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Abstract

I adapt the Generalised Method of Moments to deal with nonlinear models in which
a �nite number of isolated parameter values satisfy the moment conditions. I also study
the closely related class of �rst-order underidenti�ed models, whose expected Jacobian is
rank de�cient but not necessarily zero. In both cases, my proposed procedures exploit
the underidenti�cation structure to yield parameter estimators and underidenti�cation tests
within a standard asymptotically normal GMM framework. I study nonlinear models with
and without separation of data and parameters. I also illustrate my proposed inference
procedures with applications to production function estimation and dynamic panel data
models.
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1 Introduction

Identi�cation1 has been a central issue for the theory and practice of econometrics since at

least the early analysis of simultaneous equations at the Cowles Commission (see e.g. Koopmans

and Hood (1953)). In the linear in parameters models of the form

�	' = 0

considered by those authors, where �	 = E[	(x)] and 	(x) contains p�(r+1) known functions of

x, a vector of observable random variables, the observationally equivalent values of the (r+1)�1

unknown parameter vector ' that satisfy the moment conditions above lie on either a one-

dimensional linear subspace (the so-called point identi�ed case), which nevertheless requires

some additional normalisation to pin a unique direction down, or a higher-dimensional linear

subspace (the set identi�ed case).2

However, in non-linear models de�ned by the unconditional moment conditions:

E [f (x;�)] = �f(�) = 0; (1)

where f(x; �) contains p in�uence functions and � is a vector of k � p unknown parameters that

lie on a subset P of Rk, other meaningful underidenti�ed situations may arise (see e.g. Fisher

(1966) and Rothenberg (1971)):

a. Uncountable underidenti�cation: There is a manifold of observationally equivalent

values of � that satisfy the moment conditions (1).

b. Countably in�nite underidenti�cation: There is an in�nite but countable number of

observationally equivalent values of � that satisfy the moment conditions (1).

c. Finite underidenti�cation: There is a �nite number of observationally equivalent values

of � that satisfy the moment conditions (1).

Formally, the true parameter value �0 will be locally identi�able from (1) if and only if

E[f(x;�j)] 6= 0 for any �j 6= �0 in some small open neighbourhood of �0, while it will be globally

identi�able if there is no observationally equivalent value anywhere in the admissible parameter

space P. The order condition p = dim (f) � dim (�) = k provides a �rst-check of identi�cation

because there will typically be multiple solutions to moment conditions with fewer moments

than parameters. A complement is provided by the rank condition. Let �D(�) = E[@f(�)=@�0]

denote the expected Jacobian of the moment conditions. If �D(�) is continuous at �0, and

rank[ �D(�0)] = k, then �0 is locally identi�ed. This condition, though, is only su¢ cient, unless

1Throughtout this paper, I focus on what Lewbel (2019) calls extremum-based parametric identi�cation,
which is linked to the estimation criterion used.

2See Manresa, Peñaranda and Sentana (2023) for an illustration of these concepts in asset pricing models,
and Appendix B for a 3D representation.
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rank[ �D(�)] is also constant in a neighborhood of �0, in which case it becomes necessary too (see

again Fisher (1966) and Rothenberg (1971)).

Therefore, other situations which share some underidenti�cation features may arise in those

irregular cases in which rank[ �D(�)] is not constant around �0 (see Sargan (1983a,b) and Dovonon

and Renault (2020)):

1. First-order underidenti�cation: �0 is the unique solution to (1), at least in an open

neighbourhood of �0, and therefore locally and possibly globally identi�ed, and yet the

rank of �D(�) is less than k at � = �0 but not in its neighbourhood.

2. Second-order underidenti�cation: �0 is the only solution to (1), but rank[ �D(�0)]

< k and the rank of the Jacobian with respect to � of the linear combinations of the

columns of �D(�0) that span its nullspace is also de�cient.

These borderline identi�ed cases are closely related to the truly underidenti�ed ones in a.-c.

Speci�cally, Sargan (1983a) explained that if �f(�) is analytic and there is rank failure for all

higher-order Jacobians, then we go back to the uncountable underidenti�cation in a. In turn,

I will explain below that 1. often arises when two observationally equivalent solutions in c.

become arbitrarily close to each other.

The approach in this paper is closely related to Arellano, Hansen and Sentana (2012), who

focused on the uncountably underidenti�ed models mentioned in a. They posed the problem

as an estimation one where researchers seek to estimate the set over which identi�cation is

problematic. Speci�cally, they considered an augmented structural model in which the moment

conditions are satis�ed by a curve instead of a point, as in Sargan (1959). They then showed how

to estimate the identi�ed curve, providing an e¢ ciency bound for any �nite number of points

along the curve in their Theorem 5.3. As a by-product, they obtained a test for underidenti-

�cation by suitably testing for overidenti�cation in the augmented model. If it is possible to

estimate a curve without statistically rejecting the overidentifying restrictions of the augmented

model, then researchers may conclude that the original econometric relation is uncountably un-

deridenti�ed. In contrast, rejections provide evidence that the original model is indeed point

identi�ed.

In this paper, I also impose an explicit structure on the lack of identi�cation, which in turn

leads to an alternative estimation problem and its associated underidenti�cation test, but the

di¤erence is that I focus on situations in which only a �nite number of locally identi�ed isolated

parameter values satisfy (1), as in c. For simplicity, I only consider two-point sets, although the

results could be extended to any �nite number of points.3

3Extensions to countably in�nite underidenti�cation in b. are conceptually possible (see the rhumb line 3D
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I also study the closely related class of �rst-order underidenti�ed models. The reason is

threefold. First, in a formal sense that I will characterise below, �rst-order underidenti�cation

can often be regarded as the limiting case of �nite underidenti�cation when the isolated solutions

converge to each other. Second, the methods I propose to deal with the former turn out to be very

useful for the purposes of dealing with the latter. Finally, the behaviour of Generalised Method

of Moment (GMM) estimators and hypothesis tests in �rst-order underidenti�ed models has

become the focus of increasing attention (see Kleibergen (2005), Dovonon and Renault (2013,

2020), Dovonon and Hall (2018) and Dovonon, Hall and Kleibergen (2020)). As mentioned

before, in those situations the expected Jacobian of the moment conditions is singular, but not

necessarily zero, so that the usual asymptotic theory for standard GMM estimation breaks down.

In contrast, the procedures that I propose will restore conventional GMM asymptotics thanks

to the use of the additional information about the nature of the singularity, as the results in Lee

and Liao (2018) con�rm for the special case of a zero expected Jacobian.4

The paper is also somewhat related to two di¤erent strands of the literature that have gained

prominence in recent decades. One is the weak instruments literature (see e.g. Stock, Wright

and Yogo (2002), Dufour (2003) or Antoine and Renault (2010)). Papers in this tradition often

consider a zero rank Jacobian �D(�) at �0 as the limit of a sequence of data generating models

indexed by the sample size for the purposes of developing reliable standard errors and tests of

hypothesis about �0. By going to the limit and exploiting the additional moment conditions

associated to a singular but not necessarily null Jacobian, I restore standard asymptotics. The

other strand is the set estimation literature (see e.g. Chernozhukov, Hong and Tamer (2007) or

Yildiz (2012)), whose objective is to consistently estimate the set of values of � that satisfy (1).

By making the additional assumption that the identi�ed set is �nite and modifying the usual

GMM objective accordingly, I also estimate the set within a standard asymptotic framework.

Importantly, the GMM nature of my proposed approach implies that estimation and testing

are intimately related. In particular, the asymptotically chi-square GMM overidenti�cation

restriction statistics that I propose provide natural diagnostics for �nite underidenti�cation in

one case or �rst-order underidenti�cation in the other.

The rest of the paper is organised as follows. In section 2, I review some known situations

in which there is either a �nite set of observationally equivalent solutions or rank failure of the

expected Jacobian in order to highlight the non-trivial features of the more subtle situations

I am interested in. Then, I study linear in variables but non-linear in parameter models in

example in Appendix B), but since to the best of my knowledge there are no interesting economic applications, I
will not pursue them.

4 In fact, the asymptotic theory is so straightforward that one can appeal to standard GMM results without
the need for formal proofs.

3



section 3 and fundamentally non-linear models in section 4. Finally, I conclude in section 5.

Some additional details can be found in the appendices, where I discuss an additional example

and provide intuitive 3D representations of all the di¤erent identi�cation situations that might

occur.

2 Some examples

There are well-known models which systematically give rise to two or more observationally

equivalent solutions. The most obvious example is an Ma(1) process whose parameters are

estimated on the basis of �rst and second moments of the data. Another trivial example would

be a non-linear regression model in which the conditional mean function contains the hyperbolic

cosine function exp(�x) + exp(��x). Lewbel (2012) provides a more interesting example of a

simultaneous equations system without exclusion restrictions identi�ed through heteroskedas-

ticity in which there are also two solutions to the moment equations, one positive and one

negative.5 In these non-injective cases, one can suitably restrict the parameter space to achieve

global identi�cation. In addition, the two observationally equivalent solutions can be obtained

automatically on the basis of one another.

In other cases, there is generally a unique �rst-order identi�ed solution, but if the unknown

true parameter values satisfy certain restrictions, underidenti�cation issues will arise. An in-

teresting example is the so-called double-indexed model for non-negative data studied by Pa-

padopoulos and Santos Silva (2012). In one of its simplest possible forms, this model para-

metrises the mean of a non-negative variable y conditional on two weakly exogenous variables

x and z as follows:

E(yjx; z) = exp[( + 
)x+ 
z]

1 + exp( x+ �z)
;

where � = ( ; �; 
) are the parameters of interest. This conditional mean speci�cation is

compatible with a zero in�ated Poisson model, a hurdle model, and a model with a latent error

term for count data among several others (see Papadopoulos and Santos Silva (2012) and the

references therein). Let a(x; z) denote a p� 1 vector of functions of x and z used to transform

the conditional moment speci�cation above into p unconditional orthogonality conditions in the

usual way. If p � 3, then we will be able to identify � provided the true value of � is di¤erent from

0. In contrast, if �0 = 0 but  0 6= 0, then Papadopoulos and Santos Silva (2012) point out that

there will exist two observationally equivalent solutions: � = ( ; 0; 
) and �� = (� ; 0; 
 +  ).

