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SM.A Proof of identification results

SM.A.1 Proposition 1

Proof. Let fw denote the spectrum of a time series {wt}. Identification of the autoco-

variance function of {wt} is equivalent to identification of fw. Therefore, an alternative

statement for proposition 1 is that under assumption 1, if N > 1, f∆x and fv1
, . . . , fvI

are

nonparametrically identified from f∆y. To understand why, let us write

f∆y(λ) = 1M×M f∆x(λ) + |1 − eiλ
|
2 diag

(
fv1

(λ), . . . , fvN
(λ)
)
, 0 ≤ λ ≤ 2π.

If Ei is the Mi×M matrix such that yit = Eiyt, we get Ei1
f∆y(λ)E′i2 = 1Mi1

×Mi2
f∆x(λ) for i1 , i2,

where the pair i1, i2 exists only if N > 1. With f∆x pinned down, one then recovers

fvi
(λ) = |1 − eiλ

|
−2Ei[ fDy(λ) − 1M×M fDx(λ)]E′i ,
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dealing with the removable singularity at λ = 0 by using that each entry fvi
is holomor-

phic over the unit circle. □

It follows from the proof of proposition 1 that if in addition to N > 1 we have

Mi > 1 for at least one i, the model imposes overidentifying restrictions and is, therefore,

testable. This is the case in our empirical analysis. If the spectra f∆x, fv1
, . . . , fvN

belong

to a particular parametric class, an alternative approach to testing the overidentifying

restrictions would rely on dynamic specification tests, as in Fiorentini and Sentana (2019).

SM.A.2 Proposition 2

Proof. By condition (b) in the proposition, Di1
= Ei1

δt and Di2
= Ei2

δt are time-invariant.

By assumption 1 and condition (a), moreover, Ei1
vt and Ei2

vt are uncorrelated at all lags

and leads. Consequently,

Ei1
f∆y(λ)E′i2 = Di1

f∆x(λ)D′i2 , 0 ≤ λ ≤ 2π.

Now, by condition (c), we have that rank(Di1
) = rank(Di2

) = C. Therefore,

f∆x = (D′i1Di1
)−1D′i1 f∆yDi2

(D′i2Di2
)−1.

Identification of fv1
, . . . , fvN

then follows by an argument analogous to the one in the

proof of proposition 1. □

SM.B Details of estimation and filtering

Our objective is to conduct inference on parameters θ and latent variables x1, . . . , xT. As

we mentioned in section 3, a Bayesian approach offers a convenient option to perform

estimation and filtering, integrating sampling and signal-extraction uncertainty in a

unified, conceptually natural framework. Moreover, our model lends itself to stable

and efficient algorithms, exploiting a Gibbs sampler for estimation and the Durbin and

Koopman (2002) algorithm for signal extraction.
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This appendix discusses the details. Subsection SM.B.1 casts our model in state-space

form, while subsection SM.B.2 presents the family of priors we use. In turn, subsection

SM.B.3 lays out the Gibbs sampler algorithm to draw from the posterior distribution of

parameters and latent variables, and subsection SM.B.4 explains how we implement fil-

tering in a way that automatically accounts for sampling uncertainty. Finally, subsection

SM.B.5 reports the posterior distributions from our full-sample estimates.

SM.B.1 State-space representation of the model

The parameter vector of the model is θ = (θx, θ1, . . . , θN). Given θ, we can cast equations

(2), (3) and (4) in state-space form as

yt = HtXt,

Xt = C(θ) + F(θ)Xt−1 + G(θ)Ut,

Ut
iid
∼ N(0(C+M)×1, IC+M),

where Xt = (xt, xt−1, v1t, . . . , vNt)
′,

Ut = (εxt, ε1t, . . . , εNt)
′,

Ht =
(
δt 0M×C IM

)
,

C(θ) =


µx

0C×1

0M×1


,

F(θ) = diag


 IC + diag(ρx) −diag(ρx)

IC 0C×C

 ,diag(ρ1), . . . ,diag(ρN)

 ,
G(θ) = diag (Ch(Σx),Ch(Σ1), . . . ,Ch(ΣN)) .

For the initial condition we have X1 ∼ N(µ̃X1
, Σ̃X1

) which are compatible with bothµx1
,Σx1

and the covariance-stationarity of v1t, . . . , vNt.

This linear state-space representation with Gaussian errors is important as it implies

that X1, . . . ,XT,U1, . . . ,UT will be jointly normally distributed conditional on y1, . . . , yT, θ,
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so that we can rely on the algorithm of Durbin and Koopman (2002) to efficiently simulate

the conditional distribution of the latent variables given the observables.

SM.B.2 Prior distributions

We specify N + 1 independent priors for θx, θ1, . . . , θN. The family of priors we describe

is fairly standard and permits a simple implementation of the Gibbs sampler when the

priors are conjugate conditional on the latent variables. It can also accommodate a flat

prior for certain values of the hyperparameters.

Specifically, for the parameters of the signals process we use

i) Σx ∼W
−1
C (dxSx, dx), whereW−1(dS,S) is the inverse Wishart distribution with mean

S/(d − dim(S) − 1) and degrees-of-freedom parameter d, and

ii) βx = (µ′x, ρ
′

x)′|Σx ∼ N(bx,R
−1
x ⊗ Σx).

The hyperparameters Sx and bx control the prior location of Σx and βx, while dx and Rx

govern the informativeness of the prior distributions. In particular, high values of dx

and Rx produce tight priors while dx = 0 and Rx = 02×2 yield a flat prior over Σx and βx.

For the parameters of the measurement errors processes vi, i = 1, . . . ,N, we use

i) Σi ∼W
−1
Mi

(diSi, di), and

ii) ρi|Σi ∼ N(bi,R
−1
i ⊗ Σi).

The same considerations we made for Sx, bx, dx,Rx above apply to Si, bi, di,Ri too.

In our empirical analysis we calibrate the location hyperparameters using the es-

timates of the two-measurement model in Almuzara, Fiorentini, and Sentana (2023).

Specifically, we choose the following values:

a) bx = (mx11×C, rm11×C)′ and Rx = diag {10, 30}. This mean that in effect, we shrink our

model towards a diagonal VAR. We set mx = 0.375 and rm = 0.5.
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b) Sx = ςx[wx1C×C + (1 − wx)IC] and dx = 20 + C. In other words, we shrink our model

towards one in which the covariance matrix of innovations to xt has a common-factor

structure. We set ςx = 0.57 and wx = 0.8.

c) bi = ri1Mi×1 and Ri = 10. We calibrate rGDE = 0 for GDE and rGDI = 0.8 for GDI.

d) Si = ςi[wv1Mi×Mi
+ (1 − wv)IMi

] and dv = 20 +Mi. We set ςi = 0.1(1 + ri) and wv = 0.2.

SM.B.3 Estimation algorithm

Let p(·) denote a generic density (with respect to an appropriate dominating measure),

and define y = (y1, . . . , yT) and X = (X1, . . . ,XT). Although the prior p(θ) and the

likelihood p(y|θ) are readily available, with the latter being an output of the Kalman

filter applied to the state-space representation of the model, the posterior p(θ|y) is not.

Bayesian estimation can instead be performed via Markov Chain Monte Carlo (MCMC),

an algorithm that effectively draws a Markov chain {θs
}s≥1 whose simulated uncondi-

tional distribution approximates the desired posterior.

A convenient approach to MCMC in our model is Gibbs sampling, which draws from

the posterior of a block of variables or parameters conditional on previous draws from

the other blocks in a sequential manner. The algorithm updates unknowns by drawing

iteratively from the following distributions:

(1) p
(
X
∣∣∣θ, y): using the state-space representation of the model, X is obtained from the

simulation smoother proposed by Durbin and Koopman (2002).

(2) p
(
θx

∣∣∣θ1, . . . , θN,X, y
)
: first notice that ∆x1, . . . ,∆xT are sufficient for θx, i.e.,

p
(
θx

∣∣∣θ1, . . . , θN,X, y
)
= p(θx

∣∣∣∆x1, . . . ,∆xT) ,

and because of the conjugacy of the prior we recover µx, ρx,Σx from

(i) Σx|µx, ρx,∆x1, . . . ,∆xT ∼W
−1
C (d̃xS̃x, d̃x), where

d̃x = dx + T − 1,
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d̃xS̃x = dxSx +

T∑
t=2

(
∆xt − µx − diag(ρx)∆xt−1

) (
∆xt − µx − diag(ρx)∆xt−1

)′ ;
(ii) βx|Σx,∆x1, . . . ,∆xT ∼ N(b̃x, R̃

−1
x ), where

R̃x = Rx ⊗ Σ
−1
x +

T∑
t=2

 IC

diag(∆xt−1)

Σ−1
x

(
IC diag(∆xt−1)

)
,

R̃xb̃x = (Rx ⊗ Σ
−1
x )bx +

T∑
t=2

 Σ−1
x ∆xt

diag(∆xt−1)Σ−1
x ∆xt

 .
(3) p

(
θi

∣∣∣θx, (θ j) j,i,X, y
)

for each i: first notice that (vi1, . . . , viT) are sufficient for θi, i.e.,

p
(
θi

∣∣∣θx, (θ j) j,i,X, y
)
= p(θi

∣∣∣vi1, . . . , viT) ,

and because of the conjugacy of the prior we recover ρi,Σi from

(i) Σi|ρi, vi1, . . . , viT ∼W
−1
Mi

(d̃iS̃i, d̃i), where

d̃i = di + T − 1,

d̃iS̃i = diSi +

T∑
t=2

(
vit − diag(ρi)vi,t−1

)2
;

(ii) ρi|Σi, vi1, . . . , viT ∼ N(b̃i, R̃
−1
i ), where

R̃i = Ri ⊗ Σ
−1
i +

T∑
t=2

diag(vi,t−1)Σ−1
i diag(vi,t−1),

R̃ib̃i = (Ri ⊗ Σ
−1
i )bi +

T∑
t=2

diag(vi,t−1)Σ−1
i vit.

