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Abstract

We make inferences about expected stock market returns when we, as econome-
tricians, only have the values of observed returns. We explicitly acknowledge that
agents use information other than past returns in forming their expectations, but
exploit the fact that we have information on what contemporaneous and future
returns turned out to be. Given a bivariate process for returns and expected re-
turns, we employ a Bayesian Kalman filter to extract the information on expected
returns contained in the whole sample, explicitly taking into account parameter
uncertainty. We apply our results to post-war US monthly real stock market
returns.

Keywords: Expected Stock Returns, Gibbs Sampling, Bayesian Kalman Fil-

ter.



1 Introduction

The fact that stock returns have negligible autocorrelations was traditionally
regarded as evidence in favour of the present value model with constant expected
returns. Nevertheless, Shiller (1984), Summers (1986), Poterba and Summers
(1988), and Fama and French (1988) showed that near white noise behaviour
for observed returns, r;, is compatible with a smooth but mean-reverting time-
varying expected return process, p,, = E;_1(r:), whose first-order autocorrelation
is high (see also Campbell (1991)). Obviously, from the point of view of explaining
movements in asset prices, there is a substantial difference between constant and
time-varying expected returns.

As is well known, a univariate framework is too restrictive for the analysis
of such an issue, because there is only one shock that drives the joint process
for the observed variable and its conditional mean. In other words, the joint
process for returns and its expected value is of reduced rank, with a singular
covariance matrix for the innovations. This has long been realised, and two main
approaches have been proposed. On the one hand, and by analogy with the
stochastic volatility literature, we could directly specify a univariate stochastic
process for the conditional moment, u,,, with “its own” innovation, and then
derive the implied process for observed returns, r;. For instance, following Poterba
and Summers (1988), Fama and French (1988), or Campbell (1991), we could
assume that expected stock returns follow a univariate AR(1) process, which would
imply that r, must follow an ARMA(1,1) process itself. Alternatively, we could
follow the opposite route, and start from an observed multivariate process for the
variable of interest, r;, and another variable that Granger-causes it, ¢; say, and
then derive the implied process for the expected return series, p,,. In this respect,
Fiorentini and Sentana (1998) estimate a bivariate VAR(1) process for post-war

US real stock market returns and dividend yields, and study the properties of the



implicit expected return process, as well as the impact of the innovations in the
conditional mean process on observed returns. Obviously, the second approach
reduces to the first one when the Granger-causal variable ¢; is precisely p,.,, and
there is no feedback from r; to fi,; ;.

The main practical limitation of both approaches, however, is that in order to
describe the actual temporal evolution of expected returns, we have to assume that
the agent’s information set, I; 1, and the econometrician’s information set, J; 1,
effectively coincide. In contrast, the purpose of our analysis is to make inferences
about p,, when we, as econometricians, only observe the values of r;, so that
I, 1 2 Ji 1 ={ri1,...,71}. The main point of departure of our approach with
respect to the existing literature, though, is that we explicitly take into account
the fact that our information set includes not only past returns, {r;_1, ..., }, but
also the present and the future of ry, i.e. Jpr = {rp,rpr_1,...,71}.

Given the underlying bivariate process for r; and ,,, we can use the Kalman
filter to extract the information about p,, contained in J7 in a well defined “op-
timal” sense. If we knew the parameter values characterising such a process, this
would be an easy task. In practice, however, we are faced with the problem of re-
covering the structural parameters of the joint bivariate process from the reduced
form log-likelihood function of the marginalised univariate process for observed
returns. Unfortunately, without additional restrictions, the structural parameters
are not separately identified in general. Nevertheless, given that we are not really
interested in the values of the parameters, but rather on the values of the expected
returns, a Bayesian approach provides a rather natural way of recovering p,.,. In
addition, one could argue that a Bayesian perspective would also be appropriate
even if the parameters were identified in a classical sense, in order to take into
account the effects of estimation uncertainty.

Unfortunately, the conditional distribution of p,, given Jr is generally un-



known. As a result, we must resort to a Gibbs sampling procedure, whereby
draws from the joint distribution of expected returns and parameters, conditional
on the observed process Jr, are produced by cycling over the following two steps:
(i) draw from the conditional distribution of expected returns, given the observed
sample and a vector of parameter values, and (ii) draw from the posterior dis-
tribution of the parameters, given our priors, the observed sample and expected
returns.

We apply our proposed procedure to post-war US monthly real stock returns.
In particular, we obtain a series of estimates of the agents’ expected returns given
all the information available at the end of the sample, together with a measure of
the uncertainty surrounding those estimates. We also look at how our views on
the returns expected by the agents are affected by contemporaneous and future
information.

The paper is divided as follows. We analyse the theoretical issues involved
in section 2. The results of the empirical application are discussed in section 3.
Finally, our conclusions are presented in section 4. Proofs and auxiliary results

are gathered in the appendix.

2 Theoretical Set-Up

2.1 The conditional mean of a vector process

Let us consider a multivariate linear stochastic process of orders k£ and h

or

T =Pz + oo+ P U + Orug + .+ Opuyp, (1)



where u; is a n X 1 white noise process of one-period ahead prediction errors, with
zero mean and covariance matrix X, I is the identity matrix of order n, ®(L) is a
n X n matrix whose typical element is a polynomial in the lag operator L of order
k, ®; are n x n matrices of coefficients, with ©(L) and ©; analogously defined.
We assume that the roots of |I — ®(L)| = 0 and |I + ©(L)| = 0 are on or outside
the unit circle, which allows for (co-)integrated and invertible processes (whether
strictly or not), but rules out explosive as well as non-invertible processes.

Such a formulation includes many models of interest widely used in the analysis
of economic and financial time series, such as univariate and multivariate ARIMA
models. It also nests models for conditional second moments, since dynamic
conditional heteroskedastic processes often have a straightforward interpretation
as linear processes for the squared innovations.! Finally, some important non-
linear models can also be expressed in this way.?

