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Abstract

We analyse the asymptotic properties of mean-variance efficiency tests based on gen-

eralised methods of moments, and parametric and semiparametric likelihood procedures

that assume elliptical innovations. We study the trade-off between efficiency and robust-

ness, and prove that the parametric estimators provide asymptotically valid inferences when

the conditional distribution of the innovations is elliptical but possibly misspecificed and

heteroskedastic. We compare the small sample performance of the alternative tests in a

Monte Carlo study, and find some discrepancies with their asymptotic properties. Finally,

we present an empirical application to US stock returns, which rejects the mean-variance

efficiency of the market portfolio.
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1 Introduction

Mean-variance analysis is widely regarded as the cornerstone of modern investment theory.

Despite its simplicity, and the fact that more than five and a half decades have elapsed since

Markowitz published his seminal work on the theory of portfolio allocation under uncertainty

(Markowitz (1952)), it remains the most widely used asset allocation method. A portfolio with

excess returns  is mean-variance efficient with respect to a given set of  assets with excess

returns r if it is not possible to form another portfolio of those assets and  with the same

expected return as  but a lower variance, or more appropriately, with the same variance but

a higher expected return. Despite the simplicity of this definition, testing for mean-variance

efficiency is of paramount importance in many practical situations, such as mutual fund perfor-

mance evaluation (see De Roon and Nijman (2001) for a recent survey), gains from portfolio

diversification (Errunza, Hogan and Hung (1999)), or tests of linear factor asset pricing models,

including the capital asset pricing model and arbitrage pricing theory, as well as other empirically

oriented asset pricing models (see e.g. Campbell, Lo and MacKinlay (1997) or Cochrane (2001)

for textbook treatments).

As is well known,  will be mean-variance efficient with respect to r in the presence of a

riskless asset if and only if the intercepts in the theoretical least squares projection of r on a

constant and  are all 0 (see Jobson and Korkie (1982), Gibbons, Ross and Shanken (1989)

and Huberman and Kandel (1987)). Therefore, it is not surprising that this early literature

resorted to ordinary least squares (OLS) to test those theoretical restrictions empirically. If the

distribution of r conditional on  (and their past) were multivariate normal, with a linear

mean a+b and a constant covariance matrix Ω, then OLS would produce efficient estimators

of the regression intercepts a, and consequently, optimal tests of the mean-variance efficiency

restrictions0 : a = 0. In addition, it is possible to derive an  version of the test statistic whose

sampling distribution in finite samples is known under exactly the same restrictive distributional

assumptions (see Gibbons, Ross and Shanken (1989)). In this sense, this  -test generalises the

-test proposed by Black, Jensen and Scholes (1972) in univariate contexts.

However, many empirical studies with financial time series data indicate that the distribution

of asset returns is usually rather leptokurtic. For that reason, MacKinlay and Richardson (1991)

proposed alternative tests based on the generalised method of moments (GMM) that are robust

to non-normality, unlike traditional OLS test statistics.

More recently, Hodgson, Linton, and Vorkink (2002; hereinafter HLV) developed a semipara-
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metric estimation and testing methodology that enabled them to obtain optimal mean-variance

efficiency tests under the assumption that the distribution of r conditional on  (and their

past) is elliptically symmetric. Specifically, HLV showed that their proposed estimators of a and b

are adaptive under the aforementioned assumptions of linear conditional mean and constant con-

ditional variance, which means that they are as efficient as infeasible maximum likelihood (ML)

estimators that use the correct parametric elliptical density with full knowledge of its shape pa-

rameters. Elliptical distributions are attractive in this context because they relate mean-variance

analysis with expected utility maximisation (see e.g. Chamberlain (1983), Owen and Rabinovitch

(1983) and Berk (1997)). Moreover, they generalise the multivariate normal distribution, but at

the same time they retain its analytical tractability irrespective of the number of assets.