Flat priors can be implemented by setting the hyperparameters values dx = 0C×1,

Rx = 03×3, di = 0Mi×1, and Ri = 02×2, which despite generating improper priors still lead

to a well-defined algorithm and a proper posterior.

SM.B.4 Filtering

Signal extraction of xt is a natural by-product of our estimation procedure. The latent

variable draws we obtain in step (1) from iteration over the Gibbs sampler algorithm
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(Xs)s≥1 have the desired distribution p(X|y). Moreover, the Gibbs sampler already inte-

grates estimation uncertainty because

p
(
X
∣∣∣y) = ∫

Θ

p
(
X
∣∣∣θ, y) p

(
θ
∣∣∣y) dθ,

where Θ denotes the parameter space.

It is worth noting that while p
(
X
∣∣∣θ, y) is a normal density, X given y need not be normal

once θ is integrated out. In particular, Var
(
xt

∣∣∣y) may depend on the data through the

posterior density of θ, in contrast to Var
(
xt

∣∣∣θ, y), which is constant in y.

The Markov chain (Xs, θs)s≥1 is all we need to approximate by simulation the posterior

distribution of the different objects of interest that we study in the empirical section.

SM.B.5 Posterior distributions

We estimate our model using the prior described above running the Gibbs sampler for

200,000 iterations with a burn-in of 100,000 and a thinning of 1 every 5 iterations. The

result is a Markov chain (Xs, θs)S
s=1, with S = 20, 000 and low autocorrelation across draws

that by all accounts appears to have converged. Our empirical analysis is based on it.

Here we present a summary of the posterior estimates.

Parameter Prior

Median

Posterior

Median

Prior

90%-Probability

Posterior

90%-Probability

MC s.e.

µx
(1) 0.367 0.420 [−0.042, 0.783] [0.324, 0.518] 0.0004

µx
(2) 0.367 0.430 [−0.048, 0.780] [0.338, 0.522] 0.0004

µx
(3) 0.369 0.418 [−0.050, 0.777] [0.328, 0.511] 0.0004

µx
(4) 0.367 0.440 [−0.046, 0.779] [0.350, 0.534] 0.0004

µx
(5) 0.369 0.446 [−0.043, 0.781] [0.358, 0.539] 0.0004

ρx
(1) 0.497 0.290 [0.263, 0.737] [0.183, 0.394] 0.0005

ρx
(2) 0.499 0.292 [0.263, 0.735] [0.190, 0.391] 0.0005

ρx
(3) 0.500 0.307 [0.262, 0.737] [0.205, 0.405] 0.0005

ρx
(4) 0.500 0.292 [0.262, 0.741] [0.191, 0.389] 0.0005

ρx
(5) 0.498 0.289 [0.262, 0.733] [0.188, 0.385] 0.0004

Σx
(1,1) 0.590 0.293 [0.366, 1.034] [0.234, 0.371] 0.0003

Σx
(2,1) 0.470 0.245 [0.262, 0.861] [0.195, 0.311] 0.0003

Σx
(3,1) 0.468 0.253 [0.263, 0.864] [0.200, 0.320] 0.0003

Σx
(4,1) 0.469 0.250 [0.263, 0.864] [0.199, 0.317] 0.0003
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Σx
(5,1) 0.469 0.249 [0.265, 0.865] [0.199, 0.313] 0.0003

Σx
(1,2) 0.470 0.245 [0.262, 0.861] [0.195, 0.311] 0.0003

Σx
(2,2) 0.590 0.277 [0.364, 1.032] [0.224, 0.343] 0.0003

Σx
(3,2) 0.470 0.250 [0.264, 0.864] [0.199, 0.314] 0.0003

Σx
(4,2) 0.471 0.247 [0.263, 0.866] [0.198, 0.310] 0.0003

Σx
(5,2) 0.470 0.245 [0.263, 0.862] [0.198, 0.307] 0.0002

Σx
(1,3) 0.468 0.253 [0.263, 0.864] [0.200, 0.320] 0.0003

Σx
(2,3) 0.470 0.250 [0.264, 0.864] [0.199, 0.314] 0.0003

Σx
(3,3) 0.592 0.294 [0.367, 1.036] [0.238, 0.366] 0.0003

Σx
(4,3) 0.469 0.259 [0.265, 0.866] [0.208, 0.325] 0.0003

Σx
(5,3) 0.468 0.256 [0.266, 0.866] [0.207, 0.321] 0.0003

Σx
(1,4) 0.469 0.250 [0.263, 0.864] [0.199, 0.317] 0.0003

Σx
(2,4) 0.471 0.247 [0.263, 0.866] [0.198, 0.310] 0.0003

Σx
(3,4) 0.469 0.259 [0.265, 0.866] [0.208, 0.325] 0.0003

Σx
(4,4) 0.591 0.286 [0.367, 1.032] [0.234, 0.355] 0.0003

Σx
(5,4) 0.469 0.257 [0.267, 0.867] [0.208, 0.320] 0.0003

Σx
(1,5) 0.469 0.249 [0.265, 0.865] [0.199, 0.313] 0.0003

Σx
(2,5) 0.470 0.245 [0.263, 0.862] [0.198, 0.307] 0.0002

Σx
(3,5) 0.468 0.256 [0.266, 0.866] [0.207, 0.321] 0.0003

Σx
(4,5) 0.469 0.257 [0.267, 0.867] [0.208, 0.320] 0.0003

Σx
(5,5) 0.590 0.283 [0.369, 1.030] [0.232, 0.350] 0.0003

ρGDE
(nc1)

−0.002 0.780 [−0.210, 0.211] [0.691, 0.855] 0.0005

ρGDE
(nc2)

−0.002 0.779 [−0.210, 0.208] [0.693, 0.851] 0.0005

ρGDE
(nc3)

−0.001 0.777 [−0.208, 0.210] [0.690, 0.849] 0.0005

ρGDE
(nc4)

−0.001 0.615 [−0.210, 0.209] [0.496, 0.722] 0.0006

ρGDE
(nc5) 0.000 0.386 [−0.211, 0.209] [0.240, 0.525] 0.0008

ρGDE
(nc6)

−0.002 0.300 [−0.210, 0.204] [0.145, 0.456] 0.0009

ρGDE
(c1)

−0.003 0.358 [−0.210, 0.210] [0.168, 0.547] 0.0013

ρGDE
(c2) 0.000 0.369 [−0.207, 0.208] [0.195, 0.547] 0.0012

ρGDE
(c3)

−0.002 0.389 [−0.213, 0.210] [0.216, 0.558] 0.0012

ρGDE
(c4)

−0.002 0.380 [−0.211, 0.208] [0.223, 0.536] 0.0010

ρGDE
(c5) 0.002 0.370 [−0.212, 0.212] [0.213, 0.530] 0.0010

ΣGDE
(nc1,nc1) 0.152 0.206 [0.095, 0.268] [0.156, 0.275] 0.0003

ΣGDE
(nc2,nc1) 0.029 0.159 [−0.025, 0.099] [0.113, 0.221] 0.0003

ΣGDE
(nc3,nc1) 0.029 0.139 [−0.026, 0.100] [0.095, 0.197] 0.0003

ΣGDE
(nc4,nc1) 0.029 0.077 [−0.024, 0.100] [0.039, 0.125] 0.0002

ΣGDE
(nc5,nc1) 0.029 0.034 [−0.025, 0.098] [0.001, 0.069] 0.0002

ΣGDE
(nc6,nc1) 0.029 0.015 [−0.025, 0.099] [−0.017, 0.049] 0.0002

ΣGDE
(c1,nc1) 0.030 0.033 [−0.025, 0.101] [−0.005, 0.074] 0.0003

ΣGDE
(c2,nc1) 0.030 0.032 [−0.025, 0.099] [−0.004, 0.069] 0.0003

ΣGDE
(c3,nc1) 0.030 0.033 [−0.024, 0.100] [−0.003, 0.072] 0.0003

ΣGDE
(c4,nc1) 0.029 0.030 [−0.025, 0.100] [−0.002, 0.065] 0.0002

ΣGDE
(c5,nc1) 0.030 0.028 [−0.024, 0.100] [−0.003, 0.061] 0.0002

ΣGDE
(nc1,nc2) 0.029 0.159 [−0.025, 0.099] [0.113, 0.221] 0.0003

ΣGDE
(nc2,nc2) 0.152 0.185 [0.095, 0.265] [0.138, 0.248] 0.0003

ΣGDE
(nc3,nc2) 0.029 0.143 [−0.025, 0.100] [0.100, 0.201] 0.0003
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ΣGDE
(nc4,nc2) 0.030 0.075 [−0.024, 0.099] [0.038, 0.122] 0.0002

