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1 Introduction

Despite the recent interest in alternative measures, such as the Human Development

Index or the different Gross National Happiness measures, Gross Domestic Product

(GDP) remains the dominant concept to gauge the aggregate performance of an economy

over a given period of time. In the United States of America, the estimates of aggregate

economic activity that the Bureau of Economic Analysis (BEA) publishes as part of its

National Product and Income Accounts (NIPA) are used not only by policy makers and

research economists, but also by private sector agents, including households and firms,

in making their production and consumption decisions, as well as their financial plans.

The BEA uses a mixture of survey, tax and other business and administrative data, as

well as various indicators, which are subject to sampling errors and biases that cannot

be directly assessed. As time goes by, though, the BEA acquires more and better infor-

mation, and for that reason it systematically updates its measures, which results in a

sequence of estimates for a given quarter known as revisions. In fact, the whole revision

process is rather elaborate, and it is important to distinguish between three types: (i)

successive early releases for a given quarter, usually called the “advance”, “second”

and “third” estimates; (ii) annual (or “final”) revisions, which simultaneously update

all the quarters of several previous calendar years; and (iii) occasional comprehensive

revisions, which recompute the entire history of the series after a major methodologi-

cal change that effectively modifies its definition. The importance of revisions should

not be underestimated. For example, Orphanides (2001) convincingly argues that the

use of final instead of preliminary GDP measures can lead to different monetary policy

recommendations.

While in the last two decades there has been considerable progress in jointly mod-

eling the different vintages of US GDP (see, for example, Aruoba (2008), Jacobs and

van Norden (2011) and the references therein), some of these studies have ignored a

second important consideration: the BEA produces not just one but two different official
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measures of real aggregate output and income: Gross Domestic Expenditure (GDE) and

Gross Domestic Income (GDI). GDE measures activity as the sum of all final expendi-

tures in the economy, which is reflected in the output side of the NIPAs. In turn, GDI

measures activity as the sum of all income generated in production, and is therefore

captured on the income side of the NIPAs (the value added approach would complete

the usual trinity of GDP measurements, but the BEA does not produce real estimates

at the quarterly frequency). In theory, the flows of income and expenditure should

be equal, and thus, GDE and GDI should yield the same measure of economic activ-

ity. In practice, though, they differ not only due to the revisions but also because each

is calculated from data from completely different sources (see Landefeld, Seskin, and

Fraumeni (2008) for a review). The systematic, and at times noticeable, deviation be-

tween them – officially known as statistical discrepancy– was traditionally regarded by

many academic economists as a curiosity in the NIPAs (see Grimm (2007) for a detailed

methodological insight). However, the Great Recession led to substantially renewed

interest in academic and policy circles about the possibility of obtaining more reliable

economic activity figures by combining the two measures. As a consequence, various

proposals for improved combinations have been discussed (see, e.g. Nalewaik (2010),

Nalewaik (2011), Greenaway-McGrevy (2011), Aruoba, Diebold, Nalewaik, Schorfheide,

and Song (2016) and Jacobs, Sarferaz, Sturm, and van Norden (2022)). For example, the

GDPplus measure of Aruoba et al. (2016) is currently released on a monthly schedule by

the Federal Reserve Bank of Philadelphia.

The purpose of our paper is to simultaneously tackle all these measurement issues

within a single, internally coherent, signal extraction framework. Intuitively, given that

GDE and GDI are based on different sources, one would expect to obtain a more accurate

estimate of the underlying economic concept by making use of the static and dynamic

correlation patterns in the observed series. Stone, Champernowne, and Meade (1942) is

the first known reference to the signal extraction framework of our paper. Weale (1992)
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surveys the early literature; see also Smith, Weale, and Satchell (1998).

Despite involving a moderately large number of both latent and observed variables,

our model is both flexible and parsimonious thanks to the economic and statistical

discipline that we impose on the measurement errors. Although the modelling of US

GDP as a unit root process rather than as a trend stationary one is now conventional (see

Campbell and Mankiw (1987) and the references therein for the earlier debate), our crucial

point of departure from the previous literature is that we follow Almuzara, Amengual,

and Sentana (2019) and Almuzara, Fiorentini, and Sentana (2023) in imposing that (i) any

two aggregate output and income measures (in logs) are cointegrated, with cointegrating

vector (1,-1); and (ii) measurement errors are mean-reverting and stationary, although

they may be serially correlated. Thus, we are able to focus not only in quarterly growth

rates, but also assess the level of US output, which is of considerable interest in itself,

particularly in regional or cross-country comparisons. Somewhat surprisingly, although

the possibility of cointegration between GDP vintages was highlighted over thirty years

ago by Patterson and Heravi (1991b) and Patterson and Heravi (1991a) (see also Patterson

and Heravi (2004)), the subsequent literature has largely ignored this important feature

of the data.

In addition, the data release calendar is at the core of our model. Specifically, we

explicitly take into account that the “advance”, “second” and “third” GDE estimates are

published one, two and three months after the end of the quarter, respectively. Moreover,

we acknowledge the fact that the timing of the quarterly releases for GDI is somewhat

different, as it incorporates information from the quarterly census of employment and

wages. Importantly, we also consider the annual data revisions of both series that are

published in the second half of the following and subsequent years, and which typically

affect the values for all the quarters of the most recent previous years. For instance, the

July 2017 annual update revised all quarters for 2014, 2015 and 2016.

The final novel ingredient of our model is the combination of data from different
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comprehensive revisions, which take place approximately every five years based on an

economic census of millions of US businesses. These revisions also incorporate changes

in definitions, classifications, and statistical methodology. For example, in 2013 the BEA

started counting R&D as an investment rather than as a cost, which “boosted” US GDP

by over 2%. The most recent comprehensive revision we consider was published in

July 2018, with a detailed analysis in a BEA paper (see Kerry, McCulla, and Wasshausen

(2018)). In that report, the U.S. statistical office presented revised annual estimates

for 1929-2017 and revised quarterly estimates for 1947-2017. Often, comprehensive

revisions reflect either improved or totally new coverage of sectors of the economy that

have become increasingly important. In addition, real GDP is usually re-based, with the

reference year kept fixed during subsequent annual updates. The latest comprehensive

revision was released in September 2023 while our analysis ends in the second quarter

of 2023. Vintages released in July of both 2011 and 2014 are exceptions because the

reference year was also revised. This resulted in a change of the GDP deflator and, in

turn, a change of real GDP for the whole series since 1947.

