MacKinnon’s (1998) p-

value discrepancy plots, which show the difference between actual and nominal test

sizes for every possible nominal size. The left panels show the discrepancy plots of the

asymptotic p-values, while the right panels show the corresponding results obtained with

the parametric bootstrap. Figure 2a shows that the LR test seems to be too conservative

in general, especially for large nominal sizes. In this sense, we can observe in Figure 2b

that the parametric bootstrap is able to reduce those distortions to some extent.13 As

for the remaining tests, the actual finite sample sizes seem to be fairly close to their

nominal levels, with the possible exception of the one-sided version of the kurtosis test

(see Figure 4a), which seems to be also somewhat conservative for larger nominal sizes.

But again, Figure 4b shows that the bootstrap can substantially reduce the distortions.

We investigate in Figures 5-7 the impact of either increasing the sample size or using

12Despite our careful choice of initial values, the LR turned out to be negative approximately 10% of
the time. In those cases, we simply set it to 0.

13The apparent higher distortions of the bootstrapped p-values of the LR test for very small nominal
sizes is simply due to the limited accuracy that we can obtain from just 100 bootstrap samples.
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a larger cross-sectional dimension on the asymptotic p-values. We observe that a larger

sample size generally reduces the size distortions. Nevertheless, although the distortions

of the LR test become slightly smaller for T = 10, 000, they are still larger than those of

the KT test. In contrast, we observe larger size distortions when we set N = 10, with

the LR suffering the most. In any case, the performance of the LR test would improve

if we could consider a sufficiently dense grid of initial values for η, ψ and b.

Finite sample size of the Student t tests In this case we maintain the conditional

mean and variance specification in (29), but generate the standardised innovations ε∗t

from a Student t distribution. As before, we compare the asymptotic p-values of the

tests with their bootstrapped counterparts. Again, we consider 1,000 bootstrap samples

for the LM-type test, but we can only afford 100 samples for the LR test. Since we can

easily orthogonalise the moment conditions of the LM test with respect to π̄T , we did

not need to reestimate the model to carry out a parametric bootstrap. Unfortunately,

in the case of the LR test we have to reestimate θ under the null and the alternative

hypothesis in each bootstrap sample, which makes these computations even slower than

those of the normality test.

Figure 8 shows the p-value discrepancy plots of the one- and two-sided versions of

the Student t tests discussed in section 4, together with those of their asymmetric and

kurtosis components, and the LR test. The most striking feature of the results for the

asymptotic p-values when N = 3, ν = 10 and T = 1, 000, shown in Figure 8a, is the fact

that the actual sizes of the “kurtosis” tests based on τkT (π̄T ), which is defined in (23),

are well below their nominal sizes. This is due to the fact that the sampling distribution

of τkT (π̄T ) is not well approximated by a standard normal unless the sample size is

rather large, as illustrated in Figure 9. In contrast, the actual sizes of the asymmetry

component are very much on target. The joint tests inherit part of the size distortions of

the kurtosis tests, while the LR test is also somewhat conservative. Figure 8b confirms

that the parametric bootstrap is able to yield p-values that are much closer to the

nominal ones.14 In turn, Figure 8c shows that the asymptotic p-values are more reliable

for larger sample sizes, especially for the τkT (π̄T ) test, as also illustrated in Figure 9.

Finally, Figures 8d and 8e show that we generally obtain larger distortions for higher

14Once again, the bootstrapped p-values of the LR test are not very accurate for very small nominal
sizes due to the small number of bootstrap samples that we can use.
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values of η as well as for larger cross-sectional dimensions.

Finite sample power of the normality tests We have repeated the normality tests

using the same mean and variance specification as in (29), but generating the 10,000

Monte Carlo replications from a standardised GH distribution with η = .01, ψ = 1 and

b = (−.05,−.05,−.05)′, which corresponds to an asymmetric t distribution. Figure

10a shows the size-power curves proposed by Davidson and MacKinnon (1998) using

the empirical distribution that we have obtained under the null. The results indicate

that the LR and KT tests seem to display similar power even though we are not in the

immediate vicinity of the null. In this sense, it is worth mentioning that these two tests

are consistent for fixed alternatives but diverge to infinity separately. Finally, note that

the power of Mardia’s and especially Lütkepohl’s tests is smaller.

