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1 The density function

Consider an N-dimensional random vector u, which can be expressed in terms of the

following Location-Scale Mixture of Normals (LSMN):
u=a+rp e Aoy (1)

where @ and 3 are N-dimensional vectors, Y is a positive definite matrix of order N,
r ~ N(0,Iy), and ¢ is an independent positive mixing variable. If the mixing variable
follows a Generalised Inverse Gaussian distribution (GIG), then the distribution of u
will be the Generalised Hyperbolic distribution (GH) introduced by Barndorff-Nielsen
(1977). More explicitly, if £ ~ GIG (—v,~,0) then the density of the N x 1 GH random
vector u will be given by
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where —0o < v <00,7>0,¢[0 ' (u—a)=/1+62(u—a)Y (u—a)and K, ()
is the modified Bessel function of the third kind (see Abramowitz and Stegun, 1965, p.
374, as well as Section 4).

Given that 6 and Y are not separately identified, Barndorff-Nielsen and Shephard
(2001) set the determinant of Y equal to 1. However, it is more convenient to set
0 = 1 instead in order to reparametrise the GH distribution so that it has mean vector
0 and covariance matrix Iy. Hence, if & ~ GIG(—v,~,1), then 7 = (v,7v), m(7T) =
R,(7)/7, and ¢,(T) = \/Dys1(7) — 1, where R, (7) = Ky41 (7) /K, (7) and Dyyq (7) =
Koo (V) K, (7) /K2, (7). Tt is then straightforward to use Proposition 1 in Mencfa
and Sentana (2009) to obtain a standardised GH distribution. Specifically, we set ac =

—c(B,v,7) B and

_ Y C</87V77)_1 /
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where
C(Bovn) = ~1++/1+4[D,s1 (v) - 188 @)

2[Dyi1 (v) — 1|88

Thus, the distribution of €; depends on two shape parameters, v and 7, and a vector of

N skewness parameters, denoted by (3.



One of the most attractive properties of the GH distribution is that it contains as
particular cases several of the most important multivariate distributions already used in
the literature. The best known examples are:

e Normal, which can be achieved in three different ways: (i) when v — —oo or (ii)
v — 400, regardless of the values of v and 3; and (iii) when y — oo irrespective of the
values of v and 3.

e Symmetric Student ¢, obtained when —oco < v < —2, v =0 and 3 = 0.

e Asymmetric Student ¢, which is like its symmetric counterpart except that the
vector 3 of skewness parameters is no longer zero.

e Asymmetric Normal-Gamma, which is obtained when v =0 and 0 < v < oo (see
Madan and Milne, 1991).

e Normal Inverse Gaussian, for v = —.5 (see Aas, Dimakos, and Haff, 2005).

e Hyperbolic, for v = 1 (see Chen, Hérdle, and Jeong, 2008)

e Asymmetric Laplace, for v = 1 and v = 0 (see Cajigas and Urga, 2007).

2 The score function

Let y; be a vector of N observed variables. To accommodate flexible specifications,
we assume the following conditionally heteroskedastic dynamic regression model:
1
ye = m(0) + 57 (0)er,

pi(0) = p(1i-1:0), (4)
Et(e) =X (Lt—l? 9) )

where p() and vech [X()] are N and N(N + 1)/2-dimensional vectors of functions known
up to the p x 1 vector of true parameter values, 0y, I;_; denotes the information set
available at t — 1, which contains past values of y; and possibly other variables, Zi / 2(0)
is some N x N “square root” matrix such that Etl/Q(O)Ei/Q,(H) = ¥4(0), and e} is
a standardised GH vector martingale difference sequence satisfying E(e;|l;_1;0y) = 0
and V' (ef|l;—1;0¢) = Iy. As a consequence, E(y:|li—1;00) = p,(00) and V (y¢|l;—1;60) =
34(6y).

Importantly, given that €; is not generally observable, the choice of “square root”
matrix is not irrelevant except in univariate GH models, or in multivariate GH models in
which either ¥,(0) is time-invariant or &} is spherical (i.e. 8 = 0). But, if we parametrise

B as a function of past information and a new vector of parameters b in the following



way:

1
2/

B,(6,b) =37 (0)b, (5)
then it is straightforward to see that the resulting distribution of y; conditional on I;_;
will not depend on the choice of Et% (0). Finally, it is analytically convenient to replace
v and v by 7 and ¢, where n = —.5v! and ¢ = (1 + 7)™}, although we continue to use
v and 7 in some equations for notational simplicity.

If the mean vector and covariance matrix specifications in (4) were constant, it would
be potentially advantageous to use the EM algorithm for estimation purposes. In general
dynamic models, though, the EM is not as useful because it typically requires numerical
maximisation procedures at each M step. However, the EM principle can still be useful
to derive the score function of the GH distribution. In this context, the procedure
that we follow is divided in two parts. In the first step, we derive [ (y;|&, I;_1; ¢) and
[ (&|1;—1; @) with respect to ¢. Then, in the second step, we take the expected value of
these derivatives given I = {y1,¥y2, - ,yr} and the parameter values.