Despite these systematic differences, the joint modeling of multiple comprehensive

revisions is particularly relevant when a new one is released, which is precisely when

there is very little information about the statistical properties of its successive vintages

and annual revisions.

The closest paper to ours is Jacobs et al. (2022), which also use the different releases of

GDE and GDI to obtain improved real-time estimates of economic activity. Nevertheless,

these authors focus on growth rates and abstract from comprehensive redefinitions. One

additional difference is that Jacobs et al. (2022) propose a framework to separate news

from noise in the revision process along the lines of Jacobs and van Norden (2011).

In Supplemental Appendix SM.F we explain how to write their news-noise model as

a special case of ours. We could use the expressions we derive there to provide a

decomposition of the measurement errors between “news” and “noise”, a promising
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avenue for future research.

From the point of view of implementation, our model can be cast in linear state-space

form and is therefore amenable to the use of Bayesian methods of inference for both

parameters and latent variables. In particular, we develop a Gibbs sampling algorithm

that tackles estimation and signal-extraction simultaneously, allowing for an efficient

and conceptually simple integration of uncertainty coming from different sources. Thus,

we obtain a posterior distribution for the different benchmark definitions of underlying

GDP, whence we can obtain not only point estimates but also measures of dispersion that

reflect the remaining uncertainty about the true value of aggregate activity. Nevertheless,

given that analysts and policy makers typically focus on the evolution of the current GDP

definition, we will refer to our point estimate of the most recent benchmark version as

GDPsolera henceforth. The moniker “solera” arises because the recurrent updating of

our signal extraction process is analogous to the criaderas and soleras system of sherry

wine aging, whereby the final product is obtained by fractional blending inputs from

different vintages over a perennial dynamic procedure that gives sherry its distinctive

character (as explained by agent 007 to M in the 1971 James Bond film Diamonds are

forever).

After estimating our model making the best use of all the available US data, we

apply it to answer a number of empirically relevant questions. First, do comprehensive

revisions modify the empirical characteristics of economic growth, such as its long-term

mean or its persistence? Second, what is the contribution of the different estimates (i.e.,

advance, second, third, etc.) to the precision of signal extraction about economic activity?

Our estimates suggest that (i) comprehensive revisions have not led to appreciable

changes in the average growth rate, and that (ii) noticeable precision gains in signal

extraction occur not only when the advance, second and third estimates of GDE and

GDI are released but also when the annual estimates become available in subsequent

years.
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Finally, we provide several additional empirical exercises, including an assessment

of the sensitivity of our improved estimate of economic activity to our identification

assumptions and alternative specifications of the autocovariance structure of the latent

variables, as well as its behavior during the COVID-19 pandemic. In this respect, we

find that the real time version of GDPsolera provides accurate estimates of the quarters

mostly affected by the pandemic, which seem to be in line with the subsequent BEA

revised estimates. We also find that despite the dramatic nature of the GDP movements

in 2020, our estimates of its growth rate for previous quarters are hardly affected.

The rest of the paper is organized as follows. We begin with a detailed description of

the data in section 2. Section 3 introduces the model and briefly reviews our approach to

estimation and filtering. Section 4 reports the empirical analysis, including the improved

GDPsolera measure of economic activity produced by our method. Finally, we present

our conclusions and directions for further research in section 5, relegating proofs and

other technical details to the supplemental material.

2 Data background

Our empirical analysis uses data on the successive GDE and GDI vintages from the BEA.

To get a better sense of the data, it is instructive to review the timing of the release process

as it happens regularly over a typical year. Table SM.D.1 in Supplemental Appendix

SM.D exemplifies the process in a recent period. Estimates for quarterly GDP are released

in the following order:

(A) Advance estimate, based on data incomplete or subject to further revision by the

source agency, and released at the end of the first month after the end of the quarter.

(B) Second/third estimates, which use broader and more detailed data, and are released

near the end of the second and third months, respectively.

(C) Latest estimates, reflecting the results of both annual and comprehensive updates.
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For GDI only second, third and latest estimates are prepared because of data avail-

ability, except for the fourth quarter of each year, for which only third and latest estimates

are released, typically at the same time as the corresponding GDE figures.

Normally, a single estimate for the latest quarter is added to the GDE/GDI series at

a time, but there are two kinds of updates where multiple quarters are simultaneously

updated:

(a) Annual updates, usually done in July but more recently in September, which cover

at least the three most recent calendar years (e.g. the July 2017 annual update revised

all quarters for 2014, 2015 and 2016). They incorporate newly available annual source

data, and minor methodological changes.

(b) Comprehensive (or benchmark) updates, which are done approximately every 5

years (the actual updates took place in December 2003, July 2009, July 2013 and July

2018). They incorporate periodic data released at frequencies lower than 1 year, such

as the quinquennial US Economic Census, and some major methodological changes.

In our main empirical analysis, we use the available seasonally adjusted GDE and

GDI vintages over the period 1984Q1-2023Q1, including the five benchmark versions

of US economic activity resulting from the comprehensive revisions in 2003, 2009, 2013

and 2018. Although the annual revision process was extended from three to five years

in July 2019, we consider three annual revisions, which are the only ones available for

most of our sample.

We depict the series (in levels) of different comprehensive revision releases in Figure

1.a, where we also plot data produced by early and annual revisions for the periods

between two consecutive benchmark revisions. As we explained in the introduction, the

vertical differences partly reflect different base years for the deflators. In turn, Figures

1.b and 1.c zoom in on two three-year subperiods to illustrate in closer detail the different

measures of economic activity. The July 2018 comprehensive revision led to a thorough

revision of GDE and GDI for the first subperiod (2015Q1-2017Q4), which explains the
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FIGURE 1. GDE and GDI data from the BEA (levels in B US$). Panel (a) displays the data over

the period 1984Q1 to 2023Q1. In this panel, solid lines represent data released under comprehen-

sive revisions while dashed lines represent data produced by early and annual revisions. Panels

(b) and (c) zoom into specific periods

marked differences in levels between the advance, second and third releases, and the

annual ones. In contrast, no such differences appear in the second subperiod (2019Q1-

2021Q4), which nevertheless shows the dramatic effects of the COVID-19 pandemic. We

return to the analysis of the second period in subsection 4.1.4.

