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Abstract

I adapt the Generalised Method of Moments to deal with nonlinear models in
which a �nite number of isolated parameter values satisfy the moment conditions. To
do so, I initially study the closely related limiting class of �rst-order underidenti�ed
models, whose expected Jacobian is rank de�cient but not necessarily 0. In both
cases, my proposed procedures yield parameter estimators and underidenti�cation
tests within a standard asymptotically normal framework. I study models with
and without separation of data and parameters. Finally, I illustrate the proposed
inference procedures with a dynamic panel data model and a non-linear regression
model for discrete data.
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1 Introduction

Identi�cation has been a central issue for the theory and practice of econometrics since

at least the early analysis of simultaneous equations at the Cowles Commission (see e.g.

Koopmans and Hood (1953)).1 In the linear in parameters models of the form

E[	(x)�] = 0

considered by those authors, where x is a vector of observable random variables and 	(x)

contains p� (r+ 1) known functions of data, the observationally equivalent values of the

(r + 1) � 1 unknown parameter vector � that satisfy the moment conditions above lie

on either a one-dimensional linear subspace (the so-called point identi�ed case), which

nevertheless requires some additional normalisation to pin a unique direction down, or a

higher-dimensional linear subspace (the set identi�ed case).

However, in non-linear models de�ned by the unconditional moment conditions:

E [f (x; �)] = �f(�) = 0; (1)

where f(x; �) contains p in�uence functions and � is a vector of k � p unknown parameters

that lie on a subset P of Rk, other meaningful underidenti�ed situations may arise (see

e.g. Fisher (1966) and Rothenberg (1971)):

a. Uncountable underidenti�cation: There is a manifold of observationally equiv-

alent values of � that satisfy the moment conditions (1).

b. Countably in�nite underidenti�cation: There is an in�nite but countable num-

ber of observationally equivalent values of � that satisfy the moment conditions (1).

c. Finite underidenti�cation: There is a �nite number of observationally equivalent

values of � that satisfy the moment conditions (1).

In addition, there exist other situations which share some underidenti�cation features

(see Sargan (1983a,b)):

1Throughtout this paper I focus on what Lewbel (2018) calls extremum-based parametric identi�ca-
tion, which is linked to the estimation criterion used.
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1. First-order underidenti�cation: �0 is the unique solution to (1), at least in an

open neighbourhood of �0, and therefore locally and possibly globally identi�ed,
2

and yet rank[ �D(�)] < k at � = �0 but not in its neighbourhood, where �D(�) =

E[@f(�)=@�0] is the expected Jacobian of the moment conditions.

2. Second-order underidenti�cation: �0 is the only solution to (1), but rank[ �D(�)]

< k and the rank of the expected Jacobian of the (vec) Jacobian is also de�cient.

These borderline identi�ed cases are closely related to the truly underidenti�ed ones in

a.-c. Speci�cally, Sargan (1983a) explained that if �f(�) is analytic and there is rank failure

for all higher-order Jacobians, then we go back to the uncountable underidenti�cation in

a. In turn, I will explain below that 1. often arises when two observationally equivalent

solutions in c. become arbitrarily close to each other.

The approach in this paper is closely related to Arellano, Hansen and Sentana (2012),

who focused on uncountably underidenti�ed models. They posed the problem as an

estimation one where researchers seek to estimate the set over which identi�cation is

problematic. Speci�cally, they considered an augmented structural model in which the

moment conditions are satis�ed by a curve instead of a point, as in Sargan (1959). They

then showed how to estimate the identi�ed curve, providing an e¢ ciency bound for any

�nite number of points along the curve in their Theorem 5.3. As a by-product, they

obtained a test for underidenti�cation by suitably testing for overidenti�cation in the

augmented model. If it is possible to estimate a curve without statistically rejecting the

overidentifying restrictions of the augmented model, then researchers may conclude that

the original econometric relation is uncountably underidenti�ed. In contrast, rejections

provide evidence that the original model is indeed point identi�ed.

In this paper, I also impose an explicit structure on the lack of identi�cation, which

in turn leads to an alternative estimation problem and its associated underidenti�cation

test, but the di¤erence is that I focus on situations in which only a �nite number of locally

2Formally, �0 will be locally identi�able if and only if E[f(x;�j)] 6= 0 for any sequence f�jg such
that limj!1 �j = �0, while it will be globally identi�able if there is no observationally equivalent value
anywhere in the admissible parameter space P. The order condition p = dim (f) � dim (�) = k provides
a �rst-check of identi�cation, but this is only necessary. A complement is provided by the rank condition:
If �D(�) is continuous at �0, and rank[ �D(�0)] = k, then �0 is locally identi�ed. In contrast to the order
condition, this condition is only su¢ cient. But if rank[ �D(�)] is also constant in a neighborhood of �0,
then the above rank condition becomes necessary too (see again Fisher (1966) and Rothenberg (1971)).
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identi�ed isolated parameter values satisfy (1), as in c. For simplicity, I only consider

two-point sets, although the results could be extended to any �nite number of points.3

Before studying such �nite underidenti�ed models, though, I study the closely related

class of �rst-order underidenti�ed ones. The reason is threefold. First, in a formal sense

that I will characterise below, �rst-order underidenti�cation can be regarded as the lim-

iting case of �nite underidenti�cation when the isolated solutions converge to each other.

Second, the methods I propose to deal with the former turn out to be very useful for

the purposes of dealing with the latter. Finally, the behaviour of Generalised Method of

Moment (GMM) estimators and hypothesis tests in �rst-order underidenti�ed models has

become the focus of increasing attention (see Kleibergen (2005) and Dovonon and Renault

(2013)). As mentioned before, in those situations the expected Jacobian of the moment

conditions is singular, but not necessarily zero, so that the usual asymptotic theory for

standard GMM estimation breaks down. In contrast, the procedures that I propose will

restore conventional GMM asymptotics, as the results in Lee and Liao (2018) con�rm for

the special case of a zero expected Jacobian.

The paper is also somewhat related to two di¤erent strands of the literature that

have gained prominence in the last two decades. One is the weak instruments literature

(see e.g. Stock, Wright and Yogo (2002) and Dufour (2003), or more recently Antoine

and Renault (2010)). Papers in this tradition often consider a zero rank Jacobian �D(�)

at �0 as the limit of a sequence of data generating models indexed by the sample size

for the purposes of developing reliable standard errors and tests of hypothesis about �0.

By going to the limit and exploiting the additional moment conditions associated to a

singular but not necessarily null Jacobian, I restore standard asymptotics. The other

strand is the set estimation literature (see e.g. Chernozhukov, Hong and Tamer (2007) or

more recently Yildiz (2012)), whose objective is to consistently estimate the set of values

of � that satisfy (1). By making the additional assumption that the identi�ed set is �nite

and modifying the usual GMM objective accordingly, I also estimate the set within a

standard asymptotic framework.

Nevertheless, I would like to emphasise that the focus of this paper is more on the

3Extensions to countably in�nite underidenti�cation in b. are conceptually possible (see the rhumb
line 3D example in Appendix B), but since to the best of my knowledge there are no interesting economic
applications, I will not pursue them.
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exploration of the sense in which identi�cation may fail in a given context than on para-

meter estimation. In that regard, the asymptotically chi-square GMM overidenti�cation

restriction statistics that I propose provide natural diagnostics for �nite underidenti�ca-

tion in one case or �rst-order underidenti�cation in the other. Furthermore, those tests

will remain valid even if some of the maintained assumptions I use to obtain them do

not hold. Speci�cally, the asymptotic distribution of the �nite underidenti�cation test

that assumes there are only two solutions to (1) holds regardless of the exact number of

actual solutions for the same reason that the usual overidenti�cation test of those original

moment conditions converges to a limiting chi-square in the presence of more than one

locally identi�ed solution. Similarly, the �rst-order underidenti�cation test that assumes

the nullity of the expected Jacobian is 1 will also remain asymptotically valid regardless

of the number of zero singular values.

The rest of the paper is organised as follows. In section 2, I review some known

situations in which there is either a �nite set of observationally equivalent solutions or

rank failure of the expected Jacobian in order to highlight the non-trivial features of the

more subtle situations I am interested in. Then I study linear in variables but non-linear in

parameter models in section 3 and fundamentally non-linear models in section 4. Finally,

I conclude in section 5. Some additional details can be found in the appendices, which

include 3D representations of all the di¤erent identi�cation situations that might occur.