Further, it is easy to prove that if  0 = �0 = 0, then 
 becomes �rst-order underidenti�ed even

5Some estimators of the Ar(1) coe¢ cient in Gorodnichenko, Mikusheva and Ng (2012) also have two solutions.
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though it is locally identi�ed. In this model, though, those underidenti�cation situations will

arise not only asymptotically but also in any �nite sample.

Another relatively unknown case is an Ar(2) model observed subject to white noise (Wn)

errors, whose parameters are estimated on the basis of �rst and second moments of the data.

When the latent Ar(2) process is in fact an Ar(1), its second Ar root becomes �rst-order

underidenti�ed. Intuitively, the problem is that in a neighbourhood of the true value, the

Ar(2)+Wn model is �rst-order equivalent to an Arma(1,1)+Wn model, whose parameters

are only set identi�ed. In this case, though, a reparametrisation which relies on the � square

root of the second Ar root, as in Rotnitzky et al (2000), restores standard
p
T (half) Gaussian

asymptotics (see Fiorentini and Sentana (2016) for details, and Amengual, Bei and Sentana

(2024) for related examples).

In this paper, in contrast, I am particularly interested in more subtle situations in which

underidenti�cation depends on parts of the data generating process (DGP) which are not neces-

sarily speci�ed by the moment conditions (1). In those cases, the relationship between the two

observationally equivalent solutions � and �� or the conditions that lead to a singular expected

Jacobian cannot simply be inferred from the true values of certain model parameters.

As in Arellano, Hansen and Sentana (2012), it is convenient to study separately non-linear in

parameters but linear in variables models of the form f(x; �) = 	(x)�(�), where �(�) is a non-

linear continuously di¤erentiable function, and fundamentally non-linear models, in which no

such separation of data and parameters is possible. Although the general theory that I develop

in section 4 applies to non-linear in parameters but linear in variable models too, these have the

advantage that the numerical separation of the solutions is easier to achieve.

In subsequent sections, I will illustrate my proposed inference procedures with two empirically

relevant examples: (i) production functions, and (ii) dynamic panel data. In addition, I consider

a non-linear dynamic regression model for discrete data in Appendix A.

For computational reasons, I systematically employ the optimal Continuously Updated es-

timators (CUE) introduced by Hansen, Heaton and Yaron (1994). Thus, assuming f(x;�)

constitutes a martingale di¤erence sequence, I can compute the CUE criterion by regressing

1 on f(x;�) with an OLS routine which is robust to potential singularities in the covariance

matrix of the in�uence functions, as in Peñaranda and Sentana (2012). Although CUE is com-

putationally more demanding and requires a rather careful exploration of the parameter space, it

is numerically invariant to normalisations, reparametrisations and parameter-dependent linear

transformations of the moment conditions, which proves particularly useful in the context of

underidentifed models. In principle, though, other single-step GMM methods such as Empirical
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Likelihood or Exponentially Tilted could also be entertained.

3 Non-linear in parameter models

3.1 Theoretical discussion

As I mentioned in the previous section, these models are fully characterised by the fact that

the in�uence functions are

f(x; �) = 	(x)�(�); (2)

where 	(x) contains p � (r + 1) jointly Borel measurable functions of the observations and

�(�) is a non-linear, continuously di¤erentiable function mapping � : P ! Rr+1 such that

E[jf(x; �)j] <1 for all � in the compact parameter space P � Rk. For simplicity of exposition, I

assume in this section that the observed sample is drawn from a stationary and ergodic stochastic

process fxtg.6 In order for standard GMM asymptotic results to apply, I also assume that the

following high level regularity conditions hold as the sample size T goes to in�nity:7

Assumption 1

	T = T�1
XT

t=1
	(xt)

a:s:! �	;

where �	 = E[	(x)] is a non-stochastic p� (r + 1) matrix, and
p
Tvec(	T � �	)

d! N(0; C);

where C is a non-stochastic p(r + 1)� p(r + 1) positive (semi)de�nite matrix.

As I mentioned before, in this context identi�cation is only meaningful if �(:) is an injective

(i.e. one-to-one) function, for if there are two distinct parameter values � and �� for which

�(�) = �(��), then it is clear a priori that one cannot identify �.

If the interest centred on the unrestricted estimation of ' = �(�) instead of the restricted

estimation of �, then the condition rank(�	) = r would be necessary and su¢ cient to identify

' = �(�) up to a proportionality factor. Hence, identi�cation problems may only arise if

rank(�	) < r. I maintain the assumption that p � k, so that the order condition is satis�ed, but

I also make the following stronger assumption:

Assumption 2 For any two values of the parameter vector � 6= �� in P; �(�) 6= c�(��) for
some c 2 R.

6As elsewhere in the econometrics literature, analogous results can be obtained using other data generating
processes. For cross-sectional and panel extensions of Hansen�s (1982) formulation see the textbooks by Hayashi
(2000) and Arellano (2003), respectively, which will prove useful in the example in section 3.3

7See Newey and McFadden (1994) for an extensive discussion of more primitive conditions.
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While injectivity already rules out c = 1, this assumption requires an implicit or explicit nor-

malisation of the non-linear function �(�) to eliminate scale multiples for c 6= 1.

Suppose that theoretical considerations or previous empirical studies lead one to suspect

that � may be �rst-order underidenti�ed. Following Sargan (1983a), I initially simplify the

presentation by assuming that the rank failure of the expected Jacobian is of order one, and

postpone the extension to situations in which its nullity is higher to the end of this subsection.

For non-linear in parameters models, this amounts to

�	
@�(�)

@�0

 = 0; (3)

at � = �0, where 
 2 Rk e¤ectively determines the directional derivative along which the

expected Jacobian is 0. On this basis, I can estimate both � and 
 by optimally combining (3)

with the original moment conditions (1) subject to a normalisation on 
 such as 
0
 = 1. Thus,

I can not only estimate the parameters of interest but also the �direction of weak identi�cation�.

In some examples, though, the �rst-order underidenti�cation problem may only a¤ect a speci�c

parameter, so I could restrict 
 to be the corresponding canonical vector. In other cases, there

may be a priori arguments for considering other pre-speci�ed directional derivatives.

Given that the expected Jacobian of the joint set of moment conditions (1) and (3) is(
�	[@�(�)=@�0] 0

@
@�0
�
�	[@�(�)=@�0]


	
@
@
y0

�
�	[@�(�)=@�0]


	 ) ; (4)

where 
y are the free elements of 
, this matrix must have full rank in a neighbourhood of the

true values when 
y is simultaneously estimated for standard GMM asymptotic theory to work.

Similarly, when 
 is �xed a priori, the �rst block of k columns of the above matrix must have

full rank. But those rank conditions are precisely at the core of the second-order identi�cation

conditions in Dovonon and Renault (2020).8 Although in principle I could also consider second-

order underidenti�ed models, etc., the required rank condition on (4) holds in many locally

identi�ed but �rst-order underidenti�ed examples, including those in sections 3.2 and 3.3.

After estimating � and possibly 
y by optimal GMM, I can use the overidenti�cation test

of the augmented system (1) and (3) as a �rst-order underidenti�cation test of the original

moment conditions (1). The resulting test will have an asymptotic chi-square distribution with

2(p� k) + 1 degrees of freedom when the only restriction on 
 a¤ects its scale. If on the other

hand 
 is �xed a priori, then the number of degrees of freedom will be 2p � k. I refer to both

8 In the case in which 
 coincides with the last canonical vector, Dovonon and Renault�s (2020) second-order
identi�ability condition requires that the expected value of a second-order expansion of the original in�uence
functions (2) varies not only with the �rst k � 1 elements of � regardless of the value of the last one, but
also with �k when those k � 1 elements are set to their true values. Putting both conditions together yields
rankf�	[ @�(�)=@(�1; : : : ; �k�1) @2�(�)=(@�k)

2 ]g = k, which is equivalent to (4) in this case.
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those tests as �rst-order I tests because they provide an indication of the extent to which rank

de�ciency of the Jacobian should be a concern.

Suppose instead the original moment conditions (1) hold for �0 and ��0 6= �0. Then both

�(�0) and �(��0) must belong to the null space of the matrix �	, so that the system of moment

conditions

�	[�(�); �(��)] = (0; 0) (5)

evaluated at those two parameter values simultaneously holds. This system allows the joint

estimation of the two observationally equivalent solutions. In particular, the optimal GMM

estimators based on (5) will be asymptotically normal at the usual
p
T rate subject to the �rst-

order identi�ability of � and ��, which is guaranteed when rank[ �D(�0)] = rank[ �D(��0)] = k.