ΣGDE
(nc5,nc2) 0.029 0.033 [−0.025, 0.100] [0.001, 0.067] 0.0002

ΣGDE
(nc6,nc2) 0.030 0.020 [−0.025, 0.100] [−0.011, 0.053] 0.0002

ΣGDE
(c1,nc2) 0.029 0.034 [−0.025, 0.100] [−0.002, 0.074] 0.0003

ΣGDE
(c2,nc2) 0.030 0.033 [−0.025, 0.100] [−0.001, 0.070] 0.0003

ΣGDE
(c3,nc2) 0.029 0.035 [−0.024, 0.100] [0.001, 0.072] 0.0003

ΣGDE
(c4,nc2) 0.030 0.031 [−0.024, 0.100] [0.000, 0.065] 0.0002

ΣGDE
(c5,nc2) 0.029 0.030 [−0.024, 0.100] [0.001, 0.062] 0.0002

ΣGDE
(nc1,nc3) 0.029 0.139 [−0.026, 0.100] [0.095, 0.197] 0.0003

ΣGDE
(nc2,nc3) 0.029 0.143 [−0.025, 0.100] [0.100, 0.201] 0.0003

ΣGDE
(nc3,nc3) 0.152 0.176 [0.094, 0.265] [0.132, 0.235] 0.0003

ΣGDE
(nc4,nc3) 0.029 0.079 [−0.025, 0.098] [0.043, 0.124] 0.0002

ΣGDE
(nc5,nc3) 0.029 0.031 [−0.025, 0.100] [0.001, 0.063] 0.0002

ΣGDE
(nc6,nc3) 0.029 0.021 [−0.025, 0.098] [−0.009, 0.053] 0.0002

ΣGDE
(c1,nc3) 0.029 0.034 [−0.026, 0.100] [−0.001, 0.071] 0.0003

ΣGDE
(c2,nc3) 0.029 0.033 [−0.026, 0.099] [0.001, 0.069] 0.0002

ΣGDE
(c3,nc3) 0.029 0.036 [−0.025, 0.099] [0.003, 0.071] 0.0003

ΣGDE
(c4,nc3) 0.029 0.032 [−0.025, 0.100] [0.003, 0.065] 0.0002

ΣGDE
(c5,nc3) 0.029 0.032 [−0.025, 0.099] [0.003, 0.063] 0.0002

ΣGDE
(nc1,nc4) 0.029 0.077 [−0.024, 0.100] [0.039, 0.125] 0.0002

ΣGDE
(nc2,nc4) 0.030 0.075 [−0.024, 0.099] [0.038, 0.122] 0.0002

ΣGDE
(nc3,nc4) 0.029 0.079 [−0.025, 0.098] [0.043, 0.124] 0.0002

ΣGDE
(nc4,nc4) 0.152 0.166 [0.095, 0.263] [0.125, 0.221] 0.0003

ΣGDE
(nc5,nc4) 0.029 0.059 [−0.024, 0.097] [0.031, 0.094] 0.0002

ΣGDE
(nc6,nc4) 0.030 0.036 [−0.025, 0.099] [0.009, 0.068] 0.0002

ΣGDE
(c1,nc4) 0.030 0.038 [−0.024, 0.097] [0.007, 0.073] 0.0002

ΣGDE
(c2,nc4) 0.030 0.037 [−0.025, 0.099] [0.009, 0.070] 0.0002

ΣGDE
(c3,nc4) 0.030 0.040 [−0.025, 0.101] [0.012, 0.073] 0.0002

ΣGDE
(c4,nc4) 0.029 0.039 [−0.024, 0.099] [0.013, 0.070] 0.0002

ΣGDE
(c5,nc4) 0.030 0.038 [−0.024, 0.100] [0.013, 0.068] 0.0002

ΣGDE
(nc1,nc5) 0.029 0.034 [−0.025, 0.098] [0.001, 0.069] 0.0002

ΣGDE
(nc2,nc5) 0.029 0.033 [−0.025, 0.100] [0.001, 0.067] 0.0002

ΣGDE
(nc3,nc5) 0.029 0.031 [−0.025, 0.100] [0.001, 0.063] 0.0002

ΣGDE
(nc4,nc5) 0.029 0.059 [−0.024, 0.097] [0.031, 0.094] 0.0002

ΣGDE
(nc5,nc5) 0.152 0.089 [0.095, 0.264] [0.067, 0.120] 0.0001

ΣGDE
(nc6,nc5) 0.029 0.036 [−0.025, 0.099] [0.018, 0.060] 0.0001

ΣGDE
(c1,nc5) 0.029 0.026 [−0.025, 0.101] [0.008, 0.049] 0.0001

ΣGDE
(c2,nc5) 0.030 0.026 [−0.025, 0.100] [0.009, 0.048] 0.0001

ΣGDE
(c3,nc5) 0.030 0.028 [−0.024, 0.101] [0.011, 0.051] 0.0001

ΣGDE
(c4,nc5) 0.029 0.029 [−0.025, 0.099] [0.012, 0.050] 0.0001

ΣGDE
(c5,nc5) 0.030 0.027 [−0.025, 0.099] [0.011, 0.048] 0.0001

ΣGDE
(nc1,nc6) 0.029 0.015 [−0.025, 0.099] [−0.017, 0.049] 0.0002

ΣGDE
(nc2,nc6) 0.030 0.020 [−0.025, 0.100] [−0.011, 0.053] 0.0002

ΣGDE
(nc3,nc6) 0.029 0.021 [−0.025, 0.098] [−0.009, 0.053] 0.0002

ΣGDE
(nc4,nc6) 0.030 0.036 [−0.025, 0.099] [0.009, 0.068] 0.0002

ΣGDE
(nc5,nc6) 0.029 0.036 [−0.025, 0.099] [0.018, 0.060] 0.0001
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ΣGDE
(nc6,nc6) 0.152 0.077 [0.095, 0.266] [0.058, 0.104] 0.0001