Nevertheless, the finite sample performance of such semiparametric inference procedures may

not be well approximated by the first-order asymptotic theory that justifies them. For that

reason, an alternative approach worth considering is an unrestricted ML estimator based on the

correct elliptical distribution, but which includes the unknown shape parameters as additional

arguments in the maximisation algorithm (see e.g. Kan and Zhou (2006)). However, unless

we are careful, this last approach may provide misleading inferences if the relevant conditional

distribution does not coincide with the assumed one, even if both are elliptical. The same applies

to elliptically-based restricted maximum likelihood estimators that keep the shape parameters

fixed to some a priori values, even if the assumed conditional distribution is correct, unless the

chosen values either imply multivariate normality, in which case such restricted estimators will

reduce to the OLS-GMM ones, or they happened to coincide with the true values, in which case

those restricted estimators would be identical to the infeasible ML estimators. Similarly, the

HLV approach may also lead to erroneous inferences if the true conditional distribution is either

heteroskedastic or asymmetric.

Although at first sight these considerations may only seem interesting for theoretically inclined

econometricians, they are also relevant for applied researchers because in practice the substantive

conclusions about the mean-variance efficiency of a candidate portfolio can be rather sensitive to

the distributional assumptions made, as our empirical results confirm.

In this context, the purpose of our paper is to shed some light on such efficiency-consistency

trade-offs in the context of mean-variance efficiency tests. To do so, we will first exploit the

results in Fiorentini and Sentana (2007) to derive the asymptotic properties of the estimators of

the regression intercepts, a, and slopes, b, based on GMM, HLV and elliptically-based parametric

ML procedures under correct specification. Then, we will extend our results to characterise
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how those asymptotic properties change under some specific forms of misspecification that are

potentially relevant in practice in view of some observed characteristics of asset returns, which we

will take into consideration in our empirical application. In particular, we study those situations

in which the distribution of the innovations is:

(i)  elliptical but different from the parametric one assumed for estimation purposes,

which will often be chosen for convenience or familiarity,

(ii) elliptical but conditionally heteroskedastic, which arises when the  distribution of

excess returns for the  assets r and the reference portfolio, , is elliptical, and

(iii) not elliptically symmetric.

In addition, given that it is far from trivial to obtain exact finite sample distributions once

we abandon the Gaussianity assumption, we also analyse the reliability of the usual asymptotic

approximations by Monte Carlo methods.1

Our main asymptotic results are:

1. Under correct specification, not only the HLV procedure but also the unrestricted para-

metric estimators are adaptive, in the sense that they are as efficient as if one had full knowledge

of the true conditional distribution, including its shape parameters.

2. Pseudo-ML (PML) estimators of the regression intercepts and slopes based on the Student

 remain consistent when the conditional distribution is  elliptical but not  irrespective of

whether the degrees of freedom are estimated or fixed a priori. In addition, the restricted esti-

mator will still be consistent when the true conditional distribution is  but with a number of

degrees of freedom different from the one assumed a priori. Both these PML estimators are also

consistent when the conditional distribution is elliptical but conditionally heteroskedastic. In all

these cases, we provide correct expressions for the asymptotic covariance matrices of the regres-

sion coefficients, and explain how applied researchers can robustify their inferences in practice.

The HLV procedure also seems to yield consistent estimators in a conditionally heteroskedastic

elliptical context, which confirms related results by Hodgson (2000) in a univariate framework.

3. The -based PML estimators seem to be systematically more efficient than the GMM

estimators when the conditional distribution of r given  is elliptical, irrespective of whether

or not it is  or conditionally homoskedastic. In addition, estimating the degrees of freedom

parameter instead of fixing its value a priori typically leads to efficiency gains.

4. Only the GMM estimator of the regression intercepts provides reliable inferences in the

1See Beaulieu, Dufour and Khalaf (2007b) for a method to obtain the exact distribution of the Gibbons, Ross

and Shanken (1989)  -statistic conditional on the full sample path of  when the innovations are 
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presence of asymmetries.

Although our Monte Carlo results are broadly in line with these theoretical conclusions, they

also point out two interesting facts. First, we find that the HLV tests typically have much larger

size distortions in finite samples than the other tests. Secondly, they have smaller size-adjusted

power than the -based PML tests, although the differences are very small when the latter are

asymptotically suboptimal.

