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Abstract

A linear structure is a family of matrices that satisfy a given set of linear
restrictions, such as symmetry or diagonality. We add to the literature on
linear structures by studying the family of matrices where all diagonal ele-
ments are zero, and discuss econometric examples where these results can be
fruitfully applied.
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1. Introduction

A linear structure (L-structure) is a family of matrices of given order
that satisfy a specific set of linear restrictions. For square matrices (the most
common case) examples are symmetry, skew-symmetry, (strict) lower trian-
gularity, and diagonality. The general theory of L-structures was developed
in Magnus (1988), hereafter M88, with applications to solving systems of
equations and optimization involving patterned matrices. This theory also
plays a role in the estimation of multivariate models in which linearly re-
stricted matrices appear. The purpose of this note is to complement these
results by investigating the properties of an L-structure not studied so far:
zero-diagonal matrices.
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Matrices with zero diagonals arise naturally in networks. Consider the
following social interactions model for n individuals:

y = ρWy + βx+ γWx+ e, (1)

where y and x contain the values of the endogenous and exogenous vari-
ables, W is the so-called adjacency matrix whose ij-th element indicates the
strength of the link from unit i to unit j, e contains the structural residu-
als, and ρ, β, and γ are parameters (de Paula et al., 2018). The diagonal
elements of an adjacency matrix are zero because loops are not allowed in
directed networks.

Adjacency-type matrices also arise in spatial models (Anselin, 1988),
some of which are formally identical to (1) except that observations cor-
respond to geographically located variables rather than to individuals.

Matrices with restricted diagonals are also important in structural vector
autoregressions. Consider the n-variate time-series process

yt = Φyt−1 + JΨξt, (2)

where ξt|(yt−1, yt−2, . . . ) ∼ i.i.d. (0, In), Ψ is a diagonal matrix whose ele-
ments contain the free scale of the structural shocks, and the columns of J ,
whose diagonal elements are normalized to 1, measure the relative effects of
each of the structural shocks on all the observed variables. The pattern of
the impulse response functions is completely determined by Φ and J , while
the diagonal matrix Ψ only affects their scale. Although J is not a linear
structure, the matrix J − In is because its diagonal elements are all zero.
Lanne et al. (2017) provide sufficient conditions for the identification of the
shocks and the free elements of J and Ψ in non-Gaussian models.

In this note we discuss in Section 2 some general features of an L-structure
and define the operator and basis for the vector space associated with zero-
diagonality. In Section 3 we briefly review the L-structure of diagonal ma-
trices, and in Section 4 we develop the new L-structure of zero-diagonal
matrices. All proofs are in the appendix.

2. Linear structures and basis matrices

Consider a real n × n matrix A = (aij), restricted by some linear con-
straints, for example aij = aji (symmetry), aij = −aji (skew-symmetry), or
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aii = 0 (zero-diagonality). The collection of matrices A of a given order that
satisfy a specific set of linear restrictions constitutes an L-structure.

Let vecA denote the n2 × 1 vector containing the columns of A, one
underneath the other, and let ψ(A) denote the vector containing only the
‘essential’ elements of the L-structure. For example, for a symmetric or
lower triangular matrix, ψ(A) is the n(n + 1)/2 × 1 vector containing the
lower triangular elements of A, ordered as vecA but with some elements
removed; a vector commonly denoted by vech(A).

In this note two L-structures and their corresponding ψ-vectors will be
considered, depending on whether A is

• diagonal (aij = 0 for i 6= j): ψd(A) of dimension md = n, or

• zero-diagonal (aii = 0): ψo(A) of dimension mo = n(n− 1).

When n = 3 the relevant ψ-vectors are

ψd(A) =





a11
a22
a33



 , ψo(A) =











a21
a31
a12
a32
a13
a23











.

Given ψ(A), the corresponding basis matrices (denoted by ∆) are defined
implicitly by

• ∆dψd(A) = vecA for any diagonal matrix A, and

• ∆oψo(A) = vecA for any zero-diagonal matrix A.

The basis matrices ∆d and ∆o are of order n
2 ×n and n2 × n(n− 1), respec-

tively, and for n = 3 they take the form

∆d =

















1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

















, ∆o =

















0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

















.
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The two basis matrices are ‘elimination’ matrices because the columns are
linearly independent and each column contains one single 1 and zeros else-
where. They eliminate certain elements of the matrix: for diagonal matrices
all non-diagonal elements are eliminated; for zero-diagonal matrices all diag-
onal elements. Elimination matrices thus correspond to exclusion restrictions
and therefore play a fundamental role in deriving the score and asymptotic
variance matrix of the estimated free parameters.

The following properties hold for both L-structures L(∆i), in fact for all
eliminations matrices.

Proposition 1. We have for all elimination matrices ∆i, including i = o
and i = d,
(a) ∆i has full column rank mi,
(b) ∆′

i∆i = Imi
,

(c) the Moore-Penrose inverse is ∆+

i = ∆′

i,
(d) ∆′

i vecA = ψi(A) for all A,
(e) ∆i∆

′

i vecA = vecA for all A ∈ L(∆i),
(f) ∂ vecA/∂(ψi(A))

′ = ∆i for all A ∈ L(∆i).