Moreover, the joint estimator of � so obtained will be at least as e¢ cient as a hypothetical

GMM estimator based on the original moment conditions (1) which would somehow manage to

restrict � to lie on a small neighbourhood of �0, and the same applies to �� (see Proposition 2.1

of Arellano, Hansen and Sentana (2012) for a formal result). In fact, the hypothetical estimator

based on (1) would only be as e¢ cient as the joint estimator based on (5) if the original and

augmented models are exactly identi�ed, or when the necessary and su¢ cient conditions in

Theorem 8 of Breusch, Qian, Schmidt and Wyhowski (1999) apply. Speci�cally, if

lim
T!1

V

�p
T

�
	T�(�0)
	T�(�

�
0)

��
=

�

�� 
0���

��� 
����

�
;

which can be obtained by combining the elements of �	 and C in Assumption 1, then the block

diagonality of the Jacobian matrix of (5) implies that their condition B becomes


���

�1
��
�	
@�(�0)

@�0
= �	

@�(��0)

@�0

�
@�0(��0)

@�
�	0(
����� � 
���
�1��
0���)�1 �	

@�(��0)

@�0

��1
�@�

0(��0)

@�
�	0(
����� � 
���
�1��
0���)�1
���
�1�� �	

@�(�0)

@�0
:

Finally, the usual overidenti�cation test obtained after estimating � and �� from (5) provides

a test for the �nite underidenti�cation of (1). The rationale is straightforward. If one can �nd

�� 6= � without statistical rejection, then the natural conclusion is that the identi�ed set does

indeed contain two points. But if the attempt fails statistically, then one may conclude � is

globally identi�ed. I refer to the resulting test as the �nite I test. Standard GMM asymptotic

theory implies that this I test will have an asymptotic chi-square distribution with 2(p � k)

degrees of freedom if both � and �� are �rst-order identi�ed from (5).

From a practical point of view, though, the main di¢ culty is ensuring that � 6= ��, so that

the duplicated moment conditions (5) do not e¤ectively collapse to (1). Following Arellano,

Hansen and Sentana (2012), in these non-linear in parameters models I can proceed as follows.
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I de�ne the parameter space Q � f' : ' = �(�) for some � 2 Pg, and write each set of

moment conditions as �	' = 0 for ' 2 Q. By Assumption 2, the vectors �(�) and �(��) are not

proportional. In addition, any linear combination of �(�) and �(��) must also belong to the null

space of the matrix �	. I can then de�ne Q� � f' : ' = c1'1 + c2'2; '1; '2 2 Q; c1; c2 2 Rg. By

playing around with c1 and c2, I can obtain two linearly independent elements of Q�. I illustrate

the practical details with the examples in subsections 3.2 and 3.3.

Importantly, if I reparametrise the model in terms of 
y = �=
p
�0� and � =

p
�0�, with

� = �� � �, then I can equivalently re-write the duplicated moment conditions as

�	f�(�); ��1[�(�+ �
y)� �(�)]g = (0; 0) (6)

for � � �� > 0, but this is numerically inconsequential for single step GMM methods such as

CUE. Importantly, though, the limit as � ! 0+ of the CU criterion based on these duplicated

moment conditions will coincide with the CU criterion based on

�	
n
�(�); [@�(�)=@�0]
y

o
= 0

when �� and � get closer and closer to each other in such a way that the dimension of the null

space of �	 remains two. Thus, �rst-order underidenti�ed models can be formally interpreted as

limiting cases of �nite underidenti�ed ones. The gain of one degree of freedom in the overiden-

tifying test statistic simply re�ects the fact that � vanishes from the CU criterion based on (6)

when this parameter goes to 0 in what is e¤ectively an application of L�Hôpital rule.

Extensions to three or more isolated observationally equivalent solutions are straightforward

by simply replicating the number of moment conditions in (5) multiple times. Similarly, ex-

tensions to situations in which the nullity of the expected Jacobian is higher than 1 are also

straightforward by replicating (3) in such a way that the corresponding 
�s provide a unique ba-

sis for its nullspace. Moreover, second-order underidenti�cation situations could also be related

to the limit of �nite underidenti�cation situations with three points when those three points

become arbitrarily close, but I will not discuss those cases further in the interest of space.

3.2 Application to production functions

Let yt denote the output produced by a �rm, which is a function of a single input, xt, and a

serially correlated productivity process, !t. Importantly, !t is observed by the �rm but not by

the econometrician, unlike yt and xt. The main econometric complication arises because �rms

choose the level of input as a function of the productivity level, which introduces correlation
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between xt and !t. A simple dynamic DGP that captures these features would be:

yt = �0xt + !t;
xt = �0!t + �t;

(7)�
!t
�t

�
=

�
�0 0
0  0

��
!t�1
�t�1

�
+

�
�t
ut

�
; (8)�

�t
ut

�
jyt�1; xt�1; : : : N

��
0
0

�
;

�
�20 0
0 �20

��
: (9)

This is the simpli�ed version considered by Aguirregabiria (2021) in his discussion of the model in

Ackerberg et al (2023), who add a classical i:i:d: measurement error to yt. The serial correlation

in the productivity shock is standard in the literature, while the serial correlation in �t could be

justi�ed by temporal dependence in labour costs unobserved by the econometrician.9

Following Aguirregabiria (2021), who in turn follows Ackerberg et al (2023), consider the

GMM estimation of the production function parameters � and � exploiting the fact that the

productivity shock is linearly unpredictable from past values of both yt and xt. Given that

�t = !t � �0!t�1 = (yt � �0xt) � �0(yt � �0xt), one can use the �rst j lags of yt and xt as

instruments, which yields:

�	

0BB@
sin �
cos �
�� sin �
�� cos �

1CCA = �	�(�) = 0; (10)

where � = (� ; �)0, with � = arccot�, and �	 = E(	t), with 	t = (	01t; : : : ;	
0
jt; : : : ;	

0
jt)
0 and

	jt =

�
yt�jyt �yt�jxt yt�jyt�1 �yt�jxt�1
xt�jyt �xt�jxt xt�jyt�1 �xt�jxt�1

�
:

These moment conditions are formally very similar to those in Example 4.1 in Arellano, Hansen

and Sentana (2012), which in turn is closely related to the non-linear IV model with serially

correlated errors considered by Sargan (1959). Like those authors, I treat yt and xt symmetrically

by making the Euclidean norm of the coe¢ cients on yt and xt equal to 1, so that � = cot � . This

restriction eliminates scale multiples from consideration, but is numerically inconsequential for

inferences that rely on CUE or other single-step GMM methods. I also restrict � to be in [0; �]

without loss of generality, so the sign of the coe¢ cient of yt will always be positive and � an

injective continuously di¤erentiable function of �. With these two restrictions, the system of

moment conditions (10) satis�es Assumption 2.

Given that there are 2j moments and two parameters, the usual J test associated to (10)

will have an asymptotic �22(j�1) provided certain conditions hold. In fact, � is exactly identi�ed

9The normality assumption is irrelevant for my analysis, but it conveniently simpli�es the expressions for the
matrix C in Assumption 1. In principle, the lack of correlation between the shocks "t and �t could be exploited for
identi�cation purposes in a log-likelihood function based on the reduced form Var(1) representation of (7)-(9),
but I will not pursue this avenue here.
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when j= 1, so it should be possible to set the two moment conditions to 0, at least in large

samples. Solving for � from the �rst moment condition, and replacing the solution in the second

one yields a simple quadratic equation in �. Ackerberg et al (2023) identi�cation results imply

that when the persistence of the productivity shock is di¤erent from the persistence of labour

costs, (i.e. �0 6=  0), then asymptotically the discriminant of this equation will be positive with

probability 1, so there will be two solutions given by (�0; �0) and (�0 + ��10 ;  0). In fact, their

global underidenti�cation result is valid regardless of the number of lags of yt and xt used as

instruments, so it continues to hold in the overidenti�ed case. The root of the problem is twofold:

(i) the nullity of �	 is 2, which means that one would be unable to identify up to scale the four

parameters in ' = �(�) if one ignored the non-linear nature of �(�);10 and (ii) the bilinear

nature of �(�) implies that this function will generally intersect the nullspace of �	 twice.

In contrast, xt fails to Granger-cause yt when �0 =  0. As a result, while � remains point

identi�ed, � becomes uncountably underidenti�ed, with the entire real line providing admissible

solutions for this parameter, as Ackerberg et al (2023) and Aguirregabiria (2021) explain.

Let � and �� denote two values that satisfy the moment conditions (10). A su¢ cient con-

dition for their local identi�cation is that the expected value of the Jacobian of these moment

conditions has full column rank when evaluated at both �0 and ��0. Tedious but straightfor-

ward calculations using the theoretical autocovariances of yt and xt that appear in �	 show

that the �rst-order identi�cation condition will hold at both (�0; �0) and (�0 + ��10 ;  0) when

�0 6=  0. Otherwise, the second column of the Jacobian will remain di¤erent from 0, but the

�rst column will be identically 0, re�ecting the point identi�cation of � and the uncountable

underidenti�cation of � in that case.11

In this context, the test for global underidenti�cation is the overidenti�cation test obtained

after optimally estimating � and �� from a suitably duplicated version of the moment conditions

(10). Standard GMM asymptotic theory implies that this �nite I test will have an asymptotic

chi-square distribution with 4(j�1) degrees of freedom when �0 6=  0. The main practical

di¢ culty is ensuring that the moment conditions do not become a mere duplicate version of the

original ones. To do so, I write the alternative coe¢ cients on yt and xt as

sin$

�
sin �
cos �

�
+ cos$

�
cos �
� sin �

�
=

�
cos($ � �)
sin($ � �)

�
with j$j < �=2, which eliminates sign indeterminacies, ensures they are not proportional to

(sin � ; cos �) and preserves their unit norm. I also express �� = � + & cos$, where & is a new

10 If the nullity were 1 instead, then the injectivity �(:) together with Assumption 2 would guarantee the global
identi�cation of �.

11The uncountable underidenti�cation of � would require the strict exogeneity of the instruments, which is
impossible in this model except in the limiting cases in which �0 became unbounded or �

2
0 = 0.
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parameter. Then, I postmultiply [�(�); �(��)] by a 2 � 2 matrix with c11 = sin(� �$)= cos$,

c12 = cos(� �$)= cos$, c21 = cos �= cos$ and c22 = � sin �= cos$, which yields

�	

2664
1 0
0 1

�11(� ;$; �; &) �12(� ;$; �; &)
�21(� ;$; �; &) �22(� ;$; �; &)

3775 = (0; 0); (11)

�
�11(� ;$; �; &) �12(� ;$; �; &)
�21(� ;$; �; &) �22(� ;$; �; &)

�
=

�
���& cos � cos ($��) & sin � cos ($ ��)
�& cos � sin ($��) ��+& sin � sin($��)

�
: (12)

Thus, I guarantee that the matrix of coe¢ cients in (11) has always rank two.