Finite sample power of the Student t tests Finally, we generate the standardised

innovations from a GH distribution with η = .2, ψ = .3 and b = (−.05,−.05,−.05)′.

These parameter values are far away from the null of ψ = 1, which implies that the local

equivalence between the LR and KT test no longer applies. Note that we do not consider

an asymmetric t alternative in this case, because then we could only assess the power

of the symmetry component of the test. Once again, we use the size-power curves of

Davidson and MacKinnon (1998) using the empirical distribution under a null generated

with the pseudo true parameter values, which in this case differ from the true ones (see

Fiorentini and Sentana, 2007). As we cannot obtain those values in closed form, we

use the average Student t estimates of π obtained from the 10,000 replications simulated

under the alternative. As Figure 10b shows, the LR and KT tests also yield similar power

in this case, although the LR test seems to be slightly more powerful for large sizes. As

expected, the one-sided kurtosis component of the test displays less power, because it

only relies on one moment condition. Finally, the two sided kurtosis test almost has no

power, which confirms the convenience of considering its one sided counterpart.

6 Conclusions

In this paper, we propose LM and LR specification tests of multivariate normality and

multivariate Student t against alternatives with GH innovations, which is a rather flexible
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multivariate asymmetric distribution that also nests as particular cases many other well

known and empirically realistic examples. Methodologically, our main contribution is to

explain how to overcome the identification problems that the use of the GH distribution

as an embedding model entails. We derive closed form expressions for the score based

tests and decompose our proposed statistics into skewness and kurtosis components.

From these expressions, we obtain more powerful one-sided KT versions and show their

asymptotic equivalence to LR tests. For this reason, we would recommend the KT instead

of the LM tests. We also exploit this equivalence to obtain the common asymptotic

distributions of the LR and KT tests, which turn out to be standard despite the non-

standard features of the problem.

We assess the finite sample size properties of the testing procedures that we propose

and previously suggested methods by means of detailed Monte Carlo exercises. Our

results indicate that the asymptotic sizes of our normality tests are very reliable in finite

samples. However, we also find that the kurtosis component of the Student t test is too

conservative, and the same is true of the corresponding LR test. Nevertheless, we show

that one can correct those distortions by means of a parametric bootstrap, although

obtaining reliable p-values for the LR test is computationally time consuming. In finite

samples, we find that the LR and KT tests yield very similar power in both the Gaussian

and Student t cases for parameter configurations that cannot be regarded as local to the

null.

An interesting extension of our results would be to test multivariate normality against

a general location-scale mixture of normals, although the resulting tests will also be

affected by the same type of underidentification problems under the null. Alternatively,

we could consider as our null hypothesis other special cases of the GH distribution, such

as the symmetric normal-gamma. It could also be useful to study the empirical relevance

of asymmetric deviations with time varying features, such as the ones mentioned in

Appendix A. Finally, one could use the test statistics that we have derived to improve

the efficiency of indirect estimators along the lines suggested by Calzolari, Fiorentini,

and Sentana (2004).
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A Normality test with a time varying vector of asym-

metry parameters

Consider the following parametrisation of βt:

βt(θ,B, zt−1) = Σ
1
2
′

t (θ)Bzt−1,

where B is a N × k matrix and zt−1 is a vector of k covariates known at t − 1. This

parametrisation is a generalisation of (5) that also ensures that the log-likelihood does

not depend on the choice of Σ
1
2
t (θ). It can be shown that the score with respect to η

under normality becomes in this case

lim
η→0+

sηt(φ) = − lim
η→0−

sηt(φ) =

[
1

4
ς2t (θ)− N + 2

2
ςt(θ) +

N (N + 2)

4

]
+z′t−1B

′εt(θ) [ςt(θ)− (N + 2)] . (A1)

Similarly, we can show that for η 6= 0, lim
ψ→0+

sψt(φ) is exactly one half of (A1).

We can express the conditional variance of (A1) under normality as

V

[
lim
η→0+

sηt(φ)

]
=
N(N + 2)

2
+ 2(N + 2)vec′(B)E[zt−1z

′
t−1 ⊗Σt(θ)]vec(B).

