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SM.A Estimators of unconditional mean and variance

AR(1) example. Consider the following stationary Gaussian AR(1) model:

yt = c + r yt−1+ ut ,

ut
iid∼ N (0, s2)

The information matrix for the MLE of α= (c , r, s2) assuming yt observable is

I (α) =









s−2 s−2µ 0

s−2µ s−2(µ2+σ2) 0

0 0 1
2 s−4









,

where µ= E
�

yt−1

�

= c/(1− r ) and σ2 =Var
�

yt−1

�

= s2/(1− r 2).

Consider the following reparameterization: α 7→ θ= (µ,ρ,σ2) where

µ=
c

1− r
,

ρ= r,
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σ2 =
s2

1− r 2 ,

whose inverse is given by

c =µ(1−ρ),

r = ρ,

s2 = (1−ρ2)σ2.

Effectively, this amounts to re-writing the Gaussian AR(1) process above as

(yt −µ) = ρ(yt−1−µ)+
Æ

σ2(1−ρ2)εt ,

εt
iid∼ N (0,1).

The Jacobian of the inverse transformation is

∂ α

∂ θ′
=









1−ρ −µ 0

0 1 0

0 −2ρσ2 1−ρ2









=











1− r − c
1−r 0

0 1 0

0 − 2r s2

1−r 2 1− r 2











A straightforward application of the chain rule for derivatives implies that the information matrix of

the transformed parameters θ will be

Ĩ (θ) = ∂ α
′

∂ θ
I (α) ∂ α

∂ θ′
=











1
s2 (r − 1)2 0 0

0 1

(r 2−1)2
�

r 2+ 1
�

− 1
s2 r

0 − 1
s2 r 1

2s4

�

r 2− 1
�2











whose inverse is

Ĩ −1(θ) =











s2

(1−r )2
0 0

0 1− r 2 2s2 r
1−r 2

0 2s2 r
1−r 2 2s4 (1+r 2)

(1−r 2)3











Given that the spectral density of yt at frequency 0 is s2/(1 − r )2, it is clear that the dynamic

estimator of µ has the same asymptotic variance as the sample mean of xt , which coincides with the

ML estimator of µ that erroneously imposes that r = 0.
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To find out the asymptotic variance of the sample variance, we need to obtain the autocorrelation

structure of y2
t , which, given the Gaussian nature of the process, will be that of an AR(1) with autore-

gressive coefficient r 2. In addition, given that

(yt −µ)
2 = r 2(yt−1−µ)

2+ s2ε2
t + 2r s(yt−1−µ)εt ,

the innovation variance of this autoregression would be

Var
�

s2ε2
t + 2r s(yt−1−µ)εt

�

= 2s4+ 4r 2 s2 s2

(1− r 2)
= 2s4

�

1+
2r 2

(1− r 2)

�

= 2s4

�

1+ r 2
�

(1− r 2)
,

so the spectral density of (yt −µ)
2 at the frequency 0 will be

2s4

�

1+ r 2
�

(1− r 2)
1

(1− r 2)2
.

This confirms that the dynamic estimator of σ2 has the same asymptotic variance as the sample variance

of yt , which coincides with the ML estimator of σ2 that erroneously assumes that r = 0.

The previous example suggests that dynamic misspecification does not matter for the asymptotic

distribution of either the unconditional mean or variance estimators when the error is assumed to

follow an AR( p) process. As we show next, with MA dynamics the result fails for the unconditional

variance. In contrast, it continues to be valid for the unconditional mean, which follows from the

fact that the sample mean is the frequency-domain MLE of the first unconditional moment (see, e.g.,

Grenander and Rosenblatt (1958) and Dzhaparidze (1986) for a formal proof of the equivalence with

the time-domain estimator).

MA(1) example. Consider the Gaussian MA(1) model,

yt =µ+ vt +θvt−1,

vt
iid∼ N (0,ω2).

Suppose we are interested in estimating the unconditional mean µ and variance σ2 = (1+θ2)ω2. Let

µ̂, θ̂, ω̂2 and σ̂2 = (1+ θ̂2)ω̂2 be the MLEs of the dynamic model and let

µ̃= T −1
T
∑

t=1
yt ,

3



σ̃2 = T −1
T
∑

t=1
(yt − µ̃)

2(= ω̃2),

be the sample mean and variance – equivalent to MLE under the static-model restriction θ = 0. As

before, we assume correct specification.