Conditional on &, y; is the following multivariate normal:
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where ¢(¢p) = C[E?(O)b, v,7| and
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If we define p; =y — p,(0) + c:(¢p)X.(0)b, then we have the following log-density
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Similarly, & is distributed as a GIG with parameters |, 1 ~ GIG (—v,~, 1), with

a log-likelihood given by

[ (&|1i—1;0) =viogy —log2 —log K, () — (v + 1) log & — % (& +72%) ‘

In order to determine the distribution of & given all the observable information I,

we can exploit the serial independence of & given I;_1; ¢ to show that

) B f (yeéelli—1; b) . .
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o (o 1) (iovmon ) ).




which implies that

&I ¢ ~ GIG (g — v, \/Z;t((f; b'%,(0)b + 2, \/RV’;V)pQE:—1<¢)pt + 1) .

From here, we can use (9) and (10) to obtain the required moments. Specifically,
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If we put all the pieces together, we will finally have that
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3 Skewness and kurtosis of GH distributions

We can tediously show that

E [vec(e*e”) e’ = E(e* ® €*) "]
= () | PO —ap, () +2) wecte)

+c(Byv,7) [Dur (7)-1] (Kyn+1n2) (B ®@ A) Altc(Byv,7) [Dysa (v) -1 vec (AAT) B,

and
E [vec (e*e*)ved (e*e”)] = E [e*e” @ €* €™
3 2
= ) | P 0] Rt RO 6 () — 3] v () v (68

+62(,3,V, /Y) |:Kl/+3 (Zz (f(j (7) o 2Dy+1 (7) + 1:|

x {vec (BB ) ved (AA") +vec (AA ) ved (BB") + (Kyn+In2) [0 @ AA] (Kyn+1Iy2)}
+D,1 (7) {[AA" @ AA'| (Knn + In2) 4+ vec (AA") ved (AA')},

where
C(,B,I/, 7) —1
B'B

and Ky is the commutation matrix (see Magnus and Neudecker, 1988). In this respect,

A = {INJF ﬁﬂ'r,

note that Mardia’s (1970) coefficient of multivariate excess kurtosis will be -1 plus the
trace of the fourth moment above divided by N(N + 2).

Under symmetry, the distribution of the standardised residuals €* is clearly elliptical,

as it can be written as e* = \/(/&+/7/R, (7)u, where ( ~ x% and £ ~ GIG (v, 1,7).
This is confirmed by the fact that the third moment becomes 0, while

Ele*e” @ e*e”]| = D,y (7) {{In @ In] (Kny + In2) + vee (Iny) ved (Iy)}.

In the symmetric case, therefore, the coefficient of multivariate excess kurtosis is simply

D, 11 (7)-1, which is always non-negative, but monotonically decreasing in v and |v|.
4 Modified Bessel function of the third kind

The modified Bessel function of the third kind with order v, which we denote as
K, (+), is closely related to the modified Bessel function of the first kind I, (-), as

EI—I/ (fL’) B [1/ (l’)

2 sin(7wv)

K, (z) = (6)



Some basic properties of K, (), taken from Abramowitz and Stegun (1965), are
K, (x)=K_,(z), K,»1(z) = 2v27'K, (2)+K,_; (z), and 0K, (z) /Ox = —vaz 'K, (z)—

K, 1 (z). For small values of the argument x, and v fixed, it holds that

o [T m-1 (m-1) (m-9) (m-1)(m-9) (m-25) o
K, (z) ~ \/; {1+ IR 3 (8] - } (7)

Finally, for large values of x and v we have that

7 exp (—vilt x/v) 177 [, 31-51 8112-4621*+3851°
Ko@) = /o (52 ){( / )} {1- n vl ®

1417t 24v 115212

1
. Although the existing literature does not discuss

where v > 0 and [ = [1 + (x/z/)ﬂ
how to obtain numerically reliable derivatives of K, (z) with respect to its order, our
experience suggests the following conclusions:

e For v < 10 and |z| > 12, the derivative of (7) with respect to v gives a better
approximation than the direct derivative of K, (x), which is in fact very unstable.

e For v > 10, the derivative of (8) with respect to v works better than the direct
derivative of K, ().

e Otherwise, the direct derivative of the original function works well.

