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Abstract

This paper discusses the application of the EM algorithm to factor models

with dynamic heteroskedasticity in the common factors. It demonstrates

that the EM algorithm reduces the computational burden so much that re-

searchers can estimate such models with a large number of series. Two

empirical applications with 11 and 266 stock returns are presented, which

con�rm that the EM algorithm yields signi�cant speed gains, and that it

makes unnecessary the computation of good initial values. However, near

the optimum it slows down signi�cantly. Then, the best practical strategy is

to switch to a �rst derivative-based method.

Keywords: Maximum Likelihood, Kalman Filter, Volatility, Asset Pric-

ing, Stock Returns.



1 Introduction

One of the most popular approaches to multivariate dynamic heteroskedas-

ticity employs the same idea as traditional factor analysis to obtain a parsi-

monious representation of conditional second moments. The factor garch

model of Engle (1987) and the latent factor garch model introduced by

Diebold and Nerlove (1989) and extended by King, Sentana and Wadhwani

(1994) are the best known examples. Such models are particularly appealing

in �nance, as the concept of factors plays a fundamental role in asset pricing

(e.g. the Arbitrage Pricing Theory of Ross 1976). However, whereas tradi-

tional applications have often used a very large collection of assets, those that

take into account variation in conditional moments have considered a much

smaller number (see e.g. Engle, Ng and Rothschild 1990, King et al. 1994,

Ng, Engle and Rothschild 1992, or Sentana 1995). This is due to the fact

that the estimation of such models involves a very time consuming proce-

dure, which is disproportionately more so as the number of series considered

increases. For standard factor models, however, a fast and reliable algorithm

is available based on the EM procedure of Dempster, Laird and Rubin (1977)

(see Rubin and Thayer 1982), which has been successfully employed to handle

a very large dataset by Lehmann and Modest (1988).

The purpose of this paper is to study the application of the EM algorithm

to factor models in which the factors are subject to dynamic heteroskedasticity-

type e¤ects. We also include risk premium components and weakly exogenous

explanatory variables in the speci�cation of the conditional mean. The paper

is organized as follows. In section 2 we introduce the model, and include a

general discussion on the use of the EM algorithm in this context. Then, in

section 3 we adapt the algorithm to the two most widely used conditional

variance parameterizations. Illustrative applications to two di¤erent data
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sets are presented in section 4. Our conclusions can be found in section 5.

2 Conditionally Heteroskedastic FactorMod-

els

Consider the following multivariate model:

xt = Bzt +C�t� +Cf t +wt (1)0@ ft

wt

1A jXt�1 � N

240@ 0

0

1A ;

0@ �t 0

0 �

1A35 (2)

where xt is a N � 1 vector of observable variables, zt is a m � 1 vector

of weakly exogenous or lagged dependent explanatory variables, B is the

N � m matrix of regression coe¢ cients, ft is a k � 1 vector of unobserved

common factors, C is the N � k matrix of factor loadings, with N � k and

rank (B;C) = m+ k, wt is a N � 1 vector of idiosyncratic noises, which are

conditionally orthogonal to ft, � is a N �N positive semide�nite matrix of

constant idiosyncratic variances, � is a k�1 vector of price of risk coe¢ cients,

and �t is a k � k diagonal positive de�nite matrix of time-varying factor

variances, which generally involve some extra parameters,  . Note that in

line with the standard solution in the applied literature, we assume that

the �0jts are measurable functions of the econometrician�s information set,

Xt�1 = fzt;xt�1; zt�1;xt�2; : : :g (cf. Harvey, Ruiz and Sentana 1992).

Our assumptions imply that the distribution of xt conditional on Xt�1 is

N(Bzt+C�t� ;C�tC
0+�). For this reason, we refer to (1-2) as a condition-

ally heteroskedastic factor model. The parameters of interest � ={vec0(B),

vec0(C), vech0(�) or vecd0(�), � 0,  0}0 are usually estimated jointly from

the log-likelihood function of the observed variables, g(xt). Since this in-
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volves a very time consuming procedure, applications have been limited to

N relatively small. But, if

a) the conditional variances of the common factors do not depend on

B;C;�:

b) the parameters (� ; ) and (B;C;�) are variation free.

