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1 Introduction

The dynamic factor models introduced by Geweke (1977) and Sargent and Sims (1977) con-

stitute a flexible tool for capturing the cross-sectional and dynamic correlations between multiple

series in a parsimonious way. Although single factor versions of those models prevail because

their ease of interpretation and the fact that they provide a reasonable first approximation to

many data sets, there is often the need to add more common factors to adequately capture the

off-diagonal elements of the autocovariance matrices. When the cross-sectional dimension, N ,

is commensurate with the time series dimension, T , one possibility is to rely on the approxi-

mate factor structures originally introduced by Chamberlain and Rothschild (1983) in the static

case, which allow for some mild contemporaneous and dynamic correlation between idiosyncratic

terms. This has led many authors to rely on static, cross-sectional principal component meth-

ods (see e.g. Bai and Ng (2008) and the references therein), which are consistent under certain

assumptions. There are two closely related issues, though. First, the cross-sectional asymptotic

boundedness conditions on the eigenvalues of the autocovariance matrices of the idiosyncratic

terms underlying those approximate factor models are largely meaningless in empirical situa-

tions in which N is small relative to T . And second, although the factors could be regarded

as a set of parameters in any given realization, efficiency considerations indicate that a signal

extraction approach which exploits the serial correlation of common and specific factors would

be more appropriate for such data sets.

In those situations in which it is natural to group the N series into R homogeneous blocks,

an attractive solution are bifactor models with two types of factors:

1. Pervasive common factors that affect all N series

2. Block factors that only affect a subset of the series, such as the ones belonging to the same

country or region.

In principle, Gaussian (P)MLEs of the parameters can be obtained from the usual time do-

main version of the log-likelihood function computed as a by-product of the Kalman filter predic-

tion equations or from Whittle’s (1962) frequency domain asymptotic approximation. Further,

once the parameters have been estimated, the Kalman smoother or its Wiener-Kolmogorov coun-

terpart provide optimally filtered estimates of the latent factors. These estimation and filtering

issues are well understood (see e.g. Harvey (1989)), and the same can be said of their numer-

ical implementation (see Jungbacker and Koopman (2015)). In practice, though, researchers

may be reluctant to use ML because of the heavy computational burden involved, which is

disproportionately larger as the number of series considered increases.
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In the context of standard dynamic factor models, Shumway and Stoffer (1982), Watson and

Engle (1983) and Quah and Sargent (1993) applied the EM algorithm of Dempster, Laird and

Rubin (1977) to the time domain versions of these models, thereby avoiding the computation of

the likelihood function and its score. This iterative algorithm has been very popular in various

areas of applied econometrics (see e.g. Hamilton (1990) in a different time series context). Its

popularity can be attributed mainly to the efficiency of the procedure, as measured by its speed,

and also to the generality of the approach, and its convergence properties (see Ruud (1991)).

However, the time domain version of the EM algorithm has only been derived for dynamic

factor models in which all the latent variables follow pure Ar processes (see Doz, Giannone and

Reichlin (2012) for a recent example), and works best when the effects of the common factors

on the observed variables are contemporaneous, which substantially limits the class of models

to which it can be successfully applied.

In a recent companion paper (Fiorentini, Galesi and Sentana (2014)), we introduced a fre-

quency domain version of the EM algorithm for general dynamic factor models with latent

Arma processes. We showed there that our algorithm reduces the computational burden so

much that researchers can estimate such models by maximum likelihood with a large number of

series even without good initial values. Instead, the emphasis of the current paper is to consider

the application of the spectral EM algorithm to dynamic versions of bifactor models. In that

regard, our approach differs from both the Bayesian procedures considered by Kose, Otrok and

Whiteman (2003) among many others, and the sequential procedures put forward by Breitung

and Eickmeier (2014) and others.

We illustrate our algorithm with an empirical application in which we study the dynamics of

European inflation rates since the creation of the European Monetary Union (EMU). Specifically,

we consider a dynamic bifactor model with a single global factor and three regional factors

representing core, new entrant and outside EMU countries.

The rest of the paper is organized as follows. In section 2, we review the properties of dy-

namic factor models and their filters, as well as maximum likelihood estimation in the frequency

domain. Then, we derive our estimation algorithm and present a numerical evaluation of its

finite sample behavior in section 3. This is followed by the empirical application in section 4

and our conclusions in section 5. Auxiliary results are gathered in appendices.
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2 Theoretical background

2.1 Dynamic bifactor models

Let yt denote a finite dimensional vector of N observed series, which can be grouped into R

different categories or blocks as follows

y′t =
(

y′1t . . . y′rt . . . y′Rt
)
,

where y1t is of dimension N1, yrt of dimension Nr and yRt is of dimension NR, with N1 + . . .+

Nr + . . .+NR = N . Henceforth, we shall refer to each category as a “region”, even though they

could represent alternative groupings.

To keep the notation to a minimum, we focus on models with a single global factor and a

single factor per region, which suffice to illustrate our procedures. Specifically, we assume that

yt can be defined in the time domain by the system of dynamic stochastic difference equations

yrt = µr + crg(L)xgt + crr(L)xrt + urt, r = 1, . . . , R
αxg(L)xgt = βxg(L)fgt,

αxr(L)xrt = βxr(L)frt, r = 1, . . . , R
αui(L)ui,t = βui(L)vi,t, i = 1, . . . , N,

(fgt, f1t, . . . , fRt, v1t, . . . , vNt)|It−1;µ,θ ∼ N [0, diag(1, 1, , . . . , 1, ψ1, . . . , ψN )],

 (1)

where xgt is the global factor, xrt (r = 1, . . . , R) the rth regional factor, ut = (u′1t, . . . ,u
′
rt, . . . ,u

′
Rt)
′

the N specific factors,

crg(L) =

ng∑
k=−mg

crgkL
k (2)

crr(L) =

nr∑
l=−mr

crrlL
k (3)

for (r = 1, . . . , R) are NR × 1 vectors of possibly two-sided polynomials in the lag operator

cig(L) and cir(L), αxg(L), αxr(L) and αui(L) are one-sided polynomials of orders pxg , pxr and

pui , respectively, while βxg(L), βxr(L) and βui(L) are one-sided polynomials of orders qxg , qxr

and qui , coprime with αxg(L), αxr(L) and αui(L), respectively, It−1 is an information set that

contains the values of yt and ft = (fgt, f1t, . . . , fRt)
′ up to, and including time t − 1, µ is the

mean vector and θ refers to all the remaining model parameters.

A specific example for a series yit in region r would be

yit = µi + ci0gxgt + ci1gxgt−1 + ci0rxrt + ci1rxrt−1 + uit,
xgt = α1xgxgt−1 + fgt,

xrt = α1xrxrt−1 + α2xrxrt−2 + frt,
uit = α1uiuit−1 + vit.

 (4)

Note that the dynamic nature of the model is the result of three different characteristics:
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1. The serial correlation of the global and regional factors x′t = (xgt, x1t, . . . , xRt)

2. The serial correlation of the idiosyncratic factors ut

3. The heterogeneous dynamic impact of the global and regional factors on each of the ob-

served variables through the country-specific distributed lag polynomials cig(L) and cir(L).

To some extent, characteristics 1 and 3 overlap, as one could always write any dynamic

factor model in terms of white noise common factors with dynamic loadings. In this regard, the

inclusion of Ar polynomials in the dynamics of global and regional factors can be regarded as

a parsimonious way of modeling a common infinite distributed lag in those loadings.

The main difference with respect to the standard dynamic factor models considered in Fioren-

tini, Galesi and Sentana (2014) is the presence of regional factors, which allow for richer covari-

ance relationships between series that belong to the same region (see e.g. Stock and Watson

(2009)).1As we shall see below, though, the covariance between series in different regions depends

exclusively on the pervasive common factor.

Model (1) differs from the dynamic hierarchical factor model considered by Moench, Ng and

Potter (2013) in an important aspect. In their model, the common factor affects the observed

series only through its effect on the regional factor. As a result, the autocovariance matrices of

each block have a single factor structure and the dynamic impact of the common factor in the

observed variables must involve longer distributed lags than the dynamic impact of the regional

factor. As usual, the increase in parsimony involves a reduction in flexibility.

2.2 Spectral density matrix

Under the assumption that yt is a covariance stationary process, possibly after suitable

transformations as in section 4, the spectral density matrix of the observed variables will be

proportional to

Gyy(λ) =


Gy1y1(λ) . . . Gy1yr(λ) . . . Gy1yR(λ)

...
. . .

...
. . .

...
Gyry1(λ) . . . Gyryr(λ) . . . GyryR(λ)

...
. . .

...
. . .

...
GyRy1(λ) . . . GyRyr(λ) . . . GyRyR(λ)

 = C(e−iλ)Gxx(λ)C′(eiλ) + Guu(λ),

(5)

1Static versions of bifactor models have a long tradition in psychometrics after their introduction by Holzinger
and Swineford (1937) as an important special case of confirmatory factor analysis (see Reise (2012) for an up to
date list of references).
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where

C(z) =


c1g(z) c11(z) . . . 0 . . . 0

...
...

. . .
...

. . .
...

crg(z) 0 . . . crr(z) . . . 0
...

...
. . .

...
. . .

...
cRg(z) 0 . . . 0 . . . cRR(z)

 =
[

cg(z) Cr(z)
]
, (6)

Gxx(λ) = diag[Gxgxg(λ), Gx1x1(λ), . . . , Gxrxr(λ) . . . , GxRxR(λ)],

Gxgxg(λ) =
βxg(e−iλ)βxg(eiλ)

αxg(e−iλ)αxg(eiλ)
, Gxrxr(λ) =

βxr(e−iλ)βxr(eiλ)

αxr(e−iλ)αxr(eiλ)
,

and

Guu(λ) = diag[Gu1u1(λ), . . . , GuNuN (λ)],

Guiui(λ) = ψi
βui(e

−iλ)βui(e
iλ)

αui(e
−iλ)αui(e

iλ)
.

Thus, the matrix Gyy(λ) inherits the restricted (R + 1)-factor structure of the unconditional

covariance matrix of a static bifactor model with a common global factor and an additional

factor per region. As a result, the cross-covariances between two series within one region will

depend on the influence of both the global and regional factors on each of the series since

Gyryr(λ) = crg(e
−iλ)Gxgxg(λ)c′rg(e

iλ) + crr(e
−iλ)Gxrxr(λ)crr(e

iλ) + Gurur(λ).

In this regard, the assumption that the regional factors are orthogonal at all leads and lags to

the global factor can be regarded as a convenient identification condition because we could easily

transform a model with dynamic correlation between them by orthogonalising xrt with respect

to xgt on a frequency by frequency basis.

In contrast, the cross-covariances between two series that belong to different regions will only

depend on their dynamic sensitivities to the common factor because

Gyryk
(λ) = crg(e

−iλ)Gxgxg(λ)c′r′g(e
iλ), r 6= r′.

For the model presented in (4),

Gxgxg(λ) =
1

αxg(e−iλ)αxg(eiλ)
=

1

1 + α2
1xg
− 2α1xg cosλ

,

Gxrxr(λ) =
1

αxr(e−iλ)αxr(eiλ)
=

1

1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλ− 2α2xr cos 2λ

,

where we have exploited the fact that the variances of fgt and frt can be normalised to 1 for

identification purposes.2

2Other symmetric scaling assumptions would normalize the unconditional variance of xgt and xrt (r =
1, . . . , R), or some norm of the vectors of impact multipliers cg0 = (c′1g0, . . .,c

′
Rg0) and crr0 (r = 1, . . . , R) or

their long run counterparts cg(1) and crr(1). Alternatively, we could asymmetrically fix one element of cg0 and
crr0 (or cg(1) and crr(1)) (r = 1, . . . , R) to 1.
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Similarly,

Guiui(λ) =
ψi

αui(e
−iλ)αui(e

iλ)
=

ψi
1 + α2

ui − 2αui cosλ
.

Finally,

cig(e
−iλ) = cig0 + cig1e

−iλ,

cir(e
−iλ) = cir0 + cir1e

−iλ.

The fact that the idiosyncratic impact of the common factors on each of the observed variables

is in principle dynamic implies that the spectral density matrix of yt will generally be complex

but Hermitian, even though the spectral densities of xgt, xrt and uit are all real because they

correspond to univariate processes.

2.3 Identification

The identification by means of homogeneous restrictions of linear dynamic models with latent

variables such as (1) was discussed by Geweke (1977) and Geweke and Singleton (1981), and

more recently by Scherrer and Deistler (1998) and Heaton and Solo (2004). These authors extend

well known results from static factor models and simultaneous equation systems to the spectral

density matrix (5) on a frequency by frequency basis. Thus, two models will be observationally

equivalent if and only if they generate exactly the same spectral density matrix for the observed

variables at all frequencies. As in the traditional case, there are two different identification

issues:

1. the nonparametric identification of global, regional and specific components,

2. the parametric identification of dynamic loadings and factor dynamics within the common

components.

The answer to the first question is easy when Guu(λ) is a diagonal, full rank matrix.3

Specifically, we can show that for the bifactor model (1), nonparametric identification of global,

regional and idiosyncratic terms is guaranteed when R ≥ 3 and Nr ≥ 3 provided that at least

three series in each region load on its regional factor and at least three series from three different

regions load on the global factor. The intuition is as follows. We know that N > 3 is the so-called

Ledermann bound for single factor models (see e.g. Scherrer and Deistler (1998)). If we select a

single series with non-zero loadings on the global factor from each of the regions, the resulting

vector will follow a single factor structure with orthogonal “idiosyncratic” components that will

be the sum of the relevant regional factors and the true idiosyncratic components for each series.

3Scherrer and Deistler (1998) refer to this situation as the Frisch case.
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Since it is not possible to transfer variance from the global to the idiosyncratic components (or

vice versa) in those circumstances, and any model with more than one global factor will lead

to some singular idiosyncratic variance, we can uniquely decompose Gyryr(λ) into the rank one

matrix crg(e
−iλ)Gxgxg(λ)c′rg(e

iλ) and the full rank matrix crr(e
−iλ)Gxrxr(λ)crr(e

iλ) +Gurur(λ)

in this way. To separate this second component into its two constituents on a region by region

basis, we can use the same arguments but this time applied to series within each region.

The separate identification of crg(e
−iλ), crr(e

−iλ), Gxgxg(λ) and Gxrxr(λ) is trickier, as we

could always write any dynamic factor model (up to time shifts) in terms of white noise common

factors. But it can be guaranteed (up to scaling and sign changes) if in addition the dynamic

loading polynomials cir(.) are one-sided of finite order and coprime, so that they do not share

a common root within block r, and the dynamic loading polynomials cig(.) are also one-sided

of finite order and coprime, so they do not share a common root across all N countries (see

theorem 3 in Heaton and Solo (2004) for a more formal argument along these lines).

To avoid dealing with nonsensical situations, henceforth we maintain the assumption that

the model that has to be estimated is identified. This will indeed be the case in model (4), which

forms the basis for our empirical application in section 4.

2.4 Wiener-Kolmogorov filter

By working in the frequency domain we can easily obtain smoothed estimators of the latent

variables. Specifically, let

yt − µ =

∫ π

−π
eiλtdZy(λ),

V [dZy(λ)] = Gyy(λ)dλ

denote the spectral decomposition of the observed vector process.

Assuming that Gyy(λ) is not singular at any frequency, the Wiener-Kolmogorov two-sided

filter for the (R+ 1) “common” factors xt at each frequency is given by

dZxK
(λ) = Gxx(λ)C′(eiλ)G−1yy(λ)dZy(λ), (7)

where

Gxx(λ)C′(eiλ)G−1yy(λ)

is known as the transfer function of the common factors’ smoother. As a result, the spectral

density of the smoothed values of the common factors, xKt|∞, is

GxKxK (λ) = Gxx(λ)C′(eiλ)G−1yy(λ)C(e−iλ)Gxx(λ)
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thanks to the Hermitian nature of Gyy(λ), while the spectral density of the final estimation

errors xt − xKt|∞ will be given by

Gxx(λ)−Gxx(λ)C′(eiλ)G−1yy(λ)C(e−iλ)Gxx(λ) = Ω(λ).

