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Abstract

We study the properties of mimicking portfolios in an intertemporal APT model,
in which the conditional mean and covariance matrix of returns vary in an interde-
pendent manner. We use a signal extraction approach, and relate the efficiency of
(possibly) dynamic basis portfolios to mean square error minimisation. We prove
that many portfolios converge to the factors as the number of assets increases,
but show that the conditional Kalman filter portfolios are the ones with both
minimum tracking error variability, and maximum correlation with the common
factors. We also show that our conclusions are unlikely to change when using

parameter estimates.
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1 Introduction

There is a long tradition of factor or multi-index models in finance, where they
were originally introduced to simplify the computation of the covariance matrix
of returns in a mean-variance portfolio allocation framework. In this context, the
common factors usually correspond to unanticipated innovations in observable
economic variables, or unobserved fundamental influences on returns. In addition,
the concept of factors plays a crucial role in two major asset pricing theories:
the mutual fund separation theory (see e.g. Ross, 1978), of which the standard
CAPM is a special case, and the Arbitrage Pricing Theory (see Ross (1976), and
Connor (1984) for a unifying approach). In theoretical asset pricing models with
a countably infinite collection of primitive assets, it is possible to mimic perfectly
the behaviour of the common factors by means of risky, well diversified, limit
portfolios (see e.g. Chamberlain and Rothschild (1983), Connor (1984), Huberman
(1982), Ingersoll (1984) or Stambaugh (1983)). In these models, agents trade
costlessly, so the relative merits of different methods to approximate the common
factors are not at stake. However, in empirical applications, such as tests of the
model restrictions, asset allocation, hedging decisions, or portfolio performance
evaluation, only data on a finite number of assets are available, and, hence, the
factors have to be proxied by basis portfolios obtained from the collection of asset
at hand. This would also be true in an economy with a finite number of securities,
as the available data would never include all existing assets (cf. Roll, 1977).

This problem received some attention in the finance literature a few years ago,
and several methods were proposed to construct factor representing portfolios with
time-invariant weightings that yield consistent estimates of the common factors as
the number of assets increases (see e.g. Chamberlain and Rothschild (1983), Chen
(1983), Connor and Korajczyk (1988), Grinblatt and Titman (1987), Ingersoll
(1984), Huberman et al. (1987) and Lehmann and Modest (1985)). However, two



important issues have not yet been fully investigated:

1. There has been very little discussion on the efficiency of the different proce-

dures; most of the existing results are only concerned with consistency.

2. The methods proposed thus far only consider passive (i.e. static) portfolios,
as opposed to active (i.e. dynamic) investment strategies, which would use
the available information at the time agents’ decisions are taken to form

portfolios.

In traditional empirical applications of static asset pricing models, one can
ignore these issues at little cost because (i) a very large collection of assets is
typically used, and (ii) conditioning information plays no effective role (see e.g.
Lehmann and Modest, 1988). In contrast, both these points are particularly im-
portant in the rapidly expanding empirical literature modelling the time-variation
in the means, variances and covariances of financial assets (see Bollerslev et al.
(1992) for a survey). The number of securities considered in this work has typically
been small, very much smaller than in the more traditional approach, and often,
the applications have been explicitly related to dynamic asset pricing models (see
e.g. King et al., 1994).

The purpose of this paper is to fill in this gap in the literature by analysing
the statistical properties of alternative ways of creating actively and passively
managed mimicking portfolios from a finite number of assets in the context of
the dynamic version of the APT developed in King et al. (1994). In this model,
the actions of the agents are based on the distribution of returns conditional on
their time-varying information set. As a result, both the conditional mean and
covariance matrix of asset returns change through time, and furthermore, the

former is closely linked to the latter.!

'Tn the context of bidimensional stochastic processes (or random fields), their asset pricing



The class of factor scores that we consider is motivated by practical situations
in which an agent would like to form portfolios from the finite collection of asset at
hand in period ¢t — 1, whose payoffs in period t closely replicate the factors. Asset
allocations that “track” a particular factor, or “basket” hedging decisions con-
stitute obvious examples. But since any conceivable factor representing portfolio
will be a linear combination of the assets with (possibly) time-varying stochastic
weights, significant improvements may be obtained by considering the conditional
distribution of returns when forming mimicking portfolios. For this reason, we
explicitly analyse the class of dynamic basis portfolios whose weights depend on
the conditioning information. Given that all basis portfolios proposed so far em-
ploy constant weightings, such a novel class includes them as special cases, but is
far more general. Importantly, our results do not depend on any specific distri-
butional assumptions, although they require correctly specified first and second
conditional moments.

From the econometrician’s point of view, the factors are effectively unknown.
And although they could be regarded as a set of parameters in any given realisa-
tion of the asset returns, it is more appropriate to use a signal extraction approach
in our context, because the factors can take different values in different realisa-
tions. In this respect, note that since we use portfolios to estimate the underlying
factors, we implicitly restrict ourselves to the class of conditionally linear predic-
tors with time-varying stochastic weightings, and exclude any non-linear filters
and smoothers. A significant advantage of our signal extraction framework is that
we can assess the efficiency of the different basis portfolios in terms of their mean
square error (MSE), the standard statistical decision theory criterion. As we shall

see, the MSE criterion can also be given an intuitive justification in terms of an

approach could also be interpreted as using economic theory to impose restrictions on the time
series dependence of asset returns from restrictions on its conditional cross-sectional correlation.



investor with mean-variance preferences, as it corresponds to the so-called “track-
ing error” variability in the finance literature. In addition, we also investigate the
correlation of the different replicating portfolios with the common factors.

The paper is divided as follows. In Section 2 we discuss our dynamic asset
pricing restrictions in the theoretical framework employed by King et al. (1994).
We also define the factor representing limit portfolios, and introduce a dynamic
specification that is compatible with an unconditional factor structure for the
innovations in returns, so that the usual passive mimicking portfolio strategies are
not meaningless. The statistical properties of the basis portfolios are discussed at
length in Section 3. In particular, after introducing them, we study their behaviour
both in finite samples and asymptotically, compare their relative efficiency, and
analyse the effects of estimation error in the model parameters. This section
also contains a small illustrative example that evaluates the different expressions
in realistic parameter configurations. Finally, Section 4 concludes. Proofs and

formal derivations are gathered in appendices.

2 A Conditional Factor Model of Asset Returns
and Risk Premia

2.1 Conditional moments specification

We base our analysis in an economy with a countably infinite collection of
primitive assets, whose payoffs are defined on an underlying probability space.
Let Ry (1 = 1,2,...,N,...) be the random (gross) holding return from a unit
investment in asset ¢ during period ¢, and let Ry be the (gross) holding return
on an asset that is riskless from the agents’ point of view at period ¢t — 1. We
work in terms of the conditional distribution of period ¢ asset returns, and assume
that the agents’ information set, ®; ;, contains at least the past values of all

asset returns. Let L? denote the collection of all random variables defined on the
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underlying probability space which are measurable with respect to ®; and have
finite conditional second moments. Hansen and Richard (1987) show that L? is the
conditional analogue of a Hilbert space under the conditional mean square (MS)
inner product and the associated MS norm. We assume that, conditional on ®; 1,
the second moments of the primitive assets are uniformly bounded with probability
one (a.s.), so that a fortiori R; € L? Vi.> In addition, we also assume that the
minimum eigenvalue of the conditional covariance matrix of any sequence of risky
asset returns is uniformly bounded away from zero a.s., so that no primitive risky
asset is redundant.

Let u; be the unanticipated component of returns on the i** risky asset,
ie. wy = Ry — vy, where E(Ry|®;_1) = vy, and let 0, = E(ujuje| i) =
cov(Rit, R;jt|®:—1). We assume that the stochastic structure of unanticipated re-

turns is given by:

uzt:ﬂzltflt‘l‘_l_ﬂzktfkt—{_ezt (221,2,,N,) (1)

where f;; (j = 1,...,k finite) are common factors that capture economy-wide
(i.e. systematic) shocks affecting all assets, 3,;, € ®; 1 (i = 1,2,...,N,...;j =
1,..., k) are the associated factor loadings or betas known in ¢ — 1, which measure
the sensitivity of the assets to the common factors, while ¢;; are idiosyncratic
terms reflecting risks specific to asset ¢, which by definition are (conditionally)
orthogonal to f;, with []; = f;: (j = 1,...,k). To guarantee that common and
specific factors are innovations, we assume that they are unpredictable on the basis
of &, ;. We also assume (without loss of generality at the theoretical level) that
the common factors are conditionally orthogonal, and that they have (possibly)

time-varying conditional variances, Aj; (j = 1,...,k). In this framework, any

?The uniformly boundedness condition, i.e. supg, | E(R%|®:;—1) < 0o a.s., is stronger than

required, but simplifies the subsequent discussion. In particular, it implies that E(R%) < oo,
and hence, that R;; € L? (cf. Zaffaroni, 2000).



collection of N risky asset returns can be represented as:
Ryt =vne +une = vne + By + et (2)

with [Ry¢)i = Rit, [Wne)i = vie, [Une)i = wir, [Ene]i = € and [Bueli; = By,
(i=1,2,...,N,...;5=1,...,k). Let ¥n;, A; and T'y; denote the conditional
covariance matrices of Ry; (and upy), fi and ey respectively, with [Xn];; =
oijt, Ny = diag(Ay, - .., Are) and [Cyij = 745,- In what follows, we assume for
simplicity that rank(By;) = k, that each \;; is uniformly bounded away from zero
a.s., and that the same is true of the minimum eigenvalue of I" y;, so that it is not
possible to form finite portfolios that contain only factor risk. As a consequence,
3 n: can be written as the sum of two parts: one which is common but of reduced
rank k, By;A:B'y,;, and one which is specific, I'y;. In order to differentiate one
from the other, we follow Chamberlain and Rothschild (1983), and assume that the
largest eigenvalue of T'y; remains uniformly bounded as N increases (as in band-
diagonal matrices with uniformly bounded individual elements). We also assume
that as N — oo this matrix does not become singular, and that all the eigenvalues
of the k x k matrix B'y,By: become unbounded, so that the common factors are
indeed pervasive, in the sense that they affect most assets in the economy. Notice
that (1) is then a statement about the cross-sectional dependence of asset returns,
as it implies that £ (and only k) eigenvalues of ¥ y; grow unboundedly with N
(see Chamberlain and Rothschild, 1983).