In this context, we show below thatδT =
p

T (σ̂2−σ̃2) =Op (1), unlike in the AR(1) case discussed

before, in which δT = op (1). In other words, the asymptotic equivalence between the dynamic-model

and static-model MLEs breaks down for the unconditional variance. To see this, first consider the

asymptotic distribution of the dynamic-model MLE,

p
T





θ̂−θ

ω̂2−ω2



 =⇒ N



02×1,





1−θ2 0

0 2ω4







 .

See e.g. Shephard (1993) for a proof.

The delta method immediately leads to

p
T
�

σ̂2−σ2
�

=⇒ N
�

0,2ω4(1+ 4θ2−θ4)
�

.

On the other hand, (yt −µ)
2 is an MA(1) process with variance 2ω4(1+ 2θ2+θ4) and first-order

autocovariance 2ω4θ2. Therefore, the static-model MLE of the unconditional mean of this process has

asymptotic distribution

p
T
�

σ̃2−σ2
�

=⇒ N
�

0,2ω4(1+ 4θ2+θ4)
�

.

Now, since the asymptotic variance of
p

T
�

σ̃2−σ2
�

strictly exceeds that of
p

T
�

σ̂2−σ2
�

unless

θ= 0, we can conclude that δT =Op (1).
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SM.B Additional simulation results

Simulation results for designs similar to the ones displayed in the text but with ρ1 = ρ2 = 0 (instead

of ρ1 = ρ2 = 0.85) are collected below. In particular, we generate simulated data from the distribution

P with µ0 = 3, ρ0 = 0.5 and σ0 = 3.25. We also take N = 2 and let R2 (with σ1 = σ2) and ρ1 = ρ2

vary over the interval (0,1). We also consider asymmetric designs in which ρ1 6= ρ2 too to represent

the difference in persistence of measurement errors we find in the data of our application.

Each experiment is based on nMC = 2,000 samples of size T = 280 (amounting to 70 years of

quarterly data) generated from the data generating process described above.

Tables SM.B.1, SM.B.2 and SM.B.3 together with tables SM.B.4, SM.B.5 and SM.B.6 are analogous

to tables 1, 2 and 3 in the text and summarize the sampling distribution of the maximum likelihood

estimates discussed in the text. Figure SM.B.1 is analogous to figure 3 in the text and contains weight

comparisons for smoothed estimates of the signal; weights are only computed for the symmetric de-

signs. Finally, tables SM.B.7 and SM.B.8 together with tables SM.B.9 and SM.B.10 are analogous to

tables 4 and 5 and describe the performance of filtering procedures based on the models that neglect

and impose the common trend in levels. The main text contains further details.
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TABLE SM.B.1. Monte Carlo simulation for ρ1 = ρ2 = 0 and R2 = 0.30.

True Differences Two-step Levels

µ0 mean 3 3.003 3.003 3.003
stderr 0.34 0.341 0.34

corr 1 1
ρ0 mean 0.5 -0.487 -0.496 0.466

stderr 0.148 0.158 0.132
corr 0.663 -0.086

σ0 mean 3.25 3.393 3.194 3.298
stderr 0.55 0.639 0.364

corr 0.917 0.587
ρi mean 0 0

stderr 0.087
σi mean 7.021 6.91 6.994 6.972

stderr 0.433 0.451 0.405

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280. The bias in ρ̂ is to be compared with the theoretical
inconsistency B ≈−1.01 computed from equation (2) as indicated in the text.

TABLE SM.B.2. Monte Carlo simulation for ρ1 = ρ2 = 0 and R2 = 0.50.

True Differences Two-step Levels

µ0 mean 3 3.002 3.002 3.002
stderr 0.341 0.341 0.341

corr 1 1
ρ0 mean 0.5 0.007 -0.001 0.479

stderr 0.208 0.186 0.096
corr 0.933 0.43

σ0 mean 3.25 3.192 3.218 3.255
stderr 0.369 0.33 0.255

corr 0.942 0.788
ρi mean 0 -0.002

stderr 0.098
σi mean 4.596 4.601 4.587 4.572

stderr 0.321 0.309 0.283

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280. The bias in ρ̂ is to be compared with the theoretical
inconsistency B ≈−0.35 computed from equation (2) as indicated in the text.
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TABLE SM.B.3. Monte Carlo simulation for ρ1 = ρ2 = 0 and R2 = 0.85.