Similarly, the Wiener-Kolmogorov smoother for the N specific factors will be

dZuK
(λ) = Guu(λ)G−1yy(λ)dZy(λ)

=
[
IN −C(e−iλ)Gxx(λ)C′(eiλ)G−1yy(λ)

]
dZy(λ) = dZy(λ)−C(e−iλ)dZxK

(λ).

Hence, the spectral density matrix of the smoothed values of the specific factors will be given

by

GuKuK (λ) = Guu(λ)G−1yy(λ)Guu(λ),

while the spectral density of their final estimation errors ut − uKt|∞ is

Guu(λ)−GuKuK (λ) = Guu(λ)−Guu(λ)G−1yy(λ)Guu(λ) = C(e−iλ)Ω(λ)C′(eiλ) = Ξ(λ).

Finally, the co-spectrum between xKt|∞ and uKt|∞ will be

GxKuK (λ) = Gxx(λ)C′(eiλ)G−1yy(λ)Guu(λ).

Computations can be considerably speeded up by exploiting the Woodbury formula under

the assumption that neither Gxx(λ) nor Guu(λ) are singular at any frequency (see Sentana

(2000) for a generalisation):

|Gyy(λ)| = |Guu(λ)| · |Gxx(λ)| · |Ω−1(λ)|

G−1yy(λ) = G−1uu(λ)−G−1uu(λ)C(e−iλ)Ω(λ)C′(eiλ)G−1uu(λ),

Ω(λ) = [G−1xx(λ) + C′(eiλ)G−1uu(λ)C(e−iλ)]−1.

The advantage of this expression is that Guu(λ) is a diagonal matrix and Ω(λ) of dimension

(R+ 1), much smaller than N , which greatly simplifies the computations.

On this basis, the transfer function of the Wiener-Kolmogorov common factor smoother

becomes

Gxx(λ)C′(eiλ)G−1yy(λ) = Ω(λ)C′(eiλ)G−1uu(λ),

so

GxKxK (λ) = Ω(λ)C′(eiλ)G−1uu(λ)C(e−iλ)Gxx(λ) = Gxx(λ)C′(eiλ)G−1uu(λ)C(e−iλ)Ω(λ)

= Gxx(λ)
{

Gxx(λ) + [C′(eiλ)G−1uu(λ)C(e−iλ)]−1
}−1

Gxx(λ) = Gxx(λ)−Ω(λ), (8)
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where we have used the fact that

Ω(λ)C′(eiλ)G−1uu(λ)C(e−iλ) = IR+1 −Ω(λ)G−1xx(λ), (9)

which can be easily proved by premultiplying both sides by Ω−1(λ).

Similarly, the transfer function of the Wiener-Kolmogorov specific factors smoother will be

Guu(λ)G−1yy(λ) = IN −C(e−iλ)Ω(λ)C′(eiλ)G−1uu(λ),

so

GuKuK (λ) = Guu(λ)−C(e−iλ)Ω(λ)C′(eiλ). (10)

Finally,

GxKuK (λ) = Ω(λ)C′(eiλ). (11)

In addition, we can exploit the special structure of the matrix C(z) in (6) to further speed

up the calculations. Specifically, tedious algebraic manipulations show that the (R+1)×(R+1)

Hermitian matrix Ω−1(λ) = G−1xx(λ) + C′(eiλ)G−1uu(λ)C(e−iλ) can be easily computed as

ωgg(λ) ωg1(λ) · · · ωgr(λ) · · · ωgR(λ)
ω1g(λ) ω11(λ) · · · 0 · · · 0

...
...

. . .
...

. . .
...

ωrg(λ) 0 · · · ωrr(λ) · · · 0
...

...
. . .

...
. . .

...
ωRg(λ) 0 · · · 0 · · · ωRR(λ)


(12)

with

ωgg(λ) = G−1xgxg(λ) + c′rg(e
iλ)G−1uu(λ)crg(e

−iλ),

ωrr(λ) = G−1xrxr(λ) + c′rr(e
iλ)G−1urur

(λ)crr(e
−iλ)

and

ωrg(λ) = c′rr(e
iλ)G−1urur

(λ)crg(e
−iλ) = ωgr∗(λ),

where ∗ denotes the complex conjugate transpose.

Interestingly, we can write (12) as

A(λ) + B(λ)D∗(λ),

where

A(λ) = diag
[
ωgg(λ), ω11(λ), . . . , ωrr(λ), . . . , ωRR(λ)

]

B(λ) =



1 0
0 ω1g(λ)
...

...
0 ωrg(λ)
...

...
0 ωRg(λ)


9



and

D∗(λ) =

[
0 ωg1(λ) · · · ωgr(λ) · · · ωgR(λ)
1 0 · · · 0 · · · 0

]
are two rank 2 matrices.

The advantage of this formulation is that the Woodbury formula for complex matrices implies

that

Ω(λ) = [A(λ) + B(λ)D∗(λ)]−1 = A−1(λ)−A−1(λ)B(λ)F−1(λ)D∗(λ)A−1(λ),

where

F(λ) = I2 + D∗(λ)A−1(λ)B(λ) =

[
1 ω+g(λ)
1

ωgg(λ) 1

]
,

with

ω+g(λ) =
R∑
r=1

‖ωrg(λ)‖2

ωrr(λ)

where we have exploited the fact that ωrg(λ) and ωgr(λ) are complex conjugates so that the

matrix F(λ) is actually real.

If we put all the pieces together we will end up with

Ω(λ) =



ωgg(λ) ωg1(λ) · · · ωgr(λ) · · · ωgR(λ)
ω1g(λ) ω11(λ) · · · ω1r(λ) · · · ω1R(λ)

...
...

. . .
...

. . .
...

ωrg(λ) ωr1(λ) · · · ωrr(λ) · · · ωrR(λ)
...

...
. . .

...
. . .

...
ωRg(λ) ωR1(λ) · · · ωRr(λ) · · · ωRR(λ)


=

[
ωgg(λ) ω∗rg(λ)

ωrg(λ) Ωrr(λ)

]
(13)

where

ωgg(λ) =
1

ωgg(λ)
+

1

ωgg(λ)

ω+g(λ)

ωgg(λ)− ω+g(λ)
=

1

ωgg(λ)− ω+g(λ)

ωrr(λ) =
1

ωrr(λ)

(
1 +
‖ωrg(λ)‖2

ωrr(λ)
ωgg(λ)

)

ωrg(λ) = −ω
rg(λ)

ωrr(λ)
ωgg(λ) = ω∗rg(λ)

and

ωrk(λ) =
ωrg(λ)ωgk(λ)

ωrr(λ)ωkk(λ)
ωgg(λ) = ω∗kr(λ).

It is of some interest to compare these expressions to the corresponding expressions in the

case of a model with a single global factor but no regional factors and a model with regional

factors but no global factor.

In the first case, we would have

ω(λ) =
1

ωgg(λ)
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while in the second case

ωrr(λ) =
1

ωrr(λ)
.

As expected, the existence of regional factors makes more difficult the estimation of the common

factor and vice versa.

The Woodbury formula also implies that

|Ω(λ)| = |A(λ)| |F(λ)| ,

with

|F(λ)| = 1− ω+g(λ)

ωgg(λ)
.

The bifactor structure can also be used to speed up the filtering procedure. Specifically,

Ω(λ)C′(eiλ) =

[
ωgg(λ) ω∗rg(λ)

ωrg(λ) Ωrr(λ)

] [
c′rg(e

iλ)

C′r(e
iλ)

]
=

[
ωgg(λ)c′rg(e

iλ) + ω∗rg(λ)C′r(e
iλ)

ωrg(λ)c′rg(e
iλ) + Ωrr(λ)C′r(e

iλ)

]
and

C(e−iλ)Ω(λ)C′(eiλ) = crg(e
iλ)ωgg(λ)c′rg(e

iλ) + Cr(e
−iλ)Ωrr(λ)C′r(e

iλ)

+crg(e
−iλ)ω∗rg(λ)C′r(e

iλ) + Cr(e
−iλ)ωrg(λ)c′rg(e

iλ),

which can be computed rather quickly by exploiting the block diagonal nature of Cr(z) in (6).

2.5 The minimal sufficient statistics for {xt}

Define xGt|∞ as the spectral GLS estimator of xt through the transformation

dZxG
(λ) = [C′(eiλ)G−1uu(λ)C(e−iλ)]−1C′(eiλ)G−1uu(λ)dZy(λ).

Similarly, define uGt|∞ through

dZuG
(λ) = {IN − [C′(eiλ)G−1uu(λ)C(e−iλ)]−1C′(eiλ)G−1uu(λ)}dZy(λ).

It is then easy to see that the joint spectral density of xGt|∞ and uGt|∞ will be block-diagonal,

with the (1,1) block being

Gxx(λ) + [C′(eiλ)G−1uu(λ)C(e−iλ)]−1

and the (2,2) block

Gyy(λ)−C(e−iλ)[C′(eiλ)G−1uu(λ)C(e−iλ)]−1C′(eiλ),

whose rank is N − (R+ 1).

11



This block-diagonality allows us to factorise the spectral log-likelihood function of yt as the

sum of the log-likelihood function of xGt|∞, which is of dimension (R+ 1), and the log-likelihood

function of uGt|∞. Importantly, the parameters characterising Gxx(λ) only enter through the

first component. In contrast, the remaining parameters affect both components. Moreover, we

can easily show that

1. xGt|∞ = xt + ζGt|∞, with xt and ζGt|∞ orthogonal at all leads and lags.

2. The smoothed estimator of xt obtained by applying the Wiener- Kolmogorov filter to xGt|∞

coincides with xKt|∞.

This confirms that xGt|∞ constitute minimal sufficient statistics for xt, thereby general-

ising earlier results by Jungbacker and Koopman (2015), who considered models in which

C(e−iλ) = C for all λ, and Fiorentini, Sentana and Shephard (2004), who looked at the re-

lated class of factor models with time-varying volatility (see also Gouriéroux, Monfort and

Renault (1991)). In addition, the degree of unobservability of xt depends exclusively on the

“size” of [C′(eiλ)G−1uu(λ)C(e−iλ)]−1 relative to Gxx(λ) (see Sentana (2004) for a closely related

discussion).

2.6 Maximum likelihood estimation in the frequency domain

Let

Iyy(λ) =
1

2πT

T∑
t=1

T∑
s=1

(yt − µ)(ys − µ)′e−i(t−s)λ (14)

denote the periodogram matrix and λj = 2πj/T (j = 0, . . . T − 1) the usual Fourier frequencies.

If we assume that Gyy(λ) is not singular at any of those frequencies, the so-called Whittle

(discrete) spectral approximation to the log-likelihood function is4

Nκ − 1

2

T−1∑
j=0

ln |Gyy(λj)| −
1

2

T−1∑
j=0

tr
{
G−1yy(λj)[2πIyy(λj)]

}
, (15)

with κ = −(T/2) ln(2π) (see e.g. Hannan (1973) and Dunsmuir and Hannan (1976)).

Expression (14), though, is far from ideal from a computational point of view, and for that

reason we make use of the Fast Fourier Transform (FFT). Specifically, given the T ×N original

real data matrix Y = (y1, . . . ,yt, . . . ,yT )′, the FFT creates the centered and orthogonalised

T ×N complex data matrix Zy = (zy0 , . . . , z
y
j , . . . , z

y
T−1)

′ by effectively premultiplying Y − `Tµ′

by the T × T Fourier matrix W. On this basis, we can easily compute Iyy(λj) as 2πzyj zy∗j ,

4There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).
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where zy∗j is the complex conjugate transpose of zyj . Hence, the spectral approximation to the

log-likelihood function (15) becomes

Nκ − 1

2

T−1∑
j=0

ln |Gyy(λj)| −
2π

2

T−1∑
j=0

zy∗j G−1yy(λj)z
y
j ,

which can be regarded as the log-likelihood function of T independent but heteroskedastic com-

plex Gaussian observations.

But since zyj does not depend on µ for j = 1, . . . , T −1 because `T is proportional to the first

column of the orthogonal Fourier matrix and zy0 = (ȳT −µ), where ȳT is the sample mean of yt,

it immediately follows that the ML of µ will be ȳT , so in what follows we focus on demeaned

variables. As for the remaining parameters, the score function will be given by:

d(θ) =
1

2

T−1∑
j=0

d(λj ; θ),

d(λj ; θ) =
1

2

∂vec′ [Gyy(λj)]

∂θ

[
G−1yy(λj)⊗G′−1yy (λj)

]
vec

[
2πzycj zy′j −G′yy(λj)

]
=

1

2

∂vec′[Gyy(λj)]

∂θ
M(λj)m(λj), (16)

where zycj = zy∗′j is the complex conjugate of zyj ,

m(λj) = vec
[
2πzycj zy′j −G′yy(λj)

]
(17)

and

M(λj) = G−1yy(λj)⊗G′−1yy (λj). (18)

The information matrix is block diagonal between µ and the elements of θ, with the (1,1)-

element being Gyy(0) and the (2,2)-block being

Q(θ) =
1

4π

∫ π

−π
Q(λ; θ)dλ =

1

4π

∫ π

−π

∂vec′[Gyy(λ)]

∂θ
M(λ)

{
∂vec′[Gyy(λ)]

∂θ

}∗
dλ, (19)

a consistent estimator of which will be provided by either by the outer product of the score or

by

Φ(θ) =
1

2

T−1∑
j=0

∂vec′[Gyy(λj)]

∂θ
M(λj)

{
∂vec′[Gyy(λj)]

∂θ

}∗
.

Formal results showing the strong consistency and asymptotic normality of the resulting ML

estimators of dynamic latent variable models under suitable regularity conditions were provided

by Dunsmuir (1979), who generalised earlier results for Varma models by Dunsmuir and Hannan

(1976). These authors also show the asymptotic equivalence between time and frequency domain

ML estimators.5

5This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see
Choudhuri, Ghosal and Roy (2004)).
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Appendix A provides detailed expressions for the Jacobian of vec [Gyy(λ)] and the spectral

score of dynamic bifactor models, while appendix B includes numerically reliable and efficient

formulae for their information matrix. Those expressions make extensive use of the complex

version of the Woodbury formula described in section 2.4. We can also exploit the same formula

to compute the quadratic form zy∗j G−1yy(λj)z
y
j as

zy∗j G−1uu(λj)z
y
j − zy∗j G−1uu(λ)C(e−iλ)Ω(λj)C

′(eiλ)G−1uu(λ)zyj

= zy∗j G−1uu(λj)z
y
j − zx

K∗
j (θ)Ω−1(λj)z

xK

j (θ),

where

zx
K

j (θ) = E[zxj |Zy, θ] = Gxx(λj)C
′(eiλj )G−1yy(λj)z

y
j = Ω(λj)C

′(eiλj )G−1uu(λj)z
y
j (20)

denotes the filtered value of zxj given the observed series and the current parameter values from

(7).

Nevertheless, when N is large the number of parameters is huge, and the direct maximisa-

tion of the log-likelihood function becomes excruciatingly slow, especially without good initial

values. For that reason, in the next section we described a much faster alternative to obtain the

maximum likelihood estimators of all the model parameters.

3 Spectral EM algorithm

As we mentioned in the introduction, the EM algorithm of Dempster, Laird and Rubin (1977)

adapted to static factor models by Rubin and Thayer (1982) was successfully employed to handle

a very large dataset of stock returns by Lehmann and Modest (1988). Shumway and Stoffer

(1982), Watson and Engle (1983) and Quah and Sargent (1993) also applied the algorithm in

the time domain to dynamic factor models and some generalisations, while Demos and Sentana

(1998) adapted it to conditionally heteroskedastic factor models in which the common factors

followed Garch-type processes.

We saw before that the spectral density matrix of a dynamic single factor model has the

structure of the unconditional covariance matrix of a static factor model, but with different

common and idiosyncratic variances for each frequency. This idea led us to propose a spectral

version of the EM algorithm for dynamic factor models with only pervasive factors in a com-

panion paper (see Fiorentini, Galesi and Sentana (2014)). In order to apply the same idea to

bifactor models, we need to do some additional algebra.
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3.1 Complete log-likelihood function

Consider a situation in which the (R + 1) common factors xt were also observed. The joint

spectral density of yt and xt, which is given by[
Gyy(λ) Gyx(λ)
G∗yx(λ) Gxx(λ)

]
=

[
C(e−iλ)Gxx(λ)C′(eiλ) + Guu(λ) C(e−iλ)Gxx(λ)

Gxx(λ)C′(eiλ) Gxx(λ)

]
,

could be diagonalised as[
IN C(e−iλ)
0 IR+1

] [
Guu(λ) 0

0 Gxx(λ)

] [
IN 0

C′(eiλ) IR+1

]
,

with ∣∣∣∣[ IN 0
C′(eiλ) IR+1

]∣∣∣∣ = 1

and [
IN 0

C′(eiλ) IR+1

]−1
=

[
IN 0

−C′(eiλ) IR+1

]
.