2.2 Modelling risk premia

Let P, be the conditional closure of the set of payoffs from all possible port-
folios of the primitive assets. It is clear that P, is a conditionally closed linear
subspace of L?, and hence also a conditional analogue to a Hilbert space under
the (conditional) MS inner product. In order to model conditional mean returns,

we shall use the cost functional C(.), which can be regarded as a linear pricing
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functional defined on P, that maps elements of this space onto the information
set, ;1. Under a mild no arbitrage condition (see Chamberlain and Rothschild,
1983, or Hansen and Richard, 1987), this functional is conditionally continuous
on P, and extends to limit portfolios the usual definition of cost as the sum of
the weights of portfolios of a finite number of primitive assets. Then, a condi-
tional version of the Riesz representation theorem implies that there is a portfolio
with payoff p., € P,, such that C(p;) = E(pup:|®i—1) for all p, € P,, so that
per Tepresents C(.) in P, (see Hansen and Richard, 1987). We can interpret pe
as a stochastic discount factor that prices the available portfolios by discounting
their uncertain payoffs across different states of the world. We shall also use the
conditional mean functional, E(.|®; 1), which is always conditionally continuous
on P, and therefore can also be represented by a portfolio with payoff p,.: € P,
so that E(p,|®;_1) = E(pmup:|®:i—1) for all p, € P,. In this respect, we assume
that there exists a unique unit-cost, riskless limit portfolio of risky assets, whose
(gross) return is equal to vq in the conditional MS norm, so that p,; = Ro:/vo:
(see Chamberlain and Rothschild, 1983, for necessary and sufficient conditions).
Let Re = pet/C(pet) be the return on a unit investment on the pricing rep-
resenting portfolio, and define p,; as an arbitrage (i.e. zero-cost) portfolio con-
ditionally orthogonal to R, with payoffs p,,; — C(pmi)Re. Then, if we rule out
risk neutral pricing, so that not all conditional expected returns are equal, it is
possible to prove that all the portfolios on the zero-cost conditional mean variance
(MV) frontier generated from all primitive assets will be spanned by p,;, and that
all those on the unit-cost conditional MV frontier generated from all primitive

assets are spanned by R. and p, as
Vg — E<Rct|q)tfl)p
E(pat| Pe-1) ot
where 7y = E(Ret(71)|P—1) (see Hansen and Richard, 1987). The simplest arbi-

Rei () = Ret +

trage portfolios are those that hold a unit long position in each primitive asset
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and an equivalent short position in the riskless asset, so that their payoff vector
rye = Ryi — Rortn, where ¢y is a vector of N ones and [ry¢|; = ry, coincides
with the vector of returns on the /N primitive risky assets in excess of the riskless
asset. The main advantage of working with excess returns is that their conditional
means, [y, = VNt — Vorbn, With [pen,]i = iy, can be identified with the assets’
risk premia, while preserving the structure of the conditional second moments.
In this framework, it is possible to prove that there is a conditionally affine
relationship between expected returns and betas with respect to any (conditional)
frontier “asset” other than the minimum (conditional) variance one (see Hansen

and Richard, 1987). In particular, we have
Vit — Vor = Bit(Vt — Vor) (3)

where 83,0, = cov(Rit, Ret(V4)|P1—1) /V (Ret ()| P11 ).
Our crucial asset pricing assumption is that there exists a conditional MV
frontier risky “asset” in P; which contains only factor risk. More formally, we

assume that:

Ret(Dt) = Ut + BerrJit + BearSor + - -+ Bepr frt (4)

Given that R.(7;) is not generally observable, though, expression (3) has to

be expanded further. Since we know that:

BireMiBers + - -+ Bins Mkt Bene
ﬁglt)\lt +...+ /ngt)‘kt

61’61& =
we can re-write (3) as
Pir = BTt + - -+ By The (5)
where 7, = \j;7j, and

o ﬂejt
Tjt = 73 2
ﬂelt)‘lt + ...+ Bekt)\kt

(7y — vor)



2.3 Factor representing limit portfolios

If we combine expressions (1) and (5), we finally obtain that in terms of excess

returns:

Tit = BT e + oo+ BigeTpet + Eit

where 7y, is short-hand for 7j; + f;;. In order to interpret this expression further,
we follow Chamberlain (1983) in defining the set of well diversified portfolios, D;,
as those elements of P, whose returns are the limits of sequences of finite portfo-
lios pr, = wotRos + ZZ]\LI wi Ry whose weights w;; € ®,_; are such that ZZ]\LI w?
goes to 0 as NN increases. For our purposes, it is also convenient to introduce a
different type of portfolio, which holds one unit of the i** primitive risky asset Rj,
and —v; /v units of Ry, This portfolio mimics (in the conditional MS norm)
the behaviour of the innovations in the returns of asset i, uy, at a cost —u,, /vo;.
Since all such portfolios are conditionally orthogonal to the safe asset, then the
conditional closure of the set of payoffs spanned by them with weights determined
int— 1, U; C Py, is the (conditionally) orthogonal complement of {Ry} in P;.
But our assumptions about ¥ y; imply that the limit riskless asset must be well
diversified. Hence, since we are mainly interested in portfolios with uncertain
payoffs, we can define the set of well diversified risky portfolios F; as the (condi-
tionally) orthogonal complement of { Ry;} in Dy, which by construction, must be a
subset of U;. Then, it is easy to see that although the conditional variance of any
portfolio in U, will generally contain both a common component and a specific
one, the bounded eigenvalue condition on I'y; implies that well-diversified risky
portfolios contain only factor variance. Therefore, it is not surprising that under
our assumptions about X, the dimension of F; is precisely k (see Chamberlain,
1983), which is the dimension of systematic risk in our model.

Given that By, has full column rank, it is possible to find elements of U,

whose payoffs have a unit loading on factor j (j = 1,..., k), and zero loadings on
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the others, at a cost equal to —7;;/vo; (e.g. (By,Bni) ' Bly; (Rt — vniRot/vor))-
Then, if we compute the conditional least squares projections of such portfolios on
Fi, it is clear that we obtain portfolios that mimic (in the conditional MS norm)
the common risk components f;; at exactly the same cost. We shall refer to these
portfolios as factor representing limit portfolios, and shall often denote them in
terms of the associated “assets” as Ry — [(Vos + 7ji) /o] Roe. Not surprisingly,
their excess returns exactly replicate ry,,.

Since pp: = Rot/vor and py € Fy, an interesting property of Ry, ..., Ry, is
that, together with the safe asset, they span the conditional MV frontier obtained
from all the primitive assets. Specifically, given that 7w, = Ay and V (rp|Py—q) =

A, we can prove that
1

at — T
Pat 1 + T;At’rt

/
tLrt

and

Rct = R()t -

Hence, an investor with conditional MV preferences will effectively invest all

her wealth in a convex combination of Ry, Ry,¢, ..., Ry

2.4 Unconditional moments specification

Let 'y = V(en¢) be the unconditional covariance matrix of the idiosyncratic
terms, which can be computed as E(I'y;) by the law of iterated expectations.
Given our assumptions, this matrix remains positive definite (p.d.) with uniformly
bounded diagonal elements for all N. In principle, though, it may not preserve the
bounded eigenvalue condition. Our first simplifying assumption is that it does.
The obvious example is when the specific risk terms are conditionally orthogonal
to each other, so that the conditional factor structure is exact.

But even when I'y; is diagonal, the unconditional covariance matrix of a mul-

tivariate stochastic process characterised by a zero conditional mean and a condi-
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tional factor representation may very well lack an unconditional factor structure
for any k < N (see e.g. Hansen and Richard (1987) or Lehmann (1992)). The
intuition is as follows: the contribution of the common factors to the uncondi-
tional variance is F(By;A;B'y,), which is the scalar weighted average, or more
precisely, the Riemann-Stieltjes integral, of many (possibly infinite) rank k pos-
itive semi-definite (p.s.d.) matrices. Unless all those matrices share the same
nullspace (except perhaps for a subset of measure 0), the rank of their average
will exceed k, and may well be N. In practical terms, what this means is that
for E(By:A:B'y,) to be of rank k, (almost) all By; matrices must be of the form
B NlIli/ 2, where By is a rank k matrix of fixed coefficients, and ¥; a p.d. ma-
trix of order k, not necessarily diagonal. In view of this discussion, we follow
the standard solution in the empirical literature, and assume that, for any given
unconditional normalisation of the factors, such as A = V(f;) = E(A;) = I, the
factor loadings are time-invariant. As Engle et al. (1990) pointed out, such an
assumption is observationally equivalent to a model in which the conditional vari-
ance of the factors is constant, but the betas of different assets on a given factor
change proportionately over time.> Then, it is not difficult to see that the uncon-
ditional covariance matrix of the innovations in returns, Xy = V(uny) = E(Zny),
will have an unconditional k factor structure, namely ByB’, + I'y. Similarly, if
we call p; = E(p;,) and m; = E(mj) the (temporal) average “risk premium” for
asset ¢ and factor j respectively, the assumption of constant betas implies that

our linear factor pricing model also holds on average, i.e.

W, = Bami+ ...+ BTk (6)

Note, though, that the unconditional covariance matrix of the vector of excess

returns, rny = Ryt — tRyy = Byry 4+ ene, will be of the form ByEBy + 'y,

3See Sentana and Fiorentini (2001) for the implications of this assumption on the identifica-
tion of the common factors and their loadings.
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where = = Ij, + V(7). In addition, the unconditional covariance matrix of gross
returns will be different from the two previous ones unless the returns on the
conditionally riskless asset are constant over time.