True Differences Two-step Levels

µ0 mean 3 3 3.001 3
stderr 0.342 0.342 0.342

corr 0.999 0.999
ρ0 mean 0.5 0.414 0.414 0.489

stderr 0.071 0.071 0.064
corr 1 0.95

σ0 mean 3.25 3.228 3.231 3.236
stderr 0.19 0.19 0.188

corr 1 0.986
ρi mean 0 -0.013

stderr 0.144
σi mean 1.931 1.926 1.922 1.917

stderr 0.155 0.158 0.158

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280. The bias in ρ̂ is to be compared with the theoretical
inconsistency B ≈−0.07 computed from equation (2) as indicated in the text.

TABLE SM.B.4. Monte Carlo simulation for ρ1 = 0,ρ2 = 0.95 and R2 = 0.30.

True Differences Two-step Levels

µ0 mean 3 3.012 3.012 3.012
stderr 0.347 0.347 0.345

corr 1 0.99
ρ0 mean 0.5 -0.127 -0.115 0.479

stderr 0.355 0.293 0.145
corr 0.815 0.224

σ0 mean 3.25 3.161 3.203 3.26
stderr 0.61 0.579 0.438

corr 0.939 0.746
ρ1 mean 0 0.007

stderr 0.114
σ1 mean 7.021 6.959 7.006 6.994

stderr 0.474 0.436 0.412
ρ2 mean 0.95 0.943

stderr 0.02
σ2 mean 7.021 7.102 7.013 6.992

stderr 0.394 0.379 0.343

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280.
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TABLE SM.B.5. Monte Carlo simulation for ρ1 = 0,ρ2 = 0.95 and R2 = 0.50.

True Differences Two-step Levels

µ0 mean 3 3.01 3.01 3.012
stderr 0.343 0.343 0.343

corr 1 0.995
ρ0 mean 0.5 0.304 0.277 0.484

stderr 0.166 0.153 0.1
corr 0.987 0.733

σ0 mean 3.25 3.212 3.231 3.239
stderr 0.325 0.312 0.275

corr 0.985 0.866
ρ1 mean 0 0.044

stderr 0.221
σ1 mean 4.596 4.743 4.59 4.599

stderr 0.305 0.301 0.286
ρ2 mean 0.95 0.933

stderr 0.056
σ2 mean 4.596 4.481 4.596 4.58

stderr 0.273 0.267 0.25

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280.

TABLE SM.B.6. Monte Carlo simulation for ρ1 = 0,ρ2 = 0.95 and R2 = 0.85.

True Differences Two-step Levels

µ0 mean 3 3.009 3.009 3.009
stderr 0.345 0.345 0.344

corr 0.999 0.998
ρ0 mean 0.5 0.46 0.451 0.493

stderr 0.065 0.065 0.061
corr 0.992 0.968

σ0 mean 3.25 3.242 3.233 3.256
stderr 0.199 0.197 0.201

corr 0.998 0.951
ρ1 mean 0 0.276

stderr 0.441
σ1 mean 1.931 2.05 1.925 1.972

stderr 0.15 0.167 0.159
ρ2 mean 0.95 0.774

stderr 0.289
σ2 mean 1.931 1.798 1.926 1.865

stderr 0.151 0.159 0.161

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280.
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(c) ρ1 = ρ2 = 0 and R2 = 0.50 (middle)
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(d) ρ1 = ρ2 = 0 and R2 = 0.50 (end)
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(e) ρ1 = ρ2 = 0 and R2 = 0.85 (middle)
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(f) ρ1 = ρ2 = 0 and R2 = 0.85 (end)

FIGURE SM.B.1. Weights of Kalman smoother. Horizontal axis is τ− t ; vertical axis is first entry of φ̄τ,T (red)
and φ∗τ,T (blue). Panels (a), (c) and (e) display weights for t ≈ T /2 (middle), and panels (b), (d) and (f) for t = T
(end). The filters are computed using µ0 = 3, ρ0 = 0.50, σ0 = 3.25. Wrong filter uses ρ0+B as AR root with B
computed from (2).
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TABLE SM.B.7. Monte Carlo simulation for ρ1 = ρ2 = 0 and t ≈ T /2.