Define 1, ,; = E¢ (2441) as the n x 1 conditional mean vector. The purpose of
our analysis is to make inferences about a single element of 1, 1, 1, say, when
we, as econometricians, only observe the values of the corresponding variable, x1;.
Importantly, though, p; ; is conditional on the agents’ multivariate information
set Xy = {@, 41,42, .. .}

For the sake of concreteness, suppose that we are interested in learning about
Pirp given Xyp = {14, Z1¢-1, T1—2, . . . }. If we only observe the values of z; up to,
and including time ¢, with 7 > ¢, the inference problem is a prediction one, which
under quadratic loss has the trivial solution E(p,,,1|X1:) = E(z1r41]/X1¢) by the

law of iterated expectations. In general, though, if £ > 7, so that we observe

'For instance, the univariate GQARCH(1,1) model of Sentana (1995) 07 = E;_4 (y7) =
v+ Bo? | +ay? |+ 6y,_1 implies a bivariate ARMA(1,1) representation for y;, y?. Similarly, a
multivariate GARCH(1,1) model for ¢, can be written as a VARMA(1,1) process for vech(e.e})
(see e.g. Nijman and Sentana (1996)).

2For example, the univariate Bilinear(1,1,1,1) model z; = az;—1 + 92_1m,_1 + 1, — By,
where 7, ~ i.i.d. (0,0?) can be written as a bivariate ARMA(1,1) model for z; and e; = 21, —0.



not only the past, but also the present and future of zy;, it becomes a filtering

problem, which can be conveniently solved using the Kalman filter.

2.2 Kalman filter smoothers

The results in Fiorentini and Sentana (1998) allow us to write the joint process

for x; and ., as:

k m
x 0 I Ti; I 0
! = E ' + ug + E ue; (2)
Fiy1 i-1 \ 0 @ Frtg1— Ch iz \ Ci

where m = max(k, h) and C; = ®; + 0, (with ®; =0ifi > k and ©, = 0if i > h).

If we rewrite equation (2) as an extended VAR(1) model in the usual way, i.e.
Yr = Ayr—1 + Buy (3)

and take 1, as the state variable, we can then write the model in state-space form,

with (3) as the transition equation, and
z1 = €% + 0 (4)

as the measurement equation, where e; is the first vector of the orthonormal basis.

Let us call ¥ the vector of model parameters, which contains the unrestricted
elements of A, B and ¥. The Kalman filter is a recursive algorithm for estimating
the state-vector y; on the basis of the observed variables xy;, and the parameter
vector ¢. It usually involves two sets of equations: the prediction equations, which
produce yy;—1 = E(y|X1,-1,%) and the associated mean square error Py;_q, and
the updating equations, which produce ¢ = FE(y:| X1, %) and the associated
mean square error P;. In practice, though, we can use the Ricatti equations to
obtain estimates of y;; and P; from estimates of y;_1;—; and P,_;;_; directly.
Specifically,

Yejt = [A - Kt—1|t—1€I1A] Yi—1jt—1 T Ki_1jp—171
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Py =[I = Kijael] [AP y 1A'+ BYB'|

where
) ’ ) l; -1
Ki_qi-1 = [APt—1|t—1A + BZB} €1 [611 (APt—l\t—lA + BYXB ) 61]

is known as the gain.

In fact, if we assume that conditioning on past information, the vector wu; is
normally distributed, i.e. w|X; 1,9 «~ N(0,%), we will have that y;|X1; 1,9 «
N (Ysjt—1, Pye—1), and 4| X14, 9 «~ N (11, Pyje), which means that we can fully char-
acterise the conditional distributions of the states given the observations. Such
a characterisation is particularly important in our set-up, because as we shall
see below, in general some of the elements of y;, and in particular the vector of
conditional means i, ;, cannot be fully recovered from the observed series.

In principle, the estimates of P,; will depend on ¢. However, at the steady
state (see Harvey (1989) for sufficient existence conditions), these estimates are by
definition independent of time. In that case, the corresponding Ricatti equations

can be written as

P=(I—-Ké) [APA' + BEB’] (5)

where
K=[APA + BZB’} e [6'1 (APA’ + BZB’) el} - (6)
which can then be solved for K and P.

In this well-known set-up, both E(u,,1|X1t,%) and the associated mean
square error can be obtained by means of a smoothing algorithm. In particu-
lar, we shall use a fixed point smoother, which, conditional on the parameter
values, allows us to see how the estimates of ., change as we observe more and
more observations on xi;.

Let yj =y, fort = 7+ 1,.....,T, with y* = y, as initial condition, and



consider the following augmented state-space model:

v =€y,
+ Yt A0 Yt B
yt g —= + Ut
Y 0 I Y 0

where e}’ = (e}, 0).
The Kalman Filter equations for the augmented model can be broken into two
parts. The first part are the standard Kalman filter equations given above, while

fort =7+ 1,....,T the second part is as follows:

* . * * !/
Y1t = Yepeo1 T Kt|t—1 [l’lt - €1yt\t71}

ok o ok * *!
t+1t — -1 Pt\t—161 t)t—1
with
* _ P* [ /P }—1
tt—1 — Lpg—1€1 [€14t—1€1
* _ * [A K /}’
t+1)t —  Lije—1 t|t—1€1

’ ’ ’ ’ -1
Ki 1 = [APtfl\t—lA + BZB] €1 [6/1 <AP1:71|t71A + BYXB ) 61}

where the initial state vector is yi\7—1 = Yrjr—1, and the initial mean square error
matrix PT*|*771 = P:|7'71 = Pt

In this context, a particularly interesting question is whether we can fully
recover fi,,; from the whole past, present and future history of zy;, given a
parameter configuration . In the above notation, this is equivalent to asking
whether the appropriate element of P[k:ut goes to 0 as t increases. In principle,
we would expect this not to be the case. Nevertheless, the following proposition,
which is proved in the appendix, gives necessary and sufficient conditions in this

respect:

Proposition 1 t]im Pi:ut = 0 if and only if the joint spectral density matriz of

Ty and piyy 98 singular at all frequencies.
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In the next subsection, we present a simple example in which this condition is

always satisfied, and another one in which it seldom is.