A very important and free by-product of duplicating the moment conditions is that I can

also obtain estimators of � and  by exploiting the fact that the two solutions are (�0; �0) and

(�0 + ��10 ;  0). Speci�cally, � can be indirectly estimated as the reciprocal di¤erence between

the estimators of �� and � while the estimators of  coincide with those of ��. Standard

GMM theory implies that the joint sampling distribution of these parameter estimators will be

asymptotically normal.

Interestingly, if I ignored the non-linear dependence of the ��s on the structural parameters

� ;$; � and & implicit in (11), then the transformed moment conditions would coincide with one

of the possible ways of writing down the underidenti�cation test of the linear model �	' = 0 in

section 3.1 of Arellano, Hansen and Sentana (2012). Given that the nullity of �	 is always 2, in

su¢ ciently large samples this linear I test will reject with probability equal to size.

In fact, I can very quickly obtain asymptotically e¢ cient estimators for the structural para-

meter estimates from the unrestricted linear estimators of the �0s that satisfy (11) by solving

the system of four non-linear equations (12). In su¢ ciently large samples , I will �nd two real

solutions with probability approaching 1. In small samples, though, this indirect method will

not work when the direct method based in (11) and (12) results in two identical solutions, which

creates what is known as a �pile-up�problem.

I can use the same duplicated GMM framework to test whether �0 =  0 even though I do

not observe either !t or  t by exploiting the fact that only � will be point identi�ed in that case.

Speci�cally, if I �x � = $ = �=2 and & = 0, then I end up with the restricted linear system of

moment conditions:

�	

0BB@
1 0
0 1
�� 0
0 ��

1CCA = (0; 0); (13)

which simply says that yt and xt follow univariateAr(1) processes with a common autoregressive

parameter. Once again, if it is possible to �nd a � without rejection, then � must be uncountably

underidenti�ed from the original moments. But if the attempt fails, then � must be locally

identi�ed.
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3.2.1 Simulation evidence

In this section I report the results of a limited Monte Carlo exercise with 2,000 replications

of size T = 2; 000 of the production function DGP (7)-(9). The true values of � and � are 1, and

the same is true of those of �2 and �2. In turn, I consider two pairs of values for the persistence

parameters:
1. �0 = :75 and  0 = :25,

2. �0 =  0 = :5.

As discussed above, � is locally but not globally identi�ed in the �rst case, while it fails to

be identi�ed in the second one.

Importantly, I used the same underlying pseudo-random numbers in the di¤erent designs to

minimise experimental error. I also rely on two lags of yt and xt as instruments, so that both

(10) and (11) represent overidenti�ed systems of moment conditions.

When I estimated the two isolated solutions at once on the basis of (11), the implied para-

meter estimates for � and �� in Figure 1a are centred around 1 and 2 when the DGP is such

that the companion matrix of the Var model in (9) is not scalar, as expected from the previous

theoretical discussion. The same is true of � and ��, which are centred around .25 and .75, as can

be seen from Figure 1b. In addition, the chi-square asymptotic distribution of the �nite I test

seems to provide a rather reliable approximation to its �nite sample distribution, as indicated

by Davidson and MacKinnon�s (1998) p-value plot in Figure 1c, which shows the actual and

nominal test sizes for every possible nominal size.

In contrast, when the companion matrix of the Var model in (9) is scalar, the parameter

estimates for � and �� depicted in Figure 2a are all over the place, with quite a few instances

in which the two solutions e¤ectively coincide. This pile-up problem also a¤ects the estimators

of � and �� in those circumstances, as can be clearly seen from Figure 2b, although in this case

the local identi�cation of � keeps the range of estimated values quite tight.

Nevertheless, if I estimate � from (13) when �0 =  0 = :5, I obtain values which are well

behaved, as shown in Figure 3a. In addition, the asymptotic distribution of the associated I test

also provides a very good approximation to its �nite sample distribution, as can be seen from

Figure 3b. In contrast, additional simulation results available on request show that this test has

power e¤ectively equal to 1 when �0 = :75 and  0 = :25.
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3.3 Application to dynamic panel data

Consider the following univariate Ar(2)12 model with individual speci�c intercepts

(Yit+2 � �i)� �1(Yit+1 � �i)� �2(Yit � �i) = vit+2; (14)

E(vit+2jYi1; :::; Yit+1; �i) = 0;

V (vit+2jYi1; :::; Yit+1; �i) = �2t+2; (15)

where the expectations are taken by averaging across individuals, and (Yi1; Yi2; �i) is a cross-

sectionally i:i:d: random vector with bounded second moments, but no restrictions on the covari-

ance between the unobserved e¤ect �i and the initial observations. I also assume the availability

of a random sample of size N on (Yi1; :::; YiT ), with N large and T � 4 but negligible relative to

N , leaving unspeci�ed the temporal evolution of �2t+2.
13

As is well known, the Arellano and Bond (1991) linear in�uence functions that eliminate

the individual e¤ects give rise to a system of T (T � 3)=2 moment conditions with two common

coe¢ cients and an increasing sequence of instruments, whose reduced form is non-standard. If

there are 5 or more time series observations, underidenti�cation arises if and only if �1+�2 = 1,

so that the Ar polynomial contains a unit root and �Yit follows an Ar(1).14 In that case, there

will be an uncountable set of observationally equivalent solutions, all lying on the straight line

�2 = 
2 � 
�1, 
 2 R. Arellano, Hansen and Sentana (2012) show that this identi�ed set can

be e¢ ciently estimated by applying optimal GMM to the Ar(1) moment conditions

E[Yit�j(�Yit � 
�Yit�1)] = 0 j � 1; t � 2 (16)

to infer 
. Moreover, the overidenti�cation test of this system provides a linear I test.

But the Arellano and Bond (1991) conditions do not exploit all the model restrictions, so

Ahn and Schmidt (1995) proposed to combine them with the additional in�uence functions

(Yit+2 � �1Yit+1 � �2Yit)(�Yit+1 � �1�Yit � �2�Yit�1) (17)

to obtain more e¢ cient estimators of �1 and �2 when the roots of the characteristic equations

associated to (14) lie inside the unit circle. The question is whether these non-linear in�uence

functions can rescue point identi�cation in the unit root case. Given that 
 will be uniquely

identi�ed from the Arellano, Hansen and Sentana (2012) moment conditions (16), it is convenient

12The analysis in this section can be easily modi�ed to any Ar(p) model, including Ar(1), but the second-order
example provides the right balance between intuition and algebraic complexity.

13As Álvarez and Arellano (2022) argue, the dispersion of the cross-sectional distribution of errors at each
period may change over time because of nonstationarity at the individual level or as a result of aggregate e¤ects.

14When T = 4 identi�cation problems may also arise even though no unit root exists (see Arellano, Hansen
and Sentana (2012)).

14



to express (17) in terms of �1 and 
 by replacing �2 by 
(
��1) so as to focus on the identi�cation

of �1. Thus, I can write24 (Yit�1�
Yit�2)(�Yit�2�
�Yit�3)
(Yit�1�
Yit�2)(�Yit�1�
2�Yit�3)+(Yit�
2Yit�2)(�Yit�2�
�Yit�3)

(Yit�
2Yit�2)(�Yit�1�
2�Yit�3)

3500@ �21
��1
1

1A; t � 5: (18)

It turns out that heteroskedasticity matters, even though (15) is an aspect of the DGP

deliberately left unspeci�ed. In particular, if the cross-sectional variance of the innovations

�2t varies freely over time, then I can easily show that the expected value of (18) generates a

quadratic equation for any speci�c t whose two solutions are �1 = 1 + 
 and

��1;t =
�2t�1
�2t�2

+ 
:

However, when T � 6 this alternative solution is incompatible for di¤erent t�s unless

�2t�1
�2t�2

=
�2t�2
�2t�3

= ��1 � 
 (t = 6; :::; T ); (19)

so in general �1 will be �rst-order and therefore locally identi�ed. In contrast, if T = 5 or if

the cross-sectional variance of the innovations either grows or decreases exponentially over time,

then �1 will generally be �rst-order identi�ed, but not globally identi�ed, because there is a

second solution

��1 = �+ 
; � = �2t+1=�
2
t+2;

which satis�es the same moment conditions.

Further, given that the partial derivative of (18) with respect to �1 will be15

2�1(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)

�[(Yit�1 � 
Yit�2)(�Yit�1 � 
2�Yit�3) + (Yit � 
2Yit�2)(�Yit�2 � 
�Yit�3)]; (20)

the expected Jacobian with respect to �1 will be equal to 0 for

��1;t =
1

2

�
�2t�1
�2t�2

+ 1 + 2


�
under any form of time series heteroskedasticity, including (19), even though ��1 does not gen-

erally set to 0 the expected value of the Ahn and Schmidt (1995) in�uence functions (18). In

fact, it is easy to see that ��1;t = :5(�1 + ��1;t), so that in the �nite underidenti�ed case the

Jacobian rank de�ciency will occur at the mid point between the two solutions. Importantly,

both ��1;t and �
�
1;t will converge to �1 as �

2
t�1=�

2
t�2 ! 1, which means that if there is time

series homoskedasticity (i.e. �2t = �2 8t), then �1 will be globally identi�ed as 1 + 
, but it will
15 In e¤ect, this corresponds to a directional derivative along the line �2 = 
2 � 
�1 in the original (�1; �2)

space.
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become �rst-order underidenti�ed. Álvarez and Arellano (2022) state exactly the same underi-

denti�ability conditions in the Ar(1) version of model (14). In turn, Bun and Kleibergen (2022)

reach the same conclusions by looking at the asymptotic distribution of the GMM estimators

and identi�cation robust tests for the Arellano and Bond (1991) and Ahn and Schmidt (1995)

moment conditions in that model.