∆x̂t ∆x̄t ∆x̂∗t ∆x∗t
R2 = 0.30 RMSE 3.54 3.58 3.05 3.06

increase 0.37 0.37 0.01
R2 = 0.50 RMSE 3.24 3.16 2.98 3

increase 0.19 0.1 0.01
R2 = 0.85 RMSE 2.88 2.89 2.86 2.88

increase 0.02 0.01 0.01

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280. Columns "∆x̂t " and "∆x̄t " refer to the wrong
filter at the ML estimates and pseudo true values, respectively. Columns "∆x̂∗t " and "∆x∗t " refer to the right filter at the ML
estimates and true values, respectively. Root MSE and increase in MSE as a fraction of the MSE of∆x∗t are indicated for each
filter and R2.

TABLE SM.B.8. Monte Carlo simulation for ρ1 = ρ2 = 0 and t = T .

∆x̂t ∆x̄t ∆x̂∗t ∆x∗t
R2 = 0.30 RMSE 3.51 3.53 3.05 3.05

increase 0.38 0.37 0.02
R2 = 0.50 RMSE 3.21 3.12 2.98 2.99

increase 0.19 0.1 0.01
R2 = 0.85 RMSE 2.88 2.89 2.87 2.88

increase 0.02 0.01 0.01

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280. Columns "∆x̂t " and "∆x̄t " refer to the wrong
filter at the ML estimates and pseudo true values, respectively. Columns "∆x̂∗t " and "∆x∗t " refer to the right filter at the ML
estimates and true values, respectively. Root MSE and increase in MSE as a fraction of the MSE of∆x∗t are indicated for each
filter and R2.
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TABLE SM.B.9. Monte Carlo simulation for ρ1 = 0,ρ2 = 0.95 and t ≈ T /2.

∆x̂t ∆x̄t ∆x̂∗t ∆x∗t
R2 = 0.30 RMSE 3.27 3.2 3.02 3.03

increase 0.18 0.11 0.02
R2 = 0.50 RMSE 3.06 3.15 2.95 2.95

increase 0.07 0.14 0.02
R2 = 0.85 RMSE 2.84 3.05 2.82 2.83

increase 0.02 0.18 0.01

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280. Columns "∆x̂t " and "∆x̄t " refer to the wrong
filter at the ML estimates and pseudo true values, respectively. Columns "∆x̂∗t " and "∆x∗t " refer to the right filter at the ML
estimates and true values, respectively. Root MSE and increase in MSE as a fraction of the MSE of∆x∗t are indicated for each
filter and R2.

TABLE SM.B.10. Monte Carlo simulation for ρ1 = 0,ρ2 = 0.95 and t = T .

∆x̂t ∆x̄t ∆x̂∗t ∆x∗t
R2 = 0.30 RMSE 3.31 3.31 3.15 3.15

increase 0.16 0.1 0.02
R2 = 0.50 RMSE 3.12 3.28 3.07 3.09

increase 0.06 0.12 0.01
R2 = 0.85 RMSE 2.96 3.22 2.94 2.96

increase 0.01 0.17 0.01

NOTES. Number of samples is nMC = 2,000 and sample size is T = 280. Columns "∆x̂t " and "∆x̄t " refer to the wrong
filter at the ML estimates and pseudo true values, respectively. Columns "∆x̂∗t " and "∆x∗t " refer to the right filter at the ML
estimates and true values, respectively. Root MSE and increase in MSE as a fraction of the MSE of∆x∗t are indicated for each
filter and R2.
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SM.C Long-run objects

Formally, by a long-run object we mean henceforth a weighted average X =
∑T

t=1ωt∆xt , where the

weights ω1:T satisfy ‖ω1:T ‖ =
q

∑T
t=1ω

2
t = O

�

1/
p

T
�

. And, of course, ωt ≥ 0 and
∑T

t=1ωt =

1. To be precise, we ask that
p

Tωt = ω̃(t/T ) where ω̃ : [0,1] → R is of bounded variation and
∫ 1

0 ω̃
2(s) d s =O(1). As an example, consider writing the average growth rate of economic activity for

the 2010’s decade in a sample running from 1950 to 2019 as X with ωt ∝ 1{decade(t ) = 2010}. As

mentioned in the body of the paper, neglecting the common trend affects inferences about long-run

objects by inflating measures of their uncertainty, such as standard errors or confidence intervals.