Let us define as [Zy|Zx] as the Fourier transform of the T × (N + 1 +R) matrix

[y1, . . . ,yN ,xg,x1, . . . ,xR] = [Y|X],

so that the joint periodogram of yt and xt at frequency λj could be quickly computed as

2π

(
zyj
zxj

)(
zy∗j zx∗j

)
,

where we have implicitly assumed that either the elements of y have zero mean, or else that

they have been previously demeaned by subtracting their sample averages.
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In this notation, the spectral approximation to the joint log-likelihood function would become

l(y,x) = (N +R+ 1)κ − 1

2

T−1∑
j=0

ln

∣∣∣∣[ Gyy(λ) Gyx(λj)
G∗yx(λj) Gxx(λj)

]∣∣∣∣
−2π

2

T−1∑
j=0

(
zy∗j zx∗j

) [ IN 0
−C′(eiλj ) 1

] [
G−1uu(λj) 0

0 G−1xx(λj)

] [
IN C(e−iλj )
0 1

](
zyj
zxj

)

= Nκ − 1

2

T−1∑
j=0

ln |Guu(λj)| −
2π

2

T−1∑
j=0

zu∗j G−1uu(λj)z
u
j

+(R+ 1)κ − 1

2

T−1∑
j=0

ln |Gxx(λj)| −
2π

2

T−1∑
j=0

zx∗j G−1xx(λj)z
x
j

=
N∑
i=1

κ − 1

2

T−1∑
j=0

ln |Guiui(λj)| −
2π

2

T−1∑
j=0

G−1uiui(λj)z
ui
j z

ui∗
j

 (21)

+κ − 1

2

T−1∑
j=0

ln
∣∣Gxgxg(λj)

∣∣− 2π

2

T−1∑
j=0

G−1xgxg(λj)z
xg
j z

xg∗
j (22)

+

R∑
r=1

κ − 1

2

T−1∑
j=0

ln |Gxrxr(λj)| −
2π

2

T−1∑
j=0

G−1xrxr(λj)z
ur
j z

ur∗
j

 (23)

=
N∑
i=1

l(yi|X) + l(xg) +
R∑
j=1

l(xj) = l(Y|X) + l(X),

where6 if country i belongs to region r we have that

zuij = zyij − cig(e
−iλj )z

xg
j −−cir(e

−iλj )zxrj = zyij −
ng∑

k=−mg

cikge
−ikλz

xg
j −

nr∑
l=−mr

cilre
−ilλzxrj , (24)

so that

zuij z
ui∗
j = zyij z

yi∗
j − cig(e

−iλj )z
xg
j z

yi∗
j − cir(e

−iλj )zxrj z
yi∗
j − cig(e

iλj )zyij z
xg∗
j − cir(eiλj )zyij z

xr∗
j

+cig(e
−iλj )cig(e

iλj )z
xg
j z

xg∗
j + cir(e

−iλj )cir(e
iλj )zxrj z

xr∗
j

+cig(e
−iλj )cir(e

iλj )z
xg
j z

xr∗
j + cir(e

−iλj )cig(e
iλj )zxrj z

xg∗
j

= Iyiyi(λj)− cig(e−iλj )Ixgyi(λj)− cir(e−iλj )Ixryi(λj)− cig(eiλj )Iyixg(λj)− cir(eiλj )Iyixr(λj)

+cig(e
−iλj )cig(e

iλj )Ixgxg(λj) + cir(e
−iλj )cir(e

iλj )Ixrxr(λj)

+cig(e
−iλj )cir(e

iλj )Ixgxr(λj) + cir(e
−iλj )cig(e

iλj )Ixrxg(λj) = Iuiui(λj).

In this way, we have decomposed the joint log-likelihood function of y1, . . . ,yN and x as

the sum of the marginal log-likelihood of x, l(X), and the log-likelihood function of y1, . . . ,yN

6Note that we could have expressed those log-likelihood in terms of Ixx(λj) = zxj z
x∗
j , Iuu(λ) = zuj z

u∗
j and

Iux(λ) = zuj z
x∗
j , but for the EM algorithm it is more convenient to work with the underlying complex random

variables.
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given x, l(Y|X). In turn, each of those components can be decomposed as the sum of univariate

log-likelihoods. Specifically, l(Y|X) can be computed as in (21) by exploiting the diagonality of

Guu(λj), while l(X) coincides with the sum of (22) and (23) by the diagonality of Gxx(λj).

Importantly, all the above expressions can be computed using real arithmetic only since

cig(e
−iλj )Ixgyi(λj) + cig(e

iλj )Iyixg(λj) = 2<
[
cig(e

−iλj )Ixgyi(λj)
]
,

cir(e
−iλj )Ixryi(λj) + cir(e

iλj )Iyixr(λj) = 2<
[
cir(e

−iλj )Ixryi(λj)
]
,

cig(e
−iλj )cir(e

iλj )Ixgxr(λj) + cir(e
−iλj )cig(e

iλj )Ixrxg(λj) = 2<
[
cig(e

−iλj )cir(e
iλj )Ixgxr(λj)

]
,

cig(e
−iλj )cig(e

iλj )Ixgxg(λj) =
∥∥∥cig(e−iλj )∥∥∥2 Ixgxg(λj)

and

cir(e
−iλj )cir(e

iλj )Ixrxr(λj) =
∥∥∥cir(e−iλj )∥∥∥2 Ixrxr(λj).

Let us classify the parameters into three blocks:

1. the parameters that characterize the spectral density of xt : θx = (θ′xg , θ
′
x1 , , . . . , θ

′
xR

)′

2. the parameters that characterize the spectral density of uit (i = 1, . . . , N) : ψ = (ψ1, . . . , ψN )′

and θu = (θ′ui , , . . . , θ
′
uN

)′

3. the parameters that characterize the dynamic idiosyncratic impact of the global and re-

gional factor on each observed variable: cig = (ci,−mg ,g, . . . , ci,0,g, . . . , ci,ng ,g)
′ and cir =

(ci,−mr,r, . . . , ci,0,r, . . . , ci,nr,r)
′.

Importantly, θxg only appear in (22), θxr in (23), while θui , cig and cir appear in (21). This

sequential cut on the joint spectral density confirms that zxg and zxr , and therefore xgt and

xrt, would be weakly exogenous for ψi, θui , cig and cir (see Engle, Hendry and Richard (1983)).

Moreover, the fact that fgt and frt are uncorrelated at all leads and lags with vit implies that

xgt and xrt would be strongly exogenous too.

We can also exploit the aforementioned log-likelihood decomposition to obtain the score of
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the complete log-likelihood function. In this way, we can write

∂l(Y,x)

∂θxg
=
∂l(xg)

∂θxg
=

1

2

T−1∑
j=0

∂Gxgxg(λj)

∂θxg
G−2xgxg(λj)

[
2πz

xg
j z

xg∗
j −Gxgxg(λj)

]
, (25a)

∂l(Y,x)

∂θxr
=
∂l(xr)

∂θxr
=

1

2

T−1∑
j=0

∂Gxrxr(λj)

∂θxr
G−2xrxr(λj)

[
2πzxrj z

xr∗
j −Gxrxr(λj)

]
(25b)

∂l(Y,x)

∂θui
=
∂l(yi|X)

∂θui
=

1

2

T−1∑
j=0

∂Guiui(λj)

∂θui
G−2uiui(λj)

[
2πzuij z

ui∗
j −Guiui(λj)

]
(25c)

∂l(Y,x)

∂cikg
=
∂l(yi|X)

∂cikg
=

2π

2

T−1∑
j=0

G−1uiui(λj)
[
zuij e

ikλjz
xg∗
j + e−ikλjz

xg
j z

ui∗
j

]

=
2π

2

T−1∑
j=0

G−1uiui(λj)

 (
zyij −

∑ng

k=−mg
cikge

−ikλz
xg
j −

∑nr
l=−mr

cilre
−ilλzxrj

)
eikλjz

xg∗
j

+e−ikλjz
xg
j

(
zyi∗j −

∑ng

k=−mg
cikge

ikλz
xg∗
j −

∑nr
l=−mr

cilre
ilλzxr∗j

)  (25d)

∂l(Y,x)

∂cilr
=
∂l(yi|X)

∂cikr
=

2π

2

T−1∑
j=0

G−1uiui(λj)
[
zuij e

ilλjzxr∗j + e−ilλjzxrj z
ui∗
j

]

=
2π

2

T−1∑
j=0

G−1uiui(λj)

 (
zyij −

∑ng

k=−mg
cikge

−ikλz
xg
j −

∑nr
l=−mr

cilre
−ilλzxrj

)
eilλjzxr∗j

+e−ilλjzxrj

(
zyi∗j −

∑ng

k=−mg
cikge

ikλz
xg∗
j −

∑nr
l=−mr

cilre
ilλzxr∗j

)  (25e)

where we have used the fact that

∂zuij
∂cikg

= −e−ikλzxgj

∂zuij
∂cilr

= −e−ilλzxrj

in view of (24).

Expression (25a) confirms that the MLE of θxg would be obtained from a univariate time

series model for xgt, and the same applies to θxr . However, since Gxgxg(λj) also depends on

θxg , there are no closed form solutions for models with Ma components. Although it would

be straightforward to adapt the indirect inference procedures we have developed in our com-

panion paper (see Fiorentini, Galesi and Sentana (2014)) to deal with general Arma processes

without resorting to the numerical maximisation of (22), in what follows we only consider pure

autoregressions. Obviously, the same comments apply to θxr .

In this regard, if we consider the Ar(2) example for xr in (4), the derivatives of Gxrxr(λ)

with respect to α1xr and α2xg would be

∂Gxrxr(λ)

∂α1xr

=
2(cosλ− α1xr − α2xr cosλ)

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλ− 2α2xr cos 2λ)2

,

∂Gxrxr(λ)

∂α2xr

=
2(cos 2λ− α1xr cosλ− α2xr)

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλ− 2α2xr cos 2λ)2
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Hence, the log-likelihood scores would become

∂l(xr)

∂α1xr

=
1

2

T−1∑
j=0

2(cosλj − α1xr − α2xr cosλj)

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλj − 2α2xr cos 2λj)2

×(1 + α2
1xr + α2

2xr − 2α1xr(1− α2xr) cosλj − 2α2xr cos 2λj)
2

×

[
2πzxrj z

xr∗
j − 1

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλj − 2α2xr cos 2λj)

]

= 2π
T−1∑
j=0

(cosλj − α1xr − α2xr cosλj)z
xr
j z

xr∗
j ,

and

∂l(xr)

∂α2xr

=
1

2

T−1∑
j=0

2(cos 2λj − α1xr cosλj − α2xr)

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλj − 2α2xr cos 2λj)2

× (1 + α2
1xr + α2

2xr − 2α1xr(1− α2xr) cosλj − 2α2xr cos 2λj)
2

×

[
2πzxrj z

xr∗
j − 1

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλj − 2α2xr cos 2λj)

]

= 2π
T−1∑
j=0

2(cos 2λj − α1xr cosλj − α2xr)zxrj z
xr∗
j ,

where we have exploited the Yule-Walker equations to show that

T−1∑
j=0

(cosλ− α1xr − α2xr cosλ)

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλ− 2α2xr cos 2λ)

= γxrxr(1)− α1xrγxrxr(0)− α2xrγxrxr(1) = 0,

T−1∑
j=0

(cos 2λ− α1xr cosλ− α2xr)

(1 + α2
1xr

+ α2
2xr
− 2α1xr(1− α2xr) cosλ− 2α2xr cos 2λ)

= γxrxr(2)− α1xrγxrxr(1)− α2xrγxrxr(0) = 0.

As a result, when we set both scores to 0 we would be left with the system of equations

T−1∑
j=0

[
zxrj z

xr∗
j ⊗

(
1 cosλj

cosλj 1

)](
α̂1xr

α̂2xr

)
=

T−1∑
j=0

[
zxrj z

xr∗
j ⊗

(
cosλj
cos 2λj

)]
.

But since

Ixrxr(λj) = γ̂xrxr(0) + 2
T−1∑
k=1

γ̂xrxr(k) cos(kλj),

we would have that

T−1∑
j=0

2πIxrxr(λj) = T γ̂xrxr(0)

T−1∑
j=0

cosλj [2πIxrxr(λj)] = T [γ̂xrxr(1) + γ̂xrxr(T − 1)],
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and
T−1∑
j=0

cos 2λj [2πIxrxr(λj)] = T [γ̂xrxr(2) + γ̂xrxr(T − 2)],

which are the sample (circulant) autocovariances of xrt of orders 0, 1 and 2, respectively. There-

fore, the spectral estimators for α̂1xr and α̂2xr are (almost) identical to the ones we would obtain

in the time domain, which will be given by the solution to the system of equations(
γ̂xrxr(0) γ̂xrxr(1)
γ̂xrxr(1) γ̂xrxr(0)

)(
α̂1xr

α̂2xr

)
=

(
γ̂xrxr(1)
γ̂xrxr(2)

)
,

because both γ̂xrxr(T − 1) = T−1xrTxr1 and γ̂xrxr(T − 2) = T−1(xrTxr2 + xrT−1xr1) are op(1).

Similar expressions would apply to the dynamic parameters that appear in θui for a given

value of cig and cir in view of (25c), since in this case it would be possible to estimate the

variances of the innovations ψi in closed form.

Specifically, for an Ar(1) example in (4), the partial derivatives of Guiui(λ) with respect to

ψi and α1ui would be

∂Guiui(λ)

∂ψi
=

1

1 + α2
1ui
− 2α1ui cosλ

,

∂Guiui(λ)

∂α1ui

=
2(cosλ− α1ui)ψi

(1 + α2
1ui
− 2α1ui cosλ)2

.

Hence, the corresponding log-likelihood scores would be

∂l(yi|X)

∂ψi
=

1

2

T−1∑
j=0

(1 + α2
1ui
− 2α1ui1 cosλj)

2(
1 + α2

1ui
− 2α1ui cosλj

)
ψ2
i

[
2πzuij z

ui∗
j − ψi

1 + α2
ui1
− 2αui1 cosλj

]

=
1

2ψ2
i

T−1∑
j=0

[
(1 + α2

1ui − 2α1ui cosλj)2πz
ui
j z

ui∗
j − ψi

]
,

∂l(yi|X)

∂α1ui

=
1

2

T−1∑
j=0

2(cosλj − α1ui)ψi(1 + α2
ui1
− 2αui1 cosλj)

2

(1 + α2
1ui
− 2α1ui cosλj)2ψ2

i

×

[
2πzuij z

ui∗
j − ψi

(1 + α2
1ui
− 2α1ui cosλj)

]
=

2π

ψi

T−1∑
j=0

(cosλj − α1ui)z
ui
j z

ui∗
j .

As a result, the spectral ML estimators of ψi and αui1 for fixed values of cig and cir would

satisfy

ψ̃i =
2π

T

∑T−1

j=0
(1 + α̃2

1ui1 − 2α̃1ui cosλj)z
ui
j z

ui∗
j ,

α̃1ui =

∑T−1
j=0 cosλjz

ui
j z

ui∗
j∑T−1

j=0 z
ui
j z

ui∗
j

.

Intuitively, these parameter estimates are, respectively, the sample analogues to the variance

of vit, which is the residual variance in the regression of uit on uit−1, and the slope coefficient

in the same regression.
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Finally, (25d) and (25e) would allow us to obtain the ML estimators of cig and cir for given

values of θui . In particular, if we write together the derivatives for cikg (k = −mg, . . . , 0, . . . , ng)

and cikr (k = −mr, . . . , 0, . . . , nr) we end up with the “weighted” normal equations:

T−1∑
j=0


G−1uiui(λj)



eimgλjz
xg
j z

xg∗
j e−imgλj + eimgλjz

xg
j z

xg∗
j e−imgλj . . .