2.3 Examples
2.3.1 Non-Invertible MA(1)

Consider the following MA(1) process:
Ty =€ + Per

where &;|X;_1,1 ~ i.i.d. (0,02). If the agents observe the underlying shocks, &,
then p,,, = Be;. However, if |5| > 1, we, as econometricians, cannot recover &
from observations on x;, x; 1, x; o alone. Consequently, E (21| X3, 1) = ﬁfl( 1+
BL) ey # Hitq-

In order to apply the techniques described in the previous subsection, it is con-

venient to re-write the univariate MA(1) model as the following bivariate VAR(1):

Ty 0 1 Ti_1 1
e —Iv— 6t
/‘th—i—l 0 0 /‘th ﬁ
and
Tt
Ty = (1, O)
/'Lmt—i—l

Since the eigenvalues of the companion matrix are trivially less than one, the

2 2
. . . o +{ Pt o0 |\ . .
model is stable. Besides, since Pyp = { | ' is a positive

o’ o2 3
semidefinite matrix for any [, the steady state exists.
To find the steady-state values, we have to solve the Ricatti equations, which

are obtained by substituting the appropriate values of A, B and ¥ in equations

(5) and (6) (see the appendix). Not surprisingly, we get two solutions, either:

0 0
P = and K =
00 3



0 0
P = and K =
0 o*(8°—1) e
The first solution corresponds to |3| < 1, and simply says that the ;s can
be fully recovered from present and past values of z;. In contrast, the second
one applies when || > 1, and implies that the uncertainty associated with the

estimation of &;’s is higher the higher the absolute value of 3.?

If we start the smoothing recursions from the steady-state matrices, we obtain

ok P 2 0 O
1t = = 0
t+1]t 0 51
*k 2 0 0
t+20t+1 — 9 B
0 (8#-1)p7
and by induction
P** 2 O O
t+k+1jt+k — O a
O (ﬁQ o 1) /8 2k

Hence, in this case kh_)rgo P ek = 0, which simply reflects the well known
fact that we can fully recover the values of the shocks ¢;, and consequently, the

values of i, 1, from the future values of the observed series.*

3 An alternative way to obtain the same result is as follows. It is well known that the Wold
decomposition of the above model is z; = u;+ 8 us_q, where u; = (1 + ﬁflL)_1 (1+BL)es ~
iid. (0,02) with 02 = %02 Hence E(x441|X;) = E(eep1+ Bee|Xy) = B 'up. But
since F (e411|X;) = 0, this implies that F (g,|X;) = 8 2u;. Now Var (z;41|X;) = 02 and
Var (e141]X:) = 02, Hence Var (g X;) = 52 ((T% — (72) =32 ( o2 — (72) = o2 (1 — 572).
Consequently, Var (;Lmt+1‘Xt) = Var (Be| X;) = o2 (52 — 1).

4Note that the result also follows directly from Proposition 1, since the joint spectral density
matrix is singular at all frequencies, given that the covariance matrix of the innovations is
singular.



2.3.2 Marginalised Bivariate VAR(1) Models

Consider the following bivariate VAR(1) model for some variable, r; say, and

some other variable, ¢; say, which helps predict r;:

Tt 11 (19 Ti—1 Uy
= +
Oy Q91 (22 011 (%

where (u, v¢)| Xi—1,% ~ i.i.d. (0,9Q).

We can write the general state space representation (3) and (4) as

T
bt
Ty = ( 1 0 00 )
:urt—s—l
Hstt1
T4 0 01 0 T 1 0
b4 000 1 611 0 1 u
= +
Mort1 0 0 an ap ot 11 (19 Vg
Hst+1 0 0 as ao Hst Q91 Qo9

which coincides with Akaike’s (1974) state space representation. In this case,
though, we can reduce the dimension of the state vector without loss of information
by marginalising with respect to r; and p,;, ;. Following Fiorentini and Sentana

(1998), this yields

Tt O 1 Tt—1 Ut
T az1 Qg Hort Wy

as transition equation, and

th(l 0) " (8)

/‘Lrt—i—l
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as measurement equation, where w; = aq1u; + 1204, age and as; are the trace and
minus determinant, respectively, of the companion matrix of the original VAR,
and Var(ug,wy) = X.

In order to find the steady-state values, we have to solve again the Ricatti
equations, which are obtained by substituting the appropriate values of A, B and

¥ in equations (5) and (6). In this case, the equations have only one admissible

solution:
0 0
P = and K =
0 p e
where ps is the positive root of:’
P34+ p3(02 4 20990 4 — 3002 — 02) + 02, — 0202 =0 9)

If we start the fixed point smoother from the steady state matrices, we get:

» 0 0
t+1)t — P =
0 ps
0 0
kk _
t+2t+1 — 2 5
p3p3+0%
0 0
kk _
L YA Sk P I
Psou (pao2)”

etc. We prove in the appendix that as & — oo the residual variance converges to

VAL 000 + (1L~ az)ouPy /o3 (1~ ) T 0w — (Lt az)ou]?

which means that in this case kh_)rgo Pl i1jeex = 0 if and only if the correlation

between shocks to returns and shocks to expected returns is either 1 or minus

5Notice that equation (9) has two real roots, one positive and one negative, as 02, —02 02 < 0,

but only the first one is admissible.
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1. Notice that this unlikely event corresponds to a situation in which p3 is 0, so
that the process for zq; is effectively univariate, in which case there is no extra
gain from the present and future observations on xy;. Note also that the above

expressions do not depend on the feedback parameter as;.