In all cases, though, there is second-order identi�cation because the Jacobian of the Jacobian

of (18) with respect to �1 will be proportional to

(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)

for all �1, whose expected value equals 2�2t�2 when the process contains a unit root.

By combining the in�uence functions (18) and (20) with the moment conditions (16), I can

e¢ ciently estimate �1 and 
 (and therefore �2), and obtain a �rst-order I test.

To deal with the �nite underidenti�ed case, I start by duplicating the Ahn and Schmidt

(1995) in�uence function written in terms of �1 and 
, which I then evaluate at ��1. To simplify

the presentation, imagine 
 is known. To keep the moments associated to �1 and ��1 apart, I

postmultiply [�(�1); �(��1)] by a 2 � 2 matrix with c11 = ��1=(�1 � ��1), c12 = �1=(��1 � �1),

c21 = ��1=(�1 � ��1) and c22 = 1=(��1 � �1), which yields

�1�
�
1(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)� (Yit � 
2Yit�2)(�Yit�1 � 
2�Yit�3);

(�1 + �
�
1)(Yit�1 � 
Yit�2)(�Yit�2 � 
�Yit�3)

�[(Yit�1 � 
Yit�2)(�Yit�1 � 
2�Yit�3) + (Yit � 
2Yit�2)(�Yit�2 � 
�Yit�3)]; (21)

which depend on the sum and product of the two solutions. In this context, I could estimate

& = �1 + ��1 and � = �1�
�
1, and then solve a simple quadratic equation to recover �1 and �

�
1.

Then, I could use the overidenti�cation test of this system as a �nite underidenti�cation test.

Such a test will reject with power equal to size for T = 5 in the presence of a unit root because

the relevant moment conditions will be jointly satis�ed by �1 = 1 + 
0 and �
�
1;5 = 
0 + �24=�

2
3.

Exactly the same will happen for T � 6 if in addition (19) holds.

But this indirect procedure would occasionally lead to complex conjugate solutions for �1

and ��1, in which case I should re-estimate subject to �1 = ��1. Although asymptotically this

will happen with vanishing probability, in �nite samples there is likely to be another pile-up

problem, with a positive fraction of the samples yielding identical estimates for �1 and ��1. As

a result, the �nite sample distribution of the �nite I test may be somewhat distorted.

As expected from the discussion in section 3.1, I trivially recover from (21) the in�uence

functions (18) and (20) associated to the �rst-order underidenti�ed case when the two separate
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solutions �1 and ��1 converge. The only di¤erence is that there is an extra degree of freedom in

the �rst-order underidenti�cation test because of the restriction �1 = ��1.

3.3.1 Simulation evidence

In this section I report the results of a limited Monte Carlo exercise with 2,500 replications of

a Gaussian version of the Ar(2) model with individual e¤ects in (14) for a short panel of T = 5

time series observations and N = 5; 000 cross-sectional units. Initially, I set the true values of

the autoregressive parameters �1 and �2 to :3 and :7, respectively, so that the true value of


 is �:7. As for (15), I considered two values for the time-series heteroskedasticity �in�ation�

parameter � = �2t+1=�
2
t+2:

1. � = 1 (time-series homoskedasticity),

2. � = 1:1 (time-series heteroskedasticity).

Once again, I used the same underlying pseudo-random numbers in the di¤erent designs to

minimise experimental error.

Starting with the homoskedastic case, the �rst thing to note is that the CUE versions of

the Arellano and Bond (1991) estimator and overidentifying restrictions test based are very

unreliable in the presence of a unit root. Figure 4a displays the scatter plot of the CUEs of �1

and �2, which tend to lie along the line �2 = :49+ :7�1 but with a huge range of variation due to

the lack of identi�cation of the parameters (see Hillier (1990) for a discussion of the behaviour

of symmetrically normalised estimators in underidenti�ed single equation linear instrumental

variable models). In turn, the size properties of the associated J test are summarised in Figure

4b using Davidson and MacKinnon�s (1998) p-value discrepancy plot, which shows the di¤erence

between actual and nominal test sizes for every possible nominal size. In line with the theoretical

results in Cragg and Donald (1993), underidenti�cation in a linear in parameter model leads to

substantial under-rejections for the overidentifying restriction test.

Figure 5a displays �bicorne� plots of the CUEs of �1 and �2 once I add the Ahn and

Schmidt (1995) moment conditions (17).16 As expected, the �rst-order underidenti�cation of

those parameters under time-series homoskedasticity leads to non-Gaussian distributions, with

clearly visible but lower additional modes. In this case, though, the overidenti�cation test,

whose p-value plot is displayed in the left panel of Figure 5b, shows substantial over-rejections,

as expected from the results in Dovonon and Renault (2013). In contrast, the right panel of

that �gure clearly indicates that the size of the �rst-order I test based on (16), (18) and (20) is

16These plots, which were introduced by Peñaranda and Sentana (2015) to characterise potentially asymmetric
distributions with extreme tails, combine a doubly truncated non-parametric density estimate on top of a box
plot. Therefore, the vertical lines describe the median and the �rst and third quartiles, while the length of the
tails is one interquartile range.
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very reliable.

Turning now to the design with time-series heteroskedasticity, Figure 6a con�rms that the

CUEs of �1 and ��1 based on (16) augmented with the in�uence functions (21) su¤er from a

pile-up problem, as there is a small fraction of them for which the two values coincide. In turn,

this problem leads to some �nite sample size distortions in the �nite I test, as illustrated in

Figure 6b. Those distortions disappear, though, as soon as I estimate the model in terms of

& = �1 + �
�
1 and � = �1�

�
1, as shown in Figure 6c.

17

To study the power of my proposed tests, I considered two additional designs. The �rst one

is a persistent but covariance stationary homoskedastic model for T = 5 in which �1 = :25,

�2 = :7, so that both the original Arellano and Bond (1991) and Ahn and Schmidt (1995) mo-

ment conditions are satis�ed, but the expected values of the linear underidenti�cation in�uence

functions (18), the �nite underidenti�cation in�uence functions (21) or the �rst-order underi-

denti�cation ones (20) are all di¤erent from 0 because the two Ar roots are strictly inside the

unit circle. Given that the linear I test in Arellano Hansen and Sentana (2012) rejected the null

hypothesis with very high probability, it is perhaps not surprising that power remained close to

one when I included either of the additional moment conditions that I have proposed.

In turn, the second design is a heterokesdatic unit root model for T = 6 in which the cross-

sectional variance is �2t = 1 for all t except for �
2
5 = 1:2, so that (19) does not hold. Unlike the

previous one, in this �rst-order identi�ed case the expected value of (18) is 0 but those of (20)

and (21) are not. Once again, the power of both the �rst-order I test and especially the �nite

I test was also very high even though the linear I test has power equal to size.

4 Extension to fundamentally non-linear models

Let f(x; �) contain p in�uence functions jointly Borel measurable and twice continuously

di¤erentiable in their second argument for each value of x such that E[jf(x; �)j] <1 for every

� 2 P, where � is a vector of k � p unknown parameters that lie on the compact parameter

space P � Rk.

The same basic approach I described in section 3.1 for non-linear in parameter but linear in

variables models applies to fundamentally non-linear ones too. In the �rst-order underidenti�ed

case, inference will be based on the augmented set of moment conditions:

E

�
f(x;�)

g(x;�; 
y)

�
= 0; (22)

17All these Monte Carlo results may well extend to the ML estimators of panel data models in Álvarez and
Arellano (2022), as well as to alternative GMM estimators which add the cross-sectional variances as additional
exactly identi�ed parameters. Validating such conjectures is left for further research.
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where

g(x;�; 
y) = D(x;�)
(
y) =
@f(x;�)

@�0

(
y);

and the free parameters that must be estimated are � and the �direction of weak identi�cation�


y, which corresponds to a basis of the null space of the expected Jacobian subject to some

normalisation such as 
0(
y)
(
y) = 1.18

If I assume that19

Assumption 3 � �fT (�0)

�gT (�0; 

y
0)

�
= T�1

XT

t=1

�
f(xt;�0)

g(x;�0; 

�y
0 )

�
a:s:!
�
0
0

�
;

T�1
XT

t=1

"
@f(x;��j )=@�

0 0

@g(x;��j ; 

y
j)=@�

0 @g(x;��j ; 

y
j)=@


y0

#
a:s:! J0

= E

�
@f(x;�0)=@�

0 0

@g(x;�0; 

y
0)=@�

0 @g(x;�0; 

y
0)=@


y0

�
for any sequence such that (��j ; 


y
j)� (��0; 


y
0) = op(1),

rank

�
E

�
@f(x;�)=@�0 0

@g(x;�; 
y)=@�0 @g(x;�; 
y)=@
y0

��
= 2k � 1 (23)

in an open neighbourhood of �0 and 

y
0, and

p
T

�
�fT (�0)

�gT (�0; 
0)

�
d! N(0; I0);

where I0 is a non-stochastic 2p� 2p positive de�nite matrix.

then the optimal GMM estimators of � and 
y based on (22) will be consistently and asymptot-

ically normal at the usual
p
T rate. Furthermore, the overidenti�cation test associated to (22)

will provide an asymptotically chi-square distributed test for �rst-order underidenti�cation.