3 Model

Let xt be the quantity of interest at time t; in our empirical analysis, US aggregate

economic output (in logs) during quarter t. As most of the literature that followed Stone
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et al. (1942), we treat xt as a latent variable of which only noisy measurements yt are

available. Although the components of this vector will be available after lags of different

length, we will continue to use the subscript t in reference to the quarter to which they

correspond (for background on output measurements, see Landefeld et al. (2008) and

Nalewaik (2010, 2011)). Next, we develop the framework that will allow us to combine

multiple yt’s for the purposes of obtaining an improved estimate of economic activity xt.

For the sake of clarity, we begin in subsection 3.1 with a version of our model that has

no comprehensive revisions, adding them in subsection 3.2.

3.1 Modeling early and annual estimates

Let ym
it be a noisy measurement of xt, where the index i denotes type (e.g., GDE and GDI

estimates) while m denotes release (e.g., early and annual estimates). This distinction

is important because we will assume orthogonality of measurement errors along i but

we will permit correlation over m for measurements with the same i. Orthogonality

between the measurement errors of the expenditure and income estimates is not only

plausible because they are based on completely different data sources, but also useful

to achieve identification of the serial dependence in xt. Still, in Supplemental Appendix

SM.C we assess the robustness of our empirical results to this assumption. In contrast,

correlation between the measurement errors of different releases of the same measure is

to be expected, as they share revised versions of the same data sources.

The model is given by the set of measurement equations

ym
it = xt + vm

it , m = 1, . . . ,Mi, i = 1, . . . ,N,

where vm
it is the measurement error in ym

it . For each i, we collect y1
it, . . . , y

Mi
it into the vector

yit and stack y1t, . . . , yNt into yt. Defining vit, for each i, and vt likewise, we obtain,

yt = 1M×1xt + vt,(1)

where M =
∑N

i=1 Mi and 1M×1 is an M-dimensional vector of ones.
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In this context, we assume that the following conditions hold:

Assumption 1. (a) ∆xt is I(0);

(b) v1t, . . . , vNt are I(0);

(c) ∆xt, v1t, . . . , vNt are orthogonal across blocks at all leads and lags.

We make assumption 1(a) because yt measures economic activity in (log) levels. We

take the definition of I(0) process from the multivariate generalization of the one in Stock

(1994): Consider a time series ωt =
∑
∞

ℓ=0Θℓεt−ℓ, with Θℓ an n × n matrix and εt and

n-dimensional vector. Then, ωt is I(0) if (i) εt is a weakly stationary vector martingale

difference sequence, (ii)
∑
∞

ℓ=0Θℓ is nonsingular, and (iii)
∑
∞

ℓ=0 ℓ∥Θℓ∥ < ∞. Together

with assumption 1(b), it implies that yt is cointegrated with cointegration rank M − 1,

so that any set consisting of M − 1 pairwise differences among the ym
it is a basis for

the cointegration space. Cointegration is a very plausible assumption for aggregate

measurement problems originally highlighted by Patterson and Heravi (1991b) and

Patterson and Heravi (1991a). In fact, assuming that the growth rates in yt follow a

strictly invertible covariance stationary process necessarily implies that the different

measures of xt would diverge in the long run, which is implausible (see Almuzara et al.

(2023) for additional discussion).

On the other hand, Assumption 1(c), which allows for dynamic dependence within

blocks but rules out dependence between shocks to the signal and the different mea-

surement errors, is key for nonparametric identification, as asserted in the following

proposition, whose proof can be found in Supplemental Appendix SM.A:

Proposition 1. Under assumption 1, if N > 1, the autocovariance matrices of ∆xt, v1t, . . . , vNt

are nonparametrically identified from the autocovariance matrices of ∆yt.

Our empirical analysis has N = 2, as we use GDE and GDI measurements of out-

put. N = 1 may be relevant for other applications. In those cases, identification can

be achieved by imposing restrictions on the cross-dependence among v1
1t, . . . , v

M1
1t (e.g.,
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assuming vm1
1t and vm2

1t orthogonal at all leads and lags), or by sufficiently tight parametric

assumptions.

3.2 Modeling comprehensive revisions

Our approach to modeling comprehensive revisions is to treat each version of the variable

of interest introduced by the revision process as a different latent variable, while at the

same time allowing for strong dependence among them. Thus, we naturally generalize

the multiple measurements - single latent variable models in the literature (e.g., Weale

(1992), Smith et al. (1998), Aruoba et al. (2016), Almuzara et al. (2019), and Almuzara

et al. (2023)) to a situation in which there are multiple latent variables of interest.

Let C be the number of benchmark versions. Rather than a single variable, our

extended model makes xt a vector, xt = (x1t. . . . , xCt)
′. Here xct represents the hypothetical

value of economic output that could be measured with the definitions and methods

adopted for the comprehensive revision c if the data sources and measuring tools were

perfect. For example, the first three elements of xt would treat R&D as a cost while the

last two as an investment, as we explained in the introduction.

While analysts and policy makers typically focus on the latest version xCt, there are

important reasons for modeling x1t, . . . , xCt jointly: first, older definitions of economic

activity are important from a historical perspective because, after all, those were the

only ones available at the time; second, understanding the impact of comprehensive

revisions on the static and dynamic characteristics of the growth rates in aggregate

economic activity is particularly relevant too; finally, there is also substantial interest

in quickly learning about the dynamics of the measurement errors in the most recent

version, which might lead to improved inferences about xCt itself.

Measurement equation. Let δm
it be a 1 × C array that has 1 in entry c if ym

it measures xct

and 0 otherwise. The array δm
it is deterministically time-varying but known, and can be

easily computed by comparing the year of the comprehensive revisions and the exact
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release date of ym
it . Our model postulates that

ym
it = δ

m
it xt + vm

it , i = 1, . . . ,N, m = 1, . . . ,Mi.

Concatenating δm
it vertically to conform with yit and yt, we obtain the Mi×C array δit and

the M × C array δt, which lead to the measurement equation

yt = δtxt + vt.(2)

Equation (2) generalizes (1) into a deterministically time-varying measurement equation.

Importantly, some entries of yt may be missing because either they have not been released

yet even though they will be released in the future according to the BEA protocol or

because old methods are not applied to the computation of new estimates. Nevertheless,

our estimation and filtering algorithms can perfectly accommodate the presence of such

missing data.