2.4 Parameter uncertainty

If we knew the values of the structural parameters characterising A and ¥ in
the VAR(1) example above, we could directly apply the procedures developed in
the previous sections to the data. In practice, though, those parameter values are
unknown. More importantly, there may not be enough information in the data
alone to estimate them, since the likelihood function of the observed series depends
on the set of reduced form parameters characterising the marginal process for ;.

Specifically, given that r; follows the following univariate ARMA(2,1) process
(1—agpL —anL?)r, = (1 - 0L,

where (1 — 0L)¢&, is the Wold decomposition of the MA(1) process u; — agous 1 +
wy_1, at best we can only estimate the “reduced form” parameters ass, as;, and
O'g from the data, assuming that there is no cancellation between the MA and AR
polynomials.

The specific relationship between both set of parameters is given by the fol-

lowing equations

0 _ (a’Qnyuw — puw)’Yuw
2 2 VA2 (10)
1+6 (1 + a22)7uw +1- 2a22puwfyuw
00—2 = <a22’7uw - puw)quwo-fu (11)

where v, = 0u/0w and p,,, = Ouw/0u0w. Hence, the structural parameters are
only partly identified, since in the best situation we have only two equations for

three unknowns. In particular, for a given ass and 0, all admissible v,,, and p,,,

12



must lie along the intersection of the hyperbola
[(1 + CLSQ)H - a22<1 + 02)]7311} - (1 + 02 - 2a220>,7uwpuw +6=0 (12)

and the rectangular region v, > 0, =1 < p,., < 1.9
In fact, we can solve equations (10) and (11) to get +,,, and p,,, as functions

of the “free” parameter 2. Specifically
PpOof + 002,

(az¢ — Ao,
CLQQO’?U + )\O’?

\/ (¢00% + 002 ) (azap — Ao

Voaaw (13)

Puw = 0 (14)

where

A= (1 + CL§2)9 — CL22(1 + 92)

¢ = 14 6% —2as0

Note again that these expressions do not depend on the feedback parameter as;.

In principle, we could fix o2 to some admissible positive value (see footnote
6), and then apply the Kalman filter after obtaining +,,, and p,,, from the above
expressions, with ass, asi, # and ag replaced by their maximum likelihood esti-

mates. Nevertheless, there are at least three problems with this approach. First,

2

it is not clear a priori which value we should choose for o;,. Second, even if it

were, it would be rather difficult to modify the expression for P, ek 0 order
to account for the uncertainty surrounding the maximum likelihood estimators of

the reduced form parameters. This problem is particularly important in practice,

SIn this respect, it can be proved that the admissible v/,,s will be between the maximum
and the minimum of

1-— CLQQQ ‘ ‘ (9 - a)0
(1+a%2)97a22(1+92) (1+a§2)0—a22(1+02)

13



because as we shall see below, some of the reduced form parameters are estimated
rather imprecisely. Third, even if we knew how to do it, if we then decided to
repeat the exercise for two or more values of o2, it is not obvious what the right
way to combine the results obtained would be.

Therefore, given that our prime interest lies on the expected return series and
not on the parameters, a Bayesian perspective appears as the natural solution.
For instance, if we are interested in point predictions of 41, ,;, we can compute the
classical Kalman filter smoother E(fi,,,|X17,) for every possible value of the
structural parameters, and then average with respect to their posterior probability

distributions 7(¢| X17). More formally,

E(juyy 1| Xor) = / gy 1| Xors ) w6 Xor) di)

with
m(Xir|h) 7(¢))
f7T<X1T|¢) m(¢) dyp

where 7(v)) is the prior distribution of the parameters, and m(X;7|¢) the usual

m(Y[Xir) =

likelihood function. In addition, we can also obtain any other characteristic of the

conditional distribution of p,,; given X7 alone, as explained in the next section.

2.4.1 Gibbs sampling procedure

Let us temporarily assume that we have a sample of size T on both returns
and expected returns. In order to specify prior distributions, it is convenient to

re-write the state-space form of the bivariate model in the following way:

Tt = Hypy + Ut (15)
Pt = Q217¢1 + Q2aftyy + Bug + C; (16)

where 8 = 0uw/02 , E((,) =0, and Var((,) = 6% = (02 — 02,,/02). Assume that

u

the parameters o2 and ¢ = (agl, ass, 3, (52)I are independently prior distributed,

14



and have priors of the inverted gamma and normal-inverted gamma conjugate
variety, respectively.

Specifically, let us assume that the prior for o7 is 0, ~ y(s7%,v ), which
means that the inverse of o2, known as the precision, is distributed as ; gamma

variate with parameters s 2 and v . Notice that this implies that E (0, ?) =s 2

and V' (0,%) =2 s7* /v , so that tile variance of the precision is inversely related
to v, the so-called “deérees of freedom” parameter of the gamma distribution.
Furtilermore, let us assume that the prior of ¢ and § 2, where ¢ = (a1, as, B), is
normal-gamma NG (gp, Q,d % v ) , independently of 02, with probability density
function o ;
F(,6%) = dulel 0, @, 67) (6‘2l d, gg)

where ¢,(+) is the trivariate normal density function, and 7(-) is a gamma density
with parameters ¢~2 and v .