ΣGDE
(c1,nc6) 0.029 0.028 [−0.026, 0.099] [0.010, 0.050] 0.0001

ΣGDE
(c2,nc6) 0.030 0.029 [−0.025, 0.098] [0.013, 0.049] 0.0001

ΣGDE
(c3,nc6) 0.029 0.033 [−0.025, 0.101] [0.017, 0.054] 0.0001

ΣGDE
(c4,nc6) 0.029 0.033 [−0.025, 0.099] [0.018, 0.054] 0.0001

ΣGDE
(c5,nc6) 0.029 0.034 [−0.025, 0.100] [0.019, 0.054] 0.0001

ΣGDE
(nc1,c1) 0.030 0.033 [−0.025, 0.101] [−0.005, 0.074] 0.0003

ΣGDE
(nc2,c1) 0.029 0.034 [−0.025, 0.100] [−0.002, 0.074] 0.0003

ΣGDE
(nc3,c1) 0.029 0.034 [−0.026, 0.100] [−0.001, 0.071] 0.0003

ΣGDE
(nc4,c1) 0.030 0.038 [−0.024, 0.097] [0.007, 0.073] 0.0002

ΣGDE
(nc5,c1) 0.029 0.026 [−0.025, 0.101] [0.008, 0.049] 0.0001

ΣGDE
(nc6,c1) 0.029 0.028 [−0.026, 0.099] [0.010, 0.050] 0.0001

ΣGDE
(c1,c1) 0.153 0.081 [0.095, 0.267] [0.059, 0.115] 0.0002

ΣGDE
(c2,c1) 0.029 0.034 [−0.025, 0.100] [0.016, 0.059] 0.0001

ΣGDE
(c3,c1) 0.029 0.034 [−0.025, 0.100] [0.017, 0.059] 0.0001

ΣGDE
(c4,c1) 0.029 0.033 [−0.026, 0.101] [0.016, 0.056] 0.0001

ΣGDE
(c5,c1) 0.029 0.032 [−0.026, 0.099] [0.016, 0.055] 0.0001

ΣGDE
(nc1,c2) 0.030 0.032 [−0.025, 0.099] [−0.004, 0.069] 0.0003

ΣGDE
(nc2,c2) 0.030 0.033 [−0.025, 0.100] [−0.001, 0.070] 0.0003

ΣGDE
(nc3,c2) 0.029 0.033 [−0.026, 0.099] [0.001, 0.069] 0.0002

ΣGDE
(nc4,c2) 0.030 0.037 [−0.025, 0.099] [0.009, 0.070] 0.0002

ΣGDE
(nc5,c2) 0.030 0.026 [−0.025, 0.100] [0.009, 0.048] 0.0001

ΣGDE
(nc6,c2) 0.030 0.029 [−0.025, 0.098] [0.013, 0.049] 0.0001

ΣGDE
(c1,c2) 0.029 0.034 [−0.025, 0.100] [0.016, 0.059] 0.0001

ΣGDE
(c2,c2) 0.152 0.075 [0.095, 0.266] [0.055, 0.104] 0.0001

ΣGDE
(c3,c2) 0.029 0.036 [−0.026, 0.100] [0.019, 0.059] 0.0001

ΣGDE
(c4,c2) 0.029 0.035 [−0.026, 0.100] [0.018, 0.057] 0.0001

ΣGDE
(c5,c2) 0.029 0.034 [−0.025, 0.100] [0.018, 0.056] 0.0001

ΣGDE
(nc1,c3) 0.030 0.033 [−0.024, 0.100] [−0.003, 0.072] 0.0003

ΣGDE
(nc2,c3) 0.029 0.035 [−0.024, 0.100] [0.001, 0.072] 0.0003

ΣGDE
(nc3,c3) 0.029 0.036 [−0.025, 0.099] [0.003, 0.071] 0.0003

ΣGDE
(nc4,c3) 0.030 0.040 [−0.025, 0.101] [0.012, 0.073] 0.0002

ΣGDE
(nc5,c3) 0.030 0.028 [−0.024, 0.101] [0.011, 0.051] 0.0001

ΣGDE
(nc6,c3) 0.029 0.033 [−0.025, 0.101] [0.017, 0.054] 0.0001

ΣGDE
(c1,c3) 0.029 0.034 [−0.025, 0.100] [0.017, 0.059] 0.0001

ΣGDE
(c2,c3) 0.029 0.036 [−0.026, 0.100] [0.019, 0.059] 0.0001

ΣGDE
(c3,c3) 0.153 0.076 [0.095, 0.267] [0.056, 0.104] 0.0001

ΣGDE
(c4,c3) 0.029 0.041 [−0.024, 0.099] [0.024, 0.063] 0.0001

ΣGDE
(c5,c3) 0.030 0.039 [−0.025, 0.101] [0.024, 0.062] 0.0001

ΣGDE
(nc1,c4) 0.029 0.030 [−0.025, 0.100] [−0.002, 0.065] 0.0002

ΣGDE
(nc2,c4) 0.030 0.031 [−0.024, 0.100] [0.000, 0.065] 0.0002

ΣGDE
(nc3,c4) 0.029 0.032 [−0.025, 0.100] [0.003, 0.065] 0.0002

ΣGDE
(nc4,c4) 0.029 0.039 [−0.024, 0.099] [0.013, 0.070] 0.0002

ΣGDE
(nc5,c4) 0.029 0.029 [−0.025, 0.099] [0.012, 0.050] 0.0001

ΣGDE
(nc6,c4) 0.029 0.033 [−0.025, 0.099] [0.018, 0.054] 0.0001

ΣGDE
(c1,c4) 0.029 0.033 [−0.026, 0.101] [0.016, 0.056] 0.0001
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ΣGDE
(c2,c4) 0.029 0.035 [−0.026, 0.100] [0.018, 0.057] 0.0001