Finally, we would need to specify the temporal variation in the volatility of
common and idiosyncratic factors to complete the model. In what follows, we
simply note that by definition, A;, I'y; and 7; are measurable functions of the
agents’ information set, ®;_1, but shall not use any particular parametrisation in

our discussion, except for the example in Section 3.7.*

3 Factor Representing Portfolios with a Finite
Number of Assets

In Section 2.3 above, we have seen that the factors, f;, can be exactly repli-
cated (in the conditional MS norm) by means of well diversified limit portfolios
in U,. In empirical applications, though, only data on a finite number of assets
are available, and hence from the econometrician’s point of view, the factors are
effectively unknown. And although in any given realisation of the asset returns,
the factors might be regarded as a set of kK unknown parameters, in fact, because
they could take different values in different realisations, we should more appropri-
ately regard them as unobservable random variables, and use a signal extraction
approach (see Section 3.5 of Bartholomew, 1987).

Such an approach is particularly appropriate in the following practical situa-
tion. Suppose that in period ¢ — 1, we would like to form portfolios from the finite
collection of asset at hand, Ry and Ry, whose payoffs in period ¢ closely replicate

f;. Or in financial markets parlance, we would like to construct k portfolios that

4Some popular parametric time-series models for financial returns specify a data generating
process in which the volatility of the factors is a function of unobservables. Nevertheless, what
is important for our purposes is not the latent volatility itself, but rather the variance of the
factors conditional on the agents’ information set, ®;_;.
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“track” each element of f; as their “target”, either because we want to “tilt” our
investment decision towards a particular factor, or because we want to hedge its
risk by means of a “basket” of assets (see e.g. Sheikh (1996) and Sorensen et al.
(1993) respectively). In any case, since we would be effectively using portfolios
in Uy to estimate the underlying factors, where Uy, is the analogue of U, con-
structed from Ry and Ry; alone (i.e. the set of payoffs spanned by uy; with
weights determined in ¢t — 1), we would be implicitly restricting ourselves to the
class of conditionally linear predictors with time-varying stochastic weightings,
and excluding any non-linear filters and all smoothers. In this respect, it is cru-
cial for our purposes to distinguish between Uy;, and its subset, Vy;, which is the
set of payoffs spanned by the same portfolios but with fized weights. As we shall
see below, Vy; includes all the basis portfolios suggested so far in the literature,
but excludes the payoffs on dynamic portfolio strategies based on information in
D, 4.

In this framework, our efficiency analysis shall be based on comparing the
conditional MSEs of the different basis portfolios, which is the appropriate met-
ric in the conditional Hilbert space setting of Section 2. In financial markets
parlance, this simply means that, ceteris paribus, we would always prefer fac-
tor representing portfolios with a smaller degree of “tracking error”. Given its
widespread use by practitioners, it is not surprising that such a criterion can
be given an intuitive justification. In particular, it is easy to show that an in-
vestor with unit wealth and conditional MV preferences of the form U(R;; ®; 1) =
E(Ry ®; 1) — (a/2)E( R?| ®;_1) will hold one unit of the conditionally riskless as-
set, and 1/« units of the arbitrage portfolio (i) py if she can invest in all the
primitive assets, or (i) paye = W N TN, Where:

_ ZXIh‘Nt
1+ I’LQVtZXéMNt
if she can only hold a finite subset of N risky assets. It is then straightforward to

WauNt
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prove that p,n; is precisely the arbitrage portfolio that is closest to p,; in the con-
ditional MS norm. But since as we saw before, the whole conditional MV frontier
generated by all the available assets can be spanned by Ry and Ry, ..., Ry,
it is not surprising that the payoffs to p,n: can be exactly replicated by means
of a combination of the riskless asset and the factor representing portfolios that
are closest to fi,... fr: in the conditional MS norm. Finally, note that since the
average of the conditional MSE is the unconditional MSE by virtue of the law of
iterated expectations, we can keep in line with the more standard practice in the

statistical time series literature without additional effort.®

3.1 Basis portfolios with time-varying weights

3.1.1 Conditional Kalman Filter Basis Portfolios

If the joint conditional distribution of uy; and f; given ®; ; were normal,
the model derived in Section 2 would have a natural conditionally Gaussian linear
state-space representation (see Harvey, 1989). Taking the common factors as state
variables, equation (2) could be understood as the measurement equation which
relates them to the observable variables uy;, with the idiosyncratic terms, €y,
corresponding to the measurement error.’ In this well known, ideal, conditionally
Gaussian framework, the Kalman filter would be perfectly suited to “extract”

estimates of the unknown factors because the updated estimates of f;,
fy: = ABySyun = (ByTy,By + A7) By yun, (7)

would coincide with the conditional expectation of f; given uy; and ®;_, which is

best in the (conditional) MS sense over the class of all predictors that use the same

®The unconditional MSE criterion would break down if the unconditional second moments
of the assets were unbounded. And although our assumption of uniformly bounded conditional
second moments implies that this is not so (see footnote 2), our main results (i.e. Theorems 1,
2 and 3) would remain valid.

6The transition equation would be somewhat unusual, though, because f; contains no mean
dynamics by construction.
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information, whether linear or not (see e.g. Harvey, 1989).” In fact, the optimality
of f]{ft holds under the more general assumption that, conditioned on &, 1, upy;
and f; follow a joint multivariate elliptically symmetric distribution (see Sentana,
1991), of which the multivariate normal and the multivariate ¢ are rather special
cases. But although the elliptical class is rather broad (see e.g. Fang et al., 1990),
ideally we would like to have a similar result that did not depend on distributional
assumptions. In this respect, the following theorem characterises the optimality

of the Kalman filter updated estimates for any conditional distribution:

Theorem 1 For any kx M matriz W(®,_1) of measurable functions of the infor-
mation set, W'(®;_1)fE, is best in the conditional and unconditional MSE sense
within the class of “conditionally affine” predictors of W'(®;_1)f; of the form
c(®;1) + D'(Py_1)upny, where c() is a M x 1 vector and D() a N x M matriz of
measurable functions of the information set.

Theorem 1 generalises to a conditional setting the well-known result that the
Kalman filter updated estimates of an unconditionally linear model are best within
the class of linear predictors that use information up to, and including, period
t (see Harvey, 1981, and Theorem 4 below). Intuitively, the optimality of the

Kalman filter estimates derives from the fact that
E[(f - £5,) [c(®-1) + D' (1) une]'| @21 = 0, (8)

which means that they can be interpreted as the conditionally linear least squares
projection of f; on Uy (see Appendix 1). In this respect, it is important to mention

that the conditional MSE of f%, provided by the usual Kalman filter recursions
Q]I\gt = Ay — AthVEJ_ViBNAt = (At_l + BfNI‘]:/iBN)_l (9)

only yields V' (f;| uy, ;1) under conditional normality (e.g. for any other ellipti-

cal distribution V (f;| uns, ;1) x g(uy, S yiun:) 2K, where g() is a scalar func-

"This property provides the rationale for using ff, as factor estimates in King et al. (1994).
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tion whose form depends on the particular member of the elliptical class used; see
Harvey et al. (1992) for the multivariate ¢, Sentana (1991) for the general case).

Like all conditionally linear predictors, f¥, is an (un)conditionally unbiased
predictor of f;. More importantly, (8) also implies that forecast, f%,, and fore-
cast error, f¥, — f;, are (un)conditionally uncorrelated. This confirms that Q5 =
V [tK, — £,] = E [QF,] constitutes the lower bound for the MSE of all (condition-
ally) linear predictors forecasting errors. In fact, this lower bound is not achieved
in finite N samples by any other (conditionally) linear predictor. The orthogo-
nality of predictor and prediction error also implies that the Kalman filter esti-
mates are (un)conditionally smoother than the factors, but since V [ffv(t| P;_q] =
AJA; + (BT yiBy) 1) tA,, the estimators for different factors would not be
conditionally uncorrelated unless B)yI'yi By, and thus %, were diagonal, and it
is unlikely that they would be unconditionally uncorrelated otherwise.

One interesting property of f&, that also derives from Theorem 1 is that
as we include more assets in our sample, the conditional variance of the pre-
diction error cannot increase, and generally decreases (i.e. V [f]{ft — ft| @t,l} —
VR, — £ ] = QF, — QK. is p.s.d.), which is also true uncondition-
ally. Since predictor and prediction error are uncorrelated, the monotonicity ex-
tends to the conditional and unconditional correlations between fﬁw and fj; for

j=1,..., k. In fact, we can prove a much stronger result:

Theorem 2 For any kx 1 vector w(®,_1) of measurable functions of the informa-
tion set, w'(®;_1)fE, has mazimum conditional correlation with w'(®;_1)f; within
the class of “conditionally affine” predictors of the form c(®;_1) + d'(P_1)uny,
where ¢() is a scalar and d() a N x 1 vector of measurable functions of the infor-
mation set.

Therefore, we can obtain a dynamic portfolio in Uy; that maximises conditional
correlation with any given element of the set of well diversified, risky portfolios

F:, by choosing the time-varying portfolio weights that minimise our conditional
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MSE criterion. Nevertheless, it is important to bear in mind that the opposite
result is not true, since any conditionally affine transformation of w'(®; )%, will
maintain the conditional correlation with w'(®;_,)f; € F;, but will increase the
conditional MSE. The reason is that unlike what happens with the conditional
MSE, a metric cannot be based on conditional correlations.

Finally, it is worth mentioning that these mimicking portfolios are often ob-
tained as a by-product of the ML estimation method, so that their calculation

does not increase the computational burden (see Harvey et al., 1992).