c) the conditional variance parameters are speci�c to each factor and

d) (� 1; 1); : : : ; (� k; k) are variation free

fully e¢ cient estimates of � could be easily computed if the factors were

observed. De�ne the factor representing portfolios, rft, as �t� + ft, so that

xt = Bzt+Crft+wt. The joint log-likelihood function of xt; rft (conditional

on Xt�1 and Ft�1 = fft�1; ft�2; : : :g), g(xt; rft), can be factorized as g(rft) +

g(xtjrft). The marginal component has mean �t� and diagonal covariance

matrix �t, whereas the conditional has mean Bzt + Crft, and covariance

matrix �. Given a) and b), we would have performed a sequential cut on

g(xt; rft) which would make rft weakly exogenous for B, C and � (see Engle,

Hendry and Richard 1983). Hence, unrestricted MLE�s of these parameters

could be obtained fromN univariate OLS regressions of each xit on zt and rft.

Similarly, MLE�s of (� j; j) would be obtained from k univariate dynamic

heteroskedasticity in mean models for rfjt.

Unfortunately, the f 0ts are generally unobserved. Nevertheless, the EM

algorithm can be used to obtain values for � as close to the optimum as

desired (see Ruud 1991). At each iteration, the EM algorithm maximizes

the expected value of g(xtjrft) + g(rft) conditional on XT and the current

parameter estimates, �(n). The rationale stems from the fact that g(xt; rft)

can also be factorized as g(xt) + g(rftjxt). Since the expected value of the

latter, conditional on XT and �
(n), reaches a maximum at � = �(n), any

increase in the expected value of g(xt; rft) must represent an increase in
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g(xt). This is the generalized EM principle.

Let ftjT = E(ftjXT ), �tjT = V (ftjXT ) and rftjT = C�t� + f tjT ; which can

be evaluated via the Kalman �lter. The EM objective function is

T log j�j+
TX
t=1

tr
n
��1

h
(xt �Bzt �Cr(n)ftjT )(xt �Bzt �Cr

(n)
ftjT )

0 +C�
(n)
tjTC

0
io
(3)

+
kX
j=1

(
TX
t=1

h
log j�jtj+ [(r(n)fjtjT � � j�jt)

2 + �
(n)
jtjT ]=�jt

i)
(4)

where (n) means evaluated at �(n). If a) and b) hold, we get that:0@ B(n+1)0

C(n+1)0

1A=
24 TX
t=1

0@ ztz
0
t ztr

(n)0
ftjT

r
(n)
ftjTz

0
t r

(n)
ftjT r

(n)0
ftjT +�

(n)
tjT

1A35�1 24 TX
t=1

0@ zt

r
(n)
ftjT

1Ax0t
35
(5)

�(n+1)=
1

T

TX
t=1

24xtx0t � � B(n+1) C(n+1)

�0@ zt

r
(n)
ftjT

1Ax0t
35 (6)

Similarly, if c) and d) hold, � (n+1)j ; 
(n+1)
j can be obtained by numerically

minimizing the expression in curly brackets in (4). Independently of the

number of series considered, this is the only price paid for modelling the

conditional variance of the factors. Moreover, the price is small because this

is a rather fast procedure, and the Kalman �lter is used only once per EM

iteration. Furthermore, in practice we can do a few iterations over (5) and

(6) alone, before minimizing (4).
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3 Conditional Variance Parameterizations

3.1 Factor GARCH

Engle�s (1987) k factor garch(p,q) model can be written as a particular case

of (1-2), with the conditional variances of the factors given by:

�jt =

qX
s=1

�js _"
2
jt�s +

pX
r=1

�jr�jt�r

where _"t = D0(xt�C�t� �Bzt) = _xt��t� � _Bzt and D is a N �k matrix

of full column rank satisfying D0C = Ik (see Sentana 1997).

If the conditional mean contains linear regression terms, g(rft) will de-

pend on _B, so that condition b) no longer holds. But even if there are no

regressors, the restriction D0C = Ik implies two things:

1) rft would not be weakly exogenous for C and � unless D is known.

2) even if D is known, there are linear restrictions on C, so that (5) and

(6) have to be replaced by SURE-type estimators.