Then, it is well-known that the posterior distribution of o2 will be given by

-2

0-1:2’RT7M7‘T ~ ’Y(g V1)

where Ry = (rp,rr-1,...m2,71) and Myr = (Uppi1s s - Hyos Hyq) are the “ob-

served” data,

;1:y +T
-1
and
_ 2 _ 2
V1S =v 8_2 —Fﬁng_wQ +T <UT>
—1-
where
1 T
Ur = ?Zut
t=1
T
1 N2
A2
= — —u
TS T ; (“t T)
vp = T—1

15



(see e.g. Poirier (1995)). On the other hand, the posterior distribution of ¢, §~2

1s:
9

0,6 2| Rp, Myp ~ NG(2,Q,d 1)

with

Q (Q‘ls_o +X’X¢T)

S
Il

pr = (X'X)' X'y

_ -1
Q = (Ql +X’X>
ve, = v +T

—2

vod = vdi+( (IT+XQX’>C

—g— >

!
where X' = (xllaxéa"ax’lf)? Ty = (thlnurtaut)v C: (C >C 7"'7< ) ) and C =Tt —
-T

-1 72 -t

x; ¢ (see e.g. Poirier (1995)).

_Unfortunately, the elements of M, are unknown. Nevertheless, we can employ
a Gibbs sampling procedure to obtain draws from 7(M,r,¥|Rr) by cycling over
the steps Myp ~ w(M,7|Ry, ) and ¥ ~ w(1| Ry, M,r), where each draw serves to
redefine the conditioning set for the next step. In this respect, we use a slightly
modified version of the multi-stage simulation smoother developed in de Jong and

Shephard (1995) (see the appendix) to draw M, from 7(M,7|Rr, ).

3 Empirical Application to US stock market re-
turns

3.1 A first look at the log-likelihood function

We apply the procedures explained in the previous section to post-war U.S.
real stock market returns. Our sample covers 516 monthly observations on (con-

tinuously compounded) returns from January 1952 to December 1994 (see chapter

16



7 of Campbell, Lo and MacKinlay (1997) for data definitions, transformations and
sources).

But before proceeding to our final analysis, it is convenient to have a prelim-
inary look at the log-likelihood function of the reduced form model. As we saw
before, when the bivariate representation for r; and é; corresponds to a VAR(1)
model, the marginalised process for r; is an ARMA(2,1). In this respect, the first
thing to note is that the (exact) maximum likelihood estimate of the second order
autoregressive coefficient ay; is very small (.0384), and that the log-likelihood func-
tion is rather flat in its neighbourhood. Specifically, the likelihood ratio statistic
for as; = 0 is only .68. Moreover, if we set as; to 0, and estimate an ARMA(1,1)
model instead, the autoregressive and moving average coefficients turn out to be
both negative but very close to each other. Consequently, the observed series is
close to white noise, a well documented fact for stock market returns in general,
and for the dataset under consideration in particular (see e.g. Campbell (1991),
or Fiorentini and Sentana (1998)). Importantly, the concentrated log-likelihood
as a function of ass and 0 is very flat around the optimum, as depicted in Figure
1, which means that there is considerable uncertainty surrounding those point

estimates.

3.2 OQOur current views on expected returns

We initially consider the regression equations (15) and (16), with ag; set to 0
for simplicity, but with a constant included, so that ¢ = (02, ¢, ass, 3,6%) is the
relevant vector of parameters.

In order to implement our proposed Bayesian approach to smoothing, we first
have to specify the hyperparameters that characterise the prior distributions of

those structural parameters. In this respect, our aim was to use informative priors

that would be in accordance with the “received wisdom”. In particular, since there

17



is a common belief that expected returns follow a smooth process whose first
order autocorrelation is high (see Campbell (1991), and the references therein),
we choose the prior mean of ass to be .9. We also set the prior mean for ¢ equal
to .05, which implies an average real return of 6% on an annual basis. Similarly,
given that there is a widespread impression that innovations in returns are highly
negatively correlated with innovations in expected returns (see Campbell (1991)
for a theoretical justification), we choose the prior mean for 3 to be -.317. Finally,
we specify the prior means of 0,2 and §~2 to be .04 and 19.24 respectively, which
in terms of the original parametrisation correspond to p,,, = —.95 and ,,,, = 6.85.
Such parameter values imply a standard deviation for real returns of 5.27%, and
an R? for equation (15) of around 10%, both on a monthly basis.

As for the variances of the inverted-gamma priors for o2 and 67, we set the
“degrees of freedom” v and v to 270, which is just over half the actual sample
size. Finally, we must sgecify 02ur choice of @), i.e. the variance of the prior normal
distribution of the parameter vector ¢ = (cﬁ7 ass, B). One attractive possibility is
to set its inverse to T*E(mtm;| 1Y), where x; = (1, p,.,, ur)', T is a scalar and ¢ is

evaluated at its prior mean. This yields

1 C/(l — a/22) 0
Q=T | ¢/(1—an) A/(1-an)+02/(1-ah) 0
0 0 o,

u

Such a choice for ) is compatible with the usual interpretation that a conjugate
prior can be Vieweid as the posterior distribution that could have been obtained
from a fictitious sample from the same population (see e.g. Poirier (1995)). Thus,
T* could be interpreted as the number of observations, or more precisely, the
degrees of freedom in the fictitious sample. For that reason, we also set T* to 270.
In any case, we will perform a sensitivity analysis with respect to the variance

hyperparameters.
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We initially set the parameters to their prior means in order to start the Gibbs
sampler recursions. Each subsequent iteration involves the following steps:

1) Given the current set of parameters, draw values of expected returns by
means of the simulation smoother in the appendix.

2) Given the existing simulated expected returns, draw a new set of parameters
from their posterior distributions, as explained in section 2.4.1.

As a practical rule, we stop once 1,000 such iterations have been completed.
In this respect, it is important to mention that since the Gibbs sampler is just
a particular example of a Markov chain Monte Carlo simulator, successive draws
are not generally independent. For that reason, we compute inefficiency ratios’
to assess the extent of the autocorrelation in the drawings.