ΣGDE
(c3,c4) 0.029 0.041 [−0.024, 0.099] [0.024, 0.063] 0.0001

ΣGDE
(c4,c4) 0.151 0.071 [0.095, 0.267] [0.053, 0.096] 0.0001

ΣGDE
(c5,c4) 0.030 0.040 [−0.025, 0.100] [0.025, 0.062] 0.0001

ΣGDE
(nc1,c5) 0.030 0.028 [−0.024, 0.100] [−0.003, 0.061] 0.0002

ΣGDE
(nc2,c5) 0.029 0.030 [−0.024, 0.100] [0.001, 0.062] 0.0002

ΣGDE
(nc3,c5) 0.029 0.032 [−0.025, 0.099] [0.003, 0.063] 0.0002

ΣGDE
(nc4,c5) 0.030 0.038 [−0.024, 0.100] [0.013, 0.068] 0.0002

ΣGDE
(nc5,c5) 0.030 0.027 [−0.025, 0.099] [0.011, 0.048] 0.0001

ΣGDE
(nc6,c5) 0.029 0.034 [−0.025, 0.100] [0.019, 0.054] 0.0001

ΣGDE
(c1,c5) 0.029 0.032 [−0.026, 0.099] [0.016, 0.055] 0.0001

ΣGDE
(c2,c5) 0.029 0.034 [−0.025, 0.100] [0.018, 0.056] 0.0001

ΣGDE
(c3,c5) 0.030 0.039 [−0.025, 0.101] [0.024, 0.062] 0.0001

ΣGDE
(c4,c5) 0.030 0.040 [−0.025, 0.100] [0.025, 0.062] 0.0001

ΣGDE
(c5,c5) 0.153 0.069 [0.095, 0.267] [0.051, 0.092] 0.0001

ρGDI
(nc1) 0.799 0.793 [0.525, 1.074] [0.695, 0.881] 0.0005

ρGDI
(nc2) 0.800 0.779 [0.521, 1.078] [0.679, 0.871] 0.0005

ρGDI
(nc3) 0.802 0.817 [0.527, 1.077] [0.721, 0.905] 0.0004

ρGDI
(nc4) 0.802 0.849 [0.523, 1.076] [0.771, 0.924] 0.0004

ρGDI
(nc5) 0.802 0.851 [0.527, 1.076] [0.779, 0.920] 0.0004

ρGDI
(c1) 0.801 0.839 [0.522, 1.078] [0.739, 0.935] 0.0006

ρGDI
(c2) 0.801 0.920 [0.524, 1.077] [0.862, 0.976] 0.0003

ρGDI
(c3) 0.802 0.881 [0.526, 1.078] [0.824, 0.937] 0.0003

ρGDI
(c4) 0.798 0.890 [0.529, 1.078] [0.837, 0.941] 0.0003

ρGDI
(c5) 0.802 0.896 [0.523, 1.076] [0.847, 0.944] 0.0002

ΣGDI
(nc1,nc1) 0.265 0.279 [0.163, 0.464] [0.209, 0.374] 0.0004

ΣGDI
(nc2,nc1) 0.052 0.186 [−0.044, 0.174] [0.127, 0.263] 0.0003

ΣGDI
(nc3,nc1) 0.052 0.053 [−0.041, 0.172] [0.007, 0.107] 0.0003

ΣGDI
(nc4,nc1) 0.050 0.019 [−0.046, 0.175] [−0.029, 0.072] 0.0003

ΣGDI
(nc5,nc1) 0.051 0.033 [−0.045, 0.171] [−0.015, 0.086] 0.0003

ΣGDI
(c1,nc1) 0.051 0.035 [−0.042, 0.172] [−0.016, 0.088] 0.0003

ΣGDI
(c2,nc1) 0.051 0.035 [−0.044, 0.174] [−0.014, 0.088] 0.0003

ΣGDI
(c3,nc1) 0.051 0.037 [−0.044, 0.174] [−0.014, 0.092] 0.0003

ΣGDI
(c4,nc1) 0.051 0.037 [−0.045, 0.176] [−0.014, 0.093] 0.0003

ΣGDI
(c5,nc1) 0.051 0.033 [−0.045, 0.174] [−0.018, 0.089] 0.0003

ΣGDI
(nc1,nc2) 0.052 0.186 [−0.044, 0.174] [0.127, 0.263] 0.0003

ΣGDI
(nc2,nc2) 0.266 0.271 [0.165, 0.465] [0.208, 0.356] 0.0004

ΣGDI
(nc3,nc2) 0.051 0.040 [−0.042, 0.178] [−0.001, 0.087] 0.0002

ΣGDI
(nc4,nc2) 0.052 0.022 [−0.043, 0.174] [−0.020, 0.068] 0.0002

ΣGDI
(nc5,nc2) 0.052 0.035 [−0.041, 0.174] [−0.008, 0.082] 0.0002

ΣGDI
(c1,nc2) 0.051 0.033 [−0.045, 0.172] [−0.015, 0.084] 0.0003

ΣGDI
(c2,nc2) 0.052 0.033 [−0.042, 0.176] [−0.014, 0.083] 0.0003

ΣGDI
(c3,nc2) 0.051 0.035 [−0.042, 0.175] [−0.013, 0.085] 0.0003

ΣGDI
(c4,nc2) 0.052 0.035 [−0.043, 0.175] [−0.012, 0.086] 0.0003

ΣGDI
(c5,nc2) 0.053 0.030 [−0.042, 0.175] [−0.017, 0.080] 0.0003

ΣGDI
(nc1,nc3) 0.052 0.053 [−0.041, 0.172] [0.007, 0.107] 0.0003

11



ΣGDI
(nc2,nc3) 0.051 0.040 [−0.042, 0.178] [−0.001, 0.087] 0.0002

ΣGDI
(nc3,nc3) 0.266 0.167 [0.166, 0.463] [0.128, 0.220] 0.0002

ΣGDI
(nc4,nc3) 0.051 0.055 [−0.043, 0.173] [0.022, 0.094] 0.0002

ΣGDI
(nc5,nc3) 0.051 0.047 [−0.044, 0.173] [0.015, 0.084] 0.0002

ΣGDI
(c1,nc3) 0.051 0.040 [−0.044, 0.174] [0.008, 0.075] 0.0002

ΣGDI
(c2,nc3) 0.051 0.041 [−0.045, 0.176] [0.009, 0.077] 0.0002

ΣGDI
(c3,nc3) 0.051 0.045 [−0.043, 0.172] [0.013, 0.083] 0.0002

ΣGDI
(c4,nc3) 0.051 0.047 [−0.042, 0.173] [0.014, 0.084] 0.0002

ΣGDI
(c5,nc3) 0.051 0.047 [−0.041, 0.176] [0.014, 0.084] 0.0002

ΣGDI
(nc1,nc4) 0.050 0.019 [−0.046, 0.175] [−0.029, 0.072] 0.0003

ΣGDI
(nc2,nc4) 0.052 0.022 [−0.043, 0.174] [−0.020, 0.068] 0.0002

ΣGDI
(nc3,nc4) 0.051 0.055 [−0.043, 0.173] [0.022, 0.094] 0.0002

ΣGDI
(nc4,nc4) 0.266 0.174 [0.165, 0.463] [0.135, 0.228] 0.0002

ΣGDI
(nc5,nc4) 0.052 0.093 [−0.043, 0.174] [0.060, 0.136] 0.0002

ΣGDI
(c1,nc4) 0.051 0.061 [−0.044, 0.173] [0.029, 0.099] 0.0002

ΣGDI
(c2,nc4) 0.052 0.065 [−0.042, 0.176] [0.033, 0.103] 0.0002

ΣGDI
(c3,nc4) 0.051 0.076 [−0.041, 0.175] [0.043, 0.116] 0.0002

ΣGDI
(c4,nc4) 0.051 0.078 [−0.042, 0.174] [0.045, 0.118] 0.0002

ΣGDI
(c5,nc4) 0.051 0.082 [−0.043, 0.174] [0.049, 0.121] 0.0002

ΣGDI
(nc1,nc5) 0.051 0.033 [−0.045, 0.171] [−0.015, 0.086] 0.0003

ΣGDI
(nc2,nc5) 0.052 0.035 [−0.041, 0.174] [−0.008, 0.082] 0.0002

ΣGDI
(nc3,nc5) 0.051 0.047 [−0.044, 0.173] [0.015, 0.084] 0.0002

ΣGDI
(nc4,nc5) 0.052 0.093 [−0.043, 0.174] [0.060, 0.136] 0.0002

ΣGDI
(nc5,nc5) 0.265 0.173 [0.166, 0.465] [0.134, 0.224] 0.0002

ΣGDI
(c1,nc5) 0.050 0.075 [−0.043, 0.173] [0.044, 0.114] 0.0002

ΣGDI
(c2,nc5) 0.051 0.081 [−0.042, 0.174] [0.049, 0.119] 0.0002

ΣGDI
(c3,nc5) 0.051 0.099 [−0.042, 0.174] [0.066, 0.139] 0.0002

ΣGDI
(c4,nc5) 0.052 0.102 [−0.041, 0.174] [0.070, 0.143] 0.0002

ΣGDI
(c5,nc5) 0.052 0.106 [−0.044, 0.174] [0.074, 0.147] 0.0002

ΣGDI
(nc1,c1) 0.051 0.035 [−0.042, 0.172] [−0.016, 0.088] 0.0003

ΣGDI
(nc2,c1) 0.051 0.033 [−0.045, 0.172] [−0.015, 0.084] 0.0003

ΣGDI
(nc3,c1) 0.051 0.040 [−0.044, 0.174] [0.008, 0.075] 0.0002

ΣGDI
(nc4,c1) 0.051 0.061 [−0.044, 0.173] [0.029, 0.099] 0.0002

ΣGDI
(nc5,c1) 0.050 0.075 [−0.043, 0.173] [0.044, 0.114] 0.0002

ΣGDI
(c1,c1) 0.265 0.147 [0.166, 0.465] [0.109, 0.199] 0.0002

ΣGDI
(c2,c1) 0.051 0.079 [−0.044, 0.176] [0.048, 0.120] 0.0002

ΣGDI
(c3,c1) 0.051 0.087 [−0.042, 0.173] [0.054, 0.128] 0.0002

ΣGDI
(c4,c1) 0.051 0.087 [−0.043, 0.170] [0.055, 0.128] 0.0002

ΣGDI
(c5,c1) 0.051 0.090 [−0.044, 0.173] [0.056, 0.132] 0.0002

ΣGDI
(nc1,c2) 0.051 0.035 [−0.044, 0.174] [−0.014, 0.088] 0.0003

ΣGDI
(nc2,c2) 0.052 0.033 [−0.042, 0.176] [−0.014, 0.083] 0.0003

ΣGDI
(nc3,c2) 0.051 0.041 [−0.045, 0.176] [0.009, 0.077] 0.0002

ΣGDI
(nc4,c2) 0.052 0.065 [−0.042, 0.176] [0.033, 0.103] 0.0002

ΣGDI
(nc5,c2) 0.051 0.081 [−0.042, 0.174] [0.049, 0.119] 0.0002

ΣGDI
(c1,c2) 0.051 0.079 [−0.044, 0.176] [0.048, 0.120] 0.0002

ΣGDI
(c2,c2) 0.267 0.147 [0.165, 0.460] [0.110, 0.199] 0.0002
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ΣGDI
(c3,c2) 0.051 0.094 [−0.042, 0.175] [0.062, 0.137] 0.0002

ΣGDI
(c4,c2) 0.052 0.095 [−0.043, 0.178] [0.062, 0.137] 0.0002

ΣGDI
(c5,c2) 0.051 0.097 [−0.043, 0.176] [0.065, 0.140] 0.0002

ΣGDI
(nc1,c3) 0.051 0.037 [−0.044, 0.174] [−0.014, 0.092] 0.0003

ΣGDI
(nc2,c3) 0.051 0.035 [−0.042, 0.175] [−0.013, 0.085] 0.0003

ΣGDI
(nc3,c3) 0.051 0.045 [−0.043, 0.172] [0.013, 0.083] 0.0002

ΣGDI
(nc4,c3) 0.051 0.076 [−0.041, 0.175] [0.043, 0.116] 0.0002

ΣGDI
(nc5,c3) 0.051 0.099 [−0.042, 0.174] [0.066, 0.139] 0.0002

ΣGDI
(c1,c3) 0.051 0.087 [−0.042, 0.173] [0.054, 0.128] 0.0002

ΣGDI
(c2,c3) 0.051 0.094 [−0.042, 0.175] [0.062, 0.137] 0.0002

ΣGDI
(c3,c3) 0.264 0.167 [0.164, 0.463] [0.128, 0.218] 0.0002

ΣGDI
(c4,c3) 0.051 0.118 [−0.043, 0.173] [0.084, 0.161] 0.0002

ΣGDI
(c5,c3) 0.051 0.120 [−0.041, 0.174] [0.086, 0.164] 0.0002

ΣGDI
(nc1,c4) 0.051 0.037 [−0.045, 0.176] [−0.014, 0.093] 0.0003

ΣGDI
(nc2,c4) 0.052 0.035 [−0.043, 0.175] [−0.012, 0.086] 0.0003

ΣGDI
(nc3,c4) 0.051 0.047 [−0.042, 0.173] [0.014, 0.084] 0.0002

ΣGDI
(nc4,c4) 0.051 0.078 [−0.042, 0.174] [0.045, 0.118] 0.0002

ΣGDI
(nc5,c4) 0.052 0.102 [−0.041, 0.174] [0.070, 0.143] 0.0002

ΣGDI
(c1,c4) 0.051 0.087 [−0.043, 0.170] [0.055, 0.128] 0.0002

ΣGDI
(c2,c4) 0.052 0.095 [−0.043, 0.178] [0.062, 0.137] 0.0002

ΣGDI
(c3,c4) 0.051 0.118 [−0.043, 0.173] [0.084, 0.161] 0.0002

ΣGDI
(c4,c4) 0.265 0.173 [0.165, 0.466] [0.135, 0.221] 0.0002

ΣGDI
(c5,c4) 0.052 0.131 [−0.044, 0.174] [0.097, 0.174] 0.0002

ΣGDI
(nc1,c5) 0.051 0.033 [−0.045, 0.174] [−0.018, 0.089] 0.0003

ΣGDI
(nc2,c5) 0.053 0.030 [−0.042, 0.175] [−0.017, 0.080] 0.0003

ΣGDI
(nc3,c5) 0.051 0.047 [−0.041, 0.176] [0.014, 0.084] 0.0002

ΣGDI
(nc4,c5) 0.051 0.082 [−0.043, 0.174] [0.049, 0.121] 0.0002

ΣGDI
(nc5,c5) 0.052 0.106 [−0.044, 0.174] [0.074, 0.147] 0.0002

ΣGDI
(c1,c5) 0.051 0.090 [−0.044, 0.173] [0.056, 0.132] 0.0002

ΣGDI
(c2,c5) 0.051 0.097 [−0.043, 0.176] [0.065, 0.140] 0.0002

ΣGDI
(c3,c5) 0.051 0.120 [−0.041, 0.174] [0.086, 0.164] 0.0002

ΣGDI
(c4,c5) 0.052 0.131 [−0.044, 0.174] [0.097, 0.174] 0.0002

ΣGDI
(c5,c5) 0.266 0.181 [0.165, 0.463] [0.143, 0.230] 0.0002

TABLE SM.B.1. Prior and posterior distribution of parameters of the model

SM.C Model comparison and robustness

Despite its parsimony, the model we use in our empirical analysis remains high-di-