Hence, the LM test for given values of the unidentified parameters can be expressed as

LM (θ0,B, zt−1) = (N + 2)−1

(
N

2
+ 2vec′(B)E[zt−1z

′
t−1 ⊗Σt(θ)]vec(B)

)−1

×

{√
T

T

∑
t

[
1

4
ς2t (θ0)−

N + 2

2
ςt(θ0) +

N (N + 2)

4

]

+vec′(B)

√
T

T

∑
t

[zt−1⊗εt(θ)] [ςt(θ)− (N + 2)]

}2

. (A2)

Once again, we obtain the same formula regardless of the testing direction in which we

approach the null of normality. Using analogous arguments as in Proposition 3, it can be

shown that this test converges asymptotically to a chi-square with one degree of freedom

under normality. Also as in the simpler case, we can obtain the sup of (A2) by expressing

this maximisation as an eigenvalue problem (see proof of Proposition 5). Specifically, we

obtain

sup
B∈RN×k

LM(θ0) = LMk(θ0) + LMs(θ0), (A3)
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LMk(θ0) =
2

N (N + 2)

{√
T

T

∑
t

[
1

4
ς2t (θ0)−

N + 2

2
ςt(θ0) +

N (N + 2)

4

]}2

,

LMs(θ0) =
1

2 (N + 2)

{√
T

T

∑
t

[zt−1⊗εt(θ)] [ςt(θ)− (N + 2)]

}′

E−1[zt−1z
′
t−1 ⊗Σt(θ)]

×

{√
T

T

∑
t

[zt−1⊗εt(θ)] [ςt(θ)− (N + 2)]

}
.

The asymptotic distribution of (A3) under normality is a chi-square with NK+1 degrees

of freedom. Furthermore, if the regularity conditions of Proposition 2 hold, then the

above results will remain true if we substitute θ̃T for θ0.

B Proofs of Propositions

Proposition 1

To compute the score when η goes to zero, we must take the limit of the score

function after substituting the modified Bessel functions by the appropriate expansion

(see Appendix C). We operate in a similar way when ψ → 0+. Then, the conditional

information matrix under normality can be easily derived as the conditional variance

of the score function by using the property that, if ε∗t is distributed as a multivariate

standard normal, then it can be written as ε∗t =
√
ζtut, where ut is uniformly distributed

on the unit sphere surface in RN , ζt is a chi-square random variable with N degrees of

freedom, and ut and ζt are mutually independent. �

Proposition 2

This proposition is a particular case of Theorem 2.1 in Bollerslev and Wooldridge

(1992), where we impose that Gaussianity is satisfied.

Proposition 3

For fixed b and ψ and known θ0, the LM1 test is based on the average score with

respect to η evaluated at η → 0+. The proportionality of the log-likelihood scores

corresponding to η evaluated at 0± and the score corresponding to ψ evaluated at 0+

leads to (7). Then, a standard central limit theorem for martingale difference sequences

can be used to show that the LM test has the expected asymptotic distribution.

If we introduce θ̃T , the test will in principle be based on the scores with respect to

either η and θ or ψ and θ. But since the average score with respect to θ will be zero
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at those parameter values, and the conditional information matrix is block-diagonal, the

formula of the test does not change. In addition, we can exploit the root T consistency

of θ̃T to perform the usual Taylor expansion of the test moment conditions around θ0.

Then, using the asymptotic orthogonality between these moment conditions and the

score with respect to θ we can easily obtain the required result. �

Proposition 4

The first thing to note is that, although it may seem that the null hypotheses of

η → 0± are interior points, η is in fact on the boundary of the parameter space in

the three cases. The reason is that, by using the change of variables η = −.5ν−1, we

are “pasting” together the two limits ν → ±∞. In this sense, not that if we had used

η∗ = [1+exp(−ν)]−1 instead, then normality would be obtained for η∗ = 0 (corresponding

to η → 0+) and η∗ = 1 (η → 0−), which are clearly on the boundary of the admissible

parameter space. As a result, the log-likelihood would be right-continuously differentiable

at η∗ = 0 and left-continuously differentiable at η∗ = 1. In that context, we could use

the results of Andrews (2001) to prove the equivalence of the LR test and the KT tests

on the three testing directions, which are based on the directed score.