3.1.2 Conditional GLS basis portfolios

Since any conceivable factor representing portfolio will effectively be a com-
bination of Ry and a portfolio in Uy, in view of Theorems 1 and 2, a natural
question at this stage is what justification can be given for using any other fac-
tor extraction procedure. The following result characterises the optimality of the

conditional Generalised Least Squares (GLS) estimator:
£V, = (ByTniBy) "By (10)

which, importantly, does not make use of the information given by E(f;| ®; 1) =0

and V(ft‘ q)tfl) = At.

Theorem 3 W'(®, |)f$, is best in the conditional and unconditional MSE sense
within the subclass of “conditionally linear” predictors of W'(®;,_1)f; of the form
D/(®;_1)upn, that satisfy the restriction D'(®;_1)By = W/(P;_1).

As we mentioned before, in any given realisation of the asset returns, f; could
be regarded as a set of k parameters. From this point of view, the difference
between X and f§, would be the difference between a Bayesian cross-sectional
GLS estimator of f; which uses the proper prior f;|®;_; ~ D(0,A,), and an-

other one which uses a diffuse prior instead. In this context, the constraint

17



D'(®;,_1)By = W'(®,_;) that appears in Theorem 3 could be regarded as im-
posing the unbiasedness restriction [fﬁt} f;, q)t,l} =f,.

In any case, given that
fN, = f: + (ByTy,By) Byl yiem

a noticeable property of f§, is that they constitute “sufficient statistics” of the
information in uy; regarding f;, in the sense that the conditional Kalman filter

estimates of f; based on f§, coincide with f£,. Namely:

fll\gt = At[At+( /NFJ_ViBN)_l]_lfJ(\;t

= [A;'+ (BT BN (BT viBN)Y,

(see Gourieroux et al. (1991), and Fiorentini et al. (2001) for a stronger result
under conditional Gaussianity).® A useful way of looking at this relationship is in

terms of the joint distribution of f; and fﬁt conditioned on ®;_;:

f, 0 A, A,
|q)t71 ~ D 9
fG, 0 Ay A+ (BT By

In this context, f%, and QF, are the fitted value and residual variance from the
conditional least squares regression of f; on f§,, while f; and Qf, = (B\Ty;By) ™
are the corresponding quantities in the conditional least squares regression of f§,
on f;.

Also, it is worth mentioning that on the basis of f§, one can write what

Gourieroux et al. (1991) call an endogenous factorial representation

G G
Une = BNth + ENt

8As a consequence, fX,, fﬁt or indeed any conditionally linear non-singular transformation
of them, span the same linear subspace, which is important if the object of interest is the whole
of F; itself, not one of its elements (cf. Huberman et al., 1987). Nevertheless, Theorems 1 and 2
imply that the Kalman filter yields the best predictor of every element of that subspace, and the
most highly correlated. In particular, as we mentioned before, 7/f%, /(1 + 7/ A;7) provides the
best predictor of (the unanticipated component of) p,t, which is also the one with the highest
conditional correlation.
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where ¢, = [In—By(ByT'y;By) 'ByI'yi] un: and £, are conditionally uncor-
related. This property is related to the fact that f§, can be written as a con-
ditionally linear combination of the conditional principal components of u}r\,t =
I‘;,i/ 2uNt, as shown in Appendix 2.

Since V' [£,| ®,-1] = A+ (B I'y;By) !, the factor estimates are again (con-
ditionally) correlated with each other in general, but now they are less smooth
than the factor themselves. Furthermore, if ByT'yiBy were a diagonal matrix
(e.g. if k = 1), then each jGNt would be proportional to f]{w for j=1,...,k, and
the conditional correlations with f;; would then be identical, although the factors
of proportionality will change over time.

Not surprisingly, though, predictor and prediction error are conditionally cor-
related in this case, which reflects that f§, does not use the available informa-
tion efficiently. Nevertheless, since f§, = [ (ByTxiBy) 'ByTy; 0O | unyie and

(ByTyiBy) 'ByTyi 0 ] By = I, QF, is also monotonically nonincreasing

with the cross-sectional sample size.

3.2 Basis Portfolios with Constant Weightings

3.2.1 Unconditional Kalman filter basis portfolios

Given that our assumptions are compatible with an unconditional k factor
structure for uy;, we can also consider unconditional counterparts to the previ-
ous predictors of f;. These portfolios will be elements of Vy;, the set of payoffs
spanned by u;; (i = 1,..., N) whose weights are time-invariant. To the best of our
knowledge, all the factor representing portfolios discussed so far in the existing
literature fall within this class.

In this framework, we can repeat the analysis of Section 3.1.1 for the class of
static portfolios to show that the best (in the unconditional MSE sense) predictor

of f; with time-invariant weightings is given by the standard Kalman filter updated
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estimate
5 = By Sy un, = (BRyTR'By + 1) By uny
More formally:®

Theorem 4 For any k x M constant matriv W, WK is best in the uncon-
ditional MSE sense within the class of “affine” predictors of W'f; of the form
c + D'uyy, where ¢ is a M x 1 vector and D a N x M matriz of constants.

In this case, the prediction error unconditional MSE is
QY = (ByI'y'By + 1) ™!

(see Harvey, 1981). Not surprisingly, we can understand {7 as the unconditional
least squares projection of f; on Vy;, and for that reason, these estimators are
usually known as the regression scores in the factor analysis literature (see e.g.
Lawley and Maxwell, 1971).

Similarly, every element of £ is also a static portfolio with maximum un-
conditional correlation with the corresponding element of f;,. Specifically:*’

Theorem 5 For any k x 1 constant vector w, WX has mazimum unconditional
correlation with w'f; within the class of “affine” predictors of the form ¢+ d'uyy,
where ¢ is a scalar and d a N x 1 vector of constants.

Therefore, by minimising the variability in tracking error, we obtain as a by-
product portfolios that maximise correlation with the common factors. But again,
the converse is not true, as any affine transformation of w/f{ will increase MSE,
despite the fact that it leaves the correlation unchanged.

Given that the results in Theorems 4 and 5 are well known, it is surprising
that these mimicking portfolios have never been used in empirical applications
of the static APT (to the best of the author’s knowledge), especially if we take
into account the fundamental role they play in maximum likelihood estimation of

traditional factor models via the EM algorithm (see Rubin and Thayer, 1982).

9See e.g. Lawley and Maxwell (1972) for a proof, who attribute these factor scores to Thom-
son (1951).
10See Ingersoll (1984) or Huberman et al. (1987) for a proof.
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3.2.2 Unconditional GLS basis portfolios

A less efficient estimator is the unconditional generalised least squares estima-
tor

fyi = (ByIy'By) 'ByLyun,

which does not make use of the information given by E(f;) = 0 and V(f;) = L
Nevertheless, this estimator still has some optimality properties with respect to a

particular subclass, as specified by the following result:!!

Theorem 6 W'f{S is best in the unconditional MSE sense within the subclass of
“linear” predictors of W't of the form D'uy; that satisfy the restriction D'By =
W'

Again, there is a one-to-one relationship between f{¥ and f{¢ given by
fyi = [T+ (ByTy'By) '] N/

which means that the unconditional Kalman filter estimates based on f{¢ coincide
with those based on uy;. Similarly, these mimicking portfolios can also be used to
interpret the first order conditions of the maximum likelihood estimation of tradi-
tional factor models (see Grinblatt and Titman, 1987). Finally, the unconditional
MSE of f{¢ is given by:

QY = (ByTy'By) ™

3.3 Other Basis Portfolios

Many other conditionally linear factor representing portfolios are conceptually
possible. For instance, there are at least two other Kalman-based portfolios that

can be considered, for which the analysis in the previous sections can be easily

See e.g. Lawley and Maxwell (1971) for a proof, who refer to these estimators as Barlett’s
scores after Barlett (1938).
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adapted. One results from applying the unconditional Kalman filter to f$,, yield-
ing XY, the other one, which we shall term fXU¢  is obtained if we apply the
conditional Kalman filter to f{¢.

An alternative unconditionally linear predictor of f; is the Ordinary Least

Squares estimate:

fy, = (ByBy) 'Byun (11)

whose prediction errors unconditional variance
QfF = (ByBy) 'BaTyBy(ByBy) ™

cannot be smaller than Q{¢. The intuition is that while f{¢ ignores the infor-
mation in the mean and variance of f;, f{, ignores information about I'y as well.
Also, the correlations between f; and f$, will be generally smaller than the corre-
lations between f; and fV¢. Unfortunately, it is not clear that the predictor error
variance of £, is monotonically decreasing with the sample size except in special
cases.

When k£ = 1, we can also consider cross-sectional weighted averages of the
assets at hand. In particular, we could consider what Lehmann and Modest

(1988) call minimum idiosyncratic risk portfolios, which in this case simplify to:

Nt = (T en) T un (12)

with conditional and unconditional MSE given by

WU = (1= Ba)? M+ (TR T en) /(TN ew)?
W= (1= By) + (h Ty en)™

is the cross-sectional average of the

respectively, where By = 3. 875t/ S Vi
factor loadings, with weights that are inversely proportional to the unconditional

idiosyncratic variances.
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As expected, the prediction error is correlated with f§7, and again improve-
ments in the predictions can be made. The intuition is that we are now ignoring
the information contained in By. This could have potentially serious consequences
in those empirical applications in which the set of available assets includes arbi-
trage portfolios (such as returns on foreign exchange forward contracts), for which
the sign of the payoff is largely irrelevant (see e.g. Diebold and Nerlove, 1989).

There is also an equally weighted portfolio version of fU!, which is simply

1

far = (dyen) Hyuy,

the cross-sectional average of the returns innovations. In this case, the conditional

and unconditional MSE are

Wﬁt = (1- BN)2)‘t +Yne/N

wy = (1=Bx)?+3y/N

respectively, where Jy,;,7y and 3y are the unweighted cross-sectional averages of
the conditional and unconditional idiosyncratic variances, and the factor loadings.

