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B The score of the HRS approximate likelihood function

The log-likelihood function of the HRS model that we consider is given by ¯ ( ) = 1
P

=1 ( ),

where

( ) =
2
log 2

1

2
log
¯̄
C ( )C0 + ( )

¯̄ 1

2
x0 [C ( )C0 + ( )] 1x (B3)

( ) is a × diagonal matrix with typical element

( ) = + [ 2 1| 1( ) + 1| 1( )] + 1( )

with = (1 ) , ( ) is a × diagonal matrix with typical element

( ) = + [ 2 1| 1( ) + 1| 1( )] + 1( )

with = (1 ) and where | ( ), | ( ), | ( ) and | ( ) are typical elements

of the outputs of the Kalman filter updating equations:

g | ( ) = (g | ; ) = ( )C0[C ( )C0 + t( )]
1x

v | ( ) = (v | ; ) = x Cg | ( )

| ( ) = (g | ; ) = ( ) ( )C0[C ( )C0 + t( )]
1C ( )

| ( ) = (v | ; ) = C | ( )C
0

Bollerslev and Wooldridge (1992) show that the score function s ( ) = ( ) of any mul-

tivariate conditionally heteroskedastic dynamic regression model with conditional mean vector

μ ( ) and conditional covariance matrix ( ) is given by the following expression:

s ( ) =
μ0( ) 1( )[x μ ( )]

+
1

2

0 [ ( )] h 1( ) 1( )
i ©

[x μ ( )][x μ ( )]0 ( )
ª

In our case the first term disappears because μ ( ) = 0. As for the second, given that the

di erential of is

(C C0 + ) =( C) C0 +C( )C0 +C ( C0) + (B4)

(cf. Magnus and Neudecker (1999)), we have that Jacobian of ( ) will be:

[ ( )]
0 = (I 2 +K )[I C ( )]

c
0 +E

( )
0 + (C C)E

( )
0

where E is the unique 2 × “diagonalisation” matrix which transforms (A) into (A)

as (A) = E0 (A), and K is the commutation matrix of orders and (see Magnus

(1988)).
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After some straightforward algebraic manipulations, we get:

s ( ) =
c0 £

( )C0 1( )x x0 1( ) ( )C0 1( )
¤

+
1

2

0( ) £
1( )x x0 1( ) 1( )

¤
+
1

2

0( ) £
C0 1( )x x0 1( )C C0 1( )C

¤
In view of (9), we will have that:

( )
= 2 1| 1( )

1| 1( )
+

1| 1( )
¸
+

1( )

+
( )

+ [ 2 1| 1( ) + 1| 1( )] + 0 1( )

where ( ) = (1 ) . Similarly, (10) implies that

( )
= 2 1| 1( )

1| 1( )
+

1| 1( )
¸
+ 1( )

+
( )

+ [ 2 1| 1( ) + 1| 1( )] + 0 1( )

where ( ) = (1 ) . If we impose the restriction = and = , then the

usual chain rule implies that ( ) =
P

=1 ( ) and ( ) =
P

=1 ( ).

Finally, it is worth mentioning that if we fix the factor scales by setting = 1 instead

of = 1 for = 1 , then we must exclude the elements of the score corresponding to

those factor loadings, and replace them with the derivatives with respect to , which can be

trivially found from the previous expressions because the unconditional variance parameters only

appear directly in the expression for the pseudo log-likelihood function ( ) in (B3) through

the constant term in the conditional variance expressions, ( ). Either way, since we initialise

the conditional variances with 1( ) = and 1( ) = , then we must always start up the

derivative recursions with 1( ) = and 1( ) = .

If 0, then we can use the Woodbury formula to prove that

g | = | C0 1x

| =
¡
C0 1C+ 1

¢ 1

C0 1x x0 1 C 1C = [g | x (g | g0| + | )C0] 1

1x x0 1 1 = 1[(x Cg | )(x Cg | )
0 +C | C0 ] 1

and

C0 1x x0 1C C0 1C = 1[(g | g0| + | ) ] 1

which greatly simplifies the computations (see Sentana (2000)).
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Under the same assumption, the di erential of | will be |
¡
C0 1C+ 1

¢
| ,

where ¡
C0 1C+ 1

¢
= ( C0) 1C+C0 1( C) C0 1( ) 1C 1( ) 1

If we call | = ( | ) = D+ ( | ), where D is the duplication matrix of order

and D+ its Moore-Penrose inverse, then we will have that

0
| ( )

= 2
c0
( 1C | | ) +

0( )
E0 ( 1C | 1C | )

+
0( )

E0 ( 1 | 1 | )
¸
D+0

In addition, the di erential of g | when has full rank will be given by

g | = ( | )C0 1x + | (C0) 1x | C0 1 ( ) 1x

As a result, we will have that

g0| ( )
=

c0
( 1x | )

0( )
E0 ( 1x 1C | ) +

0
| ( )

D0 (C0 1x I )

Similarly, given that v | = x Cg | , we will have that

v | = ( C)g | C( g | )

whence
v0| ( )

=
c0
(I g | )

g0| ( )
C0

In addition, since | = C | C0, then

| = ( C) | C0 +C( | )C0 +C | ( C0)

Hence, if we call | = ( | ) = D+ ( | ), then after some algebraic manipulations we

will have that
0
| ( )

= 2
c0
(I | C0) +

0( )
D0 (C0 C0)