mensional: it contains 277 parameters that we estimate using a cross-section of N = 21

measurements over T = 157 periods. Moreover, many of the NT potential observations

are missing or unavailable. To discipline our estimates, we use a prior that applies
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shrinkage towards a simpler model with a single-factor structure on the innovations. In

addition, one may consider a more flexible model in which ∆xt follows an unrestricted

VAR instead of a diagonal one. A natural question is whether imposing or relaxing these

constraints leads to an improved model fit.

For that reason, we compare the baseline specification in the main body of the paper

against three variants that: (1) impose the single factor structure on the different inno-

vations, (2) relax the diagonal VAR restriction on ∆xt, and (3) combine both. We thank

an anonymous referee for suggesting our exploration of these alternative specifications.

Subsection SM.C.1 presents the estimated models while subsection SM.C.2 reports their

marginal likelihoods, thereby allowing us to produce posterior odds against our baseline

model.

It appears that the covariance matrixΣx is in fact well approximated by a single-factor

structure whileΣGDE andΣGDI are not. Consequently, it is perhaps not surprising that the

additional flexibility in the covariance matrix of innovations, particularly for the mea-

surement errors, leads to substantial improvements in model fit. In contrast, flexibility

in the autoregressive structure of ∆xt does not lead to improvements. Reassuringly, the

estimates of economic activity that we obtain from the different alternatives are very

similar, possibly because the rich cross-section that we use attenuates the role of those

modelling choices on filtering.

In turn, subsection SM.C.3 shows that our baseline model is capable of approximating

well the autocovariance function of a selection of statistical discrepancies, providing

additional evidence of adequate model fit. Next, in subsection SM.C.4 we compare our

baseline model with a non-nested alternative that further decomposes the signals xt into

trend and cycle components. Finally, subsection SM.C.5 investigates the sensitivity of our

model to the assumption of block-independence between GDE and GDI measurement

errors.
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SM.C.1 Alternative specifications

We consider three alternatives to our baseline, which we label model M0:

(M1) ∆xt is a diagonal VAR(1) process with a single factor structure in its innovations,

∆xt = µx + diag
(
ρx
)
∆xt−1 +

[
λxηxt + diag(σx)εxt

]
,

ηxt
iid
∼ N(0, 1) independent of εxt

iid
∼ N(0C×1, IC),

while vit follows another diagonal VAR(1) model with a single factor structure in

its innovations,

vit = diag(ρi)vi,t−1 +
[
λiηit + diag(σi)εit

]
,

ηit
iid
∼ N(0, 1) independent of εit

iid
∼ N(0Mi×1, IMi

).

In this case, the prior distribution is

1/σ2
x ∼ Gamma(dx/2, 2/(dxwxςx)),

µx

ρx

λx


∣∣∣∣∣∣σx ∼ N


 bx√

(1 − wx)ςx1C×1

 ,diag{R−1
x , dx} ⊗ diag(σ2

x)

 ,
1/σ2

i ∼ Gamma(di/2, 2/(diwiςi)),ρi

λi


∣∣∣∣∣∣σi ∼ N


 bi√

(1 − wv)ςi1C×1

 ,diag{R−1
i , dv} ⊗ diag(σ2

i )

 ,
with dx,wx, ςx, bx,Rx, di,wi, ςi, bi,Ri as in our baseline model.

(M2) ∆xt is an unrestricted VAR(1) process with an unrestricted covariance matrix for

its innovations,

∆xt = µx + ρx∆xt−1 + Ch(Σx)εxt,

εxt
iid
∼ N(0C×1, IC),
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while vit follows a diagonal VAR(1) model, also with an unrestricted covariance

matrix for its innovations

vit = diag(ρi)vi,t−1 + Ch(Σi)εit,

εit
iid
∼ N(0Mi×1, IMi

).

The prior distribution now is

Σx ∼W
−1(dxSx, dx), µx

vec(ρx)


∣∣∣∣∣∣Σx ∼ N


 mx1C×1

rm vec(IC)

 , R̄−1
x ⊗ Σx

 ,
Σi ∼W

−1(diSi, di),

ρi

∣∣∣∣∣Σi ∼ N
(
bi,R

−1
i ⊗ Σi

)
,

where R̄x = diag{10, 30IC} and dx,Sx,mx, rx, di,Si, bi,Ri as in our baseline model.

(M3) ∆xt is an unrestricted VAR(1) with a single factor structure in its innovations,

∆xt = µx + ρx∆xt−1 +
[
λxηxt + diag(σx)εxt

]
,

ηxt
iid
∼ N(0, 1) independent of εxt

iid
∼ N(0C×1, IC),

while vit is a diagonal VAR(1) model with a single factor structure in its innovations,

vit = diag(ρi)vi,t−1 +
[
λiηit + diag(σi)εit

]
,

ηit
iid
∼ N(0, 1) independent of εit

iid
∼ N(0Mi×1, IMi

).

As one would expect, the prior distribution is

1/σ2
x ∼ Gamma(dx/2, 2/(dxwxςx)),

µx

vec(ρx)

λx


∣∣∣∣∣∣σx ∼ N




mx1C×1

rm vec(IC)√
(1 − wx)ςx1C×1


,diag{R̄−1

x , dx} ⊗ diag(σ2
x)


,

1/σ2
i ∼ Gamma(di/2, 2/(diwiςi)),
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ρi

λi


∣∣∣∣∣∣σi ∼ N


 bi√

(1 − wv)ςi1C×1

 ,diag{R−1
i , dv} ⊗ diag(σ2

i )

 ,
with dx,wx, ςx,mx, rm, di,wi, ςi, bi,Ri as in our baseline model and R̄x as in M2.

SM.C.2 Model comparison and estimates of economic activity

It is straightforward to adapt the Gibbs sampler algorithm we discussed in subsection

SM.B.3 to estimate models M1, M2 and M3. For each model we run the Gibbs sampler

for 200,000 draws, with burn-in of 100,000 and thinning of 1 in 5. We use the method

proposed by Chib (1995) to recover the marginal log likelihood of each model from the

Gibbs output. Results are reported in table SM.C.1.

TABLE SM.C.1. Marginal likelihoods for alternative models

Model Marginal

log-likelihood

Numerical

SE

M0 Diagonal ρx + Unrestricted Σ’s -2,121.12 (0.074)

M1 Diagonal ρx + Factor structure on Σ’s -2,188.08 (0.053)

M2 Unrestricted ρx + Unrestricted Σ’s -2,129.64 (0.071)

M3 Unrestricted ρx + Factor structure on Σ’s -2,214.69 (0.060)

NOTES. Marginal log-likelihood and numerical standard errors computed with the method of Chib (1995)

According to the marginal likelihood values, our baseline model (M0) is ranked first

followed by M2, which relaxes the diagonal VAR restriction of M0. Estimates from model

M2 for the off-diagonal elements of the VAR matrix ρx (available in the replication code)

show that those are hardly different from zero — the 90%-probability intervals for each

of them invariably contain zero. The same holds in model M3. Therefore, relaxing the

diagonal restrictions on ρx, which adds a lot of parameters, explains the lower marginal

likelihoods of model M2 compared to M0 and M3 compared to M1.

On the other hand, the models that impose a single factor structure on Σx,ΣGDE and
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ΣGDI do significantly worse. Nevertheless, it appears that Σx is well approximated by

a single-factor structure. Specifically, the estimates in table SM.B.1 suggest that the

posterior median of Σx has the form
(
0.25 × 1C×C + 0.05 × IC

)
, so that the single common

factor explains most of the variation across signals.The posterior medians of the five

eigenvalues of Σx, split between large and small eigenvalues, are (90%-credible intervals

in parentheses)

• 1.295 (1.057–1.602),

• 0.049 (0.040–0.062), 0.037 (0.031–0.045), 0.030 (0.026–0.036), 0.024 (0.020–0.029).