...
. . .

eimgλjz
xg
j z

xg∗
j eingλj + e−ingλjz

xg
j z

xg∗
j e−imgλj . . .

eimgλjz
xg
j z

xr∗
j e−imrλj + eimrλjzxrj z

xg∗
j e−imgλj . . .

...
. . .

eimgλjz
xg
j z

xr∗
j einrλj + e−inrλjzxrj z

xg∗
j e−imgλj . . .

e−ingλjz
xg
j z

xg∗
j e−imgλj + eimgλjz

xg
j z

xg∗
j eingλj eimgλjz

xg
j z

xr∗
j e−imrλj + eimrλjzxrj z

xg∗
j e−imgλj

...
...

e−ingλjz
xg
j z

xg∗
j eingλj + e−ingλjz

xg
j z

xg∗
j eingλj e−ingλjz

xg
j z

xr∗
j e−imrλj + eimrλjzxrj z

xg∗
j eingλj

e−ingλjz
xg
j z

xr∗
j e−imrλj + eimrλjzxrj z

xg∗
j eingλj eimrλjzxrj z

xr∗
j e−imrλj + eimrλjzxrj z

xr∗
j e−imrλj

...
...

e−ingλjz
xg
j z

xr∗
j einrλj + e−inrλjzxrj z

xg∗
j eingλj e−inrλjzxrj z

xr∗
j e−imrλj + eimrλjzxrj z

xr∗
j einrλj

. . . eimgλjz
xg
j z

xr∗
j einrλj + e−inrλjzxrj z

xg∗
j e−imgλj

. . .
...

. . . e−ingλjz
xg
j z

xr∗
j einrλj + e−inrλjzxrj z

xg∗
j eingλj

. . . eimrλjzxrj z
xr∗
j einrλj + e−inrλjzxrj z

xr∗
j e−imrλj

. . .
...

. . . e−inrλjzxrj z
xr∗
j einrλj + e−inrλjzxrj z

xr∗
j einrλj







c̃i,−mg ,g
...

c̃i,ngg

c̃i,−mr,r
...

c̃i,nr,r



=

T−1∑
j=0

G−1uiui(λj)



zyij z
xg∗
j e−imgλj + zyi∗j z

xg
j e

imgλj

...

zyij z
xg∗
j eingλj + zyi∗j z

xg
j e
−ingλj

zyij z
xr∗
j e−imrλj + zyi∗j zxrj e

imrλj

...
zyij z

xr∗
j einrλj + zyi∗j zxrj e

−inrλj


.

Thus, unrestricted MLE’s of cig and cir could be obtained from N univariate distributed

lag weighted least squares regressions of each yit on xgt and the appropriate xrt that take into

account the residual serial correlation in uit. Interestingly, given that Guiui(λj) is real, the above

system of equations would not involve complex arithmetic. In addition, the terms in ψi would

cancel, so the WLS procedure would only depend on the dynamic elements in θui .

Let us derive these expressions for the model in (4). In that case, the matrix on the left
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hand of the normal equations becomes

T−1∑
j=0

G−1uiui(λj)


2z
xg
j z

xg∗
j (e−iλj + eiλj )z

xg
j z

xg∗
j

(eiλj + e−iλj )z
xg
j z

xg∗
j 2z

xg
j z

xg∗
j

(z
xg
j z

xr∗
j + zxrj z

xg∗
j ) e−iλjz

xg
j z

xr∗
j + zxrj z

xg∗
j eiλj

z
xg
j z

xr∗
j eiλj + e−iλjzxrj z

xg∗
j z

xg
j z

xr∗
j + zxrj z

xg∗
j

z
xg
j z

xr∗
j + zxrj z

xg∗
j z

xg
j z

xr∗
j eiλj + e−iλjzxrj z

xg∗
j

e−iλjz
xg
j z

xr∗
j + zxrj z

xg∗
j eiλj z

xg
j z

xr∗
j + zxrj z

xg∗
j

2zxrj z
xr∗
j zxrj z

xr∗
j eiλj + e−iλjzxrj z

xr∗
j

e−iλjzxrj z
xr∗
j + zxrj z

xr∗
j eiλj 2zxrj z

xr∗
j

 ,

while the vector on the right hand side will be

T−1∑
j=0

G−1uiui(λj)


zyij z

xg∗
j + zyi∗j z

xg
j

eiλjzyij z
xg∗
j + e−iλjzyi∗j z

xg
j

zyij z
xr∗
j + zyi∗j zxrj

eiλjzyij z
xr∗
j + e−iλjzyi∗j zxrj

 .

In principle, we could carry out a zig-zag procedure that would estimate cig and cir for given

θui , and then θui for a given cig and cir. This would correspond to the spectral analogue to the

Cochrane-Orcutt (1949) procedure. Obviously, iterations would be unnecessary when Guu(λj)

is in fact constant, so that the idiosyncratic terms are static. In that case, the above equations

could be written in terms of the elements of the covariance and the first autocovariance matrices

of yt, xgt and xrt.

3.2 Expected log-likelihood function

In practice, of course, we do not observe xt. Nevertheless, the EM algorithm can be used

to obtain values for θ as close to the optimum as desired. At each iteration, the EM algorithm

maximises the expected value of l(Y|X) + l(X) conditional on Y and the current parameter

estimates, θ(n). The rationale stems from the fact that l(Y,X) can also be factorized as l(Y) +

l(X|Y). Since the expected value of the latter, conditional on Y and θ(n), reaches a maximum

at θ = θ(n), any increase in the expected value of l(Y,X) must represent an increase in l(Y).

This is the generalised EM principle.

In the E step we must compute

E[l(xg)|Zy, θ(n)] = κ − 1

2

T−1∑
j=0

ln
∣∣Gxgxg(λj)

∣∣− 2π

2

T−1∑
j=0

G−1xgxg(λj)E[z
xg
j z

xg∗
j |Z

y, θ(n)],

E[l(xr)|Zy, θ(n)] = κ − 1

2

T−1∑
j=0

ln |Gxrxr(λj)| −
2π

2

T−1∑
j=0

G−1xrxr(λj)E[zxrj z
xr∗
j |Z

y, θ(n)],

E[l(yi|X)|Zy, θ(n)] = κ − 1

2

T−1∑
j=0

ln |Guiui(λj)| −
2π

2

T−1∑
j=0

G−1uiui(λj)E[zuij z
ui∗
j |Z

y, θ(n)].
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But

E[zxj z
x∗
j |Zy, θ(n)] = zx

K

j (θ(n))zx
K∗
j (θ(n)) + E

{
[zxj − zx

K

j (θ(n))][zx∗j − zx
K∗
j (θ(n))]|zyj , θ

(n)
}

= I
(n)

xKxK (λj) + Ω(n)(λj),

where

IxKxK (λ) = 2πGxx(λ)C′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)C(e−iλ)Gxx(λ)

= 2πΩ(λ)C′(eiλ)G−1uu(λ)Iyy(λ)G−1uu(λ)C(e−iλ)Ω(λ). (26)

is the periodogram of the smoothed values of the R+ 1 common factors x and

E
{

[zxj − zx
K

j (θ)][zx∗j − zx
K∗
j (θ)]|Zy, θ

}
= Ω(λj).

In turn, if we define

IyxK (λ) = Iyy(λ)G−1yy(λ)C(e−iλ)Gxx(λ) = Iyy(λ)G−1uu(λ)C(e−iλ)Ω(λ)

as the cross-periodogram between the observed series y and the smoothed values of the common

factors x, we will have that

I
(n)
uu(λj) = E[zuj zu∗j |Zy, θ(n)] = E

{[
zyj −C(e−iλj )zxj

] [
zy∗j − zx∗j C′(eiλj )

]
|Zy, θ(n)

}
= [zyj −C(e−iλj )zx

K

j (θ(n))][zy∗j − zx
K∗
j (θ(n))C′(eiλj )] + C(e−iλj )Ω(n)(λj)C

′(eiλj )

= Iyy(λj)− I
(n)

yxK (λ)C′(eiλj )−C(e−iλj )I
(n)

xKy
(λ) + C(e−iλj )[I

(n)

xKxK (λj) + Ω(n)(λj)]C
′(eiλj ),

which resembles the expected value of Iuu(λj) but the values at which the expectations are

evaluated are generally different from the values at which the distributed lags are computed.

The assumed bifactor structure implies that for the ith series, the above expression reduces

to

I(n)uiui(λj) = E[zuij z
ui∗
j |Z

y, θ(n)] = Iyiyi(λj)

−cig(e−iλj )I(n)xKg yi
(λj)− cir(e−iλj )I(n)xKr yi

(λj)− I(n)yixKg
(λj)cig(e

iλj )− I(n)
yixKr

(λj)cir(e
iλj )

+[I
(n)

xKg x
K
g

(λj) + ω(n)
gg (λj)]cig(e

−iλj )cig(e
iλj ) + [I

(n)

xKr x
K
r

(λj) + ω(n)
rr (λj)]cir(e

−iλj )cir(e
iλj )

+[I
(n)

xKg x
K
r

(λj) + ω(n)
gr (λj)]cig(e

−iλj )cir(e
iλj ) + [I

(n)

xKr x
K
g

(λj) + ω(n)
rg (λj)]cir(e

−iλj )cig(e
iλj ).

Therefore, if we put all these expressions together we end up with

E[l(xg)|Y, θ(n)] = κ − 1

2

T−1∑
j=0

ln
∣∣Gxgxg(λj)

∣∣− 2π

2

T−1∑
j=0

G−1xgxg(λj)
[
I
(n)

xKg x
K
g

(λj) + ω(n)
gg (λj)

]
, (27)

E[l(xr)|Y, θ(n)] = κ − 1

2

T−1∑
j=0

ln |Gxrxr(λj)| −
2π

2

T−1∑
j=0

G−1xrxr(λj)
[
I
(n)

xKr x
K
r

(λj) + ω(n)
rr (λj)

]
, (28)

E[l(yi|X)|Y, θ(n)] = κ − 1

2

T−1∑
j=0

ln |Guiui(λj)| −
2π

2

T−1∑
j=0

G−1uiui(λj)I
(n)
uiui(λj). (29)
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We can then maximise E[l(xg)|Y, θ(n)] in (27) with respect to θxg to update those parameters,

and the same applies to (28) and θxr . Similarly, we can maximise E[l(yi|X)|Y, θ(n)] with respect

to cig, cir, ψi and θui to update those parameters.

In order to conduct those maximisations, we need the scores of the expected log-likelihood

functions.

Given the similarity between (27) and (22), it is easy to see that

∂E[l(xg)|Y, θ(n)]

∂θxg
=

1

2

T−1∑
j=0

∂Gxgxg(λj)

∂θxg
G−2xgxg(λj)

{
2π
[
I
(n)

xKg x
K
g

(λj) + ω(n)
gg (λj)

]
−Gxgxg(λj)

}
,

which, not surprisingly, coincides with the the expected value of (25a) given Y and the current

parameter estimates, θ(n). As a result, for the Ar(1) process for xg in (4) we will have

∂E[l(xg)|Y, θ(n)]

∂α1xg

= 2π
T−1∑
j=0

(cosλj − αx1)
[
I
(n)

xKg x
K
g

(λj) + ω(n)
gg (λj)

]
,

whence

α̂
(n+1)
1xg

=

∑T−1
j=0 cosλj

[
I
(n)

xKg x
K
g

(λj) + ω
(n)
gg (λj)

]
∑T−1

j=0

[
I
(n)

xKg x
K
g

(λj) + ω
(n)
gg (λj)

] .

Likewise, we will have that

∂E[l(xr)|Y, θ(n)]

∂θxr
=

1

2

T−1∑
j=0

∂Gxrxr(λj)

∂θxr
G−2xrxr(λj)

{
2π
[
I
(n)

xKr x
K
r

(λj) + ω(n)
rr (λj)

]
−Gxrxr(λj)

}
.

Hence, in the case of the Ar(2) process for xrt in (4), the expected log-likelihood scores

become

∂E[l(xr)|Y, θ(n)]

∂α1xr

= 2π
T−1∑
j=0

(cosλj − α1xr − α2xr cosλj)
[
I
(n)

xKr x
K
r

(λj) + ω(n)
rr (λj)

]
,

∂E[l(xr)|Y, θ(n)]

∂α2xr

= 2π

T−1∑
j=0

2(cos 2λj − α1xr cosλj − α2xr)
[
I
(n)

xKr x
K
r

(λj) + ω(n)
rr (λj)

]
,

so that the updated autoregressive coefficients will be the solution to the system of equations

T−1∑
j=0

{[
I
(n)

xKr x
K
r

(λj) + ω(n)
rr (λj)

]
⊗
(

1 cosλj
cosλj 1

)}(
α̂1xr

α̂2xr

)

=

T−1∑
j=0

{[
I
(n)

xKr x
K
r

(λj) + ω(n)
rr (λj)

]
⊗
(

cosλj
cos 2λj

)}
.

Similar expressions would apply to the dynamic parameters that appear in θui and ψi for

given values of cig and cir. Specifically, when the idiosyncratic terms follow Ar(1) processes

∂E[l(yi|X)|Y, θ(n)]

∂ψi
=

1

2ψ2
i

T−1∑
j=0

(1 + α2
ui1 − 2αui1 cosλ)

{
2πI(n)uiui(λj)− ψi

}
,

E[l(yi|X)|Y, θ(n)]

∂αui1
=

2π

ψi

T−1∑
j=0

(cosλj − α1ui)I
(n)
uiui(λj).
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As a result, the spectral ML estimators of ψi and αui1 given cig and cir will satisfy

ψ̂
(n+1)
i =

2π

T

∑T−1

j=0

[
1 +

(
α̂
(n+1)
1ui

)2
− 2α̂

(n+1)
1ui

cosλj

]
I(n)uiui(λj),

α̂
(n+1)
1ui

=

∑T−1
j=0 cosλjI

(n)
uiui(λj)∑T−1

j=0 I
(n)
uiui(λj)

.

Finally, the derivatives of (29) with respect to cikg (k = −mg, . . . , 0, . . . , ng) and cilr (l =

−mr, . . . , 0, . . . , nr) for fixed values of θui will give rise to a set of modified “weighted” normal

equations analogous to the ones in the previous section but with cross-product terms of the form

z
xg
j z

xr∗
j replaced by [I

(n)

xKg x
K
r

(λj) + ω
(n)
gr (λj)].