As in our discussion of signal extraction for short-run objects, we abstract from estimation un-

certainty by using pseudo-true parameter values for the misspecified model and true values for the

correctly specified one. Let Y =
∑T

t=1ωt∆yt and V =
∑T

t=1ωt∆vt for a given set of weights ω1:T .

The measurement equation (1) delivers

Y =X 1N×1+V .

We are interested in the problem of constructing a confidence interval for X . To keep the exposition

simple, we will condition on X , which effectively treats X as a fixed quantity rather than as a latent

variable.1 Theorem 1 in Müller and Watson (2017) implies that under the misspecified model at the

pseudo-true values,2

�

Y −X 1N×1

�

|X =⇒ N
�

0N×1, Ω̃2 diag
�

σ2
1:N

��

,

where Ω̃2 =
∫∞
−∞

�

�

�

∫ 1
0 e iλsω̃(s) d s

�

�

�

2
dλ, with ω̃(s) =

p
TωbsT c, bsT c the integer part of sT and ω1:T

the weights used to construct X , Y and V . As a consequence, a (pointwise asymptotic) level-(1− α)

confidence interval for X based on this approximation will be

CIα =
� N
∑

i=1

(σ̄2/σ2
i )Yi ±Φ

−1(α)Ω̃σ̄
�

,

1Our model implies an unconditional distribution for X that smoothing calculations would exploit in constructing
confidence intervals, but it appears from our simulation evidence below that this alternative approach would not critically
modify our results.

2In fact, we only need the limit variance calculations from Müller and Watson (2017) since normality is in our case the
result of V being a linear combination of normally distributed random variables under P andP .
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where Φ is the standard normal CDF. In contrast, under the true data generating process,

T
�

Y −X 1N×1

�

|X =⇒ N
�

0N×1, Ω̃2 diag
�

Σ2
1:N

��

,

whereΣ2
i = σ

2
i (1+ρi )(1−ρi )

−2/2 is the long-run variance of vi t . Therefore, the level-(1−α) confidence

interval for X based on this approximation will be

CI∗α =
� N
∑

i=1

(Σ̃2/Σ2
i )Yi ±Φ

−1(α)Ω̃
Σ̃

T

�

with Σ̃2 =
�

∑N
i=1(1/Σ

2
i )
�−1

. Hence, it follows that as T →∞,

length(CI∗α)

length(CIα)
=
Σ̄

T σ̄
→ 0.

In other words, the confidence interval based on the misspecified model is arbitrarily long compared

to the optimal interval. Given that Ω̃σ̄ is the standard error a researcher who believes the misspecified

model P is correct would report, our calculations suggest that "putative" measures of uncertainty of

smoothed estimates of long-run objects tend to overstate the actual uncertainty about them.3

We should mention an alternative inference approach is available when Σ1:N is unknown and must

be estimated.4 Let Σ̂2
γ be an estimate of the long-run variance of a linear combination of measurement

errors
∑N

i=1 γi∆vi t for weights γ = γ1:N adding up to 1. Then,

� N
∑

i=1

γi Yi −X

�

|X =⇒ N (0, Ω̃2 plim(Σ̂γ )).

Therefore, the level-(1−α) confidence interval for X based on this approximation will be

cCIα =
� N
∑

i=1

γi Yi ±Φ
−1(α)Ω̃Σ̂γ

�

.

The interval cCIα will tend to zero for large T as CI∗α does.

3Although here we focus on a situation with no estimation uncertainty, which allows us to reduce the inference problem
by focusing on the sufficient statistics Y , unreported simulation experiments confirm the same patterns for Kalman smoother
calculations evaluated at maximum likelihood estimates.

4We thank an anonymous referee for this suggestion.
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