Finally, we apply those different procedures to test the mean-variance efficiency of the US

aggregate stock market portfolio with respect to industry portfolios, and the book-to-market

sorted portfolios popularised by Fama and French (1993). We do so using monthly data over the

period July 1962 to June 2007. The results that we obtain for industry portfolios indicate that

the Student -based test clearly rejects the efficiency of the market portfolio, while the GMM

test is borderline, and the HLV based test fails to reject. Given our Monte Carlo results, this

contradicting behaviour is partly due to the lack of reliability of the nonparametric estimates

of the asymptotic covariance matrix implicit in the HLV procedure, even though we use the

improved procedure recommended by Fiorentini and Sentana (2007). In contrast, all three tests

reject the mean-variance efficiency of the market portfolio relative to the book-to-market sorted

portfolios of Fama and French (1993).

Importantly, we also assess the adequacy of our parametric assumptions by computing spec-

ification tests against heteroskedasticity, asymmetries, and departures from the  distribution in

higher order moments. We find that while the assumption of Gaussianity is overwhelmingly re-

jected in both data sets, the evidence against a multivariate  distribution is weak. Nevertheless,

we find quite strong evidence against conditional homoskedasticity, which confirms the usefulness

of our robust asymptotic covariance expressions. In view of the trade-offs between efficiency and

consistency that we characterise in our theoretical analysis, these empirical results suggest that it

is probably worth using the multivariate  distribution for the purposes of testing mean-variance

efficiency, as long as empirical researchers bear in mind that such a distributional assumption

may be wrong, and robustify their inferences accordingly.

The rest of the paper is organised as follows. In section 2, we introduce the model and

the three aforementioned estimation procedures, obtain their asymptotic distributions under the

assumption that the innovations are  elliptical, and discuss the testing implications of those

results. Then in section 3 we derive the asymptotic properties of those estimators in alternative

misspecified contexts. An extensive Monte Carlo evaluation of the different parameter estimators

and testing procedures can be found in section 4, while section 5 reports our empirical results.
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Finally, we present our conclusions and suggestions for future work in section 6. Proofs and

auxiliary resutls are gathered in the appendices.

2 Econometric methods

2.1 Model description

Consider the following multivariate, conditionally homoskedastic, linear regression model

r = a+ b + u = a+ b +Ω12ε∗  (1)

whereΩ12 is an × “square root” matrix such thatΩ12Ω12 = Ω, ε∗ is a standardised vector

martingale difference sequence satisfying(ε∗ | −1;γ0ω0) = 0 and  (ε
∗
 | −1;γ0ω0) =

I , γ
0 = (a0b0), ω = (Ω), the subscript 0 refers to the true values of the parameters,

and −1 denotes the information set available at  − 1, which contains at least past values
of  and r. To complete the conditional model, we need to specify the distribution of ε

∗
 .

We shall initially assume that conditional on  and −1, ε∗ is independent and identically

distributed as some particular member of the elliptical family with a well defined density, or

ε∗ | −1;γ0ω0η0 ∼  (0 I η0) for short, where η are some  additional parameters

that determine the shape of the distribution of  = ε∗0 ε
∗
 .
2 The most prominent example is the

spherical normal distribution, which we denote by η = 0. Another popular and more empirically

realistic example is a standardised multivariate  with 0 degrees of freedom, or  (0 I  0)

for short. As is well known, the multivariate Student  approaches the multivariate normal as

0 → ∞, but has generally fatter tails. For that reason, we define  as 1, which will always
remain in the finite range [0,1/2) under our assumptions. Following Zhou (1993), we also consider

two other illustrative examples: a Kotz distribution and a discrete scale mixture of normals.

The original Kotz distribution (see Kotz (1975)) is such that  is a gamma random variable

with mean  and variance  [( + 2)0 + 2], where

 = (2 |η)[( + 2)]− 1

is the coefficient of multivariate excess kurtosis of ε∗ (see Mardia (1970)). The Kotz distribution

nests the multivariate normal distribution for  = 0, but it can also be either platykurtic (  0)

or leptokurtic (  0). Although such a nesting provides an analytically convenient generalisation

2If ε∗ is distributed as a spherically symmetric multivariate random vector, then we can write ε
∗
 = u, where

u is uniformly distributed on the unit sphere surface in R , and  =
p
ε∗0 ε

∗
 is a nonnegative random variable

that is independent of u. Assuming that 
£
2
¤
 ∞, then ε∗ can be standardised by setting 

£
2
¤
=  , so

that  [ε∗ ] = 0 and  [ε∗ ] = I .
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of the multivariate normal, the density of a leptokurtic Kotz distribution has a pole at 0, which

is a potential drawback from an empirical point of view.