Identification revisited. We adopt assumption 1 without change, except that ∆xt is a

vector process now. Because the measurement equation is time-varying, the spectrum

of yt depends on t. However, given that the time-variation is deterministic, this entails a

trivial form of non-stationarity from the point of view of identification. In our empirical

analysis, moreover, there is a subvector of yt that is stationary since there is a time-

invariant block in δt. This allows us to establish identification through a generalization

of proposition 1 applied to the time-invariant block. We state sufficient conditions for

non-parametric identification in proposition 2, whose proof is also in appendix SM.A.

Proposition 2. Suppose there are indices i1, i2 (i1 , i2) and matrices Ei1
,Ei2

such that (a) Ei1
yt and

Ei2
yt are nonempty subvectors of yi1,t

and yi2,t
, respectively, (b) Ei1

δt and Ei2
δt are time-invariant,

and (c) rank(Ei1
δt) = rank(Ei2

δt) = C. Then, under assumption 1, the autocovariances of

∆xt, v1t, . . . , vNt are nonparametrically identified from those of ∆yt.

As an example, consider a model with C = 2 versions of economic activity. Suppose
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N = 2 with M1 =M2 = 2 and δt = (I2 I2)′ for all t. The measurement equation is

y1
1t

y2
1t

y1
2t

y2
2t


=



1 0

0 1

1 0

0 1



x1t

x2t

 +


v1
1t

v2
1t

v1
2t

v2
2t


.

This setup clearly satisfies the conditions of proposition 2 with i1 = 1, i2 = 2, Ei1
= (I2 02×2),

and Ei2
= (02×2 I2). Consequently, the autocovariance matrices of∆xt, v1t, v2t are identified

from those of ∆yt. Some intuition can be gained by first considering the subsystemsy
c
1t

yc
2t

 = 12×1xct +

v
c
1t

vc
2t

 , c = 1, 2.

Proposition 1 can be applied and immediately delivers the marginal serial dependence

structure of the processes ∆x1t,∆x2t, v
1
1t, v

2
1t, v

1
2t, v

2
2t.

Next, we can recover the cross-autocovariances of the two signals by observing that

Cov
(
∆x1t,∆x2,t−ℓ

)
= Cov

(
∆yc

1t,∆yc
2,t−ℓ

)
holds for c = 1, 2 and all ℓ. Finally, we have that for i = 1, 2 and all ℓ,

Cov
(
∆v1

it,∆v2
i,t−ℓ

)
= Cov

(
∆y1

it,∆y2
i,t−ℓ

)
− Cov

(
∆x1t,∆x2,t−ℓ

)
.

In our empirical analysis we rely on C = 5 versions of both GDE and GDI, in addition

to their early and latest estimates. This implies that, for all t, δt contains two distinct

blocks equal to IC each corresponding to GDE and GDI measurements, respectively,

so the conditions in proposition 2 are automatically satisfied. Consequently, the joint

dynamics of ∆xt are non-parametrically identified. One qualification worth making

is that because past benchmark versions are discontinued, we are learning about the

joint autocorrelation structure of xt within the period in which they overlap. This

amounts to a long period in our sample, spanning 1984Q1 to 2003Q2 (the time of the

first comprehensive revision), yet a period that excludes the instabilities from the Great

Recession or the COVID-19 pandemic.
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3.3 Specification, estimation and filtering

Although the dynamics of xt is non-parametrically identified, to implement our empirical

analysis we specify a parametric model for the serial dependence of ∆x, v1, . . . , vN that

satisfies assumption 1 and, at the same time, is relatively simple to estimate.

Specifically, we model ∆xt as a diagonal VAR(1),

∆xt = µx + diag
(
ρx
)
∆xt−1 + Ch(Σx)εxt,(3)

εxt
iid
∼ N(0C×1, IC),

where Ch(M) denotes the lower-triangular Cholesky matrix of M. We collect the un-

known parameters of the ∆xt process in θx = (µx, ρx,Σx). In principle, there could be

differences in the mean, persistence and variance of economic growth across versions,

which will allow us to empirically test whether comprehensive revisions had any impact

on the static or dynamic properties of US output.

In practice, we work with the level process xt rather than with its first differences so

that we can impose cointegration, as explained in Supplemental Appendix SM.B.3. For

that reason, we model the initial condition for the level as:

x1 ∼ N(µx1
,Σx1

),

independent of εxt for all t. This accommodates potential differences in levels between

the elements of xt, which adequately captures the use of deflators with a different base

year, among other things. We will treat µx1
and Σx1

as known and take Σx1
to reflect a

diffuse prior over x1. A relatively easy-to-implement alternative would be to estimate

µx1
.

For the measurement errors of type i, we also postulate a diagonal VAR(1) model:

vit = diag(ρi)vi,t−1 + Ch(Σi)εit,(4)

εit
iid
∼ N(0Mi×1, IMi

),

and place the unknown parameters of this process into θi = (ρi,Σi) for i = GDE, GDI.

Autocorrelated measurement errors in levels capture the persistent but stationary serial
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dependence observed in the statistical discrepancies. We also allow for variation in the

persistence and variance across different releases.

We specify diagonal VARs and not unrestricted VARs because the pattern of overlap

and missing data of different measurements calls for a parsimonious representation.

In contrast, unrestricted specifications for Σx, ΣGDE and ΣGDI allow for flexible forms

of cross-sectional dependence in the different innovations. A thorough assessment of

model fit and diagnostics of these modelling choices can be found in Supplemental

Appendix SM.C.

Estimation and filtering Our objective is to conduct inference on parameters θ and

latent variables x1, . . . , xT. We adopt a Bayesian approach because it allows us to easily

integrate both estimation and filtering uncertainty when performing signal extraction in

a unified, internally consistent framework.

Model (2), (3) and (4) can be represented as a linear state-space model. Using a set

of Gaussian-inverse Wishart priors for model parameters, we propose a Gibbs sampling

algorithm that allows us to approximate the posterior distribution of parameters and

latent variables in a computationally efficient manner. The algorithm relies on standard

techniques for state-space simulation smoothing (e.g., Durbin and Koopman (2002)) and

multivariate linear regression with unknown covariance matrices.

A detailed discussion of our priors, state-space representation, estimation algorithm,

and approach to filtering and inference can be found in Supplemental Appendix SM.B.