For the example in (4), the matrix on the left hand of the normal equations becomes

2

T−1∑
j=0

G−1uiui(λj)


[I

(n)

xKg x
K
g

(λj) + ω
(n)
gg (λj)]

cosλj [I
(n)

xKg x
K
g

(λj) + ω
(n)
gg (λj)]

<[I
(n)

xKg x
K
r

(λj) + ω
(n)
gr (λj)]

cosλj<[I
(n)

xKg x
K
r

(λj)]− sinλj=[I
(n)

xKg x
K
r

(λj)]

cosλj [I
(n)

xKg x
K
g

(λj) + ω
(n)
gg (λj)] <[I

(n)

xKg x
K
r

(λj) + ω
(n)
gr (λj)]

[I
(n)

xKg x
K
g

(λj) + ω
(n)
gg (λj)] cosλj<[I

(n)

xKg x
K
r

(λj)] + sinλj=[I
(n)

xKg x
K
r

(λj)]

cosλj<[I
(n)

xKg x
K
r

(λj)] + sinλj=[I
(n)

xKg x
K
r

(λj)] [I
(n)

xKr x
K
r

(λj) + ω
(n)
rr (λj)]
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
while the vector on the right hand side will be

2
T−1∑
j=0

G−1uiui(λj)


<[I

(n)

yixKg
(λj)]

cosλj<[I
(n)

yixKg
(λj)]− sinλj=[I

(n)
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(λj)]

<[I
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(λj)]

cosλj<[I
(n)

yixKr
(λj)]− sinλj=[I

(n)

yixKr
(λj)]


In principle, we could carry out a zig-zag procedure that would estimate cig, cir and ψi for

given θui and θui for given cig, cir and ψi, although it is not clear that we really need to fully

maximise the expected log-likelihood function at each EM iteration since the generalised EM

principle simply requires us to increase it. Obviously, such iterations would be unnecessary when

the idiosyncratic terms are static.
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3.3 Alternative marginal scores

As is well known, the EM algorithm slows down considerably near the optimum. At that

point, the best practical strategy would be to switch to a first derivative-based method. Fortu-

nately, the EM principle can also be exploited to simplify the computation of the score. Since

the Kullback inequality implies that E [l(X|Y; θ)|Y; θ] = 0, it is clear that ∂l(Y; θ)/∂θ can be

obtained as the expected value (given Y and θ) of the sum of the unobservable scores corre-

sponding to l(y1, . . . ,yN |X) and l(X). This yields

∂l(Y)

∂θxg
=

1

2

T−1∑
j=0

∂Gxgxg(λj)

∂θxg
G−2xgxg(λj)

[
2πE[z

xg
j z

xg∗
j |Z

y, θ]−Gxgxg(λj)
]
,

∂l(Y)

∂θxr
=

1

2

T−1∑
j=0

∂Gxrxr(λj)

∂θxr
G−2xrxr(λj)

[
2πE[zxrj z

xr∗
j |Z

y, θ]−Gxx(λj)
]
,

∂l(Y)

∂θui
=

1

2

T−1∑
j=0

∂Guiui(λj)

∂θui
G−2uiui(λj)

[
2πE[zuij z

ui∗
j |Z

y, θ]−Guiui(λj)
]
,

∂l(Y)

∂cikg
=

2π

2

T−1∑
j=0

G−1uiui(λj)
[
eikλjE[zuij z

xg∗
j |Z

y, θ] + e−ikλjE[z
xg
j z

ui∗
j |Z

y, θ]
]
,

∂l(Y)

∂cilr
=

2π

2

T−1∑
j=0

G−1uiui(λj)
[
eilλjE[zuij z

xr∗
j |Z

y, θ] + e−ilλjE[zxrj z
ui∗
j |Z

y, θ]
]

But since the scores are now evaluated at the values of the parameters at which the expec-

tations are computed, we will have that

E[zxj z
x∗
j |Zy, θ] = IxKxK (λj) + Ω(λj),

E[zuj zu∗j |Zy, θ] = E[zuj |Zy, θ]E[zu∗j |Zy, θ] + E
[{

zuj − E[zuj |Zy, θ]
}{

zu∗j − E[zu∗j |Zy, θ]
}
|Zy, θ

]
= IuKuK (λj) + C(e−iλj )Ω(λj)C

′(eiλj ).

E[zuj zx∗j |Zy, θ] = E[zuj |Zy, θ]E[zx∗j |Zy, θ] + E
[{

zuj − E[zuj |Zy, θ]
}{

zx∗j − E[zx∗j |Zy, θ]
}
|Zy, θ

]
= IuKxK (λj)−C(e−iλj )Ω(λj)

where

zu
K

j = E[zuj |Zy, θ] = Guu(λj)G
−1
yy(λj)z

y
j = zyj −C(e−iλ)zx

K

j ,

E[(zuj − zu
K

j )(zu∗j − zu
K∗
j )|Zy, θ] = C(e−iλj )Ω(λj)C

′(eiλj ),

E[(zuj − zuK
j )(zx∗j − zx

K∗
j )|Zy, θ] = C(e−iλj )Ω(λj),

IuKuK (λ) = 2πGuu(λ)G−1yy(λ)Iyy(λ)G−1yy(λ)Guu(λ)

= 2π
[
IN −C(e−iλ)Ω(λ)C′(eiλ)G−1uu(λ)

]
Iyy(λ)

[
IN −G−1uu(λ)C(eiλ)Ω(λ)C′(e−iλ)

]
(30)
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is the periodogram of the smoothed values of the specific factors, and

IxKuK (λ) = 2πGxx(λ)C′(eiλ)G−1yy(λ)Iyy(λ)G−1yy(λ)Guu(λ)

= 2πΩ(λ)C′(eiλ)G−1uu(λ)Iyy(λ)
[
IN −G−1uu(λ)C(e−iλ)Ω(λ)C′(eiλ)

]
(31)

is the co-periodogram between xKt|∞ and uKt|∞.

Tedious algebra shows that these scores coincide with the expressions in appendix A. They

also closely related to the scores of the expected log-likelihoods in the previous subsection,

but the difference is that the expectations were taken there with respect to the conditional

distribution of x given Y evaluated at θ(n), not θ.

4 Inflation dynamics across European countries

4.1 Introduction

Increasing economic and financial integration implies that nowadays countries are more sen-

sitive to shocks originating outside their frontiers. In particular, national price levels may be

affected by external shocks such as fluctuations in global commodity prices, shifts in global de-

mand, exchange rate swings, or variations in the prices of competing countries. Understanding

the extent to which foreign factors determine the temporal evolution of domestic inflation is a

key question for macroeconomic policy.

A recent growing literature tackles this question by employing factor analysis techniques.

Ciccarelli and Mojon (2010) estimate a static single factor model for 22 OECD economies over

the period 1960-2008 and document that the estimated global factor accounts for about 70

percent of the variance of CPI inflation in those countries. Mumtaz and Surico (2012) estimate

a dynamic factor model with drifting coefficients and stochastic volatility for a panel of 164

inflation indicators for the G7 countries, Australia, New Zealand and Spain. These authors find

that the historical decline in the level of inflation is shared by most countries in their sample,

which is consistent with the idea that a global factor drives the bulk of inflation movements

across economies.

At the same time, the inflation rates of closely integrated economies tend to be more corre-

lated with each other than with other countries, which is difficult to square with a single factor

model. Motivated by this, we explore the ability of the dynamic bifactor models discussed in

section 2.1 to capture inflation dynamics across European countries. The European case is of

particular interest because whether EMU has played a decisive role in the observed convergence

of inflation rates across its member economies remains an open question. In this regard, Estrada,

Gaĺı and López-Salido (2013) examine the extent to which the inflation rates of the original 11
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euro area countries and other OECD economies have become synchronised over the period 1999-

2012, reporting strong evidence of convergence towards low inflation rates. They also show that

other advanced non-euro countries experience similar levels of convergence, which suggests that

EMU may not be responsible for the generalised decline in inflation.

4.2 Model setup and estimation results

We use monthly data on Harmonised Indices of Consumer Prices (HICP) for 25 European

economies over the period 1998:1-2014:12.7 In particular, we consider three groups of countries:

1. the original8 euro area members: Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Luxembourg, Netherlands, Portugal and Spain;

2. the new euro area participants: Cyprus, Estonia, Latvia, Lithuania, Malta and Slovakia;

3. other non-EMU countries: Bulgaria, Denmark, Iceland, Norway, Poland, Sweden and

United Kingdom.

We focus on year-on-year growth rates of HICP indices excluding energy and unprocessed

food, which are widely viewed as the relevant measure to track for inflation targeting purposes;

see for example Gaĺı (2002). As a result, we are left with T = 192 time series observations.

Figure 1, which contains the inflation rates for each country (solid blue line) together with the

inflation rate of the European Union (dashed black line), confirms the generalised downward

trend in inflation.

The econometric specification that we consider is essentially identical to the example consider

in section 2.1. Specifically, we assume that the inflation rate of country i in region r follows

yit = µi + ci0gxgt + ci1gxgt−1 + ci0rxrt + ci1rxrt−1 + uit,

xgt = αgxgt−1 + fgt,

xrt = αrxrt−1 + frt,

uit = αiuit−1 + vit,

where xg is a global factor which affects all European countries, xr is an orthogonal region-

specific factor which affects all countries within a region, ui is the idiosyncratic term of country

i and µi denotes its mean inflation rate. In this regard, it is important to emphasise that since

7Since our aim is to maximise the time span of our balanced sample, we exclude several countries for which
data start at later dates: Czech Republic and Slovenia (1999:12-), Hungary and Romania (2000:12-), and Croatia
and Switzerland (2004:12-).

8We include Greece among the original euro area even though its accession year was 2001.
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we effectively work with demeaned inflation rates, our dynamic bifactor model is silent about

cross-country differences in average inflation rates, which are taken as given.

We also assume that the global and regional factors affect the inflation rate of a country

not only through their contemporaneous values but also via their one-month lagged values with

country-specific loadings. Further, we assume that all factors (global, regional, and idiosyncratic)

follow orthogonal Ar(1) processes. Despite the apparent simplicity of our model, each series is

effectively the sum of three components: an Arma(1,1) global component, another Arma(1,1)

regional component and an idiosyncratic Ar(1) term.

We estimate our dynamic bifactor model using the EM algorithm developed in previous

sections. As starting values, we assume unit loadings on the contemporaneous and lagged

values of both common and regional factors, unit specific variances, autoregressive coefficients

set to 0.5 for both common and idiosyncratic factors, and 0.3 for regional factors. Importantly,

the scoring algorithm fails to achieve convergence from these initial values, which are very far

away from the optimum. To speed up the EM iterations, we employ just five Cochrane-Orcutt

iterations instead of continuing until convergence. Despite the large amount of parameters

involved (154), the algorithm performs remarkably well, as shown in Figure 2. The first EM

iteration yields a massive increase in the log-likelihood function, while subsequent iterations also

provide noticeable gains. As expected, though, after 200 iterations the improvements become

minimal. For that reason, we switched to a scoring algorithm with line searches at that stage,

which converged rather smoothly to the parameter estimates reported in Tables 1 and 2, together

with standard errors obtained on the basis of the analytical expressions for the information

matrix in appendix B.

Table 3 contains the results of joint significance tests for the dynamic loading coefficients

associated to the global (columns 1 and 2) and regional (columns 3 and 4) factors for each

country. Those tests confirm that with the possible exception of Iceland, all countries in our

sample are dynamically correlated. More importantly, they also show that some clusters of

countries are more correlated with each other than what a single factor model would allow for,

thereby confirming the need for a bifactor model. This is particularly noticeable for the Baltic

countries, but it also affects Norway, Sweden and the UK among those countries which have

never belonged to EMU.

From an empirical point of view, it is of substantive interest to look at the evolution and

persistence of those latent factors. Unfortunately, it is well known that the usual Wiener-

Kolmogorov filter can lead to filtering distortions at both ends of the sample. For that reason, we

wrote the model in a state-space form and applied the standard Kalman fixed interval smoother
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in the time domain with exact initial conditions derived from the stationary distribution of the

33 state variables (2 for the common factor and each of the regional factors and 1 for each of

the idiosyncratic ones; see appendix C for details).9

Smoothed versions of the global and regional factors are displayed in Figure 3. In panel

(a) we plot the estimated global factor jointly with the unweighted average of inflation rates

across countries in our sample, and the inflation rate of the European Union countries. For ease

of comparison, we re-scale both the global factor and the equally weighted inflation average to

have the same mean and variance as the European Union inflation. The smoothed global factor,

which with an estimated autocorrelation of 0.97 is rather persistent, tracks fairly well these two

measures over the sample. The main exception is the period 1999-2002, when the global factor is

significantly higher than the inflation rate of the European Union countries. Such discrepancies

are explained by two facts: (i) the European Union HICP is a consumption-weighed average

of country-specific price indices, and (ii) there are differences between our sample of countries

and the set of economies used to construct the European Union HICP.10 Since 2002, the global

factor generally trends downwards, in line with the other two measures. The other panels of

Figure 3 plot the estimated regional factors, which are scaled so that their innovations have unit

variance. Interestingly, the factor for the new entrants to the euro area is even more persistent

than the global factor (its autocorrelation is 0.98). In contrast, we do not observe statistically

significant persistence in the evolution of the other two regional factors. These results suggest

that some of the new entrant economies share a regional factor which drives the medium term

trends in inflation, while other regional factors have a predominant role at higher frequencies.

We revisit this question below.

Given the estimated factors and factor loadings, we can compute the contributions of global,

regional and idiosyncratic factors in driving the observed changes in prices across countries.

Figure 4 plots the results for all the countries in our sample. The global factor clearly drives

the downward trend in inflation for many countries, including Cyprus, Denmark, France, Italy,

Poland, Slovakia and Spain, among others. We also observe a sizeable role for the regional factor

for Estonia, Latvia, and Lithuania. For these Baltic economies, inflation dramatically swings

over the period 2005-2011. Conversely, the regional factor only plays a marginal role for the

9The main difference between the Wiener-Kolmogorov filtered values, xK
t|∞, and the Kalman filter smoothed

values, xK
t|T , results from the implicit dependence of the former on a doubly infinite sequence of past and future

observations. As shown by Fiorentini (1995) and Gómez (1999), though, they can be made numerically identical
by replacing both pre- and post- sample observations by their least squares projections onto the linear span of
the sample observations.

10Specifically, the weight of a country is its share of household final monetary consumption expenditure in the
total. The European Union HICP is constructed as the weighed average of the original 12 countries until 2004,
then it extends to 15 countries until 2006, 27 countries until 2013, and finally 28 countries until the end of the
sample.
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other new entrants, which did not experience such swings over the same period. In this regard,

it is worth noticing that the Baltic countries adopted the euro in the late part of the sample

(Estonia in 2011, Latvia in 2014 and Lithuania in 2015), while the other three entrants joined

the euro area earlier (Cyprus and Malta in 2008, Slovakia in 2009). Although the observed

differences in the volatility of inflation among the group of new entrant countries may be due to

their different timings in fulfilling the monetary union accession criteria, these results suggest

that EMU may have had a dampening effect on inflation fluctuations for all the new entrant

countries.

We complement our time domain results by decomposing the spectral density of each country

inflation series into the corresponding global, regional, and idiosyncratic components. Figure

5 show for each frequency the fraction of variance explained by each of those components. To

aid in the interpretation of the results, we have added vertical lines at those frequencies which

capture movements in the series at 2 and 1 years, and 6 and 3 months. As can be seen, the

global factor explains an important fraction of variance across many economies, especially at

lower frequencies. This result confirms the view that most countries experience a common

downward trend in inflation. Nevertheless, we also observe that the global factor plays virtually

no role in other economies such as Norway, Sweden, and United Kingdom, whose correlations

are mostly driven by the third regional factor. This somewhat surprising result may be partly

explained by the fact that energy and food components are by construction excluded from our

analysis. The regional factor of new entrants affects particularly Estonia, Latvia, and Lithuania,

which confirms our previous time domain findings. In contrast, regional factors do not seem to

influence medium term trends for most other countries.

4.3 Robustness analysis

To assess the reliability of the results described in the previous section, we conduct three

robustness exercises. First, we considered a version of the model with just a global factor and no

regional factors. Panel (a) of Figure 6 shows that the new smoothed global factor tracks fairly

well its counterpart in the baseline model with regional factors. Hardly surprisingly, though, the

single factor model leads to a markedly worse fit: its log-likelihood function at the optimum is

-1571.2, while it is -1460.4 for the bifactor model.

Second, we also considered an alternative model with a subdivision of the core euro area

region to single out those countries which experienced the most dramatic drops in interest rates

prior to their accession to EMU. This is an important distinction to explore as there has been

considerable debate on whether the conduct of monetary policy by the ECB since its inception

has resulted in unwanted effects on those economies; see Estrada and Saurina (2014) for a
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discussion of the Spanish case. By looking at the evolution of real interest differentials between

1995 and 1999, we interestingly find that the additional group is composed by Portugal, Ireland,

Italy, Greece and Spain (the so-called PIIGS). Unlike what happened in the case of the single

factor model, we find that a dynamic bifactor model with four regions, including two within the

core euro area, does not lead to such a huge improvement in fit. In addition, the interpretation

of the new regional factors is inconclusive. Panels (c) and (d) of Figure 6 plot the smoothed

factors for PIIGS and Non-PIIGS, jointly with the core euro area factor obtained in the baseline

model with only three regions. While the correlation coefficient of the smoothed hard core euro

area countries with its baseline counterpart is .28, the analogous coefficient for the PIIGS factor

is -.46.

Finally, we have also experimented with an alternative model in which we subdivided instead

the new entrants euro area region into two sub-regions: Baltic countries (Estonia, Latvia, and

Lithuania) and the rest (Cyprus, Malta, and Slovakia). This model provides a substantial better

fit. This is confirmed by Panels (e) and (f) of Figure 6, which plot the smoothed factors for Baltic

and Non-Baltic countries, jointly with the new entrants factor in the baseline specification. As

can be seen, the Baltic countries factor tracks very well the original new entrants factor, while

the Non-Baltic countries factor is markedly unsynchronised, especially over the early 2000’s,

which is in line with the results we discussed in the previous section.