In practice, both problems are less serious than it may seem. Since most

empirical applications of this model have been carried out under the assump-

tion that the matrix D is known, we shall maintain such an assumption and

only consider what Lin (1992) calls restricted maximum likelihood estima-

tors. Similarly, SURE-type estimators that impose the restriction D0C = Ik

are particularly easy to obtain. Let �D = (D; �D) be a known N �N matrix

of full rank, with �D arbitrary, and let �x0t = x0t �D =
�
x0tD;x

0
t
�D
�
= ( _x0t; �x

0
t)

denote the transformed observations. It is easy to see that the factor struc-

ture for xt is preserved in �xt, and that ftjT and �tjT are not a¤ected by the

change of variables.

As before, g(�xt; rft) can be factorized as g(rft) + g(�xtjrft). But the

latter can be factorized in turn as g(�xtj _xt; rft) + g( _xtjrft), so that the re-
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striction D0C = Ik only a¤ects the last term. Let ���22 = ��22 � ��21���111 ��021,
�E� = ��21��

�1
11 , �B

� = �B � �E� _B and �C� = �C � �E� be the implicit one-to-one

reparameterization, where �B0= B0 �D, �C0= C0 �D and �� = �D
0
��D. The argu-

ments made in section 2 imply that:0BBB@
�B�(n+1)0

�E�(n+1)0

�C�(n+1)0

1CCCA =

26664
TX
t=1

0BBB@
ztz

0
t zt _x

0
t ztr

(n)0
ftjT

_xtz
0
t _xt _x

0
t _xtr

(n)0
ftjT

r
(n)
ftjTz

0
t r

(n)
ftjT _x

0
t r

(n)
ftjT r

(n)0
ftjT +�

(n)
tjT

1CCCA
37775
�1 26664

TX
t=1

0BBB@
zt

_xt

r
(n)
ftjT

1CCCA �x0t
37775

��
�(n+1)
22 =

1

T

TX
t=1

26664�xt�x0t � � �B�(n+1) �E�(n+1) �C�(n+1)
�0BBB@

zt

_xt

r
(n)
ftjT

1CCCA �x0t
37775

Similarly, since we can concentrate ��11 as

��11( _B) =
1

T

TX
t=1

h
( _xt�r(n)ftjT � _Bzt)( _xt�r(n)ftjT � _Bzt)

0 +�
(n)
tjT

i
the k-variate function that we have to minimize numerically with respect to

 ; � and _B at each EM iteration is

kX
j=1

(
TX
t=1

h
log j�jtj+ [(r(n)jtjT � �jt� j)

2 + �
(n)
jtjT ]=�jt

i)
+ T log

�����11( _B)���
Finally, ML estimates of B, C and � can be obtained by simply inverting

the transformations. Consistent initial values for  ; � ; _B and ��11 can be

obtained by numerically maximizing g( _xt).

3.2 Latent Factor Models

These are special cases of (1-2) in which the conditional variances are pa-

rameterized as univariate arch models, but taking into account that the

factors are unobserved. In particular, for the gqarch(1,1) formulation of
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Sentana (1995),

�jt =  j0 +  j1fjt�1jt�1 + �j1(f
2
jt�1jt�1 + �jt�1jt�1) + �j1�jt�1 (7)

with  j0 restricted to avoid scale indeterminacy.

There are two complications associated with this conditional variance

parameterization from the point of view of applying the EM algorithm:

1) �jt depends on B;C and � via fjt�1jt�1 and �jt�1jt�1, so that g(rft) is

an indirect function of these parameters.

2) even if B;C and � were known, the numerical minimization of (4)

with respect to � and  , would involve the use of the Kalman �lter to

produce estimates of fjt�1jt�1 and �jt�1jt�1 once per parameter per quasi-

Newton iteration.

As a result, the expressions derived in section 2 have to be interpreted

with care. For instance, it is still true that (5) and (6) minimize (3), but

they may increase or decrease (4). Fortunately, the generalized EM princi-

ple works provided that at each iteration we increase the expected value of

g(xt; rft), even though we do not maximize it. On this basis, our proposal

is to minimize, at each EM iteration, an approximation to (3)+(4) such that

the new optimum is easy to compute. In particular, we propose to replace

the conditional variance (7) by:

�
(n)
jt =  j0 +  j1f

(n)
jt�1jt�1 + �j1[(f

(n)
jt�1jt�1)

2 + �
(n)
jt�1jt�1] + �j1�

(n)
jt�1 (8)

so that (5) and (6) are still extrema of the approximating function, while

� (n+1) and  (n+1) can be obtained via k univariate optimizations. Such an

approximation is exact at � = �(n), and improves as we approach the opti-

mum, so we would expect that the minimum of the approximating function

does not increase the sum of (3) and (4). Nevertheless, we recommend mon-
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itoring g(xt) after each iteration, and switching to its direct maximization if

the variation were negative.