Similarly, in the �nite underidenti�ed case, inference will be based on the duplicated set of

moment conditions
E[f(x;�)] = 0;
E[f(x;��)] = 0:

(24)

In this second instance, the main practical di¢ culty will be once more to keep � and �� apart

so that the duplicated moment conditions (24) do not collapse to (1). My proposed numerical

device, which is based on the numerical calculation of a directional derivative, is as follows:

18Once more, in some examples it may make sense to pre-specify the singularity direction 
.
19Similar assumptions are made by Kleibergen (2005), as well as by Dovonon and Gonçalves (2017) and Lee

and Liao (2018) for the special case in which the expected Jacobian is equal to 0. See also footnote 8 for the
relationship between (23) and the de�nition of second-order identi�cation in Dovonon and Renault (2020).
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1. Reparametrise the model in terms of �, 
y = �=
p
�0�and � =

p
�0�, with � = �� � �.

2. Replace the second in�uence function in (24) by ��1[f(x;�+ �
y)� f(x;�)].

3. Minimise a CUE criterion function with respect to those new parameters subject to the

restrictions � � 0 and 
0(
y)
(
y) = 1.

4. If during the minimisation algorithm � becomes smaller than some appropriately chosen

threshold value ��, then replace the second estimating function by its �rst-order approximation

g(x;�; 
y) =
@f(x;�)

@�0

(
y):

In practice, one should choose �� so that the two CUE criterion functions are numerically

very close at �� (see Appendix A.3 for further details).

Importantly, step 4 is simply a trick to keep the two solutions apart in �nite samples, but

which becomes irrelevant asymptotically. The rationale is as follows. If the model is �rst-order

identi�ed at � and ��, then the sample average of @f (x;�) =@�0 � 
(
y) will be numerically

di¤erent from 0 with probability approaching 1 as the sample size increases. As a result, the

GMM criterion function that uses the �rst-order approximation above will be large, and the

optimisation routine will move away from the manifold � = ��.

Once again, the procedure above con�rms that �rst-order underidenti�ed models may be

regarded as limiting cases of �nite underidenti�ed ones because the criterion function associated

to (24) converges to the GMM criterion for the original moment conditions augmented with their

�rst derivatives, as in section 3.1. Nevertheless, one should always use the J statistic associated

to (22) to test for �rst-order underidenti�cation, which has one degree of freedom more than

their �nite underidenti�cation counterparts because it sets � to 0 by construction.

5 Conclusions

In this paper, I consider the estimation of observationally equivalent parameters in GMM

models in which the original moment conditions are satis�ed by a �nite number of distinct

values. To do so, I map this situation into a standard GMM problem by replicating the original

moment conditions and evaluating each of them at di¤erent values of the parameters. Given

that the Jacobian is block diagonal, I can rely on standard asymptotic theory for GMM under

the maintained assumption that each of the isolated solutions is �rst-order identi�ed. The main

practical di¢ culty consists in keeping the solutions apart. The approach simpli�es considerably

for non-linear in parameters models, in which the set of observationally equivalent structures

must belong to some restricted subspace.

I also discuss the estimation of globally identi�ed parameters when the expected Jacobian is
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of reduced rank. Once again, I restore standard asymptotics by combining the original moment

conditions with the moment conditions associated to the rank failure of the Jacobian.

Associated with the asymptotically normal estimators that I propose, the usual GMM overi-

denti�cation restriction statistics of the augmented moment conditions provide an indication of

the extent to which either the existence of multiple solutions to the original moment conditions

or rank de�ciency of the Jacobian should be a concern.

Importantly, I explicitly relate the �nite and �rst-order underidenti�ed cases by showing

that as two solutions of the original moments converge to each other in a certain manner, their

duplicated in�uence functions become equivalent to an extended system which combines the

original moment conditions with their directional Jacobian.

I illustrate the proposed procedures with two examples. The �rst one is the estimation of

production functions in which �rms choose the level of input as a function of a serially corre-

lated productivity shock unobserved by the econometrician, which has been recently analyzed

by Ackerberg et al (2023) and Aguirregabiria (2021). The second example is the autoregressive

dynamic panel data model, which has been extensively used in empirical applications. Although

linear GMM estimators can only estimate an uncountable set of observationally equivalent pa-

rameter con�gurations when the autoregressive polynomial contains a unit root, I show that the

inclusion of the non-linear moment conditions in Ann and Schmidt (1995) renders the model pa-

rameters either �rst-order underidenti�ed, locally but not globally identi�ed, or fully identi�ed,

depending on the temporal evolution of the cross-sectional variance of the innovations, which is

not an explicit part of the model.

The simulation results display the following features:

1. There is a pile-up problem in �nite unidenti�ed models, whereby a positive fraction of

the estimates end up collapsing to a single solution.

2. The sampling distribution of the estimators of �rst-order underidenti�ed models is not

unimodal, with additional lesser modes around alternative �false�parameter values.

Therefore, one could argue that �rst-order underidenti�cation is not just a situation in

which a standard regularity condition fails, but more fundamentally, one in which identi�cation

is dubious. The slower rates of convergence of some of the parameter estimators and test

statistics in �rst-order underidenti�ed models highlighted by Sargan (1983a), Rotnitzki et al

(2000), Dovonon and Renault (2013, 2020) and Amengual, Bei and Sentana (2023) support this

interpretation. In this respect, an important topic for future research would be to derive �nite

sample results that con�rm the close relationship between �nite and �rst-order identi�cation.

It would also be very interesting to explore other empirically relevant models for which �nite
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underidenti�cation and its �rst-order underidenti�cation limit represent important concerns in

practice. One example is the following stylised social interactions model for N individuals in a

network:

y = �Wy + �x+ 
Wx+ e; (25)

where y and x are the N�1 vectors with the values of the endogenous and exogeneous variables,

respectively, for each of those individuals, W is the so-called adjacency matrix of the underlying

network, �, � and 
 are parameters of interest measuring direct and indirect e¤ects, and e

contains the N structural residuals. Bramoullé, Djebbari and Fortin (2009) study the local

identi�cation of this model when W is known, while de Paula, Rasul and Souza (2018) consider

the case in which the non-diagonal elements of W are also estimated. Speci�cally, theorem 1

in de Paula, Rasul and Souza (2018) shows that under certain conditions the model parameters

are �rst-order identi�ed but not necessarily globally identi�ed, while their theorem 2 shows that

there will be at most one solution with �� + 
 > 0 and another one with �� + 
 < 0.

Finally, and although this paper is an exercise in positive econometrics, my recommendation

would be that empirical researchers analysing models in which identi�cation might be poor

should increase the credibility of their results by enriching the usual results tables with the

�rst-order I test proposed in this paper, in the same way as �rst-stage F tests are routinely

reported in linear IV regressions these days. Similarly, if there were reasons to believe that

the moment conditions at hand could have more than one solution, I would advice empirical

researchers to report the �nite I test together with the estimates of the isolated solutions based

on the duplicated system of moment conditions, whose joint asymptotic distribution is standard

under the null. In addition, they should justify the potential choice of one speci�c solution over

another on the basis of other arguments.
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Figure 1: Finite set estimation of the production function parameters when � is locally

identi�ed

Sampling distributions of CUEs

a b

c: p-value plot for global I test

Notes: CUEs of �, ��, � and �� and associated overidenti�cation test based on the moment conditions
(11) for T = 2; 000 when �0 = :75 and  0 = :25 (see section 3.2 for details).
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Figure 2: Finite set estimation of the production function parameters when � is uncountably

underidenti�ed

Scatter plots of CUEs

a b

Notes: CUEs of �, ��, � and �� and associated overidenti�cation test based on the moment conditions
(11) for T = 2; 000 when �0 =  0 = :5 (see section 3.2 for details).

Figure 3: Restoring standard distributions when � is uncountably underidenti�ed

a: Sampling distribution b: I test

NNotes: CUEs of � and associated overidenti�cation test based on the moment conditions (13) for
T = 2; 000 when when �0 =  0 = :5 (see section 3.2 for details).
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Figure 4: The e¤ects of underidenti�cation on Arellano and Bond (1991)

a: Scatter plot of CUEs
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b: p-value plot of the J test
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Notes: CUEs of �1 and �2 and associated J test based on the Arellano and Bond (1991) moment
conditions for N = 5; 000 and T = 5 under time-series homoskedasticity (see section 3.3 for details).
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Figure 5: The e¤ects of �rst-order underidenti�cation on Ahn and Schmidt (1995)

a: Sampling distributions of CUEs

�1 �2

b: p-value plots for J and �rst-order I tests
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Notes: CUEs of �1 and �2 and associated J test based on the Arellano and Bond (1991) and Ahn and
Schmidt (1995) moment conditions (17) for N = 5; 000 and T = 5 under time-series homoskedasticity
(see section 3.3 for details). J test associated to the moment conditions (16), (18) and (20) for N = 5; 000

and T = 5 under time-series homoskedasticity (see section 3.3 for details).
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Figure 6: Pile-up problem with �nite underidenti�cation

a: Scatter plot of the CUEs of �1 and ��1
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Notes: (a) CUEs of � and �� based on the moment conditions (16) and (21) for N = 5; 000 and T = 5
under time-series heteroskedasticity; (b)-(c) p-value plots of the non-linear and linear versions of the �nite
I test, respectively (see section 3.3 for details).
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Appendices

A A fundamentally non-linear example

A.1 A non-linear dynamic regression model for discrete data

Consider a Markov chain taking three di¤erent values: xl, xm and xh. Suppose those values
are of interest on their own. For example, xt could be the dose of a drug taken by an addict
at t. A researcher interested in predicting future drug consumption speci�es the following
fundamentally non-linear model

E(x�t jxt�1) = � + �xt�1; (A1)

where � and � have the usual interpretation of intercept and slope of an autoregressive model,
but they predict instead some unknown power � of the observed variable.

For estimation purposes, the unconditional moment restrictions

E

8<:(x�t � � � �xt�1)
24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A ; (A2)

where 1(:) is the usual indicator function, e¤ectively contain the same information as the con-
ditional moment restriction (A1) because of the discrete, �rst-order Markovian nature of xt.