5 Conclusions and extensions

We generalise the frequency domain version of the EM algorithm for dynamic factor models

in Fiorentini, Galesi and Sentana (2014) to bifactor models in which pervasive common factors

are complemented by block factors. We explain how to efficiently exploit the sparsity of the

loading matrix to reduce the computational burden so much that researchers can estimate such

models by maximum likelihood with a large number of series from multiple regions. We find

that the EM algorithm leads to substantial likelihood gains starting from arbitrary initial values.

Unfortunately, it slows down considerably near the optimum. For that reason, we also derive

convenient expressions for the frequency domain scores and information matrix that allow us to

switch to the scoring method at that point.

In an empirical application we explore the ability of a bifactor model to capture inflation

dynamics across European countries. Specifically, we apply our procedure to year-on-year core

inflation rates for 25 European countries over the period 1999:1-2014:12. We estimate a model

with a common factor and three regional factors: original euro area members, new entrants and

others. Overall, our results suggest that a global factor drives the medium-long term trends of
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inflation across most European economies, which is consistent with the evidence in the previous

literature. But we also find a persistent regional factor driving the inflation trends of the Baltic

countries, which are new entrants to the euro area. In contrast, we find that the regional factors

for most other countries affect mainly their short run movements.

An extension of our algorithm to models with Arma latent variables along the lines of

Fiorentini, Galesi and Sentana (2014) would be conceptually straightforward, but its successful

practical implementation would require some experimentation. It would also be interesting to

compare the forecasting accuracy of the dynamic bifactor model relative to its single-factor

counterpart. Our empirical results suggest that regional factors affect the short run movements

of inflation for most countries, hence the inclusion of regional factors in a forecasting model

might yield more accurate inflation forecasts. Another empirically relevant extension would

be to modify our procedures to deal with unbalanced data sets with different time spans for

different series (see Bańbura and Modugno (2014) for an extension of the time domain version

of the EM algorithm that can deal with those cases). It would also be very useful to develop

a clustering algorithm that would automatically assign individual series to blocks (see Francis,

Owyang, and Savaşçin (2012), as well as Bonhomme and Manresa (2015) for some related work

in a panel data context). Finally, it would be convenient to extend our algorithm to dynamic

trifactor models, in which each block has a bifactor structure of its own. Such models would

be particularly well suited to the analysis of international business cycles using a large set of

country specific macro variables. All these important issues deserve further investigation.
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Appendices

A Spectral scores

The score function for all the parameters other than the mean is given by (16). Since

dGyy(λ) = [dC(e−iλ)]Gxx(λ)C′(eiλ) + C(e−iλ)[dGxx(λ)]C′(eiλ)

+C(e−iλ)Gxx(λ)[dC′(eiλ)] + dGuu(λ)

(see Magnus and Neudecker (1988)), it immediately follows that

dvec [Gyy(λ)] =
[
C(eiλ)Gxx(λ)⊗ IN

]
dvec[C(e−iλ)]

+
[
IN ⊗C(e−iλ)Gxx(λ)

]
KN,R+1dvec[C(eiλ)]

+
[
C(eiλ)⊗C(e−iλ)

]
ER+1dvecd [Gxx(λ)] + ENdvecd [Guu(λ)]

=
[
C(eiλ)Gxx(λ)⊗ IN

]
dvec[C(e−iλ)] + KNN

[
C(e−iλ)Gxx(λ)⊗ IN

]
dvec[C(eiλ)]

+
[
C(eiλ)⊗C(e−iλ)

]
ER+1dvecd [Gxx(λ)] + ENdvecd [Guu(λ)] ,

where
E′m = (e1me′1m| . . . |emme′mm),

(e1m| . . . |emm) = Im,
(A1)

is the uniquem2×m “diagonalisation” matrix that transforms vec(A) into vecd(A) as vecd(A) =

E′mvec(A) and Kmn is the commutation matrix of orders m and n (see Magnus (1988)). Further,

we can use (6) to express dvec [C(z)] in terms of its non-zero elements dc(z) by means of the

following linear transformation
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

dc1g(z)
...

dcrg(z)
...

dcRg(z)
dc11(z)

...
0
...
0
...
0
...

dcrr(z)
...
0
...
0
...
0
...

dcRR(z)



=



IN1 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

. . . 0 0 . . . 0 . . . 0

0 . . . INr . . .
...

...
. . .

...
. . .

...

0
. . .

...
. . .

... 0 . . . 0 . . . 0
0 . . . 0 . . . INR

0 . . . 0 . . . 0

0 . . . 0 . . . 0 IN1 . . .
... . . .

...
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . INr . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
0 . . . 0 . . . 0 0 . . . 0 . . . INR





dc1g(z)
...

dcrg(z)
...

dcRg(z)
dc11(z)

...
dcrr(z)

...
dcRR(z)



= (e1g, . . . , erg, . . . , eRg, e11, . . . , err, . . . , eRR) dc(z) = Edc(z),

where E contains a block analogue to the diagonalisation matrix above. Consequently, the

Jacobian of vec [Gyy(λ)] will be

∂vec [Gyy(λ)]

∂θ′x
=

[
C(eiλ)⊗C(e−iλ)

]
ER+1

∂vecd [Gxx(λ)]

∂θ′x
∂vec [Gyy(λ)]

∂ψ′
= EN

∂vecd [Guu(λ)]

∂ψ′

∂vec [Gyy(λ)]

∂θ′u
= EN

∂vecd [Guu(λ)]

∂θ′u
∂vec [Gyy(λ)]

∂c′rgk
=

{ [
e−ikλC(eiλ)Gxx(λ)⊗ IN

]
+KNN

[
eikλC(e−iλ)Gxx(λ)⊗ IN

] } erg

∂vec [Gyy(λ)]

∂c′rrl
=

{ [
e−ilλC(eiλ)Gxx(λ)⊗ IN

]
+KNN

[
eilλC(e−iλ)Gxx(λ)⊗ IN

] } err
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where we have used the fact that

∂vec [C(z)]

∂c′rgk
= E



0
...

INr

...
0
0
...
0
...
0



zk = ergz
k

and

∂vec [C(z)]

∂c′rrl
= E



0
0
...
0
0
...
...

INr

...
0



zl = errz
l

since

∂crg(z)

∂c′rgk
= zkINr

∂crr(z)

∂c′rrl
= zlINr

in view of (2) and (3).

If we combine those expressions with the fact that

[
G−1yy(λj)⊗G′−1yy (λj)

]
vec

[
zycj zy′j −G′yy(λj)

]
= vec

[
2πG′−1yy (λ)zycj zy′j G′−1yy (λ)−G′−1yy (λ)

]
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and I′yy(λ) = zycj zy′j we obtain:

2dθx(λ; θ) =
∂vecd′[Gxx(λ)]

∂θx
E′R+1

[
C′(eiλ)⊗C′(e−iλ)

]
vec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
=

∂vecd′[Gxx(λ)]

∂θx
vecd

[
2πC′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)C(eiλ)

−C′(e−iλ)G′−1yy (λ)C(eiλ)

]

2dψ(λ; θ) =
∂vecd′[Guu(λ)]

∂ψ
vecd

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
2dθu(λ; θ) =

∂vecd′[Guu(λ)]

∂θu
vecd

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]
2dcrgk(λ; θ) = e′rg

{ [
Gxx(λ)C′(eiλ)e−ikλ ⊗ IN

]
+
[
Gxx(λ)C′(e−iλ)eikλ ⊗ IN

]
KNN

}
vec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]

= e′rg


e−ikλvec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)C(eiλ)Gxx(λ)

−G′−1yy (λ)C(eiλ)Gxx(λ)

]
+eikλvec

[
2πG−1yy(λ)Iyy(λ)G−1yy(λ)C(e−iλ)Gxx(λ)

−G−1yy(λ)C(e−iλ)Gxx(λ)

]


2dcrrl(λ; θ) = e′rr

{ [
Gxx(λ)C′(eiλ)e−ilλ ⊗ IN

]
+
[
Gxx(λ)C′(e−iλ)eilλ ⊗ IN

]
KNN

}
vec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ)

]

= e′rr


e−ilλvec

[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)C(eiλ)Gxx(λ)

−G′−1yy (λ)C(eiλ)Gxx(λ)

]
+eilλvec

[
2πG−1yy(λ)Iyy(λ)G−1yy(λ)C(e−iλ)Gxx(λ)

−G−1yy(λ)C(e−iλ)Gxx(λ)

]
 ,

where we have used the fact that K′NN = KNN = K−1NN (see again Magnus (1988)).

Let us now try to interpret the different components of this expression. To do so, it is

convenient to further assume that Gxx(λ) > 0 and Guu(λ) > 0.

The first thing to note is that

2πC′(e−iλ)G′−1yy (λ)I′yy(λ)G′−1yy (λ)C(eiλ)−C′(e−iλ)G′−1yy (λ)C(eiλ)

= G−1xx(λ)
[
2πI′xKxK (λ)−G′xKxK (λ)

]
G−1xx(λ).

Given that
∂vecd [Gxx(λ)]

∂θ′xg
=
∂Gxgxg(λ)

∂θ′xg
e1,R+1,

the component of the score associated to the parameters that determine Gxgxg(λ) will be the

cross-product across frequencies of the product of the derivatives of the spectral density of xgt

with the difference between the periodogram and spectrum of xKgt inversely weighted by the

squared spectral density of xgt. Thus, we can interpret this term as arising from a marginal

log-likelihood function for xgt that takes into account the unobservability of xgt. Exactly the

same comments apply to the scores of the parameters that determine Gxrxr(λ) for r = 1, . . . , R

in view of the fact that
∂vecd [Gxx(λ)]

∂θ′xr
=
∂Gxrxr(λ)

∂θ′xr
er+1,R+1.
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Similarly, given that

2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)−G′−1yy (λ) = G′−1uu (λ)
[
2πI′uKuK (λ)−G′uKuK (λ)

]
G′−1uu (λ),

∂vecd [Guu(λ)]

∂ψi
=
∂Guiui(λ)

∂ψi
eiN

and
∂vecd [Guu(λ)]

∂θ′ui
=
∂Guiui(λ)

∂θ′ui
eiN ,

the component of the score associated to the parameters that determine Guiui(λ) will be the

cross-product across frequencies of the product of the derivatives of the spectral density of uit

with the difference between the periodogram and spectrum of uKit inversely weighted by the

squared spectral density of uit. Once again, we can interpret this term as arising from the

conditional log-likelihood function of uit given xt that takes into account the unobservability of

uti .

Finally, to interpret the scores of the distributed lag coefficients it is worth noting that

e−ikλvec
[
2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)C(eiλ)Gxx(λ)−G′−1yy (λ)C(eiλ)Gxx(λ)

]
and

eikλvec
[
2πG−1yy(λ)Iyy(λ)G−1yy(λ)C(e−iλ)Gxx(λ)−G−1yy(λ)C(e−iλ)Gxx(λ)

]
are complex conjugates because G−1yy(λ) is Hermitian and the conjugate of a product is the

product of the conjugates, so it suffices to analyse one of them. On this basis, if we write

2πG′−1yy (λ)I′yy(λ)G′−1yy (λ)C(eiλ)Gxx(λ)−G′−1yy (λ)C(eiλ)Gxx(λ)

= G′−1uu (λ)
[
2πI′xKuK (λ)−G′xKuK (λ)

]
,

the components of the score associated to crgk and will be the sum across frequencies of terms

of the form

G′−1uu (λ)
[
2πI′xKuK (λ)−G′xKuK (λ)

]
e−ikλ

(and their conjugate transposes), which capture the difference between the cross-periodogram

and cross-spectrum of xKgt−r and uKit inversely weighted by the spectral density of uit. Exactly

the same comments apply to the scores of crrl. Therefore, we can understand those terms as

arising from the normal equation in the spectral regression of yit onto xg,t+mg , . . . xg,t−ng and

xr,t+mr , . . . xrt−nr but taking into account the unobservability of the regressors.

As usual, we can exploit the Woodbury formula, as in expressions (8), (10), (11), (26), (30)

and (31), to greatly speed up the computations.
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B Spectral information matrix

Given the expression for the Jacobian matrix in derived in appendix A, we will have that

∂vec′ [Gyy(λ)]

∂θx
=

∂vecd′ [Gxx(λ)]

∂θx
E′R+1

[
C′(eiλ)⊗C′(e−iλ)

]
∂vec′ [Gyy(λ)]

∂ψ
=

∂vecd′ [Guu(λ)]

∂ψ′
E′N

∂vec′ [Gyy(λ)]

∂θu
=

∂vecd′ [Guu(λ)]

∂θu
E′N

∂vec′ [Gyy(λ)]

∂crgk
= e′rg

{ [
e−ikλGxx(λ)C′(eiλ)⊗ IN

]
+
[
eikλGxx(λ)C′(e−iλ)⊗ IN

]
KNN

}
∂vec′ [Gyy(λ)]

∂crrl
= e′rr

{ [
e−ilλGxx(λ)C′(eiλ)⊗ IN

]
+
[
eilλGxx(λ)C′(e−iλ)⊗ IN

]
KNN

}
and {

∂vec′ [Gyy(λ)]

∂θx

}∗
=

[
C(e−iλ)⊗C(eiλ)

]
ER+1

∂vecd [Gxx(λ)]

∂θ′x{
∂vec′ [Gyy(λ)]

∂ψ

}∗
= EN

∂vecd [Guu(λ)]

∂ψ′{
∂vec′ [Gyy(λ)]

∂θu

}∗
= EN

∂vecd [Guu(λ)]

∂θ′u{
∂vec′ [Gyy(λ)]

∂crgk

}∗
=

{ [
eikλC(e−iλ)Gxx(λ)⊗ IN

]
+KNN

[
e−ikλC(eiλ)Gxx(λ)⊗ IN

] } erg{
∂vec′ [Gyy(λ)]

∂crrl

}∗
=

{ [
eilλC(e−iλ)Gxx(λ)⊗ IN

]
+KNN

[
e−ilλC(eiλ)Gxx(λ)⊗ IN

] } err

Hence, it is straightforward to see that the elements of the block of the information matrix

(19) corresponding to the autoregressive parameters for the common factors will be

Qθxθx(λ; θ) =
∂vec′ [Gyy(λ)]

∂θx

[
G−1yy(λ)⊗G′−1yy (λ)

]{∂vec′ [Gyy(λ)]

∂θx

}∗
=
∂vecd′[Gxx(λ)]

∂θx
E′R+1

[
C′(eiλ)⊗C′(e−iλ)

] [
G−1yy(λ)⊗G′−1yy (λ)

]
×
[
C(e−iλ)⊗C(eiλ)

]
ER+1

∂vecd[Gxx(λ)]

∂θ′x

=
∂vecd′[Gxx(λ)]

∂θx

{[
C′(eiλ)G−1yy(λj)C(e−iλ)

]
�
[
C′(e−iλ)G′−1yy (λj)C(eiλ)

]} ∂vecd[Gxx(λ)]

∂θ′x
,

where � denotes the Hadamard (or element by element) product of two matrices of equal size.

Similarly,

Qθuθu(λ; θ) =
∂vec′ [Gyy(λ)]

∂θu

[
G−1yy(λ)⊗G′−1yy (λ)

]{∂vec′ [Gyy(λ)]

∂θu

}∗
=
∂vecd′[Guu(λ)]

∂θu
E′N

[
G−1yy(λ)⊗G′−1yy (λ)

]
EN

∂vecd[Guu(λ)]

∂θ′u

=
∂vecd′[Guu(λ)]

∂θu

[
G−1yy(λ)�G′−1yy (λ)

] ∂vecd[Guu(λ)]

∂θ′u
,
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with an almost identical expression for Qψψ(λ; θ).