4 Empirical Applications

We investigate the performance of the procedures discussed in the previous

sections in two illustrative applications. For comparison purposes, we also

employ the NAG library version of the BFGS quasi-Newton (QN) algorithm.

Table 1 contains the relevant timing information.

4.1 US Size-Ranked Portfolios

As part of their analysis, Ng et al. (1992) estimate a 1-factor garch(1,1)

model for excess returns on the stock market index (VW) and 10 decile port-

folios under the assumption that the matrix D is (1; 0; : : : ; 0)0. Given the

large number of parameters involved, they use a consistent two-step estima-

tion procedure. First, a univariate model is �tted to the VW returns. Then,

the estimated conditional variance of the VW return is taken as data in the

estimation of 10 univariate models for each of the portfolios. As the authors

acknowledge, and the simulation results in Lin (1992) con�rm, this two-step

procedure ignores cross-asset correlations and parameter restrictions, and

thus it sacri�ces e¢ ciency.

Here, we jointly estimate by restricted maximum likelihood a model like

theirs over the same sample period (1964:8 to 1985:11). The number of pa-

rameters (including mean constants) is 11+10+66+2 = 89. In order to get

sensible initial values, we estimated a univariate garch(1,1) model for the

VW return series, and 10 univariate market model regressions. This proce-

dure is biased in favour of QN methods, as the parameter values obtained in
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this way are e¢ cient estimators of a special case of the factor garch model

in which the distribution of �xt given _xt has a linear mean and a constant

covariance matrix. Given the structure of D, it is not necessary to transform

the observations.

The QN method makes steady progress for a while, but then the log-

likelihood becomes very �at, and fails to converge. This is probably due

to the fact that D only involves the VW index, which is almost a linear

combination of the size-ranked portfolios (R2 = 0:976). The EM algorithm is

initially much faster. Each iteration takes 0.18 seconds, a third being spent

computing the Kalman �lter, and the remaining maximizing the expected

log-likelihood function. Not surprisingly, though, the algorithm slows down

near the optimum.

We also considered a combined procedure that switches to the QNmethod

when the EM iterations make little progress (<10�3) (see Ruud 1991). This

time, the QN method converged to -4604.654 after 134 iterations. The time

of the combined procedure is 11 minutes (1�12� EM + 10�50�QN). The

�nal parameter values are rather di¤erent from the initial ones. The main

di¤erence is that the arch parameter, �, is much lower than in the univariate

model (0.0033 versus 0.0717), and correspondingly, that the factor loading

coe¢ cients, �C, are much larger. For instance, the coe¢ cients for the �rst

and second decile portfolios are 8.31 and 5.30 respectively, while the OLS

regression estimates are 1.34 and 1.28.

In order to assess the in�uence of initial values, we re-started both pro-

cedures from plausible, but arbitrary values. In particular, we set the mean

constants to 0, the factor loadings to 1, the idiosyncratic standard deviations

to 3, the covariances to 0, and �nally, the arch and garch parameters to 0.1

and 0.6 respectively. Not surprisingly, the starting log-likelihood is far away
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from the optimum (�7451:299). Nevertheless, the �rst two EM iterations

take the function back to -4664.056 in 0.4 seconds, whereas the QN method

needed 48 iterations (3�52.8�) to reach a similar value. This demonstrates

that it is not worth obtaining good starting values, especially if we take into

account the researcher�s own time.

4.2 UK Individual Stocks

We also estimate a latent factor model with constant means and a gqarch(1,1)

factor for monthly capital gains on 266 individual stocks included in the Fi-

nancial Times Actuarial sectorial indices over the period 1965:2 - 1991:7. We

also include a second common factor with constant variance in order to allow

for a richer covariance structure. The results in Sentana (1992) guarantee

that the factor loading matrix is uniquely identi�ed. The model, therefore,

contains 4�266+3 = 1067 parameters. Since we could not think of any easy

way to compute initial estimates for this model, we set the mean parameters

to 0, the factor loadings to 1, the idiosyncratic standard deviations to 0.8, the

arch and garch parameters to 0.1 and 0.6, and the dynamic asymmetry

parameter to 0.