In general, one would expect � to be point identi�ed from those moment conditions. Nev-
ertheless, as explained in Appendix A.2 below, it is possible to choose the transition matrix,
which is not an explicit part of model (A1), so that these conditional moment restrictions, and
therefore the unconditional moment restrictions (A2), be satis�ed by both � and �� 6= �.

But even when there is a unique value of � that satis�es the original conditional moment
restrictions (A1), it is also possible to come up with transition matrices for which �0 also satis�es

E(x�t lnxtjxt�1) = 0; (A3)

which is the (conditional) expected value of the derivative of (A1) with respect to �, so that
the non-linearity parameter is �rst-order underidenti�ed even though it is locally identi�ed. In
fact, those transition matrices naturally arise in the limiting case of �� = �, exactly as in the
dynamic panel data model (see again Appendix A.2 for details).

The unconditional moment counterpart to (A3) are

E

8<:x�t lnxt
24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A : (A4)

These moment conditions correspond to the ones Wright (2003) suggested to test for underi-
denti�cation at a given point. Importantly, though, they must be combined with (A2) to avoid
estimating uninteresting values of � for which (A4) holds but (A2) does not (see Kleibergen
(2005) for a related discussion in the case of LM tests). Speci�cally, it is easy to show that as
in the panel data example in section 3.3, the expected Jacobian will become 0 at some interme-
diate point between � and �� in �nite underidenti�ed cases, but those intermediate values will
nevertheless fail to satisfy the original moment condition (A1).

As previously explained, to keep � and �� apart it is numerically convenient to combine the
original unconditional moment conditions (A2) with

E

8<:
 
x�+�t � x�t

�

!24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A ; (A5)
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which can be interpreted as the expected value of the relative (discrete) increment of x�t � � �
�xt�1 when one moves from � to �� = � + �. The advantage of CUE is that the criterion
function is the same whether one uses these moments or the original ones (A2) evaluated at ��.
When � � ��, where �� is a carefully chosen small but positive threshold value, one can safely
replace (A5) by (A4), which are the moment conditions associated to the Jacobian. Therefore,
one set of moment conditions is the limiting case of the other, as expected from the theoretical
discussion in section 4.

A.2 The transition matrix of the discrete Markov chain

As is well known, the transition matrix

xt�xt�1 xl xm xh
xl �l(xl) �l(xm) �l(xh)
xm 1� �l(xl)� �h(xl) 1� �l(xm)� �h(xm) 1� �l(xh)� �h(xm)
xh �h(xl) �h(xm) �h(xh)

fully characterises the serial dependence of xt assuming strict stationarity for the chain. Further,
the unconditional probabilities (�l; �m; �h) coincide with the eigenvector associated to the unit
eigenvalue normalised so that its coe¢ cients add up to 1.

In order for two di¤erent sets of parameter values to satisfy the conditional moment restric-
tions (A1), it must be the case that E(x�t jxt�1 = xj) = E(x�

�

t jxt�1 = xj); j = l;m; h.
Assuming for scaling purposes that xm = 1, these equalities are equivalent to

1��l(xl)��h(xl)+x�l �l(xl)+x
�
h�h(xl)=1��l(xl)��l(xl)+x

��

l �l(xl)+x
��

h �h(xl);

1��l(xm)��h(xm)+x�l �l(xm)+x
�
h�h(xm)=1��l(xm)��l(xm)+x

��

l �l(xm)+x
��

h �h(xm);

1��l(xh)��h(xh)+x�l �l(xh)+x
�
h�h(xh)=1��l(xh)��l(xh)+x

��

l �l(xh)+x
��

h �h(xh):

Straightforward algebra shows that these conditions will be simultaneously satis�ed when

�h(xl)

�l(xl)
=
�h(xm)

�l(xm)
=
�h(xh)

�l(xh)
=
x�l � x

��

l

x�
�

h � x�h
= s(xl; xh; �; �

�) � 0: (A6)

With this restriction, it is easy to see that the conditions

0 � �l(xl); �l(xm); �l(xh) �
1

1 + s(xl; xh; �; �
�)
� 1 (A7)

guarantee the admissibility of the conditional probabilities of xt = xm because in that case

�m(xt�1) = 1� �h(xt�1)� �l(xt�1) = 1� [1 + s(xl; xh; �; ��)]�l(xt�1)

will be between 0 and 1 for all three values of xt�1.
The last restriction to impose is precisely the conditional moment restriction (A1). Given

that (A6) implies that

E(x�t jxt�1) = 1 + [�1 + x
�
l + (x

�
h � 1)s(xl; xh; �; �

�)]�l(xt�1); (A8)

by assuming that �l(xt�1) = a+ bxt�1 for values of a and b that satisfy (A7), then it is easy to
check that (A1) will hold with

� = 1 + [�1 + x�l + (x
�
h � 1)s(xl; xh; �; �

�)]a = 1 + [�1 + x�
�

l + (x�
�

h � 1)s(xl; xh; �; ��)]a;
� = [�1 + x�l + (x

�
h � 1)s(xl; xh; �; �

�)]b = [�1 + x�
�

l + (x�
�

h � 1)s(xl; xh; �; ��)]b;
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which remain point identi�ed.
In contrast, the �rst-order underidenti�ed case requires that E(x�t lnxtjxt�1 = xj) = 0;

j = l;m; h, which is equivalent to

x�l ln(xl)�l(xl) + x
�
h ln(xh)�h(xl) = 0;

x�l ln(xl)�l(xm) + x
�
h ln(xh)�m(xm) = 0;

x�l ln(xl)�l(xh) + x
�
h ln(xh)�h(xh) = 0:

But these conditions will also be simultaneously satis�ed when (A6) holds with �� = � as long
as s(xl; xh; �; ��) is replaced by (xl=xh)� ln(xl=xh). Therefore, the �rst-order underidenti�ed case
can once again be understood as the limiting case of the �nite underidenti�ed case as �� ! �.

Finally, I generate data of the standard situation with a single, �rst-order identi�ed solution
by slightly modifying the design of the �rst-order underidenti�ed case. Speci�cally, I add a small
value � to �l(xm) so that when I impose that

�h(xm) =
� + �xm � x�m + (x�m � x�l )[�l(xm) + �]

(x�m � x�h)

to guarantee that the original moment conditions (A2) are satis�ed, both �h(xm) and �m(xm) =
1��l(xm)����h(xm) remain between 0 and 1. By construction, this design will also converge
to the �rst-order identi�ed case when � goes to 0

A.3 Simulation evidence

In this section I report the results of a limited Monte Carlo exercise with 2,500 replications
of the discrete Markov chain model described above for T = 10; 000. To concentrate on the
non-linear component of the model, which is characterised by the exponent parameter �, I keep
� and � �xed at their true values of .75 and .1, respectively. I initially considered two designs
compatible with (A1):

1. � = 1 and �� = 1:5 (Finite underidenti�cation),

2. � = ��1 = 1:5 but with a 0 expected Jacobian (First-order underidenti�cation).

Starting with the �nite underidenti�ed design, the �rst thing to note is that the �nite sam-
ple distribution of the CUE of � obtained from (A2) seems to be a mixture of two Gaussian
distributions, with two modes approximately equal to the values of � and �� (see Figure A1a).
By increasing the sample size to T = 100; 000, as in Figure A1b, the separation of the sampling
distribution into two Gaussian components becomes far more evident.

It is worth mentioning that in this design both � and �� are �rst-order identi�ed, so the
pooled distribution of the overidenti�ying restrictions tests evaluated at the estimated values
of � and �� converges to a chi-square with the same degrees of freedom in large samples, as
illustrated in Figure A1c. However, the usual J test, which is the minimum of those two statistics
in each simulated sample, will underreject if one uses that distribution to compute p-values.

The CUEs of � and � displayed in Figure A2a, obtained by combining the moment conditions
(A2) and (A5) for � � �� = 10�7, are also well behaved, although there is again some evidence
of a pile-up problem, which in this case manifests itself by a non-negligible fraction of zero �
estimates. In addition, there is a strong negative correlation between the estimates of � and �, as
illustrated by the scatter plot in Figure A2b. To a large extent, this negative correlation re�ects
the rather elongated shape of the contours of the CUE criterion function around its minimum,
which are shown for a particular simulation in Figure A2c.
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In contrast, the estimate of � that exclusively relies on the moment conditions (A4), and
therefore ignores the original moment conditions (A2), turns out to be centred around a pseudo-
true value which roughly lies half way between 1 and 1.5, as shown in Figure A3a.

Turning now to the �rst-order underidenti�ed design, Figure A3b con�rms that the �nite
sample distribution of the CUE estimator of � obtained from (A2) is clearly non-normal, with a
distinctive but lower second mode. Similarly, Figure A3c indicates that the associated overiden-
ti�cation test shows substantial over-rejections, which is once again expected from the results
in Dovonon and Renault (2013). In contrast, Figure A3d suggests that the �nite sample distri-
bution of the CUE of � obtained by combining the moment conditions (A2) and (A4) is nicely
behaved around the true value of 1.5.

To study test power, I �nally generated data using a transition matrix for which there is
a single value of � that satis�es (A2) but does not satisfy (A4) (see again Appendix A.2 for
details). The simulation results, which are available on request, show that both the �rst-order
I test and the �nite I test had power close to 1 for small deviations from (A4). Moreover, the
usual CU version of the overidenti�cation test based on the original moment conditions (A2)
closely followed a chi-square distribution with the right number of degrees of freedom.