Also,

Qcrgkcrrl(λ; θ) =
∂vec′[Gyy(λ)]

∂crgk

[
G−1yy(λ)⊗G′−1yy (λ)

]{∂vec′ [Gyy(λ)]

∂crrl

}∗
= e′rg

{ [
e−ikλGxx(λ)C′(eiλ)⊗ IN

]
+
[
eikλGxx(λ)C′(e−iλ)⊗ IN

]
KNN

}[
G−1yy(λ)⊗G′−1yy (λ)

]
×
{ [

eilλC(e−iλ)Gxx(λ)⊗ IN
]

+KNN

[
e−ilλC(eiλ)Gxx(λ)⊗ IN

] } err

= e′rg


e−i(k+l)λ

[
Gxx(λ)C′(eiλ)⊗ IN

] [
G−1yy(λ)⊗G′−1yy (λ)

]
KNN

[
C(eiλ)Gxx(λ)⊗ IN

]
ei(k+l)λ

[
Gxx(λ)C′(e−iλ)⊗ IN

]
KNN

[
G−1yy(λ)⊗G′−1yy (λ)

] [
C(e−iλ)Gxx(λ)⊗ IN

]
e−i(k−l)λ

[
Gxx(λ)C′(eiλ)⊗ IN

] [
G−1yy(λ)⊗G′−1yy (λ)

] [
C(e−iλ)Gxx(λ)⊗ IN

]
ei(k−l)λ

[
Gxx(λ)C′(e−iλ)⊗ IN

]
KNN

[
G−1yy(λ)⊗G′−1yy (λ)

]
KNN

[
C(eiλ)Gxx(λ)⊗ IN

]
 err

= e′rg


e−i(k+l)λ

[
Gxx(λ)C′(eiλ)⊗ IN

] [
G−1yy(λ)⊗G′−1yy (λ)

] [
IN ⊗C(eiλ)Gxx(λ)

]
KN,R+1

ei(k+l)λ
[
Gxx(λ)C′(e−iλ)⊗ IN

] [
G′−1yy (λ)⊗G−1yy(λ)

] [
IN ⊗C(e−iλ)Gxx(λ)

]
KN,R+1

e−i(k−l)λ
[
Gxx(λ)C′(eiλ)⊗ IN

] [
G−1yy(λ)⊗G′−1yy (λ)

] [
C(e−iλ)Gxx(λ)⊗ IN

]
ei(k−l)λ

[
Gxx(λ)C′(e−iλ)⊗ IN

] [
G′−1yy (λ)⊗G−1yy(λ)

] [
C(eiλ)Gxx(λ)⊗ IN

]
 err

= e′rg


e−i(k+l)λ

[
Gxx(λ)C′(eiλ)G−1yy(λ)⊗G′−1yy (λ)C(eiλ)Gxx(λ)

]
KN,R+1

ei(k+l)λ
[
Gxx(λ)C′(e−iλ)G′−1yy (λ)⊗G−1yy(λ)C(e−iλ)Gxx(λ)

]
KN,R+1

e−i(k−l)λ
[
Gxx(λ)C′(eiλ)G−1yy(λj)C(e−iλ)Gxx(λ)⊗G′−1yy (λ)

]
ei(k−l)λ

[
Gxx(λ)C′(e−iλ)G′−1yy (λj)C(eiλ)Gxx(λ)⊗G−1yy(λ)

]
 err,

where we have made use of the properties of the commutation matrix.

Further

Qθxθu(λ; θ) =
∂vec′[Gyy(λ)]

∂θx

[
G−1yy(λ)⊗G′−1yy (λ)

] ∂vec [Gyy(λ)]

∂θ′u
∂vecd′[Gxx(λ)]

∂θx
E′R+1

[
C′(eiλ)⊗C′(e−iλ)

] [
G−1yy(λ)⊗G′−1yy (λ)

]
EN

∂vecd[Guu(λ)]

∂θ′u

=
∂vecd′[Gxx(λ)]

∂θx

[
C′(eiλ)G−1yy(λ)�C′(e−iλ)G′−1yy (λ)

] ∂vecd[Guu(λ)]

∂θ′u
,

Qθxcrrl(λ; θ) =
∂vec′[Gyy(λ)]

∂θx

[
G−1yy(λ)⊗G′−1yy (λ)

] ∂vec [Gyy(λ)]

∂c′rrl

=
∂vecd′[Gxx(λ)]

∂θx
E′R+1

[
C′(eiλ)⊗C′(e−iλ)

]
×
[
G−1yy(λ)⊗G′−1yy (λ)

]{ [
eilλC(e−iλ)Gxx(λ)⊗ IN

]
+KNN

[
e−ilλC(eiλ)Gxx(λ)⊗ IN

] } err

=
∂vecd′[Gxx(λ)]

∂θx
E′R+1

[
eilλC′(eiλ)G−1yy(λ)C(e−iλ)Gxx(λ)⊗C′(e−iλ)G′−1yy (λ)

+e−ilλC′(e−iλ)G′−1yy (λ)C(eiλ)Gxx(λ)⊗C′(eiλ)G−1yy(λ)

]
err,

and

Qθucrrl(λ; θ) =
∂vec′[Gyy(λ)]

∂θu

[
G−1yy(λ)⊗G′−1yy (λ)

] ∂vec [Gyy(λ)]

∂c′rrl

=
∂vecd′[Gxx(λ)]

∂θu
E′N

[
G−1yy(λ)⊗G′−1yy (λ)

]{ [
eilλC(e−iλ)Gxx(λ)⊗ IN

]
+KNN

[
e−ilλC(eiλ)Gxx(λ)⊗ IN

] } err

=
∂vecd′[Gxx(λ)]

∂θu
E′N

[
eilλG−1yy(λ)C(e−iλ)Gxx(λ)⊗G′−1yy (λ)

+e−ilλG′−1yy (λ)C(eiλ)Gxx(λ)⊗G−1yy(λ)

]
err,
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where we have used the properties of the diagonalisation and commutation matrices, and in

particular, that E′mKmm = E′m. In fact, further simplification can be achieved by exploiting

(A1). The formulae for the remaining elements are entirely analogous. In this regard, it is

important to note that all the above expressions can be written as the sum of some matrix and

its complex conjugate transpose, as one would expect given that the information matrix is real.

If we assume that both Gxx(λ) and Guu(λ) are strictly positive, we can use again the

Woodbury formula to considerably simplify the previous expressions.

Given that

G−1yy(λj) =
[
G−1uu(λ)−G−1uu(λ)C(e−iλ)Ω(λ)C′(eiλ)G−1uu(λ)

]
,

G′−1yy (λj) =
[
G−1uu(λ)−G−1uu(λ)C(eiλ)Ω′(λ)C′(e−iλ)G−1uu(λ)

]
,

we will have that

C′(eiλ)G−1yy(λ) = C′(eiλ)G−1uu(λ)−C′(eiλ)G−1uu(λ)C(e−iλ)Ω(λ)C′(eiλ)G−1uu(λ)

= G−1xx(λ)Ω(λ)C′(eiλ)G−1uu(λ)

C′(e−iλ)G′−1yy (λj) = C′(e−iλ)G−1uu(λ)−C′(e−iλ)G−1uu(λ)C(eiλ)Ω′(λ)C′(e−iλ)G−1uu(λ)

= G−1xx(λ)Ω′(λ)C′(e−iλ)G−1uu(λ),

where we have used the fact that

C′(eiλ)G−1uu(λ)C(e−iλ)Ω(λ) = IR+1 −G−1xx(λ)Ω(λ)

and

C′(e−iλ)G−1uu(λ)C(eiλ)Ω′(λ) = IR+1 −G−1xx(λ)Ω′(λ).

As a result,and

C′(eiλ)G−1yy(λj)C(e−iλ) = G−1xx(λ)Ω(λ)C′(eiλ)G−1uu(λ)C(e−iλ),

Gxx(λ)C′(eiλ)G−1yy(λ) = Ω(λ)C′(eiλ)G−1uu(λ)

Gxx(λ)C′(e−iλ)G′−1yy (λj) = Ω′(λ)C′(e−iλ)G−1uu(λ),

and

Gxx(λ)C′(eiλ)G−1yy(λj)C(e−iλ)Gxx(λ) = Ω(λ)C′(eiλ)G−1uu(λ)C(e−iλ)Gxx(λ).

In addition, the special structure of C(z) in (6) can also be successfully exploited to speed

up the calculations. In particular,

C′(eiλ)G−1uu(λ)C(eiλ) = Ω−1(λ)−G−1xx(λ),
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where Ω−1(λ) has been defined in (12). Further speed gains can be achieved by noticing that

c′rr(e
iλ)G−1uu(λ)crr(e

−iλ) =
∑
j∈Nr

∥∥cj(eiλ)
∥∥2

Gujuj (λ)
.

C State space representation of dynamic bifactor models with
AR(1) factors

There are several ways of casting the dynamic factor model in (4) into state-space format,

but the most straightforward one is to consider a state vector of dimension 2(R + 1) + N in

which the Ar(1) processes for both global and regional factors are written as a bivariate Var(1)

in (xt, xt−1), and the N Ar(1) processes for the specific factors are written as first order Ars

in uit. As a result, we can write the measurement equation without an error term as

yt = Zαt,

where the state vector is

αt = (x′t,x
′
t−1,u

′
t)
′,

xt = (xgt, x1t, . . . , xRt)
′,

ut = (u1t, . . . , uit, . . . , uNt)
′,

and Z is the N × (N + 2R+ 2) matrix

Z = [C0|C1|IN ],

with C0,C1being N × (R+ 1) sparse matrices of contemporaneous and lagged loadings.

Consequently, the transition equation is simply xt
xt−1
ut

 =

 ρx 0 0
IR+1 0 0

0 0 ρu

 xt−1
xt−2
ut−1

+

 ft
0
vt

 ,
with

ρx = diag(ρxg , ρx1 , . . . , ρxR),

ρu = diag(ρu1 , . . . , ρuN ),

Cov(ft) = IR+1,

Cov(vt) = Ψ =diag(ψ1, . . . , ψN ).
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Given our covariance stationarity conditions, the initial condition for the state variables will

trivially be α1|0 = 0(N+2R+2)x1, and

P1|0 =

 Qx0 Qx1 0
Qx1 Qx0 0
0 0 Qu0

 ,
where Qx0 and Qu0 are diagonal matrices with the unconditional variance of the corresponding

Ar(1) processes along the main diagonal, while Qx1 is also diagonal with the first autocovariance

of the global and regional factors Ar(1) processes on the main diagonal.
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Table 1: Dynamic Loadings Estimates

Country cgi,0 std.err. cgi,1 std.err. cri,0 std.err. cri,1 std.err.

Core euro area
Austria -0.024 (0.017) 0.021 (0.017) -0.058 (0.018) 0.021 (0.019)

Belgium 0.041 (0.021) 0.000 (0.021) -0.170 (0.026) 0.000 (0.033)

Finland -0.001 (0.016) 0.054 (0.016) -0.043 (0.016) 0.054 (0.016)

France 0.041 (0.012) 0.011 (0.012) 0.019 (0.011) 0.011 (0.012)

Germany -0.001 (0.018) 0.013 (0.018) -0.006 (0.020) 0.013 (0.020)

Greece 0.357 (0.039) -0.070 (0.039) 0.083 (0.036) -0.070 (0.036)

Ireland 0.160 (0.023) 0.022 (0.023) 0.049 (0.022) 0.022 (0.022)

Italy 0.117 (0.017) -0.001 (0.017) 0.047 (0.021) -0.001 (0.021)

Luxembourg -0.153 (0.019) 0.206 (0.020) 0.044 (0.020) 0.206 (0.020)

Netherlands 0.093 (0.019) -0.005 (0.019) -0.065 (0.019) -0.005 (0.019)

Portugal 0.185 (0.026) 0.021 (0.026) 0.014 (0.026) 0.021 (0.026)

Spain 0.187 (0.023) 0.007 (0.023) 0.036 (0.023) 0.007 (0.023)

New entrants euro area

Cyprus 0.286 (0.036) -0.145 (0.036) -0.063 (0.047) -0.145 (0.047)

Estonia 0.269 (0.031) -0.033 (0.030) 0.117 (0.049) -0.033 (0.046)

Latvia 0.148 (0.037) 0.086 (0.037) 0.215 (0.076) 0.086 (0.087)

Lithuania 0.162 (0.034) 0.013 (0.033) 0.166 (0.059) 0.013 (0.057)

Malta 0.148 (0.036) -0.015 (0.036) 0.019 (0.050) -0.015 (0.050)

Slovakia 0.390 (0.035) 0.000 (0.035) -0.022 (0.042) 0.000 (0.041)

Outside euro area

Bulgaria 0.472 (0.060) -0.098 (0.060) 0.036 (0.065) -0.098 (0.064)

Denmark 0.077 (0.015) 0.028 (0.015) 0.035 (0.018) 0.028 (0.018)

Iceland 0.078 (0.065) 0.063 (0.065) 0.038 (0.074) 0.063 (0.073)

Norway -0.006 (0.021) -0.006 (0.021) -0.046 (0.031) -0.006 (0.027)

Poland 0.546 (0.043) -0.149 (0.043) -0.005 (0.044) -0.149 (0.042)

Sweden -0.019 (0.017) 0.025 (0.017) 0.007 (0.025) 0.025 (0.021)

United Kingdom 0.026 (0.016) -0.019 (0.015) 0.038 (0.027) -0.019 (0.021)



Table 2: Autoregressive Coefficients Estimates

Country α std.err. ψ std.err.

Global 0.9736 (0.017) 1.000

Core euro area 0.2810 (0.207) 1.000

New entrants euro area 0.9828 (0.013) 1.000

Outside euro area -0.1392 (0.302) 1.000

Core euro area

Austria 0.936 (0.025) 0.049 (0.005)

Belgium 0.912 (0.033) 0.033 (0.007)

Finland 0.974 (0.016) 0.041 (0.004)

France 0.948 (0.023) 0.022 (0.002)

Germany 0.887 (0.033) 0.063 (0.006)

Greece 0.941 (0.025) 0.194 (0.022)

Ireland 0.983 (0.011) 0.079 (0.009)

Italy 0.663 (0.071) 0.051 (0.006)

Luxembourg 0.852 (0.039) 0.049 (0.006)

Netherlands 0.970 (0.017) 0.055 (0.006)

Portugal 0.898 (0.034) 0.107 (0.011)

Spain 0.899 (0.035) 0.080 (0.009)

New entrants euro area

Cyprus 0.805 (0.046) 0.213 (0.024)

Estonia 0.956 (0.028) 0.106 (0.013)

Latvia 0.977 (0.024) 0.113 (0.027)

Lithuania 0.960 (0.026) 0.147 (0.018)

Malta 0.799 (0.045) 0.268 (0.028)

Slovakia 0.981 (0.013) 0.135 (0.016)

Outside euro area

Bulgaria 0.968 (0.018) 0.505 (0.055)

Denmark 0.918 (0.030) 0.036 (0.004)

Iceland 0.980 (0.013) 0.705 (0.072)

Norway 0.940 (0.025) 0.066 (0.009)

Poland 0.986 (0.010) 0.171 (0.023)

Sweden 0.953 (0.022) 0.044 (0.005)

United Kingdom 0.973 (0.016) 0.032 (0.004)



Table 3: Significance of Dynamic Loadings

H0 : cgi,0 = cgi,1 = 0 H0 : cri,0 = cri,1 = 0

Country Wald test p-value Wald test p-value

Core euro area

Austria 3.07 (0.216) 15.44 (0.000)

Belgium 5.38 (0.068) 56.38 (0.000)

Finland 11.26 (0.004) 7.92 (0.019)

France 13.88 (0.001) 4.29 (0.117)

Germany 0.55 (0.760) 5.83 (0.054)

Greece 86.60 (0.000) 5.99 (0.050)

Ireland 47.22 (0.000) 6.40 (0.041)

Italy 61.32 (0.000) 12.23 (0.002)

Luxembourg 119.75 (0.000) 6.42 (0.041)

Netherlands 23.51 (0.000) 16.88 (0.000)

Portugal 53.15 (0.000) 0.42 (0.812)

Spain 65.92 (0.000) 5.68 (0.058)

New entrants euro area

Cyprus 64.54 (0.000) 2.21 (0.330)

Estonia 78.72 (0.000) 25.96 (0.000)

Latvia 17.35 (0.000) 66.20 (0.000)

Lithuania 22.60 (0.000) 30.37 (0.000)

Malta 19.21 (0.000) 0.40 (0.817)

Slovakia 125.00 (0.000) 0.47 (0.790)