Again, the prediction error is correlated with f&,, which confirms its suboptimal-

ity.
3.4 The relative efficiency of the different basis portfolios

The results in the previous section provide us with an ordering for many of
the basis portfolios that we analyse in terms of their MSE. Nevertheless, they
do not tell us much about the magnitude of the differences in their MSE as a
function of the model parameters. The objective of this subsection is to obtain a
few “sufficient” statistics that effectively summarise the information in the model
parameters required to analyse the relative efficiency of different mimicking port-

folios. To do so, we initially assume that By, A, I' v¢, and 74, and hence g, and
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3 nt, are known by the econometrician. Then, in Section 3.6 we shall discuss the

effects of not knowing them.
3.4.1 Unconditional GLS vs Unconditional Kalman filter

In order to compare fX and £, it is convenient to scale the innovations in
returns by 1‘;,1/2, le.
117\” = B?Vft + E?Vt
where u%, = Ty *une, By = I'y/’By and €%, = Ty ey, so that V (e},| ®_1) =
=T TN Iy? but V(ey,) = E(T%) =Iy. Let
*1/2
* 5k - N Y *1/2~x 7%
By = ( Qy Qy ) 0 Vi = QNlIIN/ Vi
denote the singular value decomposition of the N x k matrix B}, and define
ul, = QYuy, and iy, = Q¥uk,. The factor structure for these portfolios will
be given by
iy TNV &N
e t - ft + .o ’
Uy, 0 ENt
where the unconditional covariance matrix of the idiosyncratic components &}, =
Qi ey, and &%, = QFety, will be given by
Kk (VE I‘T\/t F?\/t L, 0
EQyTQN) =E e - ,
Tne T 0" Iy
because Q* is an orthogonal matrix. In this context, it is straightforward to

show that the unconditional GLS basis portfolios can be written as a linear, time-

invariant, transformation of u},. Specifically
£ = Vi wy Py, = £+ VAR e,
so that
QT = ViR VY = 04 (Vi V) 94
— (ByTxBy) "By Ty [y By(ByTy'By) ),

24



where

Q) = Vi Oy 'Vy = (BATy'By) ™

Such a decomposition for 2§ is precisely the one we would obtain if we regarded
B} as the design matrix and the f/s as the parameters in the cross-sectional
regression of uy, on Bj,.

On the other hand, f{X is given by the unconditional least squares projection

of f; on f{¢, which for our chosen scaling of the common factors yields

fur = L+ VYO VR) TR = VPR (T + L) Hay,
so that
QR = Vi(Wy + 1)V A VBTV Vi (W + 1) 7V
= QFF A+ VR, VR QR
= (ByLy'By + 1) (A + BRI Ty By) (ByTy' By + 1)
where
QY = Vi@ +¥y) 'V = (BYI¥By + 1)}

A summary measure of their relative unconditional efficiency can then be ob-
tained as the ratio of the generalised variances of the prediction errors in £/ and

fU¢. In particular,

* * —_ k k *
[R5 VA + o) VR H biin
|Q][{[G" |V* l:[‘,*—1‘/’/* - 1+ ¢;ij
R2 (£7.£) Hpj (Fx¢ s i

where R? (£, ) is the so-called unconditional coefficient of multiple correlation
between f; and f{¢, which provides an overall goodness of fit measure for the
multivariate unconditional regression of f; on f¢, and p; (i, f;) the j™

conditional canonical correlation between f; and f{¢ (see e.g. Dhrymes, 1970).
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This result confirms that W% = [QR"];; is always smaller than iS5 = [QXC];,
especially so when there is almost perfect “collinearity” between the columns
of By, as indicated by its singular values 97,y being close to 0. Given that
¢ = £, + (BAyT'y'By) !By v ent, and that fJX is the fitted value from the
unconditional least squares regression of f; on f{ ¢, the result also says that f{X is
relatively more efficient than f{¢ the smaller the signal to noise ratio, as measured
by RZ (f5¢,£,). Notice that this is exactly when the precision of £§{ is relatively
low (see Lehmann and Modest, 1985).

However, when we compare the conditional efficiency of f¥X and f{¥¢ we
obtain that

QUE| |y [A VRRRPT BV

Q571 (98]

Q| [R?(£5¢.8)]?
QU5 R (57 1,)

#1/24 *1/2 (13)
VA Ty¥y"Vy

where R, (f}{,{f , ft) is the so-called conditional coefficient of alienation between
fUH = f, + BNy en: and f;, which is such that 1 — R2,(f#  f,) provides an alter-
native overall goodness of fit measure for the multivariate conditional regression
of f{F on f; (see e.g. Dhrymes, 1970). Given that this expression cannot be guar-
anteed to be smaller than 1, nothing can been said in general about Q¢ versus
QUK other than their average difference Q¢ — QFE = Vi, (¥4 + T2~ 1VE is
a p.s.d. matrix. In fact, it is fairly easy to find instances in which Q{X — Q{¢
will be p.s.d. (e.g. when Iy, = I, and A, — (2I; + V5 W5 1V¥) is p.s.d.). This
K

apparent paradox is a direct consequence of the fact that neither f{¢ nor f{X use

the information in ®;_; to form portfolios.

3.4.2 Unconditional vs Conditional GLS

But given that the main innovation of this paper is the introduction of ba-
sis portfolios that use the information in ®;_; to combine the underlying assets,

an important question that we have to address is how much more efficient such
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dynamic investment strategies are relative to their passive counterparts in repli-
cating the underlying factors. In this respect, it is possible to show using the same

framework as before that
£G, =1, + Vi 2,

where 7%, = &%, — T ;L7 &4 is the residual from the conditional regression of
&y; on Ey,. Hence,
Qf = Vi ey Ty VY
where
Yj\ft =V (7| Pe1) = 117\/1& - F?Vtrj\ﬁlrj\/t
and
QF = V3 Ty ey vy

with Y% =V (fi%,) = E(Y%,). Hence, both basis portfolios coincide iff Ty, = 0.
Therefore, the difference between f§, and f{¢ stands from the fact that while
&y, and &}, are unconditionally uncorrelated, they will generally be conditionally
correlated. That means that there is often useful information in i}, about f; even
though the corresponding factor loadings are zero, but that information cannot
be exploited without using time-varying weights. Moreover, since f‘}‘w — Nt =
I‘}‘th""}‘v;l]_"};,t is a p.s.d. matrix by construction, our analysis confirms that so is
QJL\fltG - Q]%t'

Once more, we can compute an overall summary measure of relative condi-

tional efficiency as

|}QUct;| == = R%(énu Ene) H P]t ENtszt)}
Nt ‘I‘}(\/t Jj=1

where R2,(&y,, Ex;) is the conditional coefficient of alienation between &}, and

Engs and py (€, Eny) the j7 conditional canonical correlation between &}, and
.
ENy-
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The differential effect of using conditional information in forming basis port-
folios can be seen by noticing that while the coefficient of alienation in the cor-
responding unconditional regression is 1, R2,(&y;, Eny) 1S between 0 and 1. Tt is
conceivable, though, that due to the implicit averaging in our efficiency criterion,
the unconditional MSE of f{¢, QF¢, might not be much larger than the uncondi-

tional MSE of £§,, Q%. In particular, |Q]C{}| /|Q%¢] = ‘T}‘V

because E(I'y,) = L.

It turns out that under certain assumptions commonly made regarding random
matrices, closed form expressions are available to assess how large these uncon-
ditional efficiency gains could be in practice. In particular, let’s assume that the
conditional covariance matrix of (&y;,&n,)" follows a central Wishart distribu-
tion with parameters (G~'Iy,G), (G > N). Then, from Theorems 7.3.5, and
7.3.6 in Anderson (1984) we will have that I'%;, follows a central Wishart distri-
bution of order k with parameters (G~'I;, @), and furthermore, that Y%, and
T I Ty, will follow independent central Wishart distributions of the same
order with parameters (G™'I;, G — N + k) and (G~'I}, N — k) respectively. As a
result, Q§ = GHG—N+k)(V3 Ty 'VR), and | Q5| / |Q4C| = (G—N+k)*/GF,
which can be significantly smaller than 1 when NV is large relative to k. Under the
same distributional assumptions, Theorem 7.5.1 in Anderson (1984) also implies
that both ‘Q%ﬂ and ‘Q%t‘ can be written as (proportional to) the product of k
mutually independent chi-square distributions with different degrees of freedom,
from where the exact distribution for R? (&y,, €x;) can be obtained. The single
factor case, in which RZ,(é%,,&%,) is simply one minus the coefficient of determi-
nation in the conditional regression of £}, on &y, is particularly illustrative. The
differential effect of using the conditional information in forming basis portfolios
can be seen by noticing that while the coefficient of determination of the corre-
sponding unconditional regression is 0, RZ,(éX,,&x;) follows a beta distribution

with parameters (G — N + 1)/2 and (G — 1)/2 under the same distributional as-
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sumptions, with a mean value of (G — N + 1)/M, which somewhat remarkably,

turns out to be the same as w¢ y /WY ;.
3.4.3 Other basis portfolios

Analogous expressions can be obtained for many other pairwise comparisons
(see Sentana, 2000a). For the sake of brevity, we shall only mention here that in
the case of a single factor, it is not possible to prove that w{! is always larger
than w{%. However, a sharper result is available for the unconditional correlation
of fYI with fy, R? (fY/, f;), which is always less than or equal to R? ({7, f;) =
R? ( Nt ft) in view of Theorem 4, with equality iff By is proportional to ¢y by
the Cauchy-Schwartz inequality. Hence, how good a predictor f{! is will depend
of the “correlation” between By and ¢} in the metric of I'y'. Notice also that no
monotonicity result regarding R? ( Nt ft) can be established.

In principle, one would expect fi, to be less efficient than f{7, since we are
not only ignoring the information contained in By, but also in I'y. It is possible,
though, to find counterexamples in which w4 is smaller than w{!. But note once
more that the unconditional correlation of ff, with f;, R (f&,,f:) can never

exceed R2 (f5, fi) = R2 (f§¢, f:) by virtue of Theorem 4.