Figure 2 plots the actual real return series over the whole of the sample period.
As is well known, the performance of the U.S. stock market over the sample period
has been impressive, with an average return of .546% on a monthly basis. At
the same time, it has been very volatile, with a monthly standard deviation of
4.24%, and few large spikes that correspond to well known episodes. For each
and every time period, observed returns can be compared with the average across
replications of our smoothed expected returns, which are depicted in Figure 3.
As anticipated, smoothed expected returns are markedly less volatile than actual
returns, but they still show significant variation over time. In this respect, the
most distinctive episode is perhaps the period that followed the first oil crisis,
when it would seem that at the time agents were holding rather pessimistic views
about the future prospects of the US stock market. In the same graph, we also
present the first and third quartiles of the simulated smoothed distributions, whose

separation provides a measure of the uncertainty about u,, which still remains once

"That is, the ratio of the variance of the sample mean of the drawings to the variance of the
drawings divided by the number of replications. Under random sampling, the innefficiency ratio
is 1.
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the whole sample has been observed. In this respect, note that the interquartile
range is generally fairly small, although it increases as we get closer to the end of
the sample. The obvious reason is that the amount of future information becomes
very scarce at that point.

We can also look at a particular month, and analyse how future information
would have changed the views held by a contemporaneous econometrician en-
dowed with the relevant part of the dataset. In particular, assuming that she
was employing the same techniques as ourselves, including the same priors, we
can fully characterise her views by drawing from the distribution of p,, ; given
J; (the predictive density), and compare it to the distribution of f1,,,, given Ji1q
(the updated density) and Jp (the smoothed density). The extra information has
two separate effects: on the one hand, it modifies the estimates of j,,,; for each
possible parameter configuration; on the other, it affects the posterior densities of
the parameters.

We report the results of such an exercise for two of the most dramatic episodes
in the recent history of the US stock market: the exceptional 12.78% rise in the
market in January 1975, which consolidated its recovery after the very turbulent
period in 73-74 (Figure 4), and the (in)famous 25.73% crash of October 1987 (Fig-
ure 5). As can be seen from Table 1, in the first case, the average expected return
is in fact revised upwards as the subsequent returns are observed. In contrast, the
evolution around October 87 is rather different. A positive mean for the predictive
distribution is transformed into a negative one for the updated distribution once
the return for October is observed, but then it reverts somewhat towards its un-
conditional mean level as subsequent observations accumulate. Importantly, the
uncertainty that we, as econometricians, have about the views presumably held
by stock market participants just before those events occurred, is significantly re-

duced as the future unravels. In particular, the standard deviation is reduced by
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10-15% as we move from the predictive to the updated density, and by a further
50-60% when we move from the updated to the smoothed one. Although the dif-
ferent posterior distributions of y,,; are non-normal, similar results are obtained
if we replace means and standard deviations by medians and interquartile ranges,

respectively.

4 Conclusions

In this paper we make inferences about expected stock market returns when we,
as econometricians, only have access to the values of observed returns. The main
point of departure with respect to the existing literature is that we explicitly take
into account that our information set differs from the agents’ information set in
two crucial respects. First, when at time ¢t —1 agents form their expectations about
stock returns over period ¢, they observe many other facts in addition to the series
of past returns. In contrast, we have information on what returns over period ¢
and after turned out to be. Therefore, given an underlying bivariate process
for returns, r;, and expected returns, u,,, we could use the standard Kalman
filter to extract the information on y,, contained in the whole sample, as long as
we also knew the relevant parameter values. Unfortunately, without additional
restrictions, the structural parameters cannot be separately identified from the
reduced form log-likelihood function of the marginalised univariate process for
observed returns. In particular, we show that there is at least one degree of
underidentification in the structural parameters. Nevertheless, given that we are
not really interested in the values of the parameters, but rather in the values of the
expected returns, we employ a Bayesian version of the Kalman filter. A significant
advantage of taking a Bayesian perspective in this context is that it explicitly takes
into account the effects of estimation uncertainty, which would constitute a very

relevant issue even if all the structural parameters could be separately identified.
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In order to simulate from the posterior distribution of expected returns given the
observed series, we resort to a Gibbs sampling algorithm, whereby draws from the
joint distribution of expected returns and parameters, conditional on observed
returns, are produced by sampling from the two conditional distributions.

We apply our proposed procedure to post-war US monthly real stock returns.
Specifically, we obtain a series of estimates of the agents’ expected returns given
all the information available at the end of our sample, together with a measure
of the uncertainty surrounding those estimates. In this respect, we find that
smoothed expected returns are markedly less volatile than actual returns, but
they still show significant variation over time. We also find that the uncertainty
surrounding expected returns is generally fairly small once the whole sample has
been observed, although it increases as we approach the end of the sample.

Finally, we look at how our views on the returns expected by the agents are
affected by contemporaneous and future information. We concentrate on two
important episodes in the recent history of the US stock market: January 75
and October 87. Our results suggest that the views on expected returns held by a
contemporaneous econometrician endowed with observations on returns up to, and
including the previous month, would have been significantly altered not only when
returns over those months were observed, but also as subsequent observations
materialised. Such an effect is noticeable not only on the location of the posterior
distributions of expected returns, but also on the corresponding dispersions, which

are substantially reduced.
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Appendix

Proof of Proposition 1

o0
Let pyr41j00 = E(f1741|X100) = D 0711 be the best (in the mean square error
j=—00
sense) “two-sided” estimate of ;.. ; given a complete realisation of ;. It is well

known (see e.g. Priestley, 1981, section 10.3) that the corresponding “residual

/ (hw(w) - %) dw

where H (w) is the joint spectral density matrix of 1; and x;. Since the integrand is

variance” is given by

always non-negative, the integral will be 0 if and only if | b, (w)|* = (W) - haa(w)

for all w, as required. OJ

MA (1) Example

If we start the smoothing recursions from the steady-state matrices, we obtain

ok P 2 0 O
1 pu— pu— O'
t+1[t 0 52 9
. 1
Kt|t—1 =K = ﬁ_l
ﬁfl
Ky =
0
and
B

P;\kt—l = Pt|t71 =0’ 5 ﬂQ
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Consequently