It is clear that there is a single dominant eigenvalue followed by four relatively small ones,

consistently with a single-factor structure. In this respect, Table SM.B.1 also suggests

that the common shock to the different signals is more important than their specific

components in explaining the variance of their innovations, as one would expect from

the strong cross-sectional dependence between the different comprehensive revisions

observed in Figure 1.

In contrast, this is not the case for either ΣGDE or ΣGDI. In fact, the eleven eigenvalues

of ΣGDE are

• 0.638 (0.462–0.886), 0.217 (0.157–0.308), 0.104 (0.081–0.137), 0.067 (0.056–0.082),

• 0.054 (0.047–0.064), 0.045 (0.039–0.053), 0.039 (0.034–0.045), 0.033 (0.029–0.038),

0.029 (0.026–0.033), 0.025 (0.022–0.029), 0.021 (0.018–0.025),

while the ten eigenvalues of ΣGDI are

• 0.829 (0.633–1.095), 0.411 (0.314–0.546), 0.159 (0.129–0.204), 0.117 (0.097–0.142),

0.091 (0.077–0.108), 0.075 (0.065–0.088),

• 0.063 (0.055–0.073), 0.054 (0.047–0.062), 0.045 (0.039–0.052), 0.037 (0.031–0.043).
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These estimates suggest that quite a few factors would be needed to adequately capture

the cross-sectional dependence of the innovations in the measurement errors in GDE

and GDI.
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(a) Estimates of GDP in levels
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(b) Estimates of GDP growth rates

FIGURE SM.C.1. Comparison of GDP estimates from alternative models. Panel (a) reports the

posterior median estimates of the level of GDP defined as exp(xCt) while panel (b) reports the

posterior median estimates of the quarterly annualized growth rate of GDP defined as 4∆xCt.

Despite the large differences in goodness of fit, all of the alternatives we considered

have similar implications for the smoothed estimates of economic activity, both in levels

and growth rates. Figure SM.C.1 shows this for xCt (left panel) and ∆xCt (right panel).

Differences across models are negligible and mostly concentrated around the most

recent periods, as one would expect. One possible explanation is that the relatively low

correlation across measurement errors allows cross-sectional averaging to play a bigger

role and attenuates the importance of those assumptions in estimating the latent state

variables. This is consistent with the weights we report in table 2, which show that lag

and lead quarters receive small weights in the optimal filter.

SM.C.3 The autocorrelation of the statistical discrepancies

Statistical discrepancies appear mean-reverting but, as can be seen in figure SM.C.2,

they can be quite persistent. Our model, though, can accommodate a fair amount of
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persistence because it postulates AR(1) measurement errors. To assess to what extent

this is so, in this subsection we look at the autocorrelation function of a selection of five

statistical discrepancies defined as the log difference between GDE and GDI estimates

for various estimates. Specifically, given that there is no first estimate of GDI, we focus

on the second and third early estimates, and the first, second and third annual estimates.
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FIGURE SM.C.2. Statistical discrepancies for early and latest estimates in the BEA data.

The autocorrelation functions estimated from the data are reported in figure SM.C.3

below for lags 0 to 12, which correspond to three years of quarterly observations. We

treat missing observations (e.g., second GDI estimates for every fourth quarter) as miss-

ing at random. We compare them with the autocorrelations implied by our model for

the contemporaneous difference between measurement errors for the mth measurement

vm
GDEt − vm

GDIt, which correspond to an ARMA(2,1) process with AR roots given by the

corresponding roots of vm
GDEt and vm

GDIt, and an MA coefficient that depends on the serial

correlation of those measurement errors and the relative variances of their innovations.

As can be seen, the model-based autocorrelations seem to match their empirical coun-

terparts very well.
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(a) Second estimate (b) Third estimate

(c) Annual estimate 1 (d) Annual estimate 2

(e) Annual estimate 3

FIGURE SM.C.3. Fit of serial dependence of early and latest statistical discrepancies In each

panel, the solid red line indicates the sample autocorrelation function computed from BEA data,

the dotted green line is the posterior median estimate of the autocorrelation function and the

shaded area is a 90%-posterior probability interval pointwise for each lag.
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SM.C.4 A non-nested alternative: Trend-Cycle model

As we showed in proposition 2, the autocovariance function of∆xt is non-parametrically

identified under mild assumptions. We decided to model ∆xt as a diagonal VAR(1)

with unrestricted error covariance matrix for its innovations because it offers a fairly

parsimonious way to fit the serial and cross-sectional dependence we see in the data,

as discussed in sections SM.C.2 and SM.C.3. One implication of our model is that each

element of xt has a unit root and, therefore, admits a Beveridge and Nelson (1981)

decomposition into trend and cycle components. For that reason, in this subsection we

draw inspiration from Morley, Nelson, and Zivot (2003) and explicitly decompose each

xt into trend and cycle components. We thank an anonymous referee for suggesting this

possibility.

Specifically, we assume that

xt = τt + ct,

τt = µ + τt−1 +
[
λτητt + στετt

]
,

ct = diag(ϕc1)ct−1 + diag(ϕc2)ct−2 +
[
λcτητt + λcηct + diag(σcτ)ετt + diag(σc)εct

]
.

We use a factor structure in the innovations of the trend τt and the cycle ct for two reasons.

First, as mentioned in subsection SM.C.2, a single-factor structure seems appropriate

for the vector of signals xt. Second, it allows us to introduce in a relatively simple

manner correlation between the shocks to the trend and cyclical components. This is

important because Morley et al. (2003) argue that differences in estimates of the trend

component of GDE from state-space approaches and Nelson-Beveridge decompositions

can be reconciled by allowing for these correlations.

With a convenient choice of Gaussian-inverse Wishart priors, we can adapt the Gibbs

sampler algorithm of our baseline model to handle this alternative. We can also obtain

marginal likelihoods with the approach of Chib (1995). This procedure yields a marginal

likelihood for the trend-cycle model of -2,490,01 (numerical SE = 0.072), which is below
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that of our baseline model. A potential explanation for why richer cyclical dynamics

do not improve the model fit as measured by the marginal likelihood may be that in

Morley et al. (2003) the decomposition is applied to GDE data directly rather than to xt.

To some extent, the presence of measurement errors in our model plays a role similar to

the inclusion of a cyclical component. As Morley et al. (2003), though, we find negative

correlation between shocks to trend and cycle components, and conjugate roots in the

AR(2) polynomials of each entry of ct. At the same time, our estimates indicate more

persistence in ct than theirs, as one would expect in the presence of measurement errors.

Detailed results for this trend-cycle model are available in the replication material.

Importantly, Figure SM.C.4 shows that the estimates for the level and growth rates

of GDP implied by both models are very close. This is reassuring because our main goal

is estimate xt from yt.
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(a) Estimates of GDP in levels
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FIGURE SM.C.4. Comparison of GDP estimates from alternative models. Panel (a) reports the

posterior median estimates of the level of GDP defined as exp(xCt) while panel (b) reports the

posterior median estimates of the quarterly annualized growth rate of GDP defined as 4∆xCt.

SM.C.5 Correlation across expenditure and income measures

There are two reasons for imposing zero correlation between the shocks to the true

GDP and the GDI and GDE measurement errors. Primarily, it allows us to achieve non-
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parametric identification. And second, the empirical evidence of a strong cyclical pattern

in the statistical discrepancy is inconclusive (see, Nalewaik (2010) and the subsequent

discussion, as well as footnote 17 in Almuzara et al. (2023)).

Still, we have re-estimated a generalised version of our model in which we allow

for non-zero correlation between the shocks to the common factor of the innovation of

the signals and the common factors in the innovations to the measurement errors of the

expenditure and income measures of GDP. In a set up with multiple measurements, this

assumption is analogous to the one made in Aruoba, Diebold, Nalewaik, Schorfheide,

and Song (2016). Given that the (non-parametric) identification information for those

correlations must necessarily come from prior information, we use a grid of degenerate

priors ranging from 0 to 30% to assess the sensitivity of our smoothed estimates to the

values of this parameter.
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FIGURE SM.C.5. GDPsolera estimated using data until January 2022 allowing for correlation

between shocks to different measurement errors.

As can be seen in Figure SM.C.5, the posterior means of our estimates are hardly

affected, except in the third quarter of 2020. Therefore, the identifying assumption of

zero correlation does not seem to significantly affect GDPsolera or any of the conclusions

from our empirical analysis.
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SM.D Data and release schedule for GDP estimates

TABLE SM.D.1. GDE and GDI release schedule for the period 2016Q1-2018Q2.