3.5 Large N Sample Results

A minimum requirement for any factor representing portfolio is that it con-
verges in unconditional MS to f; as N — oco. But as all the basis portfolios that
we are considering have the same mean as the factors, we only need to show that
the unconditional variance of forecasting errors vanishes asymptotically.

Let’s start with the OLS estimates f$,, and define v, = supy 61(I'y) < 0o and
Voo = Infy én(T'y) > 0, where 61(A) and 6,(A) denote the largest and smallest
eigenvalues of the n x n matrix A. Given that Q§ = (ByBy)™! (ByT'yBy)
(ByBy)™! < (BYyBy) 19y, then the norm of Q% goes to 0 because the norm
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of (ByBy) goes to oo in view of our assumption that the common factors are
pervasive. As the unconditional forecast error variances of fX,, f$,, fUX, 7%,
fUKG and £EUC are at most as large (in the matrix sense) as that of £, for any
N, these estimators are also MS consistent.

Let’s now consider fi, = By f: +En:. Since V(Eny) < 7,/N, it is clear that f4
converges to a multiple of f;, provided that 3y does not converge to 0, in which
case f#, will converge to 0 too.!? A similar situation arises with f¥I, which will
also converge to a multiple of f, unless 35 — 0, in which case ,5’ y Will converge
to 0 too, because (Ys/71)By < BN < (11/700) B

If uny were (conditionally) normally distributed for all N, so would be the
different factor representing portfolios and the corresponding forecast errors. But
even if this is not the case, under suitable regularity conditions on the dependence
of the idiosyncratic components of returns, it would be possible to prove that for
large N, the forecasting errors scaled by v/ N would be approximately normally
distributed with zero mean and the corresponding MSEs as variances.!®> Notice,
though, that this is totally compatible with the distribution of the actual predic-
tors being very close to that of f;, and hence possibly highly non-normal. Such
results would allow us to give confidence intervals of approximately correct size
for N large enough. Once more, the superiority of f%, is confirmed by the fact

that it would provide the narrowest intervals of all for any given size.

12Note that although a zero average factor loading coefficient is an unlikely event, there is
nothing in the assumptions made in section 2 which prevents its ocurrence. In particular, since
the requirement for the pervasiveness of the common factor (i.e. ¥% = N(B?V—i—&?v) — 00 as
N— 0), is ensured by the necessary and sufficient condition for the existence of a riskless limit

asset (i.e. No%, — 00), we may well have situations in which 3, — 0, and even NB?VH 0 (see
Sentana, 1997).

I3For instance, if the idiosyncratic errors were not only unconditionally uncorrelated, but also
independent across assets, one could apply a standard central limit theorem for heterogenously

distributed random variables to v/N&x¢, and show that VN (f&, — Bf:) <, N(0,%) as N — oo,
where 8 = limy oo N1 Zf\rzl B; and 4 = limy oo N1 vazl v, (see Zaffaroni, 2000).
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3.6 The effects of parameter uncertainty

It is important to stress that the efficiency analysis in Section 3.4 is predicated
on all the model parameters, @ say, being known. For our purposes, they can be

divided into the following groups:
1. Static factor model parameters:

(a) Factor loadings by = vec(By)

(b) Unconditional idiosyncratic variances vy = vecd(I'y)

2. Risk prices T

3. Conditional variance parameters:

(a) v and §, which only enter through the common factor variances A;

(b) ¢ and p, which only enter through the standardised idiosyncratic vari-

ances T'%, = T/ °T'y, Ty

In reality, of course, 8 will be estimated, and therefore subject to measure-
ment error. The issue of robustness becomes then relevant, because the more
efficient basis portfolios typically require knowledge of more parameters than the
less efficient ones. For instance, Lehmann and Modest (1985) present examples
in which for finite N, fU! is more robust than fU¢ when the factor loadings are
unknown. The purpose of this subsection is to analyse the effects of parameter
uncertainty on our results. In view of our motivation, though, we shall only do
so in a sampling framework in which the number of risky assets N is fixed, while
the number of time series observations 1" grows without bounds.

There are two standard ways to handle parameter uncertainty in our signal

extraction set up. The first possibility is to take a Bayesian perspective, and repeat
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the analysis in Section 3.1.1 conditioning on the available sample observations, but
not on the unknown values of the parameters. Specifically, we would need to find

the portfolio weights wy; that minimise

E[(f; = wiun) (f — wiyoun)'| @51 ]

in a matrix sense, where CIJ}t\?tT_l is the information set generated by ry;_1,...,rn¢_7.
In view of Theorem 1, it is easy to see that such a Bayesian least squares projection

will be achieved by using:

WJI\% = E_l(uNtug\/t‘ CI)?\EEJE(uNtfH CI)?\EEJ

which are the weights of the conditional Kalman filter estimates f%,, as long as
we interpret the different moments involved as unconditional on the parameters.
To find out the required expressions, we can either use predictive densities or
the law of iterated expectations. The second route involves integrating the pa-
rameters out with respect to their posterior distributions, which depend on the
observed sample and the prior information. In order to implement such an ap-
proach, though, we would need to strengthen the distributional assumptions for
uy| P47, (see Fiorentini et al. (2001) for an application of this analysis to the
smoothed estimates of f;).

The second approach, which is classical in nature, consists in replacing the
true parameters by their estimators in the different expressions for the factor
representing portfolios. If the number of periods, 7', on which we have observations
on asset returns is rather large, it is possible to prove that replacing true values
with consistent estimates would not seriously affect the unconditional MSEs of
the different basis portfolios. In not so large data panels, though, the fact that
parameter estimators are used would obviously affect our results, especially if
we cannot put much confidence on them because their standard errors are large.

Unfortunately, it is generally impossible to obtain closed form expressions for
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the exact unconditional MSEs except in very simple examples (cf. Magnus and
Pesaran, 1991).

For that reason, in the remaining of this section we shall obtain asymptotic
expansions up to order T—! of the unconditional MSEs of the estimated basis
portfolios, and relate them to the finite sample bias and variance of the parameter
estimators. The main advantage of this second approach is that it can be applied
to any root-7" consistent estimation method. In particular, let ét;p denote some ex-
tremum estimator that maximises the objective function L, 7(0) = S>_} . 1.(0),
and assume that

rliu ’
o

0.1 — OOH - 0] —1

ﬁ% 5 %80 N0, 1)

00
:0]:1

where 6 are the true values of the parameters, 6; 1 is any sequence that converges

in probability to 8°, and Jp, Zy are non-stochastic square matrices of order dim(8),

with Zy p.d., so that
VT (Bur = 05) — N(0, 75" ToJ; )

For instance, 8; 7 will be the maximum likelihood estimator when I,(6) is the log
of the true conditional density of the observed returns, in which case Zo + Jy =0
by the information matrix equality.

We are interested in obtaining

B | (B 1) (B 1)

°L . .. . . I i
where fy, is a generic mimicking portfolio fy, evaluated at 8, r, and Ep, means an

expectation taken with respect to the true distribution of the data. To do so, it is
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— /
convenient to carry out a second order Taylor expansion of vech [(f Nt ft) (f L — ft) }

around 6, as follows:

vech { (th — ft) (th — ft) } = vech{(fm f,) (fy, — ft)/}

+3,(0,) (B, — 0y) + [Ikz ® (Byr — 90)} H,(0,)(8:.r — 60) + 0 (H(éﬂ, —0y)

)
where J;(6,) and H,(6,) are the Jacobian and the Hessian matrices respectively,

of the vector function above with respect to all the parameters, evaluated at 6.

Then, under suitable regularity conditions, we obtain

B | (R = fu) - (B = 1)
= E{[(ffne— fit) - 0 5./ 00" + (i — fir) - 0 /i) 00')| @11} (Bur — 60)
8fl%w/60~8ffm/89/+6 L1006 - 0fk:. /06’
+(0:r — 00)'E + (fhe — fit) - 0% fK, /0000 P4
+ (fliee = fie) - 0° fli: /0000

K _ ~K K
q)t—l} — WiiNt = WiiNt — WijiNt

X(ét,T — 90) + Op (Tﬁl)

after taking conditional expectations element by element.

Given their pre-eminence in our discussion, we shall concentrate on the condi-
tional Kalman filter scores. A significant advantage of these scores in this context
derives from (8), which implies that all the above terms vanish, except those
involving the outer product of the first derivatives of f%,, whose analytical expres-

sions can be found in Appendix 3. Moreover, since under our assumptions:

_ OL,(6,) )
<0t,T_00) jO T 690 +0P<T 1/2)

it is clear that the covariances of the cross-products of the estimation errors in
0 with the conditional expected values of the Hessian terms h;;,(0,) are o(T1),

which means that they are negligible relative to the product of the respective
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expected values. Therefore, we can finally write

B (75— 1) (7 1] —

1 OfK. off,  OffN, OfK
ad E( ggt 00 " o0 aquyt> (Jo T ")

T
3.7 An illustrative example

+o(T7)

In order to gauge the different quantities discussed in the previous sections,
we have computed their values for the following simplified version of the model

considered by King et al. (1994):

rie = 0;(MT+ fi) +ex 1=1,2,3

where
fr= NS (14)
A =1+, [(fff1)2 +wf - 1} +61(A-1 — 1)
Eap = 71/25*
it it Cit , i — 1’2’3
Vit = Vii T Pa [(uitfl — BifE1)?+ Biwp_, — %’} + 0 Vaie—1 — Vi)
(15)

( fioen ey ey )/|q)t1 ~ N(0,1y)
and fF and w¥ are the conditional Kalman filter estimate of f; and its conditional
MSE respectively.

Note that although we are forced to consider a fairly simple design for the sake
of tractability, it possesses the two relevant features mentioned in the introduction
as motivating our work: the cross-sectional dimension is small, and conditioning
information plays a crucial role in deriving asset risk premia.