For that reason, we also consider a standardised version of a two-component scale mixture of

multivariate normals,3 which can be generated as

ε∗ =
 + (1− )

√
κp

 + (1− )κ
· ε◦  (2)

where ε◦ is a spherical multivariate normal,  is an independent Bernoulli variate with  ( =

1) =  and κ is the variance ratio of the two components. Not surprisingly,  will be a two-

component scale mixture of 20. As all scale mixtures of normals, the distribution of ε
∗
 is

leptokurtic, so that

 =
(1− )(1− κ)2
[ + (1− )κ]2

≥ 0

with equality if and only if either κ = 1,  = 1 or  = 0, when it reduces to the spherical

normal.4 In this sense, a noteworthy property of all discrete mixtures of normals is that their

density and moments are always bounded.

Figure 1 plots the densities of a normal, a Student , a platykurtic Kotz distribution and

a discrete scale mixture of normals in the bivariate case. Although they all have concentric

circular contours because we have standardised and orthogonalised the two components, their

densities can differ substantially in shape, and in particular, in the relative importance of the

centre and the tails. They also differ in the degree of cross-sectional “tail dependence” between

the components, the normal being the only example in which lack of correlation is equivalent to

stochastic independence. Allowing for dependence beyond correlation is particularly important

in the context of multiple financial assets, in which the probability of the joint occurrence of

several extreme events is regularly underestimated by the multivariate normal distribution.

2.2 Parameter estimation

The purpose of this section is to derive the asymptotic variances of the three estimators of the

regression intercepts, a, and slopes, b, mentioned in the introduction (namely, OLS-GMM, as

well as elliptically symmetric parametric and semiparametric procedures) under the assumption

that the conditional distribution of the innovations ε∗ is indeed  spherical.

3The extension of our analytical results to discrete scale mixtures of normals with multiple components would

be fairly straightforward. As is well known, multiple component mixtures can arbitrarily approximate the more

empirically realistic continuous mixtures of normals such as symmetric versions of the hyperbolic, normal inverse

Gaussian, normal gamma mixtures, Laplace, etc.
4In general, though, we require at least sixth moments to globally identify η = (κ)0. Since the labels of the

components are arbitrary, we also need to impose either 0 ≤ κ ≤ 1 or  ≥ 1
2

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2.2.1 Maximum likelihood estimators

Let φ = (γ0ω0η)0 ≡ (θ0η)0 denote the 2 +( + 1)2 +  parameters of interest, which

we assume variation free. The log-likelihood function of a sample of size  based on a particular

parametric spherical assumption will take the form  (φ) =
P

=1 (φ), with (φ) = (θ) +

(η) +  [ (θ)η], where (θ) = −12 ln |Ω| corresponds to the Jacobian, (η) to the constant
of integration of the assumed density, and  [(θ)η] to its kernel, where (θ) = ε

∗0
 (θ)ε

∗
 (θ),

ε∗ (θ) = Ω
−12

ε(θ) and ε(θ) = y − a− b.
5

Let s(φ) denote the score function (φ)φ, and partition it into three blocks, s(φ),

s(φ), and s(φ), whose dimensions conform to those of γ, ω and η, respectively. A straight-

forward application of expression (2) in Fiorentini and Sentana (2007) implies that

s(φ) =

µ
1



¶
⊗ [ (θ)η]Ω

−1ε(θ) (3)

s(φ) =
1

2
D0



£
Ω−1 ⊗Ω−1¤  {[(θ)η]ε(θ)ε0(θ)−Ω}  (4)

where D is the duplication matrix of order  such that (Ω) = D(Ω) (see Magnus

and Neudecker (1988)), while the scalar

[ (θ)η] = −2[ (θ)η]

reduces to

( + 1)[1− 2 +  (θ)]

in the Student  case, to

[( + 2)−1 (θ) + 2][( + 2)+ 2]

in the case of the Kotz distribution, to

[ + (1− )κ] ·
 + (1− )κ−(2+1) exp

h
− [+(1−)κ](1−κ)

2κ (θ)
i

 + (1− )