2 Some examples

There are well-known models which systematically give rise to two or more obser-

vationally equivalent solutions. The most obvious example is an Ma(1) process whose

parameters are estimated on the basis of �rst and second moments of the data. Another

trivial example would be a non-linear regression model in which the conditional mean

function contains the hyperbolic cosine function exp(�x)+exp(��x). Lewbel (2012) pro-

vides a more interesting example of a simultaneous equations system without exclusion

restrictions identi�ed though heteroskedasticity in which there are also two solutions to

the moment equations, one positive and one negative. In these non-injective cases, one

can suitably restrict the parameter space to achieve point identi�cation. In addition, the

two observationally equivalent solutions can be obtained automatically on the basis of one
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another.

In other cases, there is generally a unique �rst-order identi�ed solution, but if the

unknown true parameter values satisfy certain restrictions, underidenti�cation issues will

arise. An interesting example is the so-called double-indexed model for non-negative data

studied by Papadopoulos and Santos Silva (2012). In one of its simplest possible forms,

this model parametrises the mean of a non-negative variable y conditional on two weakly

exogenous variables x and z as follows:

E(yjx; z) = exp[(�+ )x+ z]

1 + exp(�x+ �z)
;

where �, � and  are the parameters of interest. This conditional mean speci�cation

is compatible with a zero in�ated Poisson model, a hurdle model, and a model with a

latent error term for count data among several others (see Papadopoulos and Santos Silva

(2012) and the references therein). Let a(x; z) denote a p � 1 vector of functions of x

and z used to transform the conditional moment speci�cation above into p unconditional

orthogonality conditions in the usual way. If p � 3, then we will be able to identify

�, � and  provided the true value of � is di¤erent from 0. In contrast, if �0 = 0 but

�0 6= 0, then Papadopoulos and Santos Silva (2012) point out that there will exist two

observationally equivalent solutions: (�; 0; ) and (��; 0;  + �). Further, it is easy to

prove that if �0 = �0 = 0, then  becomes �rst-order underidenti�ed even though it is

locally identi�ed. In this model, though, those underidenti�cation situations will arise

not only asymptotically but also in any �nite sample.

Another relatively unknown case is an Ar(2) model observed subject to white noise

errors, whose parameters are estimated on the basis of �rst and second moments of the

data. When the latent Ar(2) process is in fact an Ar(1), its second Ar root becomes

�rst-order underidenti�ed. Intuitively, the problem is that in a neighbourhood of the

true value, the Ar(2)+Wn model is �rst-order equivalent to an Arma(1,1)+Wn model,

whose parameters are only set identi�ed. In this case, though, a reparametrisation which

relies on the � square root of the second Ar root, as in Rotnitzky et al (2000)), restores

standard
p
T (half) Gaussian asymptotics (see Fiorentini and Sentana (2016)).

In this paper, in contrast, I am particularly interested in more subtle situations in

which underidenti�cation depends on parts of the data generating process (DGP) which

are not necessarily speci�ed by the moment conditions (1). In those cases, the relationship
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between the two observationally equivalent solutions � and �� or the conditions that lead

to a singular expected Jacobian cannot simply be inferred from the true values of certain

model parameters.

As in Arellano, Hansen and Sentana (2012), it is convenient to study separately non-

linear in parameters but linear in variables models of the form f(x; �) = 	(x)�(�), where

�(�) is a non-linear continuously di¤erentiable function, and fundamentally non-linear

models, in which no such separation of data and parameters is possible.

I will illustrate my proposed inference procedures with an example for each class:

1. A dynamic panel data model,

2. A non-linear dynamic regression model for discrete data.

For computational reasons, I systematically employ the optimal Continuously Updated

GMM estimators (CUE) introduced by Hansen, Heaton and Yaron (1994). Thus, assum-

ing f(x; �) constitutes a martingale di¤erence sequence, I can compute the CU-GMM

criterion by regressing 1 on f(x; �) with an OLS routine which is robust to potential sin-

gularities in the covariance matrix of the in�uence functions, as in Peñaranda and Sentana

(2012). Although CUE is computationally more demanding, it is numerically invariant

to normalisations, reparametrisations and parameter-dependent linear transformations of

the moment conditions, which proves particularly useful in the context of underidenti-

fed models. In principle, though, other single-step GMM methods such as Empirical

Likelihood or Exponentially Tilted could also be entertained.

3 Non-linear in parameter models

3.1 Theoretical discussion

As I mentioned in the previous section, these models are fully characterised by the

fact that the in�uence functions are

f(x; �) = 	(x)�(�);

where 	(x) contains p � (r + 1) jointly Borel measurable functions of the observations

and �(�) is a non-linear, continuously di¤erentiable function mapping � : P! Rr+1 such
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that E[jf(x; �)j] < 1 for all � in the compact parameter space P � Rk. For simplicity

of exposition, I assume that the observed sample is drawn from a stationary and ergodic

stochastic process fxtg.4 In order for standard asymptotic results to apply, I also assume

that the following high level regularity conditions hold as the sample size T goes to

in�nity:5

Assumption 1

	T = T
�1
XT

t=1
	(xt)

a:s:! �	;

where �	 = E[	(x)] is a non-stochastic p� (r + 1) matrix, and
p
Tvec(	T � �	)

d! N(0; C);

where C is a non-stochastic p(r + 1)� p(r + 1) positive (semi)de�nite matrix.

In this context, identi�cation is only meaningful if �(:) is an injective (i.e. one-to-one)

function, for if there are two distinct parameter values � and �� for which �(�) = �(��),

then it is clear a priori that one cannot identify �.

If the interest centred on the unrestricted estimation of � = �(�) instead of the re-

stricted estimation of �, then the condition rank(�	) = r would be necessary and su¢ cient

to identify � = �(�) up to a proportionality factor. Hence, identi�cation problems may

only arise if rank(�	) < r. For obvious reasons, I rule out trivial problems by maintaining

the assumption that p � k, so that the order condition is satis�ed, but I also make the

following stronger assumption:

Assumption 2 For any two values of the parameter vector � 6= �� in P; �(�) 6= c�(��)
for some c 2 R.

While injectivity already rules out c = 1, this assumption requires an implicit or explicit

normalisation of the non-linear function �(�) to eliminate scale multiples for c 6= 1.

Suppose that theoretical considerations or previous empirical studies lead one to sus-

pect that � may be �rst-order underidenti�ed. Following Sargan (1983a), I initially sim-

plify the presentation by assuming that the rank failure of the expected Jacobian is of

4As elsewhere in the econometrics literature, analogous results can be obtained using other data
generating processes. For cross-sectional and panel extensions of Hansen�s (1982) formulation see the
textbooks by Hayashi (2000) and Arellano (2003), respectively.

5See Newey and McFadden (1994) for an extensive discussion of more primitive conditions.
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order one, and postpone the extension to situations in which its nullity is higher to the

end of this subsection. For non-linear in parameters models, this amounts to

�	
@�(�)

@�0
 = 0; (2)

at � = �0, where  2 Rk e¤ectively determines the directional derivative along which the

expected Jacobian is 0. On this basis, I can estimate both � and  by optimally combining

(2) with the original moment conditions (1) subject to a normalisation on  such as

0 = 1. Thus, I can not only estimate the parameters of interest but also the �direction

of weak identi�cation�. In some examples, though, the �rst-order underidenti�cation

problem may only a¤ect a speci�c parameter, so I could restrict  to be the corresponding

canonical vector. In other cases, there may be a priori arguments for considering other

pre-speci�ed directional derivatives.

Given that the expected Jacobian of the joint set of moment conditions (1) and (2) is� �	[@�(�)=@�0] 0
@
@�0vec

�
�	[@�(�)=@�0]

	
@
@y0vec

�
�	[@�(�)=@�0]

	 � ; (3)

where y are the free elements of , this matrix must have full rank in a neighbourhood

of the true values when y is simultaneously estimated for standard GMM asymptotic

theory to work. Similarly, when  is �xed a priori, the �rst block of k columns of the

above matrix must have full rank. But those rank conditions are precisely the second-

order identi�cation conditions mentioned in the introduction. Although in principle I

could also consider second-order underidenti�ed models, etc., in many locally identi�ed

but �rst-order underidenti�ed examples the required rank condition on (3) holds.

After estimating � and possibly y by optimal GMM, I can use the overidenti�cation

test of the augmented system (1) and (2) as a �rst-order underidenti�cation test of the

original moment conditions (1). The resulting test will have an asymptotic chi-square

distribution with 2(p � k) + 1 degrees of freedom when the only restriction on  a¤ects

its scale. If on the other hand  is �xed a priori, then the number of degrees of freedom

will be 2p� k. I refer to both those tests as �rst-order I tests, because they provide an

indication of the extent to which rank de�ciency of the Jacobian should be a concern.

Suppose instead the original moment conditions (1) hold for �0 and �
�
0 6= �0. Then

both �(�0) and �(�
�
0) must belong to the null space of the matrix �	, so that the system
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of moment conditions

�	[�(�); �(��)] = [0; 0] (4)

evaluated at those two parameter values simultaneously holds. This system allows the

joint estimation of the two observationally equivalent solutions. In particular, the optimal

GMM estimators based on (4) will be asymptotically normal at the usual
p
T rate subject

to the �rst-order identi�ability of � and ��.6 Finally, the usual overidenti�cation test ob-

tained after estimating � and �� from (4) provides a test for the �nite underidenti�cation

of (1). The rationale is straightforward. If one can �nd �� 6= � without statistical rejec-

tion, then the natural conclusion is that the identi�ed set does indeed contain two points.

But if the attempt fails statistically, then one may conclude � is globally identi�ed. I

refer to the resulting test as the �nite I test. Standard GMM asymptotic theory implies

that this I test will have an asymptotic chi-square distribution with 2(p � k) degrees of

freedom if both � and �� are �rst-order identi�ed.

From a practical point of view, though, the main di¢ culty is ensuring that � 6= ��,

so that the duplicated moment conditions (4) do not e¤ectively collapse to (1). Following

Arellano, Hansen and Sentana (2012), in these non-linear in parameters models I can

proceed as follows. I de�ne the parameter space

Q � f� : � = �(�) for some � 2 Pg;

and write each set of moment conditions as �	� = 0 for � 2 Q. By assumption 2, the

vectors �(�) and �(��) are not proportional. In addition, any linear combination of �(�)

and �(��) must also belong to the null space of the matrix �	.

I can then de�ne the extended �linear subspace�

Q� � f� : � = c1�1 + c2�2; �1; �2 2 Q; c1; c2 2 Rg:

By playing around with c1 and c2, I can guarantee that the dimension of Q� is always

two. I discuss more practical details in the panel data example in section 3.2.

6Moreover, the joint estimator of � so obtained will be more e¢ cient than a hypothetical GMM
estimator based on the original moment conditions (1) which would somehow manage to restrict � to
lie on a small neighbourhood of �0, and the same applies to �

� (see section 2 of Arellano, Hansen and
Sentana (2012) for a more formal argument). Given the block diagonality of the Jacobian matrix of (4),
the hypothetical estimator based on (1) would only be as e¢ cient as the joint estimator based on (4)
in the highly unlikely situation in which the sample averages of the duplicated in�uence functions were
asymptotically independent.
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Importantly, if I reparametrise the model in terms of

y = �=
p
�0�

and

� =
p
�0�;

where

� = �� � �;

then I can equivalently re-write the duplicated moment conditions as

�	f�(�); ��1[�(� + �y)� �(�)]g = (0; 0)

for � � �� > 0. By l�Hôpital�s rule, the limit as � ! 0+ of a CU-GMM criterion based

on these duplicated moment conditions will be the continuously updated GMM criterion

based on

�	
�
�(�); [@�(�)=@�0]y

	
= 0

when �� and � get closer and closer to each other in such a way that the dimension of

the null space of �	 remains two. Thus, �rst-order underidenti�ed models can be formally

interpreted as the limiting case of �nite underidenti�ed ones. The gain of one degree of

freedom in the overidentifying test statistic simply re�ects the fact that the CU-GMM

criterion of the latter system is numerically invariant to the value of �.

Extensions to three or more isolated observationally equivalent solutions are straight-

forward by simply replicating the number of moment conditions in (4). Similarly, ex-

tensions to situations in which the nullity of the expected Jacobian is higher than 1 are

also straightforward by replicating (2) in such a way that the corresponding 0s provide a

unique basis for its nullspace. Moreover, second-order underidenti�cation situations could

also be related to the limit of �nite underidenti�cation situations with three points when

those three points become arbitrarily close, but I will not discuss those cases further in

the interest of space.

3.2 Dynamic panel data

Consider the following univariate Ar(2) model with individual speci�c intercepts

(Yit+2 � �i)� �1(Yit+1 � �i)� �2(Yit � �i) = vit+2; (5)
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with

E(vit+2jYi1; :::; Yit+1; �i) = 0;

V (vit+2jYi1; :::; Yit+1; �i) = �2t+2; (6)

where the expectations are taken by averaging across individuals, and (Yi1; Yi2; �i) is a

cross-sectionally i:i:d: random vector with bounded second moments, but no restrictions

on the covariance between the unobserved e¤ect �i and the initial observations. I also

assume the availability of a random sample of size N on (Yi1; :::; YiT ), with N large and

T � 4 but negligible relative to N , leaving unspeci�ed the temporal evolution of �2t+2.7

The Arellano and Bond (1991) linear in�uence functions that eliminate the individual

e¤ects are

Yit�j(�Yit � �1�Yit�1 � �2�Yit�2) j � 2; t � 4: (7)

This gives rise to a system of T (T � 3)=2 moment conditions with two common coef-

�cients and an increasing sequence of instruments, whose reduced form is non-standard.

If there are 5 or more time series observations, underidenti�cation arises if and only if

�1+�2 = 1, so that the Ar polynomial contains a unit root and �Yit follows an Ar(1).8

In that case, there will be an uncountable set of observationally equivalent solutions, all

lying on the straight line �2 = 2 � �1,  2 R. Arellano, Hansen and Sentana (2012)

show that this identi�ed set can be e¢ ciently estimated by applying optimal GMM to the

Ar(1) moment conditions

E[Yit�j(�Yit � �Yit�1)] = 0 j � 1; t � 2 (8)

to infer . Moreover, the overidenti�cation test of this system provides a linear I test.

But the Arellano and Bond (1991) conditions do not exploit all of the model re-

strictions. For that reason, Ahn and Schmidt (1995) proposed to combine (7) with the

additional in�uence functions

(Yit+2 � �1Yit+1 � �2Yit)(�Yit+1 � �1�Yit � �2�Yit�1) (9)

7As Álvarez and Arellano (2004) forcefully argue, the dispersion of the cross-sectional distribution of
errors at each period may change over time because of nonstationarity at the individual level or as a
result of aggregate e¤ects.

8When T = 4 identi�cation problems may also arise even though no unit root exists (see Arellano,
Hansen and Sentana (2012)).
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to obtain more e¢ cient estimators of �1 and �2 when the roots of the characteristic

equations associated to (5) lie inside the unit circle. The question is whether these non-

linear in�uence functions can rescue point identi�cation in the unit root case. Given

that  will be uniquely identi�ed from the Arellano, Hansen and Sentana (2012) moment

conditions (8), it is convenient to express (9) in terms of �1 and  by replacing �2 by

( � �1) so as to focus on the identi�cation of �1. In this way, I can write

[Yit � �1(Yit�1 � Yit�2)� 2Yit�2][�Yit�1 � �1(�Yit�2 � �Yit�3)� 2�Yit�3]

= �21(Yit�1 � Yit�2)(�Yit�2 � �Yit�3)

��1[(Yit�1 � Yit�2)(�Yit�1 � 2�Yit�3) + (Yit � 2Yit�2)(�Yit�2 � �Yit�3)]

+(Yit � 2Yit�2)(�Yit�1 � 2�Yit�3) t � 5: (10)

It turns out that heteroskedasticity matters, even though (6) is an aspect of the DGP

deliberately left unspeci�ed. In particular, if the cross-sectional variance of the innovations

�2t varies freely over time, then the addition of the Ahn and Schmidt (1995) in�uence

functions (10) to the moment conditions (8) will render �1 �rst-order and therefore locally

identi�ed for T � 6. To understand why, it is convenient to compute the expected value

of (10), which is given by

�2t�2�
2
1 � [�2t�1 + (1 + 2)�2t�2]�1 + [(1 + )�2t�1 + (1 + )�2t�2 = 0 (t = 5; : : : ; T );

where I have taken into account the unrestricted assumption about the initial conditions

of the stochastic process for Yit. This quadratic equation is clearly satis�ed by �1 = 1+ 

for all t. For any speci�c t, though, there is a second solution given by

��1;t =
�2t�1
�2t�2

+ :

However, when T � 6 this alternative solution is incompatible for di¤erent t0s unless
�2t�1
�2t�2

=
�2t�2
�2t�3

= ��1 �  (t = 6; :::; T ): (11)

Therefore, if T = 5 or if the cross-sectional variance of the innovations either grows or

decreases exponentially over time, then �1 will generally be �rst-order identi�ed, but not

globally identi�ed, because there is a second solution

��1 = �+ ;

� =
�2t+1
�2t+2

;
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which satis�es the same moment conditions.

Further, given that the partial derivative of (10) with respect to �1 will be9

2�1(Yit�1 � Yit�2)(�Yit�2 � �Yit�3)

�[(Yit�1 � Yit�2)(�Yit�1 � 2�Yit�3) + (Yit � 2Yit�2)(�Yit�2 � �Yit�3)]; (12)

the expected Jacobian with respect to �1 will be equal to 0 for

��1;t =
1

2

�
�2t�1
�2t�2

+ 1 + 2

�
under any form of time series heteroskedasticity, including (11), even though ��1 does not

generally set to 0 the expected value of the Ahn and Schmidt (1995) in�uence functions

(10). In fact, it is easy to see that ��1;t = :5(�1+�
�
1;t), so that in the �nite underidenti�ed

case the Jacobian rank de�ciency will occur at the mid point between the two solutions.

Importantly, both ��1;t and �
�
1;t will converge to �1 as �

2
t�1=�

2
t�2 ! 1, which means

that if there is time series homoskedasticity (i.e. �2t = �2 8t), then �1 will be globally

identi�ed as 1 + , but it will become �rst-order underidenti�ed.

In all cases, though, there is second-order identi�cation because the quadratic nature

of the �(:) mapping implies that the Jacobian of the Jacobian of (10) with respect to �1

will be proportional to

(Yit�1 � Yit�2)(�Yit�2 � �Yit�3)

for all �1, whose expected value equals 2�2t�2 when the process contains a unit root.
10

By combining the in�uence functions (10) and (12) with the moment conditions (8),

I can e¢ ciently estimate �1 and  (and therefore �2), and obtain a �rst-order I test.

To deal with the �nite underidenti�ed case, I start by duplicating the Ahn and Schmidt

(1995) in�uence function written in terms of �1 and , which I then evaluate at ��1. To

simplify the presentation, imagine  is known. I can write the resulting system as

�	[�(�1); �(�
�
1)] = [0; 0];

9In e¤ect, this corresponds to a directional derivative along the line �2 = 2 � �1 in the original
(�1; �2) space.
10Álvarez and Arellano (2004) state exactly the same underidenti�ability conditions in the Ar(1)

version of model (5), while Bun and Kleibergen (2013) study the asymptotic distribution of the Ahn and
Schmidt (1995) estimator in that case.
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with

	0(x) =

24 (Yit�1 � Yit�2)(�Yit�2 � �Yit�3)
(Yit�1 � Yit�2)(�Yit�1 � 2�Yit�3) + (Yit � 2Yit�2)(�Yit�2 � �Yit�3)

(Yit � 2Yit�2)(�Yit�1 � 2�Yit�3)

35 ;
�0(�1) = (�21;��1; 1):

To keep the moments associated to �1 and ��1 apart, I generate the extended �linear

subspace�Q� by postmultiplying [�(�1); �(��1)] by a 2 � 2 matrix C(�1; ��1) in order to

ensure that the nullity of �	 is 2. In particular, if I choose c11 = c22 = 1, c12 = �1 and

c21 = ��1=��1 to avoid scale and rotation indeterminacies, I end up with

�	

0@ �1(�1 � ��1) (��1 � �1)(�1 + ��1)
0 �1 � ��1

(��1 � �1)=��1 0

1A = 0:

Dividing the �rst column by (�1 � ��1)=��1 and the second column by (��1 � �1) in an

attempt to make sure �1 6= ��1, I end up with the transformed in�uence functions

�1�
�
1(Yit�1 � Yit�2)(�Yit�2 � �Yit�3)� (Yit � 2Yit�2)(�Yit�1 � 2�Yit�3);

(�1 + �
�
1)(Yit�1 � Yit�2)(�Yit�2 � �Yit�3)

�[(Yit�1 � Yit�2)(�Yit�1 � 2�Yit�3) + (Yit � 2Yit�2)(�Yit�2 � �Yit�3)]; (13)

which depend on the sum and product of the two solutions. In this context, I could

estimate & = �1 + �
�
1 and � = �1�

�
1, and then solve a simple quadratic equation to

recover �1 and ��1. Then, I could use the overidenti�cation test of this system as a �nite

underidenti�cation test. Such a test will reject with power equal to size for T = 5 in the

presence of a unit root because the relevant moment conditions will be jointly satis�ed by

�1 = 1+ 0 and �
�
1;5 = 0+ �

2
4=�

2
3. Exactly the same will happen for T � 6 if in addition

(11) holds.

But this indirect procedure would occasionally lead to complex conjugate solutions for

�1 and ��1, in which case I should re-estimate subject to �1 = �
�
1. Although asymptotically

this will happen with vanishing probability, in �nite samples there is likely to be a �pile-

up�problem, with a positive fraction of the samples yielding identical estimates for �1

and ��1. As a result, the �nite sample distribution of the �nite I test may be somewhat

distorted.

As expected from the discussion in section 3.1, I trivially recover from (13) the in�uence

functions (10) and (12) associated to the �rst-order underidenti�ed case when the two

14



separate solutions �1 and ��1 converge. The only di¤erence is that there is an extra degree

of freedom in the �rst-order underidenti�cation test because of the restriction �1 = ��1.

3.2.1 Simulation evidence

In this section I report the results of a limited Monte Carlo exercise with 2,500 repli-

cations of a Gaussian version of the Ar(2) model with individual e¤ects in (5) for a short

panel of T = 5 time series observations and N = 5; 000 cross-sectional units. Initially, I

set the true values of the autoregressive parameters �1 and �2 to :3 and :7, respectively,

so that the true value of  is �:7. As for (6), I considered two values for the time-series

heteroskedasticity �in�ation�parameter � = �2t+1=�
2
t+2:

1. � = 1 (time-series homoskedasticity)

2. � = 1:1 (time-series heteroskedasticity)

Importantly, I used the same underlying pseudo-random numbers in the di¤erent de-

signs to minimise experimental error.

Starting with the homoskedastic case, the �rst thing to note is that the CU-GMM

versions of the Arellano and Bond (1991) estimator and overidentifying restrictions test

based on (7) are very unreliable in the presence of a unit root. Figure 1a displays the

scatter plot of the CUEs of �1 and �2, which tend to lie along the line �2 = :49 + :7�1

but with a huge range of variation due to the lack of identi�cation of the parameters (see

Hillier (1990) for a discussion of the behaviour of symmetrically normalised estimators

in underidenti�ed single equation linear instrumental variable models). In turn, the size

properties of the associated J test are summarised in Figure 1b using Davidson and

MacKinnon�s (1998) p-value discrepancy plot, which shows the di¤erence between actual

and nominal test sizes for every possible nominal size. In line with the theoretical results

in Cragg and Donald (1993), underidenti�cation in a linear in parameter model leads to

substantial under-rejections for the overidentifying restriction test.

Figure 2a displays �bicorne� plots of the CUEs of �1 and �2 once I add the Ahn

and Schmidt (1995) moment conditions (9).11 As expected, the �rst-order underiden-

11These plots, which were introduced by Peñaranda and Sentana (2015) to characterise potentially
asymmetric distributions with extreme tails, combine a doubly truncated non-parametric density estimate
on top of a box plot. Therefore, the vertical lines describe the median and the �rst and third quartiles,
while the length of the tails is one interquartile range.
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ti�cation of those parameters under time-series homoskedasticity leads to non-Gaussian

distributions, with clearly visible but lower additional modes. In this case, though, the

overidenti�cation test, whose p-value plot is displayed in Figure 2b, shows substantial

over-rejections, as expected from the results in Dovonon and Renault (2013).

In contrast, Figure 3 clearly indicates that the size of the �rst-order I test based on

(8), (10) and (12) is very reliable.

Turning now to the design with time-series heteroskedasticity, Figure 4a con�rms that

the CUEs of �1 and ��1 based on (8) augmented with the in�uence functions (13) su¤er

from a pile-up problem, as there is a small fraction of them for which the two values

coincide. In turn, this problem leads to some �nite sample size distortions in the �nite

I test, as illustrated in Figure 4b. Those distortions disappear, though, as soon as I

estimate the model in terms of & = �1 + ��1 and � = �1�
�
1, as shown in Figure 4c.

12

To study the power of my proposed tests, I considered two additional designs. The

�rst one is a persistent but covariance stationary homoskedastic model for T = 5 in which

�1 = :25, �2 = :7, so that both the original Arellano and Bond (1991) and Ahn and

Schmidt (1995) moment conditions are satis�ed, but the expected values of the linear un-

deridenti�cation in�uence functions (10), the �nite underidenti�cation in�uence functions

(13) or the �rst-order underidenti�cation ones (12) are all di¤erent from 0 because the

two Ar roots are strictly inside the unit circle. Given that the linear I test in Arellano

Hansen and Sentana (2012) rejected the null hypothesis with very high probability, it is

perhaps not surprising that power remained close to one when I included either of the

additional moment conditions that I have proposed.

In turn, the second design corresponds to a heterokesdatic unit root model for T = 6

in which the cross-sectional variance is �2t = 1 for all t except for �
2
5 = 1:2, so that (11)

does not hold. Unlike the previous design, in this �rst-order identi�ed case the expected

value of (10) is 0 but those of (12) and (13) are not. Once again, the power of both the

�rst-order I test and especially the �nite I test was also very high even though the linear

I test has power equal to size in this case.

12All these Monte Carlo results may well extend to the ML estimators of panel data models in Álvarez
and Arellano (2004), as well as to alternative GMM estimators which add the cross-sectional variances
as additional exactly identi�ed parameters. Validating such conjectures is left for further research.
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4 Fundamental non-linearities

4.1 Theoretical discussion

Let f(x; �) contain p in�uence functions jointly Borel measurable and twice continu-

ously di¤erentiable in their second argument for each value of x such that E[jf(x; �)j] <1

for every � 2 P, where � is a vector of k � p unknown parameters that lie on the compact

parameter space P � Rk.

The same basic approach I described in the previous section for non-linear in para-

meter but linear in variables models applies to fundamentally non-linear ones too. In the

�rst-order underidenti�ed case, inference will be based on the augmented set of moment

conditions:

E

�
f(x; �)
g(x; �; y)

�
= 0; (14)

where

g(x; �; y) = D(x; �)(y) =
@f(x; �)

@�0
(y);

and the free parameters that must be estimated are � and the �direction of weak iden-

ti�cation� y, which corresponds to a basis of the null space of the expected Jacobian

subject to some normalisation such as 0(y)(y) = 1.13

If I assume that

Assumption 3 � �fT (�0)

�gT (�0; 
y
0)

�
= T�1

XT

t=1

�
f(xt; �0)

g(x; �0; 
�y
0 )

�
a:s:!
�
0
0

�
;

T�1
XT

t=1

�
@f(x; ��j)=@�

0 0

@g(x; ��j ; 
y
j)=@�

0 @g(x; ��j ; 
y
j)=@

y0

�
a:s:! J0

= E

�
@f(x; �0)=@�

0 0

@g(x; �0; 
y
0)=@�

0 @g(x; �0; 
y
0)=@

y0

�
for any sequence such that (��j ; 

y
j)� (��0; 

y
0) = op(1),

rank

�
E

�
@f(x; �)=@�0 0
@g(x; �; y)=@�0 @g(x; �; y)=@y0

��
= 2k � 1

in an open neighbourhood of �0 and 
y
0, and

p
T

�
�fT (�0)

�gT (�0; 0)

�
d! N(0; I0);

where I0 is a non-stochastic (p+ r)� (p+ r) positive de�nite matrix.
13Once more, in some examples it may make sense to pre-specify the singularity direction .
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then the optimal GMM estimators of based on � and y will be consistently and as-

ymptotically normal at the usual
p
T rate.14 Furthermore, the overidenti�cation test

associated to (14) will provide an asymptotically chi-square distributed test for �rst-order

underidenti�cation.

Similarly, in the �nite underidenti�ed case, inference will be based on the duplicated

set of moment conditions
E[f(x; �)] = 0;
E[f(x; ��)] = 0:

(15)

In this second instance, though, the main practical di¢ culty will be once more to keep

� and �� apart so that the duplicated moment conditions (15) do not collapse to (1). My

proposed numerical device, which might be understood as a numerical implementation of

L�Hôpital�s rule, is as follows:

1. Reparametrise the model in terms of �, y and �, where

� =
p
�0�;

� = �� � �

and

y = �=�:

2. Replace the second in�uence function in (15) by

��1[f(x; � + �y)� f(x; �)]:

3. Minimise a CU-GMM criterion function with respect to those new parameters sub-

ject to the restrictions � � 0 and 0(y)(y) = 1.

4. If at any point during the minimisation algorithm � becomes smaller than some

appropriately chosen threshold value ��, then replace the second estimating function

by its �rst order approximation

g(x; �; y) =
@f(x; �)

@�0
(y):

In practice, one should choose �� so that the two CU-GMM criterion functions are

numerically very close at �� (see section 4.2.1 for further details).

14Similar assumptions are made by Kleibergen (2005), as well as by Dovonon and Gonçalves (2017)
and Lee and Liao (2018) for the special case in which the expected Jacobian is equal to 0.
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Importantly, step 4 is simply a trick to keep the two solutions apart in �nite samples,

but which becomes irrelevant asymptotically. The rationale is as follows. If the model is

�rst-order identi�ed at � and ��, then the sample average of @f (x; �) =@�0 � (y) will be

numerically di¤erent from 0 with probability approaching 1 as the sample size increases.

As a result, the GMM criterion function that uses the �rst-order approximation above

will be large, and the optimisation routine will move away from the manifold � = ��.

Once again, the procedure above con�rms that �rst-order underidenti�ed models may

be regarded as limiting cases of �nite underidenti�ed ones because the criterion function

associated to (15) converges to the GMM criterion for the original moment conditions

augmented with their �rst derivatives, as in section 3.1. Nevertheless, one should always

use the J statistic associated to (14) to test for �rst-order underidenti�cation, which has

one degree of freedom more than their �nite underidenti�cation counterparts because it

sets � to 0 by construction.

4.2 A non-linear dynamic regression model for discrete data

Consider a Markov chain taking three di¤erent values: xl, xm and xh. Suppose those

values are of interest on their own. For example, xt could be the dose of a drug taken

by an addict at t. A researcher interested in predicting future drug consumption speci�es

the following fundamentally non-linear model

E(x�t jxt�1) = � + �xt�1; (16)

where � and � have the usual interpretation of intercept and slope of an autoregressive

model, but they predict instead some power � of the observed variable.

For estimation purposes, the unconditional moment restrictions

E

8<:(x�t � � � �xt�1)
24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A ; (17)

where 1(:) is the usual indicator function, e¤ectively contain the same information as the

conditional moment restriction (16) because of the discrete, �rst-order Markovian nature

of xt.

In general, one would expect � to be point identi�ed from those moment conditions.

Nevertheless, as explained in Appendix A, it is possible to choose the transition matrix,
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which is not an explicit part of model (16), so that these conditional moment restrictions,

and therefore the unconditional moment restrictions (17), be satis�ed by both � and

�� 6= �.

But even when there is a unique value of � that satis�es the original conditional

moment restrictions (16), it is also possible to come up with transition matrices for which

�0 also satis�es

E(x�t lnxtjxt�1) = 0; (18)

which is the (conditional) expected value of the derivative of (16) with respect to �, so

that the non-linearity parameter is �rst-order underidenti�ed even though it is locally

identi�ed. In fact, those transition matrices naturally arise in the limiting case of �� = �,

exactly as in the dynamic panel data model (see again Appendix A for details).

The unconditional moment counterpart to (18) are

E

8<:x�t lnxt
24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A : (19)

These moment conditions correspond to the ones Wright (2003) suggested to test for

underidenti�cation at a given point. Importantly, though, they must be combined with

(17) to avoid estimating uninteresting values of � for which (19) holds but (17) does not

(see Kleibergen (2005) for a related discussion in the case of LM tests). Speci�cally, it

is easy to show that as in the panel data example, the expected Jacobian will become 0

at some intermediate point between � and �� in �nite underidenti�ed cases, but those

intermediate values will nevertheless fail to satisfy the original moment condition (16).

As previously explained, to keep � and �� apart it is numerically convenient to combine

the original unconditional moment conditions (17) with

E

8<:
 
x�+�t � x�t

�

!24 1(xt�1 = xl)
1(xt�1 = xm)
1(xt�1 = xh)

359=; =

0@ 0
0
0

1A ; (20)

which can be interpreted as the expected value of the relative (discrete) increment of

x�t � �� �xt�1 when one moves from � to �� = � + �. The advantage of CUE is that the

criterion function is the same whether one uses these moments or the original ones (17)

evaluated at ��. When � � ��, where �� is a carefully chosen small but positive threshold

value, one can safely replace (20) by (19), which are the moment conditions associated to
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the Jacobian. Therefore, one set of moment conditions is the limiting case of the other,

as expected from the theoretical discussion in section 4.1.

4.2.1 Simulation evidence

In this section I report the results of a limited Monte Carlo exercise with 2,500 repli-

cations of the discrete Markov chain model described in Appendix A for T = 10; 000.

To concentrate on the non-linear component of the model, which is characterised by the

exponent parameter �, I keep � and � �xed at their true values of .75 and .1, respectively.

I initially considered two designs compatible with (16):

1. � = 1 and �� = 1:5 (Finite underidenti�cation)

2. � = ��1 = 1:5 but with a 0 expected Jacobian (First-order underidenti�cation)

Once again, I used the same underlying pseudo-random numbers in the di¤erent de-

signs to minimise experimental error.

Starting with the �nite underidenti�ed design, the �rst thing to note is that the �nite

sample distribution of the CU-GMM estimator of � obtained from (17) seems to be a

mixture of two Gaussian distributions, with two modes approximately equal to the values

of � and �� (see Figure 5a). By increasing the sample size to T = 100; 000, as in Figure

5b, the separation of the sampling distribution into two Gaussian components becomes

far more evident.

Somewhat surprisingly, though, the corresponding J test shows hardly any size dis-

tortion, as illustrated by Figure 5c. Intuitively, the reason is that a standard chi-square

asymptotic distribution for Hansen�s (1982) overidentifying restriction test requires that

the criterion function is well behaved in the vicinity of a solution to the moment condi-

tions. Given that in this design both � and �� are �rst-order identi�ed, J tests computed

around each of those values will share exactly the same chi-square distribution, and the

same is obviously true of their mixture regardless of the mixing proportion. Incidentally,

the same argument implies that the �nite underidenti�cation test that I propose will also

preserve its asymptotic chi-square distribution when there are more than two isolated

solutions to the original moment conditions (17). As a result, one can use the �nite I test

as a diagnostic without necessarily knowing the exact number of possible solutions. For
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analogous reasons, the �rst-order I test that assumes the nullity of the expected Jacobian

to be 1 will also remain valid regardless of the number of zero singular values.

The CUEs of � and � displayed in Figure 6a, obtained by combining the moment

conditions (17) and (20) for � � �� = 10�7, are also well behaved, although there is again

some evidence of a pile-up problem, which in this case manifests itself by a non-negligible

fraction of zero � estimates. In addition, there is a strong negative correlation between the

estimates of � and �, as illustrated by the scatter plot in Figure 6b. To a large extent, this

negative correlation re�ects the rather elongated shape of the contours of the CU-GMM

criterion function around its minimum, which are shown for a particular simulation in

Figure 6c. In contrast, the estimate of � that exclusively relies on the moment conditions

(19), and therefore ignores the original moment conditions (17), turns out to be centred

around a pseudo-true value which roughly lies half way between 1 and 1.5, as shown in

Figure 7.

Turning now to the �rst-order underidenti�ed design, Figure 8a con�rms that the

�nite sample distribution of the CU-GMM estimator of � obtained from (17) is clearly

non-normal, with a distinctive but lower second mode. Similarly, Figure 8b indicates

that the associated overidenti�cation test shows substantial over-rejections, which is once

again expected from the results in Dovonon and Renault (2013). In contrast, Figure 9

suggests that the �nite sample distribution of the CUE of � obtained by combining the

moment conditions (17) and (19) is nicely behaved around the true value of 1.5.

To study the power of my proposed tests, I �nally generated data using a transition

matrix for which there is a single value of � that satis�es (17) but does not satisfy (19)

(see again Appendix A for details). The simulation results, which are available on request,

show that both the �rst-order I test and the �nite I test had power close to 1 for small

deviations from (19). Moreover, the usual CU version of the overidenti�cation test based

on the original moment conditions (17) closely followed a chi-square distribution with the

right number of degrees of freedom.

5 Conclusions

In linear econometric models parameters are either point identi�ed, or set identi�ed,

but in the latter case the set of observationally equivalent structures is necessarily un-
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countable. In non-linear models, in contrast, it is possible that only a �nite number of

distinct parameter values satisfy the original moment conditions. Further, another possi-

bility is that the parameters are globally identi�ed but the expected Jacobian is of reduced

rank.

In this paper, I consider the estimation of observationally equivalent parameters in

the �nite underidenti�ed case. To do so, I map this situation into a standard GMM

problem by replicating the original moment conditions and evaluating each of them at

di¤erent values of �. Given that the Jacobian is block diagonal, I can rely on standard

asymptotic theory for GMM under the maintained assumption that each of the points

is �rst-order identi�ed. The main di¢ culty consists in keeping the solutions apart. The

approach simpli�es considerably for non-linear in parameters models, in which the set of

observationally equivalent structures must belong to some restricted �linear� subspace.

But in general, I achieve separation by working with discrete counterparts to directional

derivatives.

I also discuss the estimation of the locally identi�ed parameters in the �rst-order

underidenti�ed case. Once again, I restore standard asymptotics by combining the original

moment conditions with the moment conditions associated to the rank failure of the

Jacobian. I consider two di¤erent possibilities of practical interest, depending on whether

a basis of the null space of the expected Jacobian is known.

Associated with the asymptotically normal estimators that I propose, the usual GMM

overidenti�cation restriction statistics of the augmented moment conditions provide an

indication of the extent to which either the existence of multiple solutions to the original

moment conditions or rank de�ciency of the Jacobian should be a concern. Somewhat

surprisingly, the asymptotic distribution of the �nite underidenti�cation test that assumes

there are two solutions to the original moment conditions remains valid regardless of the

exact number of actual solutions for the same reason the usual overidenti�cation test of

the original moment conditions remains valid in the presence of more than one solution.

Similarly, the �rst-order underidenti�cation test that assumes the nullity of the expected

Jacobian is 1 will also remain valid regardless of the number of zero singular values.

Importantly, I explicitly relate the �nite and �rst-order underidenti�ed cases by show-

ing that as two solutions of the original moments converge to each other, their duplicated
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in�uence functions become equivalent to an extended system which combines the original

moment conditions with their directional Jacobian.

I illustrate the proposed procedures with two examples. The �rst one is the linear in

variables but non-linear in parameters autoregressive dynamic panel data model studied

by Arellano and Bond (1991), Ahn and Schmidt (1995) and many others. As shown by

Arellano, Hansen and Sentana (2012), linear GMM estimators of this model can only

estimate an uncountable set of observationally equivalent parameter con�gurations when

the autoregressive polynomial contains a unit root. The inclusion of non-linear moment

conditions dramatically changes the nature of the underidenti�cation problem in those

circumstances, rendering the model parameters either �rst-order underidenti�ed, locally

but not globally identi�ed, or fully identi�ed, depending on the temporal evolution of the

cross-sectional variance of the innovations, which is not an explicit part of the model.

The second example is a non-linear dynamic regression model for discrete data in

which there is no separation between variables and parameters. Again, depending on

the properties of the transition matrix, which is not explicitly modelled, the regression

parameters can be �rst-order underidenti�ed, locally but not globally identi�ed or fully

identi�ed.

In both cases, the simulation results share the following features:

1) There is a pile-up problem in �nite unidenti�ed models, whereby a positive fraction

of the estimates end up collapsing to a single solution.

2) The sampling distribution of the estimators of �rst-order underidenti�ed models is

not unimodal, with additional lesser modes around alternative �false�parameter values.

This blended behaviour re�ects the fact that the criterion function used to deal with

the �rst-order underidenti�ed case is the limit of the criterion function used to deal with

the �nite underidenti�ed one. Therefore, one could argue that �rst-order underidenti-

�cation is not just a situation in which a standard regularity condition fails, but more

fundamentally, one in which identi�cation is dubious.

An important topic for future research would be to derive �nite sample results that

con�rm the close relationship between �nite and �rst-order identi�cation. It would also

be very interesting to explore other more complex empirically relevant models for which

�nite underidenti�cation and its �rst-order underidenti�cation limit represent important
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concerns in practice. One such example is the following stylised social interactions model

for N individuals in a network:

y = �Wy + �x+ Wx+ e; (21)

where y and x are the N � 1 vectors that contain the values of the endogenous and exo-

geneous variables, respectively, for each of those individuals, W is the so-called adjacency

matrix of the underlying network, �, � and  are parameters of interest measuring direct

and indirect e¤ects, and e contains the N structural residuals. Bramoullé, Djebbari and

Fortin (2009) study the local identi�cation of this model when W is known, while de

Paula, Rasul and Souza (2018) extend their results to the case in which the non-diagonal

elements of W are also estimated. Speci�cally, theorem 1 in de Paula, Rasul and Souza

(2018) shows that under certain conditions the model parameters are �rst-order identi�ed

but not necessarily globally identi�ed, while their theorem 2 shows that there will be at

most one solution with �� +  > 0 and another one with �� +  < 0. I am currently

exploring the application of the tests I have proposed in this paper to model (21).
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Appendices

A Discrete Markov chain

As is well known, the transition matrix

xt�xt�1 xl xm xh
xl �l(xl) �l(xm) �l(xh)
xm 1� �l(xl)� �h(xl) 1� �l(xm)� �h(xm) 1� �l(xh)� �h(xm)
xh �h(xl) �h(xm) �h(xh)

fully characterises the serial dependence of xt assuming strict stationarity for the chain.

Further, the unconditional probabilities (�l; �m; �h) coincide with the eigenvector associ-

ated to the unit eigenvalue normalised so that its coe¢ cients add up to 1.

In order for two di¤erent sets of parameter values to satisfy the conditional moment

restrictions (16), it must be the case that E(x�t jxt�1 = xj) = E(x�
�

t jxt�1 = xj); j = l;m; h.

Assuming for scaling purposes that xm = 1, these equalities are equivalent to

1��l(xl)��h(xl)+x�l �l(xl)+x
�
h�h(xl)=1��l(xl)��l(xl)+x

��

l �l(xl)+x
��

h �h(xl);

1��l(xm)��h(xm)+x�l �l(xm)+x
�
h�h(xm)=1��l(xm)��l(xm)+x

��

l �l(xm)+x
��

h �h(xm);

1��l(xh)��h(xh)+x�l �l(xh)+x
�
h�h(xh)=1��l(xh)��l(xh)+x

��

l �l(xh)+x
��

h �h(xh):

Straightforward algebra shows that these conditions will be simultaneously satis�ed

when
�h(xl)

�l(xl)
=
�h(xm)

�l(xm)
=
�h(xh)

�l(xh)
=
x�l � x

��

l

x�
�

h � x
�
h

= s(xl; xh; �; �
�) � 0: (A1)

With this restriction, it is easy to see that the conditions

0 � �l(xl); �l(xm); �l(xh) �
1

1 + s(xl; xh; �; �
�)
� 1 (A2)

guarantee the admissibility of the conditional probabilities of xt = xm because in that

case

�m(xt�1) = 1� �h(xt�1)� �l(xt�1) = 1� [1 + s(xl; xh; �; ��)]�l(xt�1)

will be between 0 and 1 for all three values of xt�1.

The last restriction to impose is precisely the conditional moment restriction (16).

Given that (A1) implies that

E(x�t jxt�1) = 1 + [�1 + x�l + (x
�
h � 1)s(xl; xh; �; �

�)]�l(xt�1); (A3)
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by assuming that �l(xt�1) = a + bxt�1 for values of a and b that satisfy (A2), then it is

easy to check that (16) will hold with

� = 1 + [�1 + x�l + (x
�
h � 1)s(xl; xh; �; �

�)]a = 1 + [�1 + x�
�

l + (x
��

h � 1)s(xl; xh; �; �
�)]a

and

� = [�1 + x�l + (x
�
h � 1)s(xl; xh; �; �

�)]b = [�1 + x�
�

l + (x
��

h � 1)s(xl; xh; �; �
�)]b;

which remain point identi�ed.

In contrast, the �rst-order underidenti�ed case requires that E(x�t lnxtjxt�1 = xj) = 0;

j = l;m; h, which is equivalent to

x�l ln(xl)�l(xl) + x
�
h ln(xh)�h(xl) = 0;

x�l ln(xl)�l(xm) + x
�
h ln(xh)�m(xm) = 0;

x�l ln(xl)�l(xh) + x
�
h ln(xh)�h(xh) = 0:

But these conditions will also be simultaneously satis�ed when (A1) holds with �� = �

as long as s(xl; xh; �; �
�) is replaced by (xl=xh)� ln(xl=xh). Therefore, the �rst-order un-

deridenti�ed case can once again be understood as the limiting case of the �nite underi-

denti�ed case as �� ! �.

Finally, I generate data of the standard situation with a single, �rst-order identi�ed so-

lution by slightly modifying the design of the �rst-order underidenti�ed case. Speci�cally,

I add a small value � to �l(xm) so that when I impose that

�h(xm) =
� + �xm � x�m + (x�m � x

�
l )[�l(xm) + �]

(x�m � x�h)

to guarantee that the original moment conditions (17) are satis�ed, both �h(xm) and

�m(xm) = 1��l(xm)����h(xm) remain between 0 and 1. By construction, this design

will also converge to the �rst-order identi�ed case when � goes to 0.
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B Underidenti�cation in 3D

B.1 Linear model

Consider a model characterised by the moment conditions

E(	t)' = 0 (B4)

where ' is a k � 1 parameter vector and 	t is a r � k data matrix, with r � k. The

archetypal example is the single equation, linear instrumental variables model, in which a

certain linear combination of the variables of interest, namely x0t', is assumed orthogonal

to the vector of r instruments zt. As a result, 	t = ztx0t.

To provide a graphical representation of the di¤erent identi�cation possibilities of the

model above, I assume that k = 3.

If rank[E(	t)] = 3, then there is no value of ' other than ' = 0 that can satisfy the

above moment conditions. In that case, we say that (B4) is rejected.

If on the other hand rank[E(	t)] = 2, then there is a linear subspace of dimension one

which satisfy those restrictions. Algebraically, this subspace coincides with the nullspace

of the matrix E(	t). Graphically, this nullspace is a straight line in R3 that goes through

the origin.

I can choose a single point on that line by either �xing one coordinate of ' to 1,

which works provided its true value is not 0, or by imposing the symmetric normalisation

restriction '0' = 1, which e¤ectively de�nes a direction by forcing ' to lie on the surface

of the unit sphere in R3. However, since any line through the origin will intersect the

unit sphere twice, I need an additional �sign� restriction. For example, I could impose

that the third coordinate be non-negative, which e¤ectively restricts the solution to be

on the Northern hemisphere. This works in all cases except when the line intersects the

sphere exactly at the equator, in which case I should require the second coordinate to be

non-negative, which forces the solution to be on the Eastern hemisphere instead.

Despite this scale indeterminacy, we normally speak of underidenti�cation only when

rank[E(	t)] = 1. In this case, there will be a linear subspace of dimension two of

observationally equivalent solutions for ' that will satisfy the moment conditions (B4),

which again coincides with the nullspace of E(	t). Graphically, this linear subspace is a

plane in R3 that goes through the origin.
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In this case, even if I normalise ' to be on the surface of the unit sphere, I will obtain

a �great circle� of observationally equivalent parameter values. As is well known, the

intersection of a plane with a sphere produces a circle. When the plane goes through the

centre of the sphere, the resulting circle is termed a �great circle�or �orthodrome�.15

Finally, in the extreme case in which rank[E(	t)] = 0, R3 itself constitutes the iden-

ti�ed set, and so does the entire unit sphere after imposing the symmetric normalisation

restriction '0' = 1. I shall not discuss this uninteresting case any further.

B.2 Non-linear in parameter model

Next, I abandon the linear world and replace the original moment conditions by

E(	t)'(�) = 0; (B5)

where '(�) is a continuously di¤erentiable function of a single parameter � that maps

the closure of an open set de�ned over the real line onto the three dimensional Euclidean

space. I make two further assumptions:

1. '(�) is injective so that @'(�)=@� is not identically 0.

2. '(�) has been normalised in such a way that Assumption 2 holds.

The �rst assumption rules out trivial cases in which the underidenti�cation of � has

nothing to do with E(	t). In turn, the second assumption rules out situations in which

underidenti�cation is related to a mere scaling issue. For simplicity, henceforth I assume

the symmetric normalisation '(�)0'(�) = 1 for all �, although my subsequent analysis

will carry through mutatis mutandi for alternative normalisations.

Obviously, when rank[E(	t)] = 3, the only solution for � would require '(�) = 0,

which should not be feasible after normalising '(�).

In turn, when rank[E(	t)] = 2, only two situations may happen: either there is a

single value of �, say �0, for which '(�) belongs to the nullspace of E(	t), in which

case this point is locally and globally identi�ed, or there is not, in which case model

15Assuming planet Earth were a perfect sphere, the equator and all combinations of a meridian with
its opposite meridian would be great circles. In fact, any geodesic lies on a great circle because on can
always �x the location of the North Pole so that a geodesic becomes part of a meridian. In contrast, all
parallels except the equator would be �small circles�.
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(B5) is misspeci�ed even though model (B4) is correctly speci�ed. Importantly, the

uniqueness of �0 under correct speci�cation follows from assumptions 1 and 2. In addition,

this single point will also be generally �rst-order identi�ed because the Jacobian of (B5)

is E(	t)d'(�)=d�, which cannot be zero when rank[E(	t)] = 2 if (B5) holds, unless

d'(�)=d� evaluated at �0 happened to be proportional to '(�0).

In contrast, the non-linearity of the '(�) function introduces new meaningful underi-

denti�cation possibilities when rank[E(	t)] = 1.

To illustrate those possibilities, I study �rst a simple example in which '(�) generates

a small circle on the unit sphere. Without loss of generality, I can then rede�ne the 3D

coordinate system so that this small circle is actually a parallel. Thus, I obtain

'(�) = (cos �� sin�; cos �� cos�; sin ��); (B6)

where �� provides the common latitude of all the points on the small circle and � 2 (0; 2�]

their longitude. Please note that '(�) is not only injective but it also satis�es assumption

2 (lack of proportionality) because '0(�)'(�) = 1 for all �. Without loss of generality, I

assume that � � 0, so that '(�) lies on the Northern hemisphere.

In this context, the set of admissible solutions for � will be given by the intersection

of '(�) in (B6) and the great (semi) circle generated by the intersection of the plane of

observationally equivalent value of ' in (B4) with the Northern hemisphere.

Several situations may happen:

1. �� > 0 but the great circle of observationally equivalent normalised solutions to (B4)

is such that the maximum latitude that it can reach in this coordinate system is

below ��. For example, the small circle is the Arctic circle but the great circle is the

ecliptic, whose maximum latitude is 0.409048628 radians (23.43676�), as in Figure

B1a. In this case, there is no value of � that can satisfy the non-linear moment

conditions (B5), so they will be rejected.

2. �� = 0 and the great circle of observationally equivalent normalised solutions to (B4)

coincides with the equator, as in Figure B1b. In this case, there is a continuum of

values of � that satisfy the moment conditions, so that � is not locally identi�ed.

3. �� � 0 and the great circle of observationally equivalent normalised solutions to

(B4) intersects (B6) twice, as in Figure B1c. In this case, � will be �rst-order and
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therefore locally identi�ed at each of those two solutions, but not globally identi�ed.

In the special case of �� = 0, those solutions are antipodean.

4. �� > 0 and the great circle of observationally equivalent normalised solutions to

(B4) intersects (B6) once, but in such a way that the arc distance from the in-

tersection point to the equator along the great circle of observationally equivalent

linear structures is exactly �=2 (see Figure B1d). In this case, � is locally iden-

ti�ed, but �rst-order underidenti�ed. The intuition is as follows. Geometrically,

'0(�) = (cos �� cos�;� cos �� sin�; sin ��) describes another point on the equator

which is orthogonal to the original point on the parallel '(�). Therefore, if the

plane E(	t)' = 0 goes through those two points, then

E(	t)d'(�)=d� = 0 (B7)

and (B5) will simultaneously hold.

Interestingly, I can show that this solution can be obtained as the limit of the

previous one as the solutions get closer and closer to each other in such a way that

(B7) holds.

5. �� > 0 and the great circle of observationally equivalent normalised solutions to (B4)

intersects (B6) once, but the arc distance along the great circle from the intersection

point to the equator is di¤erent from �=2 (see Figure B1e). In this ideal case, � is

�rst-order, locally and globally identi�ed.

Unfortunately, when '(�) is given by (B6), it is impossible to generate an in�nite but

countable number of observationally equivalent values of �. Nevertheless, I can do so

with the following alternative example. Suppose that '(�) generates what is know as a

�rhumb line�(or loxodrome). This is the trajectory along the sphere that a ship starting

from the North pole will follow if it moved by maintaining a constant angle � 6= �=2

against the meridians.16

Formally, the Cartesian coordinates of a rhumb line are

'(�) =

 
cos�p
�22 + 1

;
sin�p
�22 + 1

;� �p
�22 + 1

!
;

16Loxodromes became popular in sea navigation not only because they simply require that the compass
is kept pointing in a constant direction or bearing, but also because they reduce to straight lines in
Mercator�s 2D projection.
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where  is a constant related to the bearing and � 2 (��; �].

The number of points at which rhumb line will cross the great circle of observationally

equivalent normalised solutions to (B4) depends on the inclination of this great circle with

respect to the equator. The larger the inclination, the more crossings there will be, and

consequently, the larger the number of observationally equivalent values of � compatible

with (B5). In fact, a well known property of rhumb lines is that they are spherical spirals,

which implies that if the great circle coincided with a meridian and � 6= 0, as in Figure

B1f, then there would be a countable but in�nite number of crossings very close to the

North and South poles despite the distance from those two poles along the rhumb line

being �nite.
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Figure 1: The e¤ects of underidenti�cation on Arellano and Bond (1991)

a: Scatter plot of CUEs
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b: p-value plot of the J test
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Notes: CUEs of �1 and �2 and associated J test based on the moment conditions (7) for
N = 5; 000 and T = 5 under time-series homoskedasticity (see section 3.2.1 for details).
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Figure 2: The e¤ects of �rst-order underidenti�cation on Ahn and Schmidt (1995)

a: Sampling distributions of CUEs
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Notes: CUEs of �1 and �2 and associated J test based on the moment conditions (7) and (9)
for N = 5; 000 and T = 5 under time-series homoskedasticity (see section 3.2.1 for details).
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Figure 3: p-value plot for the �rst-order I test
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Notes: J test associated to the moment conditions (8), (10) and (12) for N = 5; 000 and T = 5
under time-series homoskedasticity (see section 3.2.1 for details).
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Figure 4: Pile-up problem with �nite underidenti�cation

a: Scatter plot of the CUEs of �1 and ��1
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Notes: CUEs of � and �� based on the moment conditions (8) and (13) for N = 5; 000 and
T = 5 under time-series heteroskedasticity (see section 3.2.1 for details).
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Figure 5: The e¤ects of �nite underidenti�cation on Hansen (1982)

Sampling distributions of CUEs

a: T = 10; 000 b: T = 100; 000

c: p-value plot for J test

T = 10; 000

Notes: CUE of � and associated J test based on the moment conditions (17) under �nite
underidenti�cation (see section 4.2.1 for details).
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Figure 6: Finite set estimators

a: Sampling distributions of CUEs

� �

b: scatter plot c: objective function
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Notes: CUEs of � and � based on the moment conditions (17) and (20) for T = 10; 000 under
�nite underidenti�cation (see section 4.2.1 for details).
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Figure 7: CUE based on expected Jacobian moments

Notes: CUE of � based on the moment conditions (19) only for T = 10; 000 under �nite
underidenti�cation (see section 4.2.1 for details).
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Figure 8: E¤ects of �rst-order identi�cation on Hansen (1982)

a: Sampling distribution
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b: p-value plot of J test
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Notes: CUE of � and associated J test based on the original moment conditions (17) for T =
10; 000 under �rst-order underidenti�cation (see section 4.2.1 for details).
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Figure 9: Restoring standard distributions under �rst-order identi�cation

Notes: CUE of � based on the moment conditions (17) and (19) for T = 10; 000 under �rst-order
underidenti�cation (see section 4.2.1 for details).
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Figure B1: Underidentification in 3D

(a) Misspecification (b) Uncountable underidentification

(c) Finite underidentification (d) First-order underidentification

(e) First-order identification (f) Countably infinite underidentification
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