Figure A1: Finite underidenti�cation

Sampling distributions of CUEs

a: T = 10; 000 b: T = 100; 000

c: p-value plot for J tests evaluated at the estimates of � and ��

T = 10; 000

Notes: (a)-(b) CUE of � based on (A2) under �nite underidenti�cation; (c) pooled distribution of overi-
denti�cation statistics evaluated at the estimates of � and �� (see Appendix A for details).
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Figure A2: Finite set estimators

a: Sampling distributions of CUEs

� �

b: scatter plot c: objective function
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Notes: CUEs of � and � based on the moment conditions (A2) and (A5) for T = 10; 000 under �nite
underidenti�cation (see Appendix A for details).
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Figure A3: First-order underidenti�cation

a: CUE based on expected Jacobian only b: E¤ects on GMM estimators
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c: p-value plot of J test d: CUE adding expected Jacobian
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Notes: (a) CUE of � based on the moment conditions (A4) only for T = 10; 000 under �nite underi-
denti�cation; (b)-(c) CUE of � and associated J test based on the original moment conditions (A2) for
T = 10; 000 under �rst-order underidenti�cation; (d) CUE of � based on the moment conditions (A2)
and (A4) for T = 10; 000 under �rst-order underidenti�cation (see Appendix A for details)
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B Underidenti�cation in 3D

B.1 Linear model

Consider a model characterised by the moment conditions

�	' = 0 (B9)

where ' is a k � 1 parameter vector, �	 = E(	t) and 	t is a r � k data matrix, with r � k.
The archetypal example is the single equation, linear instrumental variables model, in which a
certain linear combination of the variables of interest, namely x0t', is assumed orthogonal to the
vector of r instruments zt. As a result, 	t = ztx

0
t.

To provide a graphical representation of the di¤erent identi�cation possibilities of the model
above, I assume that k = 3.

If rank(�	) = 3, then there is no value of ' other than ' = 0 that can satisfy the above
moment conditions. In that case, we say that (B9) is rejected.

If on the other hand rank(�	) = 2, then there is a linear subspace of dimension one which
satisfy those restrictions. Algebraically, this subspace coincides with the nullspace of the matrix
�	. Graphically, this nullspace is a straight line in R3 that goes through the origin.
I can choose a single point on that line by either �xing one coordinate of ' to 1, which

works provided its true value is not 0, or by imposing the symmetric normalisation restriction
'0' = 1, which e¤ectively de�nes a direction by forcing ' to lie on the surface of the unit
sphere in R3. However, since any line through the origin will intersect the unit sphere twice, I
need an additional �sign�restriction. For example, I could impose that the third coordinate be
non-negative, which e¤ectively restricts the solution to be on the Northern hemisphere. This
works in all cases except when the line intersects the sphere exactly at the equator, in which
case I should require the second coordinate to be non-negative, which forces the solution to be
on the Eastern hemisphere instead.

Despite this scale indeterminacy, we normally speak of underidenti�cation only when the
rank of �	 is 1. In this case, there will be a linear subspace of dimension two of observationally
equivalent solutions for ' that will satisfy the moment conditions (B9), which again coincides
with the nullspace of �	. Graphically, this linear subspace is a plane in R3 that goes through the
origin.

In this case, even if I normalise ' to be on the surface of the unit sphere, I will obtain a
�great circle�of observationally equivalent parameter values. As is well known, the intersection
of a plane with a sphere produces a circle. When the plane goes through the centre of the sphere,
the resulting circle is termed a �great circle� or �orthodrome�. Assuming planet Earth were
a perfect sphere, the equator and all combinations of a meridian with its antipodean meridian
would be great circles. In fact, any geodesic lies on a great circle because on can always �x
the location of the North Pole so that a geodesic becomes part of a meridian. In contrast, all
parallels except the equator would be �small circles�.

Finally, in the extreme case in which rank(�	) = 0, R3 itself constitutes the identi�ed set, and
so does the entire unit sphere after imposing the symmetric normalisation restriction '0' = 1.
I shall not discuss this uninteresting case any further.

B.2 Non-linear in parameter model

Next, I abandon the linear world and replace the original moment conditions by

�	'(�) = 0; (B10)

where '(�) is a continuously di¤erentiable function of a single parameter � that maps the closure
of an open set de�ned over the real line onto the three dimensional Euclidean space. I make two
further assumptions:
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1. '(�) is injective so that d'(�)=d� is not identically 0.

2. '(�) has been normalised in such a way that Assumption 2 holds.

The �rst assumption rules out trivial cases in which the underidenti�cation of � has nothing
to do with �	. In turn, the second assumption rules out situations in which underidenti�cation is
related to a mere scaling issue. For simplicity, henceforth I assume the symmetric normalisation
'(�)0'(�) = 1 for all �, although my subsequent analysis will carry through mutatis mutandi
for alternative normalisations.

Obviously, when rank(�	) = 3, the only solution for � would require '(�) = 0, which should
not be feasible after normalising '(�).

In turn, when rank(�	) = 2, only two situations may happen: either there is a single value
of �, say �0, for which '(�) belongs to the nullspace of �	, in which case this point is locally
and globally identi�ed, or there is not, in which case model (B10) is misspeci�ed even though
model (B9) is correctly speci�ed. Importantly, the uniqueness of �0 under correct speci�cation
follows from Assumptions 1 and 2. In addition, this single point will also be generally �rst-order
identi�ed because the Jacobian of (B10) is �	d'(�)=d�, which cannot be zero when rank(�	) = 2
if (B10) holds, unless d'(�)=d� evaluated at �0 happened to be proportional to '(�0).

In contrast, the non-linearity of the '(�) function introduces new meaningful underidenti�-
cation possibilities when rank(�	) = 1.

To illustrate those possibilities, I study �rst a simple example in which '(�) generates a
small circle on the unit sphere. Without loss of generality, I can then rede�ne the 3D coordinate
system so that this small circle is actually a parallel. Thus, I obtain

'(�) = (cos �� sin�; cos �� cos�; sin ��); (B11)

where �� provides the common latitude of all the points on the small circle and � 2 (0; 2�] their
longitude. Please note that '(�) is not only injective but it also satis�es Assumption 2 (lack
of proportionality) because '0(�)'(�) = 1 for all �. Without loss of generality, I assume that
�� � 0, so that '(�) lies on the Northern hemisphere.
In this context, the set of admissible solutions for � will be given by the intersection of '(�)

in (B11) and the great (semi) circle generated by the intersection of the plane of observationally
equivalent value of ' in (B9) with the Northern hemisphere.

Several situations may happen:

1. �� > 0 but the great circle of observationally equivalent normalised solutions to (B9) is
such that the maximum latitude that it can reach in this coordinate system is below ��.
For example, the small circle is the Arctic circle but the great circle is the ecliptic, whose
maximum latitude is 0.409048628 radians (23.43676�), as in Figure B1a. In this case, there
is no value of � that can satisfy the non-linear moment conditions (B10), so they will be
rejected.

2. �� = 0 and the great circle of observationally equivalent normalised solutions to (B9)
coincides with the equator, as in Figure B1b. In this case, there is a continuum of values
of � that satisfy the moment conditions, so that � is not locally identi�ed.

3. �� � 0 and the great circle of observationally equivalent normalised solutions to (B9)
intersects (B11) twice, as in Figure B1c. In this case, � will be �rst-order and therefore
locally identi�ed at each of those two solutions, but not globally identi�ed. In the special
case of �� = 0, those solutions are antipodean.

4. �� > 0 and the great circle of observationally equivalent normalised solutions to (B9) inter-
sects (B11) once, but in such a way that the arc distance from the intersection point to the
equator along the great circle of observationally equivalent linear structures is exactly �=2
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(see Figure B1d). In this case, � is locally identi�ed, but �rst-order underidenti�ed. The
intuition is as follows. Geometrically, '0(�) = (cos �� cos�;� cos �� sin�; sin ��) describes
another point on the equator which is orthogonal to the original point on the parallel
'(�). Therefore, if the plane �	' = 0 goes through those two points, then

�	d'(�)=d� = 0 (B12)

and (B10) will simultaneously hold.

Interestingly, I can show that this solution can be obtained as the limit of the previous
one as the solutions get closer and closer to each other in such a way that (B12) holds.

5. �� > 0 and the great circle of observationally equivalent normalised solutions to (B9)
intersects (B11) once, but the arc distance along the great circle from the intersection
point to the equator is di¤erent from �=2 (see Figure B1e). In this ideal case, � is �rst-
order, locally and globally identi�ed.

Unfortunately, when '(�) is given by (B11), it is impossible to generate an in�nite but
countable number of observationally equivalent values of �. Nevertheless, I can do so with the
following alternative example. Suppose that '(�) generates what is know as a �rhumb line�(or
loxodrome). This is the trajectory along the sphere that a ship starting from the North pole will
follow if it moved by maintaining a constant angle � 6= �=2 against the meridians. Loxodromes
became popular in sea navigation not only because they simply require that the compass is kept
pointing in a constant direction or bearing, but also because they reduce to straight lines in
Mercator�s 2D projection.

Formally, the Cartesian coordinates of a rhumb line are

'(�) =

 
cos�p
�2
2 + 1

;
sin�p
�2
2 + 1

;� �
p
�2
2 + 1

!
;

where 
 is a constant related to the bearing and � 2 (��; �].
The number of points at which rhumb line will cross the great circle of observationally

equivalent normalised solutions to (B9) depends on the inclination of this great circle with respect
to the equator. The larger the inclination, the more crossings there will be, and consequently,
the larger the number of observationally equivalent values of � compatible with (B10). In fact,
a well known property of rhumb lines is that they are spherical spirals, which implies that if
the great circle coincided with a meridian and � 6= 0, as in Figure B1f, then there would be a
countable but in�nite number of crossings very close to the North and South poles despite the
distance from those two poles along the rhumb line being �nite.
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Figure B1: Underidenti�cation in 3D

a: Misspeci�cation b: Uncountable underidenti�cation

c: Finite underidenti�cation d: First-order underidenti�cation

e: First-order identi�cation f: Countably in�nite underidenti�cation
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