4 GDP solera: empirical analysis

In the next subsection, we provide a thorough empirical assessment of our model and

carry out some robustness exercises. Afterwards, we use it to analyse several important

empirical issues related to both the level and evolution of the US economy. Readers

mostly interested in the latter subsection can safely skip the first one.
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4.1 Model assessment

4.1.1 Parameter estimates and their stability across comprehensive revisions

Table SM.B.1 in Supplemental Appendix SM.B.5 summarizes the posterior distributions

of the model parameters and compares those distributions to their priors. As can be

seen, the data seems informative about all the parameters.

A crucial assumption of our approach is the cointegration between the different

aggregate measures, as originally suggested by Patterson and Heravi (1991b), Patterson

and Heravi (1991a), and Patterson and Heravi (2004). In this respect, we find that the GDE

measurement errors have low persistence (point estimates of first-order autocorrelations

between 0.1 and 0.2) while GDI measurement errors have higher persistence (point

estimates in the range 0.4-0.6), even though they are certainly stationary. Since these are

errors for the (log) level of GDP, the error for the growth rate is anti-persistent, more so

for GDE than for GDI, which means that if growth estimates based on GDE and GDI

overstate true GDP growth in one quarter, they will tend to understate it in the next

one (and vice versa). Importantly, in Supplemental Appendix SM.C.3 we show that the

parameter estimates of these measurement errors generate autocorrelation patterns that

match the empirical autocorrelations of the statistical discrepancies for the second and

third early estimates, and the first, second and third annual estimates.

We also find that the most recently revised estimates of GDE are the most precise

ones: the standard deviations of the measurement errors are ≈ 0.5 (in percentage points

of the level of GDP) for the early estimates , ≈ 0.3 for the annual estimates, and ≈ 0.2 for

the comprehensive estimates. In contrast, GDI estimates are noisier than GDE, and do

not improve much with revisions, with standard deviations ≈ 0.6 for almost all of the

measurement errors.

In addition, our results indicate that the measurement errors of early GDE estimates

have high correlation with each other (≈ 0.85), low correlations with the first annual

estimates, and negative correlation with the remaining future revisions. In turn, the
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measurement errors of the early GDI estimates have low correlations with each other and

with future revised estimates, while those of the revised estimates are highly correlated

among themselves (≈ 0.8).

By working with all comprehensive revisions simultaneously, we can also use the

posterior distribution of the common signal parameters to assess whether there has been

any change in the static and dynamic properties of economic activity as a result of the

GDP redefinitions. In this respect, a noteworthy observation is that the unconditional

means of the growth rates of the five different benchmark versions of US aggregate

economic activity that the BEA has produced so far are remarkably similar, even though

the comprehensive revision process has certainly affected the levels of US GDP, as we

saw in Figure 1. In contrast, its persistence seems to have become somewhat smaller

more recently, which is perhaps not surprising in view of the unusual nature of the 2020

COVID-19 recession. We will study the potential effects of this change in sections 4.1.4

and 4.2.4 below.

4.1.2 Precision gains from using all releases for a given comprehensive revision

The root mean square error (RMSE)√
Vτt =

√
Var
(
E
[
xct

∣∣∣Yτ] − xct

)
,

whereYτ denotes the σ-algebra generated by all measurements available until month τ,

measures the precision of our signal extraction procedure. Figure 2.a reports this RMSE

for c = 5 and a fixed t as a function of τ for a sequence of 39 months starting in October of

year t, which is when the advance GDE estimate for the third quarter becomes available,

under the assumption that no comprehensive revision takes place during those three

years and a quarter. In computing this figure we maintain the joint posterior distribution

of the model parameters fixed at its estimate in September 2018 to focus on the precision

gains of the smoother as new data becomes available. Consequently, the annual revisions

correspond to July 2019, 2020 and 2021.
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As expected, the release of the advance GDE figure almost halves the RMSE of the

prediction of the third quarter growth rate made at the end of September. Nevertheless,

substantial precision gains also occur when the second and third estimates of GDE and

GDI are released. Moreover, there are further gains when the annual estimates become

available in July of the following three years. Still, the non-singular nature of our

dynamic model, combined with the fact that the BEA does not attempt to reconcile the

GDE and GDI figures, implies that there is a positive floor to the RMSE, which will not

go to zero regardless of the number of subsequent annual revisions.

Exactly the same pattern arises if we repeat this exercise for the first and second

quarters of year t in April and July, respectively, but not for the fourth quarter, which

shows a slightly different initial pattern (not reported here) because there is no second

GDI release in February.

4.1.3 Effects of combining all comprehensive revisions

To assess the effect of using data from all comprehensive revisions simultaneously, we

have also estimated the single signal version of the model in Section 3 using only the

data from most recent comprehensive revision. Figure 2.b reports the posterior medians

of GDP growth generated by our MCMC estimation and filtering procedure and their

point-wise 90% credible sets based on both datasets for the period 2017Q1 to 2019Q4,

together with the actual GDE and GDI figures. In this case, we maintain the joint

posterior distributions of the parameters of the models with either one or five signals

fixed at their estimates in January 2022. As can be seen, the use of the five comprehensive

revisions results in not only significantly tighter bands around the smoothed estimates

of economic activity but also a smoother temporal evolution for those estimates.
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(a) RMSE improvements (b) Signal extraction comparison

FIGURE 2. Accuracy of the GDPsolera estimate. Panel (a) shows the root mean square error

improvements from using all releases for a given comprehensive revision The solid green line is

the posterior median of the RMSEs. Panel (b) compares signal extraction for ∆xCt using either

one or multiple comprehensive revisions. The solid line is the median of ∆xCt given y1:T when

all signals are used while the dashed line refers to its conditional median when only the most

recent signal is used. Shaded areas are pointwise 90%-probability intervals.

4.1.4 The stability of GDPsolera releases

Figure 3 reports the smoothed estimates for US GDP growth from six different solera

releases, which we have recursively estimated as follows. The first series uses data until

January 2012 to provide estimates up to 2011Q4. Similarly, the second series provides

estimates up to 2013Q4 using data until January 2014, and so forth, until the sixth series,

which represents estimates of GDP growth until 2021Q4 using the data available at the

BEA website at the end of January 2022. Thus, some of the data that was missing in

the earlier versions progressively becomes available in the later ones. As can be seen

in panel (a), which depicts the six series starting in 2004Q1, all estimates display close

paths until 2010Q1.