Outside euro area

Bulgaria 64.18 (0.000) 0.88 (0.644)

Denmark 30.05 (0.000) 5.75 (0.057)

Iceland 2.36 (0.308) 0.68 (0.710)

Norway 0.18 (0.915) 13.52 (0.001)

Poland 164.30 (0.000) 2.51 (0.285)

Sweden 3.18 (0.204) 8.32 (0.016)

United Kingdom 3.78 (0.151) 11.84 (0.003)



Fi
gu

re
1:

Eu
ro
pe

an
In
fla

tio
n
R
at
es

19
99

20
02

20
05

20
08

20
11

20
14

0

0.
51

1.
52

2.
53

3.
5

Percent changes

A
us

tri
a

m
e
a
n
:
 
 
1
.
7
3

s
t
d
.
 
d
e
v
.
:
 
0
.
6
3

19
99

20
02

20
05

20
08

20
11

20
14

-1

-0
.50

0.
51

1.
52

2.
53

3.
5

Percent changes

B
el

gi
um

m
e
a
n
:
 
 
1
.
7
0

s
t
d
.
 
d
e
v
.
:
 
0
.
5
1

19
99

20
02

20
05

20
08

20
11

20
14

-1

-0
.50

0.
51

1.
52

2.
53

3.
54

Percent changes

Fi
nl

an
d

m
e
a
n
:
 
 
1
.
7
0

s
t
d
.
 
d
e
v
.
:
 
0
.
9
2

19
99

20
02

20
05

20
08

20
11

20
14

0

0.
51

1.
52

2.
53

Percent changes

Fr
an

ce

m
e
a
n
:
 
 
1
.
4
3

s
t
d
.
 
d
e
v
.
:
 
0
.
5
9

19
99

20
02

20
05

20
08

20
11

20
14

-0
.50

0.
51

1.
52

2.
53

Percent changes

G
er

m
an

y

m
e
a
n
:
 
 
1
.
1
8

s
t
d
.
 
d
e
v
.
:
 
0
.
5
5

19
99

20
02

20
05

20
08

20
11

20
14

-4-3-2-1012345

Percent changes

G
re

ec
e

m
e
a
n
:
 
 
2
.
1
6

s
t
d
.
 
d
e
v
.
:
 
1
.
7
7

19
99

20
02

20
05

20
08

20
11

20
14

-4-3-2-10123456

Percent changes

Ire
la

nd

m
e
a
n
:
 
 
1
.
8
8

s
t
d
.
 
d
e
v
.
:
 
2
.
0
5

19
99

20
02

20
05

20
08

20
11

20
14

0

0.
51

1.
52

2.
53

3.
5

Percent changes

Ita
ly

m
e
a
n
:
 
 
1
.
9
6

s
t
d
.
 
d
e
v
.
:
 
0
.
6
0

19
99

20
02

20
05

20
08

20
11

20
14

-1
.5-1

-0
.50

0.
51

1.
52

2.
53

3.
5

Percent changes

Lu
xe

m
bo

ur
g

m
e
a
n
:
 
 
2
.
2
8

s
t
d
.
 
d
e
v
.
:
 
0
.
5
8

19
99

20
02

20
05

20
08

20
11

20
14

0

0.
51

1.
52

2.
53

3.
54

4.
55

Percent changes

N
et

he
rla

nd
s

m
e
a
n
:
 
 
1
.
8
3

s
t
d
.
 
d
e
v
.
:
 
1
.
0
8

19
99

20
02

20
05

20
08

20
11

20
14

-1012345

Percent changes

P
or

tu
ga

l

m
e
a
n
:
 
 
2
.
0
3

s
t
d
.
 
d
e
v
.
:
 
1
.
2
6

19
99

20
02

20
05

20
08

20
11

20
14

-0
.50

0.
51

1.
52

2.
53

3.
54

4.
5

Percent changes

S
pa

in

m
e
a
n
:
 
 
2
.
1
7

s
t
d
.
 
d
e
v
.
:
 
1
.
0
7

19
99

20
02

20
05

20
08

20
11

20
14

-1012345

Percent changes

C
yp

ru
s

m
e
a
n
:
 
 
1
.
5
2

s
t
d
.
 
d
e
v
.
:
 
1
.
0
3

19
99

20
02

20
05

20
08

20
11

20
14

-20246810 Percent changes

E
st

on
ia

m
e
a
n
:
 
 
3
.
2
4

s
t
d
.
 
d
e
v
.
:
 
2
.
0
5

19
99

20
02

20
05

20
08

20
11

20
14

-5051015 Percent changes

La
tv

ia

m
e
a
n
:
 
 
3
.
4
1

s
t
d
.
 
d
e
v
.
:
 
3
.
7
8

19
99

20
02

20
05

20
08

20
11

20
14

-2024681012 Percent changes

Li
th

ua
ni

a

m
e
a
n
:
 
 
1
.
9
3

s
t
d
.
 
d
e
v
.
:
 
2
.
4
6

19
99

20
02

20
05

20
08

20
11

20
14

-1012345

Percent changes

M
al

ta

m
e
a
n
:
 
 
1
.
9
9

s
t
d
.
 
d
e
v
.
:
 
1
.
0
4

19
99

20
02

20
05

20
08

20
11

20
14

024681012 Percent changes
S

lo
va

ki
a

m
e
a
n
:
 
 
3
.
6
8

s
t
d
.
 
d
e
v
.
:
 
2
.
5
7

19
99

20
02

20
05

20
08

20
11

20
14

-202468101214 Percent changes

B
ul

ga
ria

m
e
a
n
:
 
 
4
.
5
0

s
t
d
.
 
d
e
v
.
:
 
3
.
6
2

19
99

20
02

20
05

20
08

20
11

20
14

0

0.
51

1.
52

2.
53

3.
54

Percent changes

D
en

m
ar

k

m
e
a
n
:
 
 
1
.
6
7

s
t
d
.
 
d
e
v
.
:
 
0
.
7
0

19
99

20
02

20
05

20
08

20
11

20
14

-50510152025 Percent changes

Ic
el

an
d

m
e
a
n
:
 
 
4
.
9
2

s
t
d
.
 
d
e
v
.
:
 
4
.
3
9

19
99

20
02

20
05

20
08

20
11

20
14

-0
.50

0.
51

1.
52

2.
53

3.
5

Percent changes

N
or

w
ay

m
e
a
n
:
 
 
1
.
5
5

s
t
d
.
 
d
e
v
.
:
 
0
.
7
6

19
99

20
02

20
05

20
08

20
11

20
14

024681012 Percent changes

P
ol

an
d

m
e
a
n
:
 
 
2
.
9
7

s
t
d
.
 
d
e
v
.
:
 
2
.
5
4

19
99

20
02

20
05

20
08

20
11

20
14

-0
.50

0.
51

1.
52

2.
53

Percent changes

S
w

ed
en

m
e
a
n
:
 
 
1
.
1
6

s
t
d
.
 
d
e
v
.
:
 
0
.
7
1

19
99

20
02

20
05

20
08

20
11

20
14

0

0.
51

1.
52

2.
53

3.
54

Percent changes

U
ni

te
d 

K
in

gd
om

m
e
a
n
:
 
 
1
.
7
3

s
t
d
.
 
d
e
v
.
:
 
0
.
7
7

N
ot

es
:
In
fla

ti
on

se
ri
es

ar
e
H
IC

P
ex
cl
ud

in
g
en
er
gy

an
d
un

pr
oc
es
se
d
fo
od

.
D
as
he
d
bl
ac
k
lin

e
re
fe
rs

to
H
IC

P
In
fla

ti
on

of
E
ur
op

ea
n
U
ni
on

(E
U
12

un
ti
l2

00
4,

E
U
15

un
ti
l2

00
6,

E
U
27

un
ti
l2

01
3,

th
en

E
U
28
).

M
ea
n
an

d
st
an

da
rd

de
vi
at
io
ns

re
fe
r
to

co
un

tr
y-
sp
ec
ifi
c
se
ri
es
.
M
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
fo
r
E
ur
op

ea
n
U
ni
on

in
fla

ti
on

ar
e
1.
69

an
d
0.
50

,r
es
pe

ct
iv
el
y.



Fi
gu

re
2:

EM
A
lg
or
ith

m
Lo

g-
lik

el
ih
oo

d
Ev

ol
ut
io
n

0
2

4
6

8
10

12
14

16
18

20
-7

00
0

-6
00

0

-5
00

0

-4
00

0

-3
00

0

-2
00

0

-1
00

0
Log-likelihood

Ite
ra

tio
ns

50
10

0
15

0
20

0
-1

46
1.

4

-1
46

1.
2

-1
46

1

-1
46

0.
8

-1
46

0.
6

-1
46

0.
4

Log-likelihood

Ite
ra

tio
ns



Fi
gu

re
3:

Sm
oo

th
ed

In
fla

tio
n
Fa

ct
or
s

19
99

20
02

20
05

20
08

20
11

20
14

0.
51

1.
52

2.
53

3.
5

Percent changes

 

 

G
lo

ba
l f

ac
to

r
U

nw
ei

gh
ed

 a
ve

ra
ge

E
ur

op
ea

n 
U

ni
on

(a
)

G
lo

ba
lf

ac
to

r
19

99
20

02
20

05
20

08
20

11
20

14
-2

-1
.5-1

-0
.50

0.
51

1.
52

2.
5

Percent changes

(b
)

O
ut

sid
e

eu
ro

ar
ea

19
99

20
02

20
05

20
08

20
11

20
14

-4-3-2-1012345

Percent changes

(c
)

C
or

e
eu

ro
ar

ea
19

99
20

02
20

05
20

08
20

11
20

14
-1

0-505101520

Percent changes

(d
)

N
ew

en
tr

an
ts

eu
ro

ar
ea

N
ot

es
:
T
he

se
ri
es

G
lo
ba

lf
ac
to
r
an

d
U
nw

ei
gh

ed
av
er
ag

e
ar
e
re
-s
ca
le
d
to

ha
ve

sa
m
e
m
ea
n
an

d
va
ri
an

ce
as

th
e
E
ur
op

ea
n
U
ni
on

in
fla

ti
on

.
R
eg
io
na

l
fa
ct
or
s
ar
e
re
-s
ca
le
d
so

th
at

th
ei
r
in
no

va
ti
on

s
ha

ve
un

it
va
ri
an

ce
.



Fi
gu

re
4:

C
on

tr
ib
ut
io
ns

of
G
lo
ba

l,
R
eg
io
na

l,
an

d
Id
io
sy
nc
ra
tic

Fa
ct
or
s
to

O
bs
er
ve
d
H
IC

P
In
fla

tio
n

19
99

20
02

20
05

20
08

20
11

20
14

-1
.5-1

-0
.50

0.
51

1.
52

Percent changes

A
us

tri
a

 

 

D
em

ea
ne

d 
in

fla
tio

n
G

lo
ba

l c
om

po
ne

nt
R

eg
io

na
l c

om
po

ne
nt

Id
io

sy
nc

ra
tic

 c
om

po
ne

nt

19
99

20
02

20
05

20
08

20
11

20
14

-2
.5-2

-1
.5-1

-0
.50

0.
51

1.
5

Percent changes

B
el

gi
um

19
99

20
02

20
05

20
08

20
11

20
14

-3-2-10123

Percent changes

Fi
nl

an
d

19
99

20
02

20
05

20
08

20
11

20
14

-1
.5-1

-0
.50

0.
51

1.
5

Percent changes

Fr
an

ce

19
99

20
02

20
05

20
08

20
11

20
14

-1
.5-1

-0
.50

0.
51

1.
5

Percent changes

G
er

m
an

y

19
99

20
02

20
05

20
08

20
11

20
14

-6-5-4-3-2-101234

Percent changes

G
re

ec
e

19
99

20
02

20
05

20
08

20
11

20
14

-6-5-4-3-2-101234

Percent changes

Ire
la

nd

19
99

20
02

20
05

20
08

20
11

20
14

-2

-1
.5-1

-0
.50

0.
51

1.
5

Percent changes

Ita
ly

19
99

20
02

20
05

20
08

20
11

20
14

-3

-2
.5-2

-1
.5-1

-0
.50

0.
51

1.
5

Percent changes

Lu
xe

m
bo

ur
g

19
99

20
02

20
05

20
08

20
11

20
14

-1
.5-1

-0
.50

0.
51

1.
52

2.
53

Percent changes

N
et

he
rla

nd
s

19
99

20
02

20
05

20
08

20
11

20
14

-3-2-10123

Percent changes

P
or

tu
ga

l

19
99

20
02

20
05

20
08

20
11

20
14

-3

-2
.5-2

-1
.5-1

-0
.50

0.
51

1.
52

Percent changes

S
pa

in

19
99

20
02

20
05

20
08

20
11

20
14

-3-2-10123

Percent changes

C
yp

ru
s

19
99

20
02

20
05

20
08

20
11

20
14

-6-4-202468

Percent changes

E
st

on
ia

19
99

20
02

20
05

20
08

20
11

20
14

-8-6-4-2024681012 Percent changes

La
tv

ia

19
99

20
02

20
05

20
08

20
11

20
14

-4-20246810 Percent changes

Li
th

ua
ni

a

19
99

20
02

20
05

20
08

20
11

20
14

-3-2-10123

Percent changes

M
al

ta

19
99

20
02

20
05

20
08

20
11

20
14

-4-202468

Percent changes

S
lo

va
ki

a

19
99

20
02

20
05

20
08

20
11

20
14

-8-6-4-20246810 Percent changes

B
ul

ga
ria

19
99

20
02

20
05

20
08

20
11

20
14

-1
.5-1

-0
.50

0.
51

1.
52

Percent changes

D
en

m
ar

k

19
99

20
02

20
05

20
08

20
11

20
14

-1
0-505101520

Percent changes

Ic
el

an
d

19
99

20
02

20
05

20
08

20
11

20
14

-2

-1
.5-1

-0
.50

0.
51

1.
52

Percent changes

N
or

w
ay

19
99

20
02

20
05

20
08

20
11

20
14

-6-4-202468

Percent changes

P
ol

an
d

19
99

20
02

20
05

20
08

20
11

20
14

-1
.5-1

-0
.50

0.
51

1.
52

Percent changes

S
w

ed
en

19
99

20
02

20
05

20
08

20
11

20
14

-2

-1
.5-1

-0
.50

0.
51

1.
52

2.
5

Percent changes

U
ni

te
d 

K
in

gd
om

N
ot

es
:
In
fla

ti
on

se
ri
es

ar
e
H
IC

P
ex
cl
ud

in
g
en
er
gy

an
d
un

pr
oc
es
se
d
fo
od

.



Fi
gu

re
5:

Sp
ec
tr
al

D
ec
om

po
sit

io
ns

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

A
us

tri
a

 

 

C
om

m
on

R
eg

io
na

l
Id

io
sy

nc
ra

tic

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

B
el

gi
um

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

Fi
nl

an
d

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

Fr
an

ce

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

G
er

m
an

y

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

G
re

ec
e

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

Ire
la

nd

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

Ita
ly

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

Lu
xe

m
bo

ur
g

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

N
et

he
rla

nd
s

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

P
or

tu
ga

l

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

S
pa

in

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

C
yp

ru
s

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

E
st

on
ia

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

La
tv

ia

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

Li
th

ua
ni

a

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

M
al

ta

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

S
lo

va
ki

a

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

B
ul

ga
ria

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

D
en

m
ar

k

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

Ic
el

an
d

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

N
or

w
ay

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

P
ol

an
d

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

S
w

ed
en

0
0.

5
1

1.
5

2
2.

5
3

0

0.
2

0.
4

0.
6

0.
81

Fr
eq

ue
nc

ie
s

Shares

U
ni

te
d 

K
in

gd
om

N
ot

es
:
T
he

ve
rt
ic
al

lin
es

co
rr
es
po

nd
to

th
os
e
fr
eq
ue
nc
ie
s
w
hi
ch

re
fle
ct

m
ov
em

en
ts

in
th
e
se
ri
es

at
cy
cl
es

of
2
an

d
1
ye
ar
s,

an
d
6
an

d
3
m
on

th
s.



Figure 6: Smoothed Common and Regional Inflation Factors
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(d) Core euro area and Non-PIIGS
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(e) New entrants euro area and Baltics
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