The QN method stopped after �ve and a half days due to a power cut

without achieving convergence. The intrinsic problem of the QN method

is that it must use the Kalman �lter at least 1067 times per iteration. On

the other hand, the EM algorithm uses the �lter only once per iteration.

Not surprisingly, the EM algorithm is extremely faster. The log-likelihood

function increases by almost 8984 points in 0.55 seconds by simply computing

(5) and (6) once. This CPU time is dominated by the computation of the

Kalman �lter estimates (0.44 seconds, versus 0.11 for the M step). The

�rst maximization of (4) with respect to the conditional variance parameters
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improves the function a further 37 points in 1.98 seconds. Given that most of

the increments are due to changes in the static factor parameters, we would

recommend doing some partial EM iterations over (5) and (6) alone. By

the time the �rst QN iteration is completed, the EM algorithm has moved

the log-likelihood function to -103021.478. But the function is increasing by

less than 10�3 per iteration. If we then switch to the QN method, the log-

likelihood function converges to -103021.254 in 47 iterations (16h 50�26�).

5 Conclusions

We discuss the application of the EM algorithm for maximum likelihood

estimation of large factor models in which the common factors are subject

to arch-type e¤ects. We also include risk premium components and weakly

exogenous explanatory variables in the speci�cation of the conditional mean.

We analyze the M step for those cases in which the common factors would be

weakly exogenous for the static factor model parameters were they observed.

We show that, irrespectively of the number of series under consideration, the

only di¤erence that modelling the conditional variances of the factors makes

is that at each EM iteration we have to estimate k extra univariate dynamic

heteroskedasticity in mean models. We also discuss modi�cations for the

most widely used multivariate conditional variance parameterizations: the

factor garch model of Engle (1987), and the latent factor model of Diebold

and Nerlove (1989).

We consider two illustrative applications involving: (i) excess returns on

the US value weighted stock market index and 10 size-ranked portfolios (89

parameters); and (ii) capital gains on 266 individual UK stocks (1067 pa-

rameters). Our proposed procedure yields signi�cant speed gains in both
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applications. The problem with �rst derivative methods is that they have to

compute the log-likelihood function at least once per parameter per iteration.

In contrast, the EM algorithm only computes it once per iteration. Further-

more, the applications demonstrate that obtaining good starting parameter

values is by no means worth pursuing in time e¢ ciency terms. After just

a few very fast iterations, the EM algorithm takes the parameters closer to

their maximum likelihood estimates than a QN method after many very slow

iterations. However, the EM algorithm slows down substantially when it gets

very close to the optimum. For that reason, we recommend a combined pro-

cedure that switches to the QN method when the EM iterations make little

progress.
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Table 1. Timing Information for EM and Quasi-Newton

Algorithms

EM QN

Iteration Time log-likelihood Time log-likelihood

US Size-Ranked Portfolios

0 0 -4663.694 0 -4663.694

1 0.16� -4654.370 4.83� -4660.155

2 0.48� -4651.025 9.67� -4659.232

5 0.99� -4640.709 24.06� -4646.033

10 2.03� -4630.191 47.84� -4636.188

20 3.46� -4620.541 1�35.62� -4620.430

50 8.02� -4612.068 3�59.75� -4607.398

100 15.16� -4608.967 8�0.16� -4605.251

200 29.00� -4607.312 16�14.87� -4604.856

300 42.13� -4606.700 25�17.92� -4604.854

Last 27�15.99� -4604.981 4h10�32.12� -4604.846

UK Individual Stocks

0 0 -114683.185 0 -114683.185

1 2.53� -105662.441 1h25�02.93� -114674.517

2 3.02� -105296.583 1h49�26.09� -114633.471

5 4.56� -105451.319 2h01�06.10� -113308.344

10 7.19� -103154.490 3h58�58.19� -110671.908

20 13.03� -103109.745 7h56�48.17� -116867.573

50 28.17� -103084.101 19h52�49.92� -103228.381

100 54.48� -103072.705 39h40�37.93� -103070.782

200 1�47.16� -103061.298 79h29�10.35� -103024.328

300 2�39.78� -103055.266 119h7�4.82� -103021.709

Last 25�43.90� -103021.287 127h29�31.33� -103021.675

Note: Computations carried out on a PC with a 155MHz Pentium Proces-

sor