We can express such a derivative as a function of I,(x) by using (6) as:

- ov ov

0K, (x) _ T {8[,,(95) _ OL,(x)
ov 2sin (vm)

} — meot (vm) K, (x)

However, this formula becomes numerically unstable when v is near any non-negative
integer n = 0,1, 2, --- due to the sine that appears in the denominator. In our experience,
it is much better to use the following Taylor expansion for small v — n|:

0K, (r) _ 0K,(z) 0?K,(z)

v o |, a2 |, (v—n)
P K, (z) 0K, (2) ;
2| e D] ey,
where for integer v:
OK,(2) 1 [PLu@) PLE)], .
v 4cos(mn) { o O +r (@) = L ()],



5216, (1) 1 {831_,,@) 33111(95)} N 2 [81_V(x) 8lu(x)] _W_ZKH(@’

ov2  6cos(mn) a3 s 3cos (mn) v v 3
PK,(r) 1 N (x)  O'I(x)
ovd  8cos(mn) ovt ovt
O*I_,(x)  0%I,(x) OK,(x)
42 v\Z) 0L 194 _ 20y
47 l 502 52 ] 127° [I_,(x) L,(x)]}—i—?nr P
and
§ PI_( 55[
81/4 8cos (mn) | 2 01/5 8V5
OPI_,(r) 831( ) Ol y(z) OI,(z) 0?K, ()
2 2 4
-107 [ 5 905 ] 47t { 5 By ] } +67 5,7 T K ().

Let 9@ () denote the polygamma function (see Abramowitz and Stegun, 1965). The

first five derivatives of [, (x) for any real v are as follows:

P = oo () - ()" 2 (5

where
[ W(x)/T () itz>0
Q1(2) = { 70 (1 —2) [t (1 — 2)sin(72) — wcos (n2)] if 2 <0

LD o (5) ) 1 o ()] - ()5 S (L)

e ¥ PO >0
Qa(2) = { _IF(l z) [7? — 2)— [ (1— z)ﬂ sin (72)
+2I' (1 — 2 w(l—z)cos( 2) if2<0
LD s (5 P o (]2 e (3] 10
G5 S ().
where

(z) if2>0

2) [m? — ' (1= 2)] + 4" (1 = 2)} sin (m2)
(1 —2)]}cos(mz) if 2 <0

T (1= 2){v° (1 - 2) = 3¢ (

{W(Z) U (2) ¢ (2) + 9" ()] /T
Qg(Z) 1-—
I(1—2){m* =3[ (1—2)+¢

ot = s (5) T o s ()] 4o (5))
fes @) - (G S ()
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where

[0 (2) + 692 (2) ¥ (2) — 40 (2) 0" (2) =3[0 (2)]° + 9" (2)] /T (2) if 2> 0
0 (1= 2) {—9* (1 — 2) + 67%? (1 — 2) — 64 (1 — 2) ' (1 — 2)
Qu(z) = § —4 (1—2) 9" (1—2) =3[/ (1 - 2)]° + 67°¢ (1 - 2)
—" (1 —2) — m}sin (r2) + T (1 — 2) 4* (1 — 2) — 4% (1 — 2)
+12¢p (1 —2)Y" (1 —2) + 49" (1 — z) cos (mz) if 2 <0

and finally,
Tt = s (5) Tt =10 s ()] 57 10 o ()] T

o] 2+ s (2)] 0= (5) S (1)

where
{v°(2) — 100 (ZW’(Z)JFNWQ( ) 9" (2) + 159 (2) [/ (2))°
Qslz) = =50 (2) 0" (2) — 100 ()47 (2) + 609 (2)} T (2) i 2 > 0
70 (1= 2) fo(2)sin(72) + T (1 — 2) fb( Jeos(mz) if 2 <0
with

fo(2) =95 (1 —2) — 10723 (1 — 2) + 1003 (1 — 2) ' (1 — 2) + 1092 (1 — 2) ¢" (1 — 2)
+15¢ (1= 2) [ (1= 2) + 50 (1 — 2) " (1 = 2) + 59 (1 - 2)
=307 (1 — 2) ' (1 — 2) + 104" (1 — 2) " (1 — 2) — 107%" (1 — 2) + ) (1 — 2),

and

fo(2) = =5 (1 — 2) + 107%¢% (1 — 2) — 3092 (1 — 2) ' (1 — 2)
—200) (1 — 2) 9" (1 —2) — 15 [¢' (1 — 2)]* 4+ 1072 (1 — 2) — 54" (1 — z) — 7.

5 Moments of the GIG distribution

If X ~GIG (v,6,7), its density function will be

sy [2 (5]

where K, (-) is the modified Bessel function of the third kind and 6,7 > 0, v € R,

r > 0. Two important properties of this distribution are X' ~ GIG (—v,v,d) and
(v/H)X ~ GIG (1/, V9, \/75). For our purposes, the most useful moments of X when

0y > 0 are
) - (5) i 2
E(logX) = log (%) + %K,, (07). (10)



The GIG nests some well-known important distributions, such as the gamma (v > 0,
d = 0), the reciprocal gamma (v < 0, v = 0) or the inverse Gaussian (v = —1/2).
Importantly, all the moments of this distribution are finite, except in the reciprocal
gamma case, in which (9) becomes infinite for & > |v|. A complete discussion on this
distribution can be found in Jorgensen (1982), who also presents several useful Gaussian

approximations based on the following limits:

Vorl(ve/6) — 1] 7= N, 1)
Voylog (v /8) "= N(0,1)

2

'}/ 2V v——+00
— |- — N(0,1
2V [x 72] — NG
—2V3/2 52 oo
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