Still, the growth rates estimates for the last few quarters of each series are somewhat

different from the corresponding estimates in the next ones, an effect that it is very

likely due to the smoothing embedded in our filtering algorithm, which systematically
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(a) Stability with respect to 2018 comprehensive revi-

sion and pandemic data
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(b) Stability with respect to pandemic data

FIGURE 3. Stability of GDPsolera releases. The first release uses data until January of 2012

to provide estimates up to 2011Q4. The second provides estimates up to 2013Q4 using data

until January of 2014; and so on until the sixth which, using data until January of 2022, delivers

estimates of GDP growth up to 2021Q4. Panel (b) displays the two most recent ones.

reassesses the past after observing the future.

Additionally, the two most recent solera releases that we display in green present

a different pattern from the others in the second quarters of 2011 and 2012. These

differences can be explained by the fact that the data underlying those last two series in-

corporate modifications to the GDP definition resulting from the comprehensive revision

the BEA released in July 2018.

Indeed, panel (b), which only reports the two most recent series in panel (a), shows

an extremely similar pattern between them even though the most recent version of

GDPsolera includes data from the pandemic. Therefore, the post pandemic estimates

for the pre-pandemic period are remarkably stable to the inclusion of the large 2020

outliers, which affect not only the output of the simulation smoother for fixed parameter

estimates but also the posterior distribution of the parameter estimates.
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4.2 The evolution of the US economy

4.2.1 Analysis of some specific quarters

Next, we shed some light on the effect of data revisions as well as the arrival of infor-

mation for subsequent periods on the estimates of US GDP growth rate at a fixed date

t both through the smoother and the real time re-estimation of the model parameters in

three specific quarters of interest: 2001Q1, 2008Q4 and 2019Q2.

We chose the first one because of the political controversy surrounding what at the

time some Republican politicians called the “Clinton recession”, in marked contrast

to the NBER Business Cycle Dating Committee, which officially dated the peak of the

previous ten year expansionary phase in March 2001. Although the BEA only publishes

vintage data from September 2002 onwards, Figure 4a, which uses blue crosses and red

diamonds to represent GDE and GDI estimates, respectively, shows that the data initially

available suggested that GDP growth had already turned negative in the first quarter of

2001. However, the comprehensive revision that became available in December 2003 is

more ambiguous, with GDE and GDI growth rates having different signs. If anything,

the subsequent annual revision released in July 2004 increases the degree of ambiguity.

Not surprisingly, when one looks at the solid and dashed lines in that figure, which

represent the posterior medians with and without parameter re-estimation, and the

shaded areas, which display the corresponding 90% point-wise credible bands, the only

conclusion that one can draw is that the uncertainty is too large to determine the sign of

the GDP growth rate in 2001Q1 unequivocally.

Our next example focuses on 2008Q4, the worst quarter of the Great Recession, which

we analyze in Figure 4b. Although the advanced GDE estimate the BEA released initially

pointed to a serious but not dramatic recession, subsequent releases justify the adjective

‘’Great”. Nevertheless, this figure also shows the adjustment of the posterior median

of our GDPsolera growth estimate as soon as we process the third releases of GDE and

GDI, which is in line with the evidence we observed in Figure 2. In addition, Figure 4b
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(a) ∆x2001Q1 (b) ∆x2008Q4

(c) ∆x2019Q2

FIGURE 4. Real time filtering of ∆xt. The dashed and solid lines are posterior medians with

and without parameter re-estimation while the shaded areas represent 90%-point-wise credible

bands. Data releases for GDE (blue crosses) and GDI (red diamonds) are displayed too.

also shows the effect that the comprehensive revision of July 2009 had on the precision

of the estimates, and especially the annual revision of July 2010, which reduced further

not only the growth rate but also the width of the credible sets.

Our third and final example focuses on 2019Q2, a relatively normal quarter despite

the fact that some Federal Reserve officials had previously expressed concerns about a

potential deceleration of the economy. This quarter is also interesting because it allows

us to explicitly assess the effect of the pandemic data on our parameter estimates. As

Figure 4c shows, the estimates of economic growth were noticeably revised downwards
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after the annual update that the BEA released in July 2020. However, a substantial part

of this reduction was reversed following the July 2021 annual revision. Interestingly, the

width of the credible sets goes down fairly slowly, which probably reflects the fact that

the unprecedented GDP fluctations in 2020Q2 and 2020Q3 increased the uncertainty of

the parameter estimates.

4.2.2 Weights of the GDPsolera estimates

Like in any linear state-space model, our smoother potentially assigns some weight to

all past, present and future measurements in order to come up with the best possible

estimates of the underlying variables of interest. Therefore, for each observation there is

an entire matrix of weights with both a cross-sectional dimension reflecting the different

measurements for that quarter and a time-series dimension capturing past and future

quarters. In our context, though, those weights change from month to month as different

measurements become available, so in practice, the entire matrix of weights is evolving

over time, although with a clear recurrent pattern.

To provide a snapshot of this matrix, we have created a table showing the weights

for different vintages of GDE and GDI. For comparison purposes, we focus on the

same quarter we considered in Figure 2, with the Month column indicating how many

months after the end of Q3 have elapsed. To compute these weights in a numerically

efficient manner, we fix the parameter estimates at their posterior means and successively

perturb each measure by one unit, comparing the resulting smoothed quantity to the

one obtained with the actual data.

A basic insight of signal extraction is that one should give more weight to those

measurements which are less noisy and less correlated with the rest. As we saw before,

soon after the end of a quarter, GDE estimates are slightly less noisy than GDI but their

measurement errors are more correlated with each other. These two forces roughly

compensate by the time of the release of the third estimate, so the weights to GDE and
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TABLE 1. Weights of GDPsolera estimates

GDE weights GDI weights

Month Adv 2nd 3rd An1 An2 An3 2nd 3rd An1 An2 An3

1 .72

2 .20 .29 .37

3 .11 .17 .15 .24 .22

4 .08 .15 .12 .20 .18

5 .09 .13 .12 .20 .18

6 .09 .14 .12 .20 .17

7 .09 .14 .12 .20 .17

8 .09 .14 .12 .20 .17

9 .09 .14 .12 .20 .17

10 .05 .08 .07 .27 .11 .09 .12

22 .06 .09 .08 .12 .40 .05 .04 .05 .00

34 .07 .10 .08 .07 .23 .29 .03 .03 .04 .01 -.02

GDI are balanced. But once the first annual revision occurs, the estimates of GDE/GDI

receive high/low weights, as GDI remains noisier than GDE after multiple revisions.