When the conditional variances are time-varying, there are no closed form
expressions for the unconditional MSEs of the dynamic basis portfolios. Never-

theless, we can easily obtain them by Monte Carlo integration in a single but

35



very long simulation of the model of size 250,000, either directly as the sample
mean squared differences between the factor scores and the true factors, or as
the sample mean of the corresponding conditional MSEs. A similar approach can
be used to compute E [9fF,/00 - Off,/06'], provided the required moments are
bounded. As for J; 'ZoJ; ', we consider the maximum likelihood estimator that
uses the true conditional density of observed returns, and compute Z, = — 7 as
the sample variance of 0ls(6y)/00 (see Appendix 4 for analytical expressions for
the score).

Two sets of values for by have been selected, by = (1,1,1)" and by =
(v2/2,v/2/2, —\/2)', corresponding to unit mean and zero dispersion in the 3;s,
and zero mean and unit dispersion respectively. For each value of by, two values
of v, have been selected: vy = 3¢ and vy = .75t , representing low and high
signal to noise ratios. Then, for each of the four combinations, we consider two
pairs of values for (¢, ) and (¢,, p;), namely (0,0) and (.1,.85) in order to compare
the classical framework of constant variances with the more empirically realistic
GARCH context.'* In this respect, it is important to emphasise that the para-
meters that influence the relative performance of the dynamic portfolios vis-a-vis
the static ones are the unconditional variances of the conditional variances, and
not merely the sum of the ARCH and GARCH coefficients.!® Finally, we have
maintained the risk price 7 at .1 throughout.

Note that since we are mainly interested in comparing the relative merits of

actively versus passively managed basis portfolios, we have assumed that I'y is

YWhen an ARCH parameter such as 1 or ¢; is 0, then the information matrix is singular
because the corresponding GARCH parameter 6 or p; is not identified. For that reason, we set
the latter parameters to 0 whenever the former are 0, and exclude them from the computation of
the information matrix. A formal treatment of the asymptotic distribution of the ML estimator
in this special case is beyond the scope of the present paper (see Andrews, 1999).

5In the case of a strong Gaussian GARCH(1,1) model with ARCH parameter 1), GARCH
parameter 6, and unit unconditional variance, the unconditional variance of the conditional
variance is given by 2 /(1 — 3% — 246 — 6%), provided the fourth moment is bounded.
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UG and

the scalar matrix vI3 for the sake of conciseness.'® As a result, f°C =
Ul = fA in all our designs. Note also that when by = (1,1, 1), it is also true that
fA = fUC, while when by = (v/2/2,v2/2, —v/2)', f is simply the cross-sectional
average of the idiosyncratic terms, and therefore, completely uncorrelated with f;.
In this case, in fact, the null portfolio is better than f* in the conditional and
unconditional MSE sense, with the same correlation.
Table 1 contains the unconditional MSEs for the different designs, and provides

a clear illustration of the analysis in Section 3.4. In particular, the ranking is

always

In addition, the single most important determinant of the performance of ff,
f&, fEUG fUK and fUY seems to be the unconditional signal to noise ratio, as
measured by R? (fV¢, f;) = 3/(3 + ), while the crucial parameter for f# is 3.
The unconditional MSE reductions achieved by using time-varying weightings are
certainly noticeable, but the effect is relatively small. The same conclusion can
be obtained from Table 2, which contains the unconditional correlations between

the different basis portfolios and the underlying common factor f;. The main

difference is that the ranking is now

R(fS, fi) = R(FE fo) = RUFEVC, £) = ROFPE fo) = R(FTCL f) = R(F, fo)

Importantly, the deterioration in performance due to estimation error shown
in the last column of Table 1, is roughly of the same order of magnitude across
designs, although it worsens the lower the signal to noise ratio, and the higher the
dispersion in the #’s. In any case, the picture that emerges from these results is

that for the sort of (temporal) sample sizes typically encountered in practice, the

6 However, in computing the effects of parameter uncertainty, we do not use the fact that ~,;,
or indeed ¢, and p; are the same across assets.
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conditional Kalman filter factor representing portfolios do not lose their attrac-
tiveness when the parameters of the model have to be estimated.

As we have already mentioned, though, unconditional MSEs mask potentially
important features that differentiate the performance of the various basis port-
folios over time. For that reason, Table 3 contains the three quartiles, and the
smallest and largest values of the distributions of ratios of conditional MSEs, as
summary statistics of the conditional efficiency of fX relative to the other mim-
icking portfolios. A noticeable result is that in all the cases that we analyse
(fC, fEVG fUK and fUC), relative performance seems to depend on the signal
to noise ratio, but not on the mean or the dispersion of the 3's. The two other
evident features are that the different Kalman filter-based portfolios clearly out-
perform both GLS portfolios, and that within each group, dynamic portfolios are

significantly better than static ones, not only in terms of average performance,

but also in terms of dispersion.

4 Conclusions

In this paper, we study the statistical properties of several ways of construct-
ing factor representing portfolios in the context of the dynamic version of the
APT developed by King et al. (1994), in which changing information implies a
changing risk perception by the agents. Methodologically, our major contribu-
tions are to focus the problem in its natural signal extraction framework, and to
use conditional information to form better mimicking portfolios.

In this context, we show that although many basis portfolios converge in MS
to the factors as the number of assets increases, there are some that may be
substantially more efficient in relatively small (cross-sectional) samples, in the
sense of having lower variability in their “tracking errors”. In particular, we

prove that the dynamic basis portfolios generated by the conditional Kalman
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filter updating recursions, are the best (in the conditional and unconditional MSE
sense) mimicking portfolios possible for any conditional distribution of returns.
In addition, we prove that these basis portfolios maximise conditional correlation
with the common factors.

Our results also suggest that the efficiency gains of using these dynamic port-
folios instead of the static ones considered so far in the literature, could be sub-
stantial over time, although the average difference is relatively small. Asymptotic
expansions of unconditional MSEs show that for the sort of (temporal) sample
sizes typically encountered in practice, these conditional Kalman filter factor rep-
resenting portfolios do not lose their attractiveness when the parameters of the
model have to be estimated.

Finally, given that a maintained assumption of our analysis is that the first
and second conditional moments of asset returns are correctly specified, the study
of the effects of model misspecification on the consistency and efficiency of the

different procedures constitutes a fruitful avenue for further research.

39



Appendix

A Proofs of results
A.1 Theorem 1

First, it is clear that because E(f;|®; 1) = 0 and E(un:|®;—1) = 0, we obtain
a conditionally unbiased predictor of W'(®;_1)f; iff ¢c(®n;—1) = 0, so that we
can effectively restrict ourselves to the class of “conditionally linear” predictors
D’(®;_1)upn;. But then, the solution to our problem is simply the conditionally lin-
ear least squares projection of W’(®;_;)f; on the conditionally (closed) linear sub-
space generated by uy;, Uy, (see Hansen and Richard, 1987). Since such a projec-
tion will be given by W’ (CIJt_l)AtBQVZ;,iu ~¢, our conditional result follows. In ad-
dition, from the properties of projections, F [D/(CI)t,l)uNt (ft — ffv(t)/ @t,l] =0,
which together with E(fy|®;_;) = 0 and E(un:|®;—1) = 0 prove (8). Finally, note

that by the law of iterated expectations
Q" - Qy = B (Qy — Q)

where Q§F and QL are the unconditional and conditional MSE of an arbitrary
conditionally linear factor representing portfolio, Q% is the unconditional MSE of
fX . and the right hand side expectation is taken with respect to the unconditional
distribution of ®; ;. But since a scalar weighted average of p.s.d. matrices with

non-negative weights is a p.s.d. matrix, our unconditional result follows. O

A.2 Theorem 2:

First of all, it is clear that since the conditional correlation will be invariant
to conditionally affine transformations, we can take ¢(®;_;) = 0 without loss of

generality. Then, we can formally characterise the portfolio weights that maximise
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the (squared) conditional correlation between d'(®;_;)uy, and w'(®,_1)f; as

d,(q)t,1)BAtW((I)t,1)W/((bt,l)Ath((I)t,l)
d*(P,_ arg max
( ¢ 1) & d(®:—1) d’(@t,l)Etd(CI)t,l) ~W/(<I>t,1)AtW(<I>t,1)

For each value of the conditioning variables, this is a standard algebraic prob-
lem with a well-known solution. In particular, d*(®;_;) is given by the eigenvec-
tor associated with the maximum eigenvalue of the rank 1 matrix BA;w(®;_1)
w'(®;_1)A;B in the metric of ¥;. That is,

2 BAwW(P_))

d* (1) =
(@) VW (®, ) ABE, 'BA,w(®, ;)

as required. O

A.3 Theorem 3:

For each value of the conditioning variables, this problem has the well-known
solution D**(®; ;) = TyiBn(ByTyiBy) "W (®,_;) (see Magnus and Neudecker,
1988). Then, by the law of iterated expectations, we can again prove that

W/'(®, 1)f§, also minimises the unconditional MSE within the same class. U

B Relation between conditional GLS factors and
principal components

The following lemma establishes the relation between the spectral decomposi-

tion of F]_Vi/ ’y Ntl“]_vi/ ? and the spectral decomposition of A; / 2B§VI‘]_V}5B NA; 2

Lemma 1 Let Ay; and En; denote the eigenvalues and eigenvectors of the k X k
matrix Ai/ 2B§VI‘]}1BNA;/ ®. Then the k largest eigenvalues and associated eigen-

vectors of the matrix I‘JEMEMI‘;V%Q are given by (I + Ant) and I‘;ViﬂBNA%ﬂ
ENtA;é/ ? respectively.
Proof. Since

F_1/22Ntr_1/2 (F—l/zBNAuz)(F—1/2BNA1/2) F Iy
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1/2 will be one plus the eigenvalues of (Ty 1/QBNAl/2)

the eigenvalues of T’ Nt/ DIFNEI
(FN1/2BNA,%/2), which in turn are the eigenvalues of Ai/2B§VI‘;,tBNAi/2 and
N — k zeros. As for the eigenvectors, we just need to orthonormalise the columns
of the N x k matrix I 1/ °B NAl/ 2, which can be achieved by postmultiplying it
by the k x k matrix Ex:A 1/2. O

If we then form the conditional least squares projection of ul, = I‘;,i/ uy; on

the space generated by its k first conditionally orthogonal principal components

A;,i/ZEQVtAi/QB’NF;,iuNt, we get
(T "By A Eni AL ) (AL By Ay BT i)

where the matrix of conditional projection coefficients are the corresponding eigen-

vectors. Straightforward algebraic manipulations then show that
£ = (A "EneAy, ) (A g, "El, Ay By T yuwe)

In particular, if ByT'yiBy is a diagonal matrix, then f{, and the k first
conditionally orthogonal principal components of F]_Vi/ *uy, are proportional to

each other.