Consider initially the situation in which we fix b and ψ, and only allow η to be

positive under the alternative. Note that such a LR ratio will be identically 0 if the

sample average of (6) is negative, which happens approximately half the time in large

samples. Therefore, the results in Andrews (2001) imply that the LR test will not be

asymptotically equivalent to the corresponding LM test LM1

(
θ0, ψ,b

)
, but rather to the

Kuhn-Tucker test

KT1

(
θ0, ψ,b

)
= 1(s̄ηT

(
θ0, 0

+, ψ,b
)
≥ 0) · LM1

(
θ0, ψ,b

)
,

which does not depend on ψ.

Similarly, if we fix b and ψ, but this time we only allow η to be negative under the

alternative, we will have that the LR test will be asymptotically equivalent to

KT2

(
θ0, ψ,b

)
= 1(s̄ηT

(
θ0, 0

−, ψ,b
)
≤ 0) · LM2

(
θ0, ψ,b

)
Finally, it is not surprising that if we fix b and η then the LR test is asymptotically

equivalent to the Kuhn-Tucker test

KT3

(
θ0, η,b

)
= 1(s̄ψT

(
θ0, η, 0

+,b
)
≥ 0) · LM3

(
θ0, η,b

)
,
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which does not depend on η.

But since those three Kuhn-Tucker tests numerically coincide in any given sample,

we will have that the LR that estimates over both η and ψ for a given value of b will be

asymptotically equivalent under the null to the following test statistic:

KT
(
θ0,b

)
= 1(s̄ηT

(
θ0, 0,b

)
≥ 0) · LM

(
θ0,b

)
,

as required. Finally, given the root T consistency of θ̃T , the second part of the proposition

follows from the same arguments as in Proposition 3. �

Proposition 5

LM
(
θ0,b

)
can be trivially expressed as

LM
(
θ0,b

)
=
Tb+′m̄T (θ0)m̄T (θ0)b

+

(N + 2)b+′DTb+
, (B4)

where b+ = (1,b′)′, m̄T (θ0) =
[
m̄kT (θ0), m̄sT (θ0)

]
, m̄kT (θ) and m̄sT (θ) are the sample

means of mkt(θ) and mst(θ), which are defined in (12) and (17), respectively, and

DT =

[
N/2 0
0′ 2Σ(θ0)

]
.

But since the maximisation of (B4) with respect to b+ is a well-known generalised ei-

genvalue problem, its solution will be proportional to D−1
T m̄T . If we select N/[2m̄kT (θ0)]

as the constant of proportionality, then we can make sure that the first element in b+

is equal to one. Substituting this value in the formula of LM
(
θ0,b

)
yields the required

result. Based on a standard central limit theorem for martingale difference sequences,

the asymptotic distribution of the sup test follows directly from the fact that
√
Tm̄kT (θ0)

and
√
Tm̄sT (θ0) are asymptotically orthogonal under the null, with asymptotic variances

N(N + 2)/2 and 2(N + 2)Σ, respectively.

Finally, given the root T consistency of θ̃T , the second part of the proposition follows

from the same arguments as in Proposition 3. �

Proposition 6

For the sake of simplicity, let us consider the asymmetric t distribution, which is a

particular case of the GH distribution in which η > 0 and ψ = 1. Hence, normality will

be obtained when η = 0. Under normality, the score with respect to b is zero, while the

score with respect to η is given by (6). Now, consider a reparametrisation in terms of η‡

32



and b‡, where η‡ = η and b‡ = bη. This reparametrisation is such that under normality

both η‡ and b‡ will be zero, while under local alternatives of the form η‡T = T−1/2η̄‡

and b‡
T = T−1/2b̄‡ we will have an asymmetric student t distribution with parameters

ηT = T−1/2η̄ and bT = b̄. If we apply the chain rule we can express the score with

respect to the new parameters as

lim
η→0+

sη‡t(φ) =
1

4
ς2t (θ)− N + 2

2
ςt(θ) +

N (N + 2)

4
, (B5)

lim
η→0+

sb‡t(φ) = εt(θ) [ςt(θ)− (N + 2)] , (B6)

under normality. Note that the maximum likelihood estimate of η‡, which cannot be

negative, will be zero when (B5) is negative, which approximately happens half the

time in large samples. Hence, we need to consider the partially one-sided test (14) to

obtain a test equivalent to the LR test. Furthermore, a standard central limit theorem

for martingale difference sequences can be used to show that (B5) and (B6) will be

asymptotically independent under normality.