Note that (d) is valid for all A. In contrast, (e) and (f) are only valid
within the chosen L-structure. In Sections 3 and 4 we also show the effect of
∆d∆

′

d and ∆o∆
′

o on a general matrix A.
Property (f) is important in statistical inference where derivatives are

required. Suppose, for example, that dφ(A) = Qd vecA for some scalar
function φ. If there are exclusion restrictions on A associated with a basis
matrix ∆i, then the derivative of φ(A) is not Q but Q∆i.

Diagonality was discussed in M88 (Chapter 6), but the zero-diagonal L-
structure has not been discussed and will be our main interest. Since skew-
symmetric matrices are zero-diagonal, all results on zero-diagonal matrices
apply also to them.

3. Diagonality

We first review some properties of the diagonal L-structure and present
some generalizations. The relevant ∆-matrix can be written as

∆′

d = (E11, E22, . . . , Enn),

where Eij is the n×n matrix with 1 in the ijth position and zeros elsewhere.
We know that ∆dψd(A) = vecA when A is diagonal (the implicit definition),
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and that for any A, diagonal or not,

∆d∆
′

d vecA = ∆dψd(A) = vec(dg(A));

see M88, Theorem 7.3(ii), where the matrix dg(A) is a transformation of
the matrix A containing only its diagonal elements. In contrast, the matrix
diag(a) is a function of the vector a and contains the components of a on its
diagonal. Thus,

ψd (diag(a)) = a, diag (ψd(A)) = dg(A).

Since the ψd operator only affects the diagonal elements of A we have ψd(A) =
ψd(A

′) and hence ∆′

dK = ∆′

d, where K is the n2 × n2 commutation matrix;
see M88, Theorem 7.4(i).

The next result links the ψd operator to the Hadamard (or element-by-
element) product.

Proposition 2. Given two matrices A and B both of order n× n, we have

∆′

d(A⊗B)∆d = ∆′

d(B ⊗ A)∆d = A⊙ B = B ⊙A,

and in particular, for any two diagonal matrices Λ1 and Λ2,

∆′

d(Λ1 ⊗ Λ2)∆d = ∆′

d(Λ2 ⊗ Λ1)∆d = Λ1Λ2 = Λ2Λ1.

The first expression in Proposition 2 applies also to rectangular matrices
A and B, as long as A and B have the same order, but the ∆d matrices that
pre- and postmultiply will then have different orders.

We conclude this short review by presenting a generalization of Proposi-
tion 2 and Theorem 7.7(i) of M88.

Proposition 3. Let

M =
n∑

i=1

n∑

j=1

µij(Eii ⊗Ejj)

be a diagonal n2 × n2 matrix with diagonal elements µij. Then,

∆′

dM∆d = diag(µ11, µ22, . . . , µnn)

and
∆d∆

′

dM∆d =M∆d.
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4. Zero-diagonality

Our main interest is the class of zero-diagonal matrices which is comple-
mentary to the class of diagonal matrices.

Proposition 4. The n2 × n2 matrix (∆o,∆d) is orthogonal.

This implies that ∆′

o∆d = 0 and

∆o∆
′

o = In2 −∆d∆
′

d,

a diagonal idempotent matrix of rank n(n− 1).
From the implicit definition we have ∆o∆

′

o vecA = vecA for all zero-
diagonal A, while for any n× n matrix A,

∆o∆
′

o vecA = vec(A− dg(A)).

Next we study the matrix ∆′

oK∆o, where K is the commutation matrix.
While K has the effect K vecA = vecA′ for any A, the matrix ∆′

oK∆o has
the effect ∆′

oK∆oψo(A) = ψo(A
′) for any zero-diagonal A. It thus plays the

role of the commutation matrix for zero-diagonal matrices.

Proposition 5. The matrix ∆′

oK∆o is a symmetric permutation matrix of
order n(n− 1), and hence orthogonal.

The next two results are used to obtain the asymptotic variance matrix
of the ML estimators of the free elements of J and Ψ in the structural vector
autoregression model (2) discussed in the Introduction. Proposition 6 is
needed to prove Proposition 7, and more generally, in the derivation of the
information matrix.

Proposition 6. Let M be the diagonal n2 × n2 matrix defined in Proposi-
tion 3. Then,

∆′

oM∆o = diag(µij |i 6= j) = diag(µ12, µ13, . . . , µn,n−1), ∆′

oM∆d = 0,

and
∆o∆

′

oM∆o =M∆o.

In particular, for any n× n diagonal matrix Λ,

∆′

o(Λ⊗ In)∆o = Λ⊗ In−1.
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In the last expression, the order of the two diagonal matrices cannot be
reversed in general. So it is not true that ∆′

o(In ⊗ Λ)∆o = In−1 ⊗ Λ, unless
Λ = In.