Nevertheless, the weights are not merely concentrated on the latest available estimate,

with early estimates retaining some influence.

However, GDPsolera depends not only on the different GDE and GDI measures for

the quarter of interest, but also on the measures for previous and successive quarters

through the smoother.

For that reason, we also look at the split of the weigths across:

a. GDE and GDI regardless of the quarter, and

b. the quarterly lags and leads irrespective of the measure.

Total weights on GDE exceed those on GDI, eventually by a long margin, unlike the

contemporaneous weights in the previous table, which were balanced, at least during
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TABLE 2. Weights of GDPsolera estimate on quarter-t data

Month GDE GDI Lag Q Cont Q Lead Q

1 .84 .16 .28 .72

2 .63 .37 .14 .86

3 .58 .42 .11 .89

4 .63 .37 .14 .73 .13

5 .64 .36 .14 .72 .14

6 .63 .37 .14 .72 .14

7 .63 .37 .14 .72 .14

8 .64 .36 .14 .72 .14

9 .65 .35 .14 .72 .14

10 .74 .26 .11 .78 .11

22 .92 .08 .05 .90 .05

34 .96 .04 .03 .94 .03

the first twelve months. The reason is that GDE contributes more to the dynamic term,

which is in turn explained by the lower persistence of its measurement errors.

On the other hand, dynamic weights are reasonably small, symmetric between leads

and lags, and become minimal when subsequent annual revisions are available.

4.2.3 Why not give all the weight to the most recent releases?

The BEA does it best to improve GDP measurements as new information sources come

along. However, this does not mean that there is no information on the past releases of

GDE and GDI.

We assess the informational efficiency of the most recent estimates by testing if the

revisions are correlated to past growth rates computed from earlier estimates, which we

justify in Supplemental Appendix SM.E.
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Using growth rates of GDE and GDI we get the following correlations:

Corr(∆yGDESec,∆yGDPSec − ∆yGDPAdv) = 0.45 [0.25,0.58]

Corr(∆yGDEThr,∆yGDPThr − ∆yGDPAdv) = 0.47 [0.26,0.69]

Corr(∆yGDEThr,∆yGDPThr − ∆yGDPSec) = 0.48 [0.25,0.61]

Corr(∆yGDIThr,∆yGDIThr − ∆yGDISec) = 0.39 [0.18,0.57]

Given that the figures in brackets correspond to 95%-confidence intervals for each corre-

lation computed via block bootstrap, we can conclude that all of them are significantly

different from zero. Moreover, a joint test of the null hypothesis that these correlations

are simultaneously zero rejects with level below 1%. In other words, there is strong

evidence that the optimal estimate of xt should not discard the previous vintages.

If xt is a sum of components and each yi is a sum of noisy measurements of those

components, correlations between the latest estimate and revisions may arise if some

components are missing and imputed in certain ways.

4.2.4 Comparison with GDO and GDPplus

We also compare our measure of economic activity – GDPsolera – with the simple arith-

metic average of the expenditure and income measures reported by the BEA since 2015

as GDO, as well as with GDPplus initially proposed by Aruoba et al. (2016), and released

on a monthly basis by the Federal Reserve Bank of Philadelphia since August 2013. Un-

fortunately, we cannot compare our measure to the GDP++ series of Jacobs et al. (2022)

because their vintage data is unavailable.

To begin with, we look at the smoothed estimates of GDP between the first quarter

of 1985 and the fourth quarter of 2021. To construct our solera measure, we use the data

released by the BEA by the end of January 2022, while for GDPplus we use the release

that uses the same dataset to level the playing field. Given that GDPplus is based on the

mostly recently available estimates of GDE and GDI rather than on multiple vintages, it
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can use data from 1960Q1. Nevertheless, this should not affect too much their estimates

in recent years.

We plot the estimated annualized growth rates in panel (a) of Figure 5. As can

be seen, the two Kalman filter-based estimates are quite close to each other with a

contemporaneous correlation of 0.86, and an average annualized growth rate of 2.61%

for GDPplus and 2.54% for GDPsolera over the entire sample period. GDO, on the other

hand, has contemporaneous correlation of 0.96 with both GDE and GDI, and a standard

deviation of 4.2% compared to 4.4% for both GDE and GDI.
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(a) Comparison of most recent historical estimates
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FIGURE 5. Comparing GDPplus, GDO and GDPsolera. Panel (a) displays GDPplus, GDO and

GDPsolera series estimated using data until January 2022. Panel (b) displays GDP estimates at

the beginning of the COVID-19 outbreak revised from April 2020 to January 2022.

Nevertheless, our solera estimates are clearly more volatile than GDPplus, with a

standard deviation that is 40% larger than. The smoothness of GDPplus results in

relatively more conservative estimates of the large fall and rise of economic activity after

the start of the COVID-19 outbreak.

To shed further light on this, we report in panel (b) of Figure 5 the two real-time

estimates of economic activity for 2020Q1 and 2020Q2 using the data available at the

time. Perhaps not suprisingly, for 2020Q1 both estimators of GDP are in agreement, and

remain quite stable as new information became available. In contrast, the estimators for

2020Q2 are very different and this difference increased in October 2020 when the BEA
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published the advance GDE estimate for 2020Q3. This is perhaps not surprising in view

of the tables of weights that we have presented in section 4.2.2, as our approach is more

cross-sectional than time-series, in the sense that it combines multiple measures for the

same quarter, relying less in smoothing. Interestingly, the most recent figures produced

by the BEA for the COVID-19 recession are closer to the GDPsolera series. Nevertheless,

it must be acknowledged that the extremely atypical size of the pandemic shock is a

challenge to linear Gaussian state-space models, which makes the comparison difficult.

In our last exercise, we compare the concurrent online estimates of GDP growth rates

generated by GDPplus and our procedure. Specifically, we consider estimates for each

quarter based on the information available one month after the end of that quarter, by

which time only the “advance” GDE estimate is available, which implies that GDO could

not offer any precission gains. In addition, we also look at the estimates of the same

GDP growth rates obtained three months after the end of the quarter, which also make

use of the “second” and “third” estimates of GDE and GDI released by the BEA, which

gives empirical meaning to GDO. Panels (a) and (b) of Figure 6 displays these two set

of results. Interestingly, the real time GDPsolera and GDPplus estimates appear to be

more similar than the historical ones we saw in Figure 5, and in line with the “third”

GDO estimates. Still, we can observe a few differences in the first two quarters of 2015

afected by the 2018 comprehensive revision, and at the end of the sample, starting after

the 2020Q2 drop and the 2020Q3 rebound.