Finally, given the root T consistency of θ̃T , the second part of the proposition follows

from the same arguments as in Proposition 3.

Proposition 7

It is straightforward to check that the scores of the log of (15) with respect to θ

and η evaluated at η = 0 for fixed b are equal to the corresponding ones of the GH

distribution. Based on this result, we can use the same procedure followed for the GH

distribution to obtain the LM and KT tests for this distribution.

Proposition 8

The proof is straightforward if we rely on the results in the appendix of Fiorentini and

Sentana (2007), who indicate that when ε∗t is distributed as a standardised multivariate

Student t with 1/η0 degrees of freedom, it can be written as ε∗t =
√

(1− 2η0)ζt/(ξtη0)ut,

where ut is uniformly distributed on the unit sphere surface in RN , ζt is a chi-square

random variable with N degrees of freedom, ξt is a gamma variate with mean η−1
0 and

variance 2η−1
0 , and the three variates are mutually independent. These authors also

exploit the fact that X = ζt/ (ζt + ξt) has a beta distribution with parameters a = N/2

33



and b = 1/ (2η0) to show that

E [Xp (1−X)q] =
B (a+ p, b+ q)

B (a, b)
,

E [Xp (1−X)q log (1−X)] =
B (a+ p, b+ q)

B (a, b)
[ψ (b+ q)− ψ (a+ b+ p+ q)] ,

where ψ (·) is the digamma function and B (·, ·) the usual beta function. �

Propositions 9 and 10

We can use standard central limit theory for martingale difference sequences to show

the asymptotic joint normality of

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 d→ N

0, E

Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


 ,

where

Vt−1

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 =

 Iππt(π0, 1,0) Iπbt(π0, 1,0) Mt(π0)
I ′πbt(π0, 1,0) Vt−1 [sbt(π0, 1,0)] 0
M′

t(π0) 0′ V [sψψt(π0, 1,0)]


(B7)

under the null hypothesis of Student t innovations. In addition, we can again exploit

the results of Fiorentini and Sentana (2007) mentioned in the proof of Proposition 8 to

obtain the expressions for the elements of (B7). Parts 1 of the two propositions follow

immediately from the (N+1)× (N+1) submatrix of (B7) that yield the variances of the

test moment conditions. To account for parameter uncertainty, consider the function

g2t (π̄T ) =

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
−

[
I ′πb(π0, 1,0)
M′(π0)

]
I−1

ππ(π0, 1,0)sπt (π̄T , 1,0)

=

[
−I ′πb(π0, 1,0)I−1

ππ(π0, 1,0) IN 0
−M′(π0)I−1

ππ(π0, 1,0) 0′ 1

]  sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

 =A2(π0)

 sπt (π̄T , 1,0)
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

 .
Using the root T consistency of π̄T , we can now derive the required asymptotic distri-

bution by means of the usual Taylor expansion around the true values of the parameters

√
T

T

∑
t

g2t (π̄T ) =

√
T

T

∑
t

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
= A2(π0)

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)


+A2(π0)E

 ∂

∂π′

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

√T (π̄T − π0) + op (1) ,
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where we have used the fact that
∑

t sπt (π̄T , 1,0) = 0. It can be tediously shown by

means of the Barlett identities that

E

 ∂

∂π′

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 = −

 Iππ(π0, 1,0)
I ′πb(π0, 1,0)
M′(π0)

 .

Hence

A2(π0)E

 ∂

∂π′

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 = 0.