2 -1 /
e[ (e (0
B B 00 0 =1 0
1t = Pl : (1,0)0 - 62 : - 9 ! _9
0 3 B 0 (=18

so that
1 0 0
sk — sk . * 07 ﬁQ 1 ﬂ_Q — 0_2
t+2[t+1 t+1])t t+1]t ( 0 ) ( ( ) ) 0 (52 B 1) ﬁ72
Furthermore,

* 2 0 0
Pt+2|t+1 =0
1 0
* * 2 2\ —1
t+2lt+1 = Leq2pt1 (J ) = _
(0 ((621)<ﬁ>3)

and consequently
*ok 2 0 0
t43lt42 = O _
0 (8#-1)p"

In fact, we can prove by induction that

0 0
t1k+1|t+l~c =0’ 9 K
(=1 (=8 0

0 0
::k+2\t+lc+1 =0’ 9 (ki1
0 (8*—1)p 2"+

and
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The unconditional variance of a VAR(1)

It is well known that the unconditional covariance matrix of a VAR(1), I say,

satisfies the equation

I'=ATA +%

In our case, in particular, this yields

Yr ’YTM . 0 1 Yr ’YTH 0 a21 + 0-1% O uw
Vru  Vpp a1 A2 Yru Vup 1 ag Ouw O
o i 21y + a2 pp + O-i Ouw
a1y + a22% a%lf}/rr + 2&21&22’)/7.u + a%QVup Ouw 02w

If we solve the system of three linear equations, we finally get:

Yor = Vo T Ou
227y t Ouw
T 1-ap
(1 —an) (a3,02% + 02) + 242102204
(14 a9) (1 —an +a) (1 —ay — ax)

’Yfrp =

T =

Smoothing and maximum gains in a bivariate VAR(1)

In terms of smoothing, if we start from the steady state matrices, we get:

a22P3+0uw
p3+o2

a22p3+0uw
_ p3+o2
Kt|t71 = 5, o
a21P3+0a210;,+055p3+0220 uw
p3+a2
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and

ps + Ui a22P3 + Oy

* — J—
Bj =Py = e
(22P3 + Oy G9P3 + O,
Consequently
0 0
*
1t =
P3  a22p3
by virtue of equation (9) and
1 0
* _ px* 21-1
t+1)t = L) i [pg + Ju] = s
p3+o2
Thus
0 0
* % _
t+2t+1 = 2
0 p3—is
p3tol
Now
0 1 a22P3+0uw
* _ px . p3t+o2 1.0
t+2[t+1 1t a a a21p3+a2103+a§2;03+a220uw ( ’ )
21 ©22 p3+o2
0 0 _a22p3+0uw Aot — a21p3+a2103+a§2p3+a220uw
_ p3+o? 21 p3+o2
D3 G223 1 22
0 0
= 2 2
a22p3+0o a21p3+0a210,,+055P3+0220 yw 2
A22P3 — P3=p o P3d21 — D3 P, + a3p3
SO
. 0 0
420041 42202 —0uw a 42202 —ouw
D3z P32 e
Also
1 0
* o * 27—1 o
Ko = Ploj [p3 + Uu] = 5
O p 220, —Oyw
3 (pato2)’
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Hence

*k o Kok * 1 220, —Ouw
t+3)t+2 — L2411 T D2t 0 p3=——s
0 (p3s+02)
0 0 0 0 1 ( 1300% —r
— _ 0 uw—Tuw )
0 pa—Zi_ 42208 —Ouw 42203 —Ouw 0 P83 p02)2
P3psto2 P8 oz P32 o7
0 0
o P3 2 (a2202 —0ouw)?
0 p3+0% <0“ P3™(ps102)?
SO
0 0
kook _
t+3[t+2 0 pyole (03 +03)+05+05,05 05,
u (p3+02)°
Given that the model is:

Tt 0 1 Tt—1 n Ut

Hrty1 Q21 Q22 Mot Wi
Ut 0 Uy . o, .

where F = and V = ), we can write it in a compact
Wt 0 Wt
form as:

Xt =Ax; 1+ M,

Hence the spectral matrix Hy, (w) of the x; process will be given by:

Hy () = %a‘l(e_i“’)z (o' ()"

where o (z) = {I — Az} ', and an asterisk denotes both conjugation and trans-

position.

Then, we have that:

1 1—2&22 z

-1 o
— ZQ929 — Z2°04921 2091 1
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so that

where
ey = C{UQM + (1 + Cng)O'i — 20220y + O'uw<€iw + eiiw) — CLQQO’%(GM + efiw)}
hy = c{obane™ — asana’s + (agy + 1)0uw — anowe ™ +ohe ™}

hyp = {0331 + Tuwazn (€% + ™) +op}

with
1 1

T orn 11— e iwag, — 672@@1’2

The residual variance bound is given by
[ P ()
/ (huu(w) - m dw

(see e.g. Priestley, 1981, section 10.3), which after tedious operations can be

shown to be

™

1 1 2 2 2
/ |:27T ’1 — e*i‘“agg — 6722'“)@21’2 (O-wo-u O-uw)

x{(a3; + a3y + 1) + (az1 — Dagz (e + € ™) — ag (€*™ + e )}

x {o% + (1 +a3,)0% — 29204 + (0w — azol) (€™ + e ™)} ] dw
But since
‘1 — e %agy — e ay ‘2 = 1+aj, +aj + (a1 —Daxn(e™™ +e“) —ag (e +e**)

we have that

/ (h“"<w) - %) do= @“0“2—;01““) /{7 +6(e™ 4 e7) )} dw
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where

v = Ui) + (1+ CLSQ)O'i — 20990y

and

6= (Ouw — aggai)