4.2.5 Post-pandemic evolution

The COVID-19 recession was the most dramatic decline in economic activity seen in at

least a century but also the shortest: US GDP sank from about 19.2 trillions in 2019Q4 to

about 17.4 in 2020Q2, then rebounded to 18.6 in 2020Q3.

There is less agreement among the different estimates about the strength of the recov-

ery and expansion that followed. Panels (a) and (b) of Figure 7 display this disagreement
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FIGURE 6. Nowcast: GDPplus versus GDPsolera. Panel (a) displays GDPplus and GDPsolera

series estimated with information available one month after the end of the quarter when only

advance of GDE is available for the most recent quarter. GDPplus for 2018Q4 was released in

February 2019. Panel (b) displays GDPplus and GDPsolera series estimated with information

available three months after the end of the quarter.

for the level and growth rate of GDP, respectively, alongside the corresponding GDPsol-

era estimates and their 90% (pointwise) credible intervals. The width of those intervals

crucially depends on the availability of annually revised estimates. For 2019-20, we have

second and third annual revisions, but for 2021 we only have the first one, while for 2022

we have none. Given that growth rates are multiplied by 4 to express them in annual

terms, mechanically there would be more uncertainty about growth rates than about

levels.

Based on the point estimates, it appears the economy surpassed its 2019Q4 level in

2021Q1 and continued growing rapidly afterwards, at rates that ranged from 4.5% to

7% during each quarter of 2021. Then, abruptly, it decelerated in 2022Q1 and was flat

for the rest of 2022 around the 20 trillion mark. The suddenness of the deceleration

is remarkable: growth declined from 5.5% in 2021Q4 to 0.7% in 2022Q1 and -0.1% in

2022Q2. This implies a drop of 5.6pp in the lapse of two quarters, similar to what is

typically observed in recessions.
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(a) Post-pandemic GDP levels (b) Post-pandemic GDP growth rates

(c) Full-sample GDP levels (d) Full-sample GDP growth rates

FIGURE 7. GDPsolera together with GDE and GDI data from the BEA. For the current version

of economic activity, we display different GDE and GDI growth measurements alongside our

GDPsolera estimate (solid green line) and 90% pointwise credible bands. Panels (a) and (b) display

levels and growth rates, respectively. Panels (c) and (d) report analogous results over the entire

sample period for comparison purposes.

If we were to take GDE estimates at face value, though, the deceleration would be

even more dramatic, as they indicate growth was 7% in 2021Q4, -1.6% in 2022Q1 and

-0.6% in 2022Q2. It is difficult to rule out two quarters of negative growth, but it is not

the best guess according to our point estimates. In fact, the GDP estimate for 2022Q1 lies

below the lower end of the 90%-CI while the GDP estimate for 2022Q3 growth (3.1%) is

at the upper end of its corresponding interval. On the other hand, GDI estimates initially

painted a different picture: 2022Q1 GDI growth was estimated at 2.1% in May (marked
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down to 0.7% in a September off-schedule revision) while 2022Q2 was 0.1% in August

(then revised to -0.8%).

Our results suggests that the ups and downs in these numbers are mostly noise, and

that, instead, economic activity came to a sudden stop early in 2022 and was stagnant

and not very volatile since then — a scenario in between the contraction of GDE estimates

and the more gradual deceleration in initial GDI estimates.

5 Conclusion

We make the best use of the information in the different vintages of GDE and GDI

from the current comprehensive revision to obtain an improved timely measure of US

aggregate output by imposing cointegration between the different measures and taking

seriously their monthly release calendar. We also combine overlapping comprehensive

revisions to achieve further improvements.

We express our model in linear state-space form, and use Bayesian methods of infer-

ence for both parameters and latent variables. Specifically, we develop a Gibbs sampling

algorithm that tackles estimation and signal extraction simultaneously, allowing for

an efficient and conceptually simple integration of uncertainty coming from different

sources. Thus, we obtain a posterior distribution for the underlying GDP measure,

whence we can obtain not only point estimates but also measures of dispersion.

The estimated parameters of our dynamic state-space model suggest that compre-

hensive revisions have not changed the long-run growth rate of US GDP, but they have

somewhat lowered the persistence of its shocks. We also find that revised GDE estimates

are increasingly precise and receive higher weights, unlike GDI ones, but early estimates

retain some influence. In this respect, we clearly reject the null hypothesis of lack of

predictability for the revisions in the second and third releases of GDE, as well as in the

third release of GDI.

Our results also suggest that noticeable precision gains in signal extraction occur not
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only when the advance, second and third estimates of GDE and GDI are released but also

when the annual estimates become available in July of the subsequent years. We also

observe that the use of the five comprehensive revisions not only results in significantly

tighter bands around the smoothed estimates of economic activity, but also a smoother

temporal evolution for those estimates.

In addition, we pay particular attention to certain recent episodes, including the

Great Recession, and the COVID-19 pandemic, which, despite producing dramatic fluc-

tuations, does not generate noticeable revisions in previous growth rates.

Although the objective of our analysis is not the creation of a real time activity

index (see e.g. Lewis, Mertens, Stock, and Trivedi (Forthcoming) and the references

therein), combining our approach with either high frequency data or additional quarterly

variables constitutes a promising avenue for further research. Assessing the effect of

incorporating the seasonally unadjusted GDE and GDI data that the BEA has released

since 2018 to our empirical results would also provide a valuable addition.

Similarly, the potential forecasting improvements of the model we propose in this

paper for the early releases of GDE and GDI would be worth investigating, as they

would provide an external validity check on our modelling approach. In this respect,

another potential extension would allow for a more flexible autocorrelation structure, as

well as conditional heteroskedasticity and non-normal shocks, although the latter would

require replacing the analytical Kalman filter by a numerical non-linear one.

Finally, it would be interesting to apply our approach to the different components

of GDE and GDI, as well as other macroeconomic series subject to revisions, like the

Non-farm Payroll Employment figures or the Chained Consumer Price Index for All

Urban Consumers released by the US Bureau of Labor Statistics.
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