¸
D+0

If some = 0, though, the above expressions become invalid. Nevertheless, appropriately

modified expressions can be developed along the lines of Sentana (2000). For the sake of brevity,

though, we only obtain the score when ( ) = , so that there are as many Heywood

cases as factors. To do so, let us partition the original set of variables in two subsets, say x and

x , of dimensions and respectively. With this notation, we can re-write the auxiliary

model as μ
x
x

¶
=

μ
C
C

¶
g +

μ
v
v

¶
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where
g
v
v

| 1

0
0
0

0 0
0 0
0 0

In this context, it is convenient to factorise the joint log-likelihood function of x and x

(given 1) as the marginal log-likelihood function of x (given 1) plus the conditional

log-likelihood function of x given x (and 1). More formally, we can write

( ) = ( ) + | ( )

so that

s ( ) = s ( ) + s | ( )

The two log-likelihood components will be given by

( ) =
2
log 2

1

2
log | | 1

2
x0 1x

and

| ( ) = 2
log 2

1

2
log
¯̄

| ( )
¯̄ 1

2 | ( )0 1
| ( ) | ( )

where

( ) = (x | 1; ) = C ( )C0 + ( )

| ( ) = x μ | ( )

μ | ( ) = (x |x 1; ) = C g | ( )

g | ( ) = (g |x 1; ) = ( )C0 1( )x

| ( ) = (g |x 1; ) = C | ( )C0 + ( )

and

| ( ) = (g |x 1; ) = ( ) ( )C0 1( )C ( )

Therefore, if we partition c and as (c0 c0 )0 and ( 0 0 )0, respectively, where c = (C0 ),

c = (C0 ), = ( ), and = ( ), then we can use the expressions derived

before to find

s ( ) =
c0

( C0 1x x0 1 C0 ) +
1

2

0 ( )
( 1x x0 1 1)

+
1

2

0 ( )
(C0 1x x0 1C C0 1C )

In order to obtain s | ( ), though, we first need to find the Jacobian matrices μ | ( )
0

and [ | ( )] 0. Straightforward algebra shows that

μ0 | ( )
=

c0
(I g | ) +

g0| ( )
C0
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and

0 £ | ( )
¤
=

c0
(I | C0 )(I( )2 2 +K( ) ( ) )

+
0 ( )

E0 +

0
| ( )

D0 (C0 C0 )

Hence,

s | ( ) =
g0| ( )

C0 1
| |

+
c0 ³

1
| | g | + 1

|
0
| | 1

| C | 1
| C |

´
+
1

2

0 ( ) ³
1
| | 0

|
1
|

1
|
´

+
1

2

0
| ( )

D0
³
C0 1

| | 0
|

1
| C C0 1

| C
´

In this case, the di erential of g | ( ) will be

g | = ( )C0 1x + ( C0 ) 1x C0 1( ) 1x

where is analogous to (B4). As a result,

g0| ( )
=

c0 £
( 1x | ) ( 1C g | )

¤
0 ( )

E0 ( 1x 1C ) +
0( )

E0 ( 1g | 1 | )

Similarly, the di erential of | will be given by

| = ( ) ( )C0 1C ( C0 ) 1C + C0 1( ) 1C

C0 1( C ) C0 1C ( )

Hence,

0
| ( )

=

½
2
c0
( 1C | )

0 ( )
E0 ( 1C 1C )

+
0( )

E0 [( 1 | I ) (C0 1C 1 | )]
¾
D0

Finally, we need to obtain g0| ( ) and 0
| ( ) . But since

g | ( ) = g | ( ) + | ( )C0 1
| ( ) |

and

| = | ( ) | ( )C0 1
| ( )C | ( )

we can obtain the required derivatives by combining the previous expressions.
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Fortunately, all the above formulae simplify considerably when = 0. Specifically, let˚

denote the value of when = 0. Then, it is immediate to see that

(̊ ) = C C0

g | (̊ ) = C 1x

and | (̊ ) = 0, so that | (̊ ) = x C x , with C = C C 1, and | (̊ ) = .

Moreover,

(̊ )x x0 (̊ ) (̊ ) = C0 1 1(̊ )
h
g | (̊ )g0| (̊ ) (̊ )

i
1(̊ )C 1

As a result, we can write

s (̊ ) =
c0 h³

g | g0|
´

1C 1
i

+
1

2

0 ( )
[C0 1 1(g | g0| ) 1C 1] +

1

2

0 (̊ )
[ 1(g | g0| ) 1]

and

s | (̊ ) =
c0

[C 0 1 | (̊ )g0| (̊ )] +
c0

[ 1 | (̊ )g0| (̊ )]

+
0 ( ) 1

2
{C 0 1[ | (̊ ) 0

| (̊ ) ] 1C 0} E0 C 0 1 | (̊ )g0| (̊ )
1C 1

¸
+
1

2

0 ( ) { 1[ | (̊ ) 0
| (̊ ) ] 1}

Finally, we obtain

g0| (̊ )
=

g0| (̊ )
+

0
| (̊ )

D [C 0 1 | (̊ ) I ]

and
0
| (̊ )

=

0
| (̊ )

where
g0| (̊ )

=
c0
[C 10 g0| (̊ )] +

0 ( )
E0 [C 10 1g | (̊ ) C 10]

and
0
| (̊ )

=
0 ( )

E0 (C 10 C 10)D

Although these expressions are strictly speaking only valid when an idiosyncratic variance

is identically 0, we recommend their use whenever some is less than .0001 because the

expressions for 0 become numerically unreliable for smaller values.
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