Release Month Estimate GDE GDI

New Updated New Updated

Jan 2017 Advance 2016Q4

Feb 2017 Second 2016Q4

Mar 2017 Third 2016Q4 2016Q4

Apr 2017 Advance 2017Q1

May 2017 Second 2017Q1 2017Q1

Jun 2017 Third 2017Q1 2017Q1

Jul 2017 Advance 2017Q2 2014Q1-2016Q4 2014Q1-2016Q4

Aug 2017 Second 2017Q2 2017Q2

Sep 2017 Third 2017Q2 2017Q2

Oct 2017 Advance 2017Q3

Nov 2017 Second 2017Q3 2017Q3

Dec 2017 Third 2017Q3 2017Q3

Jan 2018 Advance 2017Q4

Feb 2018 Second 2017Q4

Mar 2018 Third 2017Q4 2017Q4

Apr 2018 Advance 2018Q1

May 2018 Second 2018Q1 2018Q1

Jun 2018 Third 2018Q1 2018Q1

Jul 2018 Advance 2018Q2 1947Q1-2017Q4 2018Q2 1947Q1-2017Q4

NOTES. [*] Annual update, [**] Comprehensive update, [†] 13 quarters, i.e. last 3 years
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SM.E Implications of L2-optimality

Consider the following model for the release process. For each type of estimate i and

quarter t, the statistical office collects inputs ι1it, . . . , ι
Jit
it – such as sectoral surveys – on

which the estimates ym
it are based. The objective of this appendix is to show that if the sta-

tistical office produced estimates with the objective of minimizing their expected square

loss (i.e., the L2-distance between the estimate and xt), the optimal signal-extraction rule

implicit in the Kalman smoother would exclusively map xt to its most recent release.

For ease of exposition, we abstract from comprehensive revisions by setting C = 1,

and assume that the measurements in levels are covariance stationary. Fix i and t and

let σ(·) denote a (generated) σ-algebra. We will assume that (i) there are integers {Jm
it }

Mi
m=1

such that Jm
it ≤ Jm+1

it and ym
it is measurable with respect to the increasing sequence of

information sets Im
it = σ{ι

1
it, . . . , ι

Jm
it

it } for all m, and (ii) the statistical office minimizes

L2(ym
it − xt) = E

[
|ym

it − xt|
2
]
. Assumption (i) allows for data on past and future periods to

be included among the time-t inputs. From (i) we obtain Im
it ⊂ I

m+1
it for all m, and from

(ii),

ym
it = E

[
xt

∣∣∣Im
it
]
, m = 1, . . . ,Mi.

Let Ĩit be a σ-algebra such that Ĩit ⊂ I
m
it for all m. For example, if the time-t inputs

include all the data needed to construct past measurements, Ĩit may be the σ-algebra

generated by all past measurements. With a slight abuse of notation,

E
[
xt

∣∣∣y1
it, . . . , y

m
it , Ĩit

]
= E
[
E
[
xt

∣∣∣Im
it
]∣∣∣y1

it, . . . , y
m
it , Ĩit

]
= E
[
ym

it

∣∣∣y1
it, . . . , y

m
it , Ĩit

]
= ym

it ,

by the law of iterated expectations. In simple words, if measurements minimize expected

square loss, all measurements of xt but the most recent one contain no useful information

to extract xt.

To provide further intuition, consider the following:
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Example. Suppose we have two measurements of x,

y1 = x + v1,

y2 = x + v2.

Suppose x ∼ N(µ,ω2) and (v1, v2) ∼ N(02×1,Σ), with x stochastically independent of the

v’s. The best estimate of x given available y’s is a linear combination of the y’s where the

coefficients are given by the usual regression formula (covariance divided by variance).

An estimate x̂ is best if it minimizes the mean of (x − x̂)2.

Imagine y1 is released first. The best estimate x̂1 of x given y1 is

x̂1 = E
[
x
∣∣∣y1
]
= (1 − α)µ + αy1,

α =
Cov
(
x, y1
)

Var
(
y1
) = ω2

ω2 + σ11

.

Next month, y2 is released. The best estimate x̂2 of x given y1, y2 is

x̂2 = E
[
x
∣∣∣y1, y2

]
= (1 − β1 − β2)µ + β1y1 + β2y2,β1

β2

 =

 Var

(
y1
)

Cov
(
y1, y2

)
Cov
(
y1, y2

)
Var
(
y2
)


−1 Cov

(
x, y1
)

Cov
(
x, y2
)


=
ω2

∆

Cov
(
y2 − y1, y2

)
Cov
(
y2 − y1, y1

)
 = ω

2

∆

σ22 − σ12

σ11 − σ12

 ,
where ∆ is the determinant of the above covariance matrix.

We can now ask two questions:

(1) Why is it that in general x̂1 , y1?

To have x̂1 = y1 we would need σ11 = 0, in which case the signal extraction problem

will be irrelevant. Otherwise, it is always optimal to apply some smoothing, here

pulling estimates towards the unconditional mean or in a dynamic setup, towards a

conditional mean.

(2) When can we disregard y1 and use just the latest vintage y2?
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This is equivalent to asking under which conditions β1 = 0. We can do so if the latest

vintage is uncorrelated to the latest revision error, i.e., Cov
(
y2 − y1, y2

)
= 0.

Intuition One analogy that may help is mean-variance portfolio analysis. If we identify

µ with the return to the safe asset and y1, y2 with those of the risky assets, then pulling

estimates towards the mean is like using a safe asset to improve the risk-return trade-off

of a portfolio, thereby addressing question (1).

Regarding question (2), if y2 is in the mean-variance frontier for risky assets and y1 is

any other risky asset, then we must have that Cov
(
y2, y2 − y1

)
= 0. Otherwise, it would

be possible to construct a portfolio that combines the two risky assets with the same

expected return but lower risk. In econometrics, this is called the Hausman principle:

if one estimator θ̂2 is the most efficient within a class of unbiased estimators Θ, then

Cov
(
θ̂2 − θ̂1, θ̂2

)
= 0 for any other θ̂1 ∈ Θ.

By induction, if we have M vintages y1, . . . , yM ordered from oldest to newest,

the condition for ignoring y1, . . . , yM−1 and only using yM in filtering x out is that

Cov
(
yM, yM − yi

)
= 0 for all i = 1, . . . ,M − 1. These covariance restrictions are precisely

the conditions that we test empirically in section 4.2.3.

SM.F News and noise model

Consider a setup in which N = 1, so that we can omit the subindex indicating type,

which would be 1, M = M1 = 3, and there is a single comprehensive version of GDP, so

that C = 1. Suppose the data follows the news-noise model of Jacobs and van Norden

(2011) and Jacobs, Sarferaz, Sturm, and van Norden (2022):

∆yt =


∆y1

t

∆y2
t

∆y3
t


=


1

1

1


∆ỹt +


ν1

t

ν2
t

ν3
t


+


ζ1

t

ζ2
t

ζ3
t


= 13×1∆ỹt + νt + ζt,
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where νm
t and ζm

t are news and noise components. News are defined by the condition

that Cov
(
νm

t ,∆ỹt + ν
m′
t

)
= 0 for all m′ ≤ m, while noise must satisfy Cov

(
ζm

t ,∆ỹt + ν
m
t
)
= 0.

These, however, are not enough to pin down a unique decomposition of yt in terms of

ỹt, νt, ζt and we will further impose ζ1
t , ζ

2
t , ζ

3
t are uncorrelated with each other.

To simplify the argument, we will assume that (i) ∆ỹt + ν
3
t follows an AR(1) process

and (ii) νt and ζt are uncorrelated over time. Moreover, we note that the news-noise

model is typically applied to measurements of GDP growth, as opposed to our model,

which focuses on the level.

The goal is to understand how the news-noise model maps to ours, namely
y1

t

y2
t

y3
t


=


1

1

1


xt +


v1

t

v2
t

v3
t


= 13×1xt + vt.

We can write

∆yt =


∆y1

t

∆y2
t

∆y3
t


=


1

1

1


(∆ỹt + ν

3
t ) +


(ν2

t − ν
3
t ) + (ν1

t − ν
2
t )

(ν2
t − ν

3
t )

0


+


ζ1

t

ζ2
t

ζ3
t


,

where ν1
t − ν

2
t , ν

2
t − ν

3
t , ζ

1
t , ζ

2
t , ζ

3
t are mutually orthogonal white noise processes. If we set

∆xt = ∆ỹt + ν
3
t ,

∆v1
t = (ν2

t − ν
3
t ) + (ν1

t − ν
2
t ) + ζ1

t ,

∆v2
t = (ν2

t − ν
3
t ) + ζ2

t ,

∆v3
t = ζ

3
t ,

we obtain a particular case of our model in which, not surprisingly, ρ = 13×1. Mea-

surement error are therefore white noise in first differences with a particular variance

matrix,

Var (∆vt) =


Σ11 Σ12 0

Σ12 Σ22 0

0 0 Σ33


.
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If we give ∆vt the factor structure in (4) (again maintaining ρ = 1M×1),

∆vt =


∆v1

t

∆v2
t

∆v3
t


=


λ1

λ2

λ3


ηt +


σ1ε1

t

σ2ε2
t

σ3ε3
t


= ληt + diag(σ)εt,

with ηt
iid
∼ N(0, 1), εt

iid
∼ N(03×1, I3) and ηt independent of εt, the news-noise model implies

the restriction λ3 = 0. The rest of the parameters, λ1, λ2, σ1, σ2, σ3, can be recovered from

Var (∆vt).
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