Proposition 7. Let M be the diagonal n2 × n2 matrix defined in Proposi-
tion 3. If K +M is nonsingular, then

(∆o,∆d)
′(K +M)−1(∆o,∆d) =

(
(∆′

o(K +M)∆o)
−1 0

0 (I +∆′

dM∆d)
−1

)

and

(K +M)−1 = ∆o (∆
′

o(K +M)∆o)
−1

∆′

o +∆d(I +∆′

dM∆d)
−1∆′

d.

We can be more precise about the nonsingularity of K + M . For any
scalar αij , let Aij = αijEij + Eji. The set of vectors {vecAij} spans R

n2

provided αii 6= −1 and αij + αji = 0 (i 6= j). Also,

(K +M) vecAij = (αijµji + 1) vecEij + (αij + µij) vecEji,

and hence (K +M) vecAij = λij vecAij if and only if

αijµji + 1 = αijλij, αij + µij = λij .

The eigenvalues of K +M are λii = 1 + µii (i = 1, . . . , n), λij = pij + qij
(i < j), and λij = pij − qij (i > j), where

pij =
µij + µji

2
, qij =

√
(
µij − µji

2

)2

+ 1.

The matrix is nonsingular if and only if µii 6= −1 (i = 1, . . . , n) and µijµji 6= 1
for i 6= j.

Appendix: Proofs

Proof of Proposition 1: This follows from M88, Theorems 2.3 and 2.4. Prop-
erties (a), (e), and (f) are valid for all basis matrices. Properties (b) and (d)
follow from the fact that the columns of an elimination matrix are selected
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columns of the identity matrix. Property (c) follows from (b).

Proof of Proposition 2: See M88, Theorem 7.7(ii).

Proof of Proposition 3: Let ∆′

d = (E11, E22, . . . , Enn), ei the ith elementary
vector so that Eii = eie

′

i, and Mi the ith diagonal block (of order n × n) of
M . Then,

∆′

dM∆d =

n∑

i=1

EiiMiEii =

n∑

i=1

eie
′

iMieie
′

i =

n∑

i=1

µiiEii

= diag(µ11, µ22, . . . , µnn).

To prove the second equation, write M =
∑

ij µij(Eii ⊗ Ejj) and let A be
diagonal. Then,

∆d∆
′

dM∆dψd(A) =
∑

ij

µij∆d∆
′

d(Eii ⊗ Ejj)∆dψd(A)

=
∑

ij

µij∆d∆
′

d(Eii ⊗ Ejj) vecA =
∑

ij

µij∆d∆
′

d vec(EjjAEii)

=
∑

ij

µij vec(EjjAEii) =
∑

ij

µij(Eii ⊗ Ejj) vecA

=
∑

ij

µij(Eii ⊗Ejj)∆dψd(A) =M∆dψd(A),

where we have used the diagonality of EjjAEii. Since this holds for all ψd(A),
the proof is complete.

Proof of Proposition 4: Since the matrices ∆d and ∆o select the diagonal
and nondiagonal elements of vecA, respectively, the matrix (∆o,∆d) is a
permutation matrix, hence orthogonal.

Proof of Proposition 5: Since ∆′

oK∆oψo(A) = ψo(A
′) for any zero-diagonal

A, the matrix ∆′

oK∆o is a permutation matrix. It is symmetric because K is
symmetric. Since all permutation matrices are orthogonal, the result follows.
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Proof of Proposition 6: We have

∆′

oM∆o =
∑

ij

µij∆
′

o(Eii ⊗Ejj)∆o =
∑

ij

µij∆
′

o(ei ⊗ ej)(ei ⊗ ej)
′∆o

=
∑

ij

µijψo(Eji)ψo(Eji)
′ = diag(µ12, µ13, . . . , µn,n−1).

Similarly,

∆′

oM∆d =
∑

ij

µijψo(Eji)ψd(Eji)
′ = 0,

because either ψo(Eji) = 0 or ψd(Eji) = 0.
The proof of the third statement is the mirror image of the corresponding

statement in Proposition 3. The special case M = Λ ⊗ In follows by noting
that µij = λi for all j, so that

µ12, µ13, . . . , µn,n−1 = λ1, . . . , λ1
︸ ︷︷ ︸
n−1 times

, λ2, . . . , λ2
︸ ︷︷ ︸
n−1 times

, . . . , λn, . . . , λn
︸ ︷︷ ︸
n−1 times

.

Proof of Proposition 7: We have

(∆o,∆d)
′(K +M)(∆o,∆d) =

(
∆′

o(K +M)∆o ∆′

oK∆d +∆′

oM∆d

∆′

dK∆o +∆′

dM∆o ∆′

dK∆d +∆′

dM∆d

)

=

(
∆′

o(K +M)∆o 0
0 I +∆′

dM∆d

)

,

using the facts that K∆d = ∆d (M88, Theorem 7.4(i)), ∆′

d∆d = I (Proposi-
tion 1), ∆′

d∆o = 0 (Proposition 4), and ∆′

dM∆o = 0 (Proposition 6). Since
(∆o,∆d) is orthogonal, the results follow.
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