As a result

√
T

T

∑
t

[
sbt (π̄T , 1,0)
sψψt (π̄T , 1,0)

]
= A2(π0)

√
T

T

∑
t

 sπt(π0, 1,0)
sbt(π0, 1,0)
sψψt(π0, 1,0)

 ,
from which we can obtain the asymptotic distributions in the Propositions. �

C Supplementary results

Supplementary results associated with this article can be found at

ftp://ftp.cemfi.es/pdf/papers/es/gh testing extra appendix.pdf
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Figure 1a: Power of the normality tests under
symmetric t alternatives
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Figure 1b: Power of the normality tests under
asymmetric t alternatives (bi = .75, ∀i)
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Figure 1c: Power of the multivariate normality
tests against asymmetric t alternatives with
increasing skewness (η = .005, N = 3)
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Figure 1d: Power of the multivariate nor-
mality tests against asymmetric t alternatives
with increasing skewness (η = .01, N = 3)
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Figure 1e: Power of Sup-LM, Mardia and
Lütkepohl normality tests against symmetric
t alternatives (N = 3).
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Figure 1f: Power of Sup-LM, Mardia and
Lütkepohl normality tests against asymmetric
t alternatives (N = 3).
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Notes: Thicker lines represent the power of the trivariate tests. Figures 1b-1d share the legend of
Figure 1a, while Figure 1f shares the legend of figure 1e.



Figure 2: P-value discrepancy plots of the joint normality tests under the null of normality

(a) Asymptotic p-values
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(b) Bootstrapped p-values
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Figure 3: p-value discrepancy plots of the skewness components of the joint normality tests

(a) Asymptotic p-values
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(b) Bootstrapped p-values
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Figure 4: p-value discrepancy plots of the kurtosis components of the joint normality tests

(a) Asymptotic p-values
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(b) Bootstrapped p-values
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Notes: p-value discrepancy plots obtained from a Monte Carlo study with 10,000 simulations with
T=1,000 and N=3. Parametric bootstraped p-values are computed from 1,000 samples for all the
tests except the LR, which is based on 100 only.



Figure 5: P-value discrepancy plots of the joint normality tests under the null of normality

(a) T=10000, N=3
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(b) T=1000, N=10
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Figure 6: p-value discrepancy plots of the skewness components of the joint normality tests

(a) T=10000, N=3
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(b) T=1000, N=10
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Figure 7: p-value discrepancy plots of the kurtosis components of the joint normality tests

(a) T=10000, N=3
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(b) T=1000, N=10
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Notes: p-value discrepancy plots obtained from a Monte Carlo study with 10,000 simulations.



Figure 8: p-value discrepancy plots of the Student t tests under the null of Student t innovations

(a) Asymptotic. T=1000, N=3, η = 0.1
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(b) Bootstrap. T=1000, N=3, η = 0.1
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(c) Asymptotic. T=10000, N=3, η = 0.1
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(d) Asymptotic. T=1000, N=3, η = 0.2
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(e) Asymptotic. T=1000, N=10, η = 0.1
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Notes: p-value discrepancy plots obtained from a Monte Carlo study with 10,000 simulations.
Parametric bootstraped p-values are computed from 1,000 samples for all the tests except the LR,
which is based on 100 only.



Figure 9: Kernel estimation of the density of the symmetric Student t test
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Notes: Monte Carlo study with 10,000 simulations. For T=1,000, T=10,000 and T=100,000, the
test statistics have been obtained with estimated parameters. For computational reasons, the
test for T=1,000,000 is based on the orthogonalised moment conditions evaluated at the true
parameters. Both approaches yield almost identical kernel densities for T=10,000 and T=100,000.



Figure 10: Size-power plots under GH alternative hypotheses

(a) Normality tests

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

Size

P
ow

er

 

 

Kuhn−Tucker
LR
Mardia
Lutkepohl

(b) Student t tests
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Notes: Monte Carlo study with 10,000 simulations with T=1,000. The data generating process
in (a) is a GH distribution with η = .01, ψ = 1 and b = (−.05,−.05,−05)′, while in (b) it is a
GH distribution with η = .2, ψ = .3 and b = (−.05,−.05,−05)′. In the Student t case, nominal
sizes have been corrected by computing the p-values with the finite sample distribution of the tests
under the null, which has been obtained from 10,000 simulations using the pseudo true values of
the parameters to generate the data.