After solving the integral, we finally obtain

/ [’W“’) S ] w

The Simulation Smoother

Given that the simulation smoother is a backward recursion which requires the
Kalman filter output, it is convenient to rewrite the state-space in equations (7)

and (8) with:

Ti—1 €1
Tt = A ! -+ G !
Hort Eot
as measurement equation, and
Tt 0 E1t
Q1 = = +Toy + H
Hortt1 c Eat
. : 0 1
as transition equation, where ¢; «~ N(0, 1), Z = < 01 ) , T = ,
Q21 Q22
O-u O . . . .
G= ( oy 0 ) and H = e is the Choleski decomposition of
Oyw Two% =%
Ou o2

Y.
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As initial condition for the state we can either chose a; v~ N(c*, P;) where

1 0

1 —ag —ag c

P = AR
a2 PP + O

1—ay

(1 —as1) (a3,02 + 02) + 24910220 wap
(1= ag1)® (1 — ag + as) (1 — ag — ag)

are the values obtained from the stationary distribution, or a diffuse prior, in which

12
Pl —

22
Pl

case a; «~ N(c*, P), with ¢* = and P, = kI, where k is an arbitrary large

number, such as 107.

For t > 1 we have the following Kalman filter equations:
/Ut:’l“t—CEEQ), E:PtQQ—f—O'Z,

1

aZZPtQZ +0uw
F

Kt:

Tt
i1 =
c+anri—1+ GQQGEQ) + Kt(Q)Ut

/ 0 O
Py =TPT/ + HH - K, F,K| =
0 P,
2
where P2, = a3,P? + o2 — (Kt@)) F;. Hence, all elements of the variance

matrices P (t =1,..,T) are zero except the (2,2) one, which simply reflects the
fact that the first element of the state vector is observed. The quantities stored
are vy, K;, and F;.

Following de Jong and Shephard (1995), the multi-stage simulation smoother

00
starts by setting Ny = y Y1 = and forms

0 0 0

_ 1 2) (2
er = Fyton = fY) — K2,
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Cp =T*(Q — QNI

and
Ni = Nr —NrKr
—~K/Nr  Dr
* Y
Y =
€t
B 100 ,
where Dy = F "+ Ky Np Kp, T* = , so that (T*)' T* =T, where I' =
010
, _ _ H S HG
diag(1,1,0) is the selection matrix, and 2 = ( H & ) =
G GH GG
Now for t =T,T — 1,...,1 the algorithm updates
Nr_y = @' (N7 + ATA7)®  and  y1 = ' (y; — Ajmy) (17)

where the random vector 7, is drawn from N (0, I5) and Ay is the solution of the
linear system of equations

where By is the Choleski decomposition of Cr, i.e. Cp = BrB/.. In this way, we
avoid the inversion of Cr (see Koopman et al (1999)). The weight-matrices A,
and B; are kept for the state simulation.

Now notice that C; is singular for ¢ = T — 1,....,1, although I'*QI'" = ¥
is non-singular since rank(I*QI™*) = 2 (see de Jong and Shephard (1995) and
Koopman et al (1999)). Again the singularity of C;, for all t's except t = T,
is a direct consequence of the first element of the bivariate state vector being
observed. This singularity makes necessary the adjustment of the formulae in

Koopman et al (1999). As a result, the Choleski decomposition of C; = B, By yields
B 0 B b2

B, = , whose Moore-Penrose (MP) inverse is B," =
B0 0 0
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Hence, a convenient solution of (18) is:

12 13
0 o oy

Ay = B T*QN;} = for t=T-1,...,1
0 0 O

Now for t =T, ..., 1 the updating of N;_; is given by
Ny 1 = ' N®+ N QIT*)C, TN, D

where C;” the MP inverse of C;, as opposed to equation (17) above. In this way,
we avoid storing the matrix A;, but in contrast, we still have to find the MP
inverse of the matrix C;. Nevertheless, if the dimension of C; is relatively small,
the numerical cost is very low.
Following de Jong and Shephard (1995), the simulated state will then be given
by:
asy =c" + Py

with updates

0 0 1
QaSip1 = + as; + uy (t=1,2,..,7T)
c a21 (22

where v, = Xy, + HG'e, + Bymy.

oaer Biirg) .
Now HG'e; = and Bym; = . N Finally, we
T uw€t Bflﬁg ) 4 Bt227r§ )

can form

P2y 4 otf? + o, + Biaf)

(1)

U =
Ouwlt + O-?Uyt@) + Ouw€t + Btmﬂ-gl) + BEQWEQ)

In this respect, note that B?? is zero for t # T. Therefore, for these t's the whole

system is only driven by the first element of the random vector ;.
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Table 1

Descriptive statistics of the distributions for expected returns (%)

January 1975

Standard First Third  Interquartile Inefficiency
Mean Deviation Quartile Median Quartile Range Ratio
Predicted 1.3761 2.3893 -.2202 1.4132 3.0711 3.2913 1.6772
Updated 2.8511 2.0350 1.4957  2.9924  4.2560 2.7603 1.4780
Smoothed 3.6087  0.7915 3.0824  3.5732  4.1158 1.0334 1.3522

October 1987

Standard First Third  Interquartile Inefficiency
Mean Deviation Quartile Median Quartile Range Ratio
Predicted 0.2453 1.7443 -0.9560 0.1621  1.3046 2.2606 1.1740
Updated -2.8175  1.5385 -3.8244  -2.7646  -1.7282 2.0962 1.1307
Smoothed -2.2571  0.7280 -2.7565  -2.2724  -1.7963 0.9602 1.2002
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