C Derivatives of the conditional Kalman filter
basis portfolios

Since we can write f£, as QK B\ T'yiuyy, its differential will be given by
dfy, = (dQy,)ByTyune + Q3 (dBy)Cyjun
— QN By (A0 we) T vpune + QN BTy (due)

Hence, we will have that

ofK , B, |, dby

_ _ 3’)/ Ou
(T ﬂﬁtB;ergENa—,;Yt + BTy
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where w¥, = vech(QF,) = D} vec(QX,), Dy is the duplication matrix of order &
and D} its Moore-Penrose inverse (see Magnus and Neudecker, 1988). Now, since

the differential of QF, is —QX,d (ByTyiBy + A; ') QF, and

d(ByTyiBy +A;") = (dBy)Ty;By + ByI'yi(dBy)

—B\T A (dT 5 )T i By — A7 (dA) A

after some algebraic manipulations, we can show that

K
Owy,

80/ DZ_ _2(Q]I\§t ® Q]KVthNF_l abN

Nt) W
0V N
00’

QBT yt @ QBT ;) En

O
00’

+ (A @ QYA E;
Finally, note that since
dUNt = d(I'Nt — BNA{T) = —(dBN)At’T — BN(dAt)’T — BNAt(dT)

we can easily see that

811]\”

06’

! 8b !
= (A ® IN)a—ef,V — (7' @ By)Ey,

oA or
a9 Bvhgg (AU

To compute these expressions recursively, though, we will need to know the
values of 0A;/00 and 07y,/06. For the particular example in Section 3.7 in

particular, it is straightforward to show from (14) and (15) that the required

expressions will be given by:

(9)\,5 . K 8ft151 &ufil a)\t—l
0 ~ U <2ft—1 26 " a6 ) T a0
o 26
+ (AP + Wl = 1) 8_91 + (A1 — 1)6_01
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and

v, 0 0v;
8792 = 20, [_(uit 1= ﬁft 1)ft 1+5wt 1} 869 (1 =y — pa) 0’2

du of Owk
+¢i1 | 2(uit—1 — Bzftlil) < 8; L — B, (‘;91> 522 ate 1]

99y
00

+[(uzt1 5ft 1) +5Wt1 %’}

Vi Ip;
+pi (9t0 S (Vi — ) 891

respectively.

D The score of a conditionally heteroskedastic
in mean factor model

Bollerslev and Wooldridge (1992) show that the score function 0l;(0) /00 of any
multivariate conditionally heteroskedastic dynamic regression model with condi-

tional mean py, and covariance matrix ¥y, is given by the following expression:

() _ 8um2 1 0ved (Sye)
00 00 NeUNG T 2 00

(2]}1 ® 2]}1) vec (uyuly, — Xnt)

Given that uy; = ry; — py,, we will have that Opy, /00" = —Ouy,; /00, which
can be found in (Al). Then, since the differential of 3y, is

d(ByA:By +T'y) = (dBy)A,BYy + By (dA;)By + ByAy(dBYy) + dlny

we have that the corresponding Jacobian will be:

Ovec (Xny)
06’

o
00’

+ (By @ By)Eg

where E,, is the unique n? x n “diagonalisation” matrix which transforms vec(A)
into vecd(A) as vecd(A) = E vec(A), and K,,, is the commutation matrix of

orders m and n (see Magnus, 1988).
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After some straightforward algebraic manipulations, we get:

o1,(0) bl
00 00

vee(EytuniT' Ay + Syiuyiuy, By A — T iByA;)

or' 10+
+a—2AtB§V2]@1uM +5 ggt veed (Sxtuy iy, S5t — S3)
!
+§ 5 et veed (ByEyiunt’ + By yiuniuy, Xy By — ByEyiBy)

Given that v,,> 0 in view of our assumptions, we can use the standard Wood-

bury formula to prove that

Syiune = Dy [une — Byfy,]
B?VZXTiuNt = At_lfll\ft
AtBEVZJQiuNt = fJI\ft
Syiunty, SBr A — DBy A; = Ty [uneds, — By (E5,£5, + Q8]

_ _ _ _ (UNt - BNfK )(lth - BNfK )/ _
Syiuniiy Sy — By = Ty le . M | I

B Sxhuvety 5By - ByEnBy — A7 (565 + 08) - A] A

which greatly simplifies the computations (see Sentana, 2000b).
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Table 1

Basis portfolios unconditional mean square errors

By | 7% b | 8, | FE | fC KUG | (UK | UG | fA | GK _ K
0 3 0 0 i) 1 i) 0 1 1 16.748/T

1 85 | 475 .923 | 492 0 1 1 17.824/T

751 0 0 2| 25 2 2o 25 | L2 7.532/T

1 85 | 188 | .235 | .196 20| .25 | .25 | 12.939/T

1 3 0 0 i) 1 i) 0 1 2 | 37.683/T

1 .85 | 480 | 945 | 493 0 1 2 |28.394/T

751 0 0 2| 25 2 20| .25 | 1.25 | 13.524/T

1 .85 [ .190 | .240 | .196 20| .25 | 1.25 ] 16.240/T

Notes: Numbers in italics represent theoretical values.

By cross-sectional average of the factor loadings.

6%\,: cross-sectional variance of the factor loadings.

~: unconditional variance of idiosyncratic risks.

¥, ¢;: ARCH parameters for common and idiosyncratic factors.
0, p;: GARCH parameters for common and idiosyncratic factors.
f/: conditional Kalman filter mimicking portfolio (based on f).
fE: conditional GLS mimicking portfolio.

ftK UG.

: conditional Kalman filter mimicking portfolio based on fUC.

fVE: unconditional Kalman filter mimicking portfolio.

UG unconditional GLS mimicking portfolio.

ftA: equally-weighted mimicking portfolio.

o¥ — WK difference between the unconditional MSE of f& evaluated at ML

estimators and true values.
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Table 2

Basis portfolios unconditional correlations with f;

By | o% Lo N I A I Pl I rat il I i B
10| 3] o | o |.00|.707| .70 | .77 .707
1 | .85 | 724 | 19| 12 | .07 | 107

750 0 | o |.894 .89 | .894 | .894 | .894

1 | .85 | .901 | .899 | .897 | .894 | .894

o|1|3]| o | o |.700|.707| .77 |.707| 0
1 | .85 | .722 | 718 | 713 | .07 | 0

750 0 | 0 |.894|.894 | .894 |.894| 0

1 | .85|.900 | .899 | .897 |.894 | 0

Notes: Numbers in italics represent theoretical values.

By cross-sectional average of the factor loadings.

6%\,: cross-sectional variance of the factor loadings.

~: unconditional variance of idiosyncratic risks.

¥, ¢;: ARCH parameters for common and idiosyncratic factors.
0, p;: GARCH parameters for common and idiosyncratic factors.
f/: conditional Kalman filter mimicking portfolio (based on f).
fE: conditional GLS mimicking portfolio.

fEUG: conditional Kalman filter mimicking portfolio based on f;
UK. unconditional Kalman filter mimicking portfolio.

fA: equally-weighted mimicking portfolio.
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Basis portfolios relative conditional efficiency

(min, q .5, median, q 75, max)

Table 3

By | o Vi | 6 p; w' JwiVe wi fwf
110 3 0 0 1 )
1 | .85 | .627 | .957 | .979 [ .992 286 | 479 | .515 | .552 | .855
751 0 0 1 8
1 | .85 | 473 | .951 | .977 [ .991 H68 | 763 | 797 | .832 | .978
0|1 3 0 0 1 )
1 | .85 | .664 | .968 | .985 | .994 .266 | 480 | .511 | .544 | .816
751 0 0 1 8
1 | .85 | .526 | .964 | .982 [ .993 5oL | 762 | 793 | .827 | 977
By | 7% Vs @i | 6, p; wi fwi ¥ wyt Jwy©
110 3 0 0 1 ]
1 | .85 | .278 | .938 | .967 | .983 079 | 444 | 488 | .529 | .7T97
75 0 0 1 8
d | .85 ] .245 | .926 | .961 | .981 162 | 722 ] 767 | .807 | .964
0|1 3 0 0 1 ¥
A | .85 |.206 | .953 | .975 | .988 056 | 453 | 491 | .527 | .812
7500 0 1 .8
A | .85 | 373 | .943 | 969 | .984 253 | 733 | 770 | .806 | .968

Notes: Numbers in italics represent ratios of theoretical unconditional MSEs.
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B+ cross-sectional average of the factor loadings.

5?\,: cross-sectional variance of the factor loadings.

~: unconditional variance of idiosyncratic risks.

1, ¢;: ARCH parameters for common and idiosyncratic factors.
0, p;: GARCH parameters for common and idiosyncratic factors.
wi JwEUG: relative conditional efficiency of the conditional Kalman filter mimicking
portfolios based on f and fVC.

wl /w8 relative conditional efficiency of conditional Kalman filter and conditional
GLS mimicking portfolios.

wi /WY K relative conditional efficiency of conditional and unconditional Kalman
filter mimicking portfolios.

w /WYG: relative conditional efficiency of conditional Kalman filter and

unconditional GLS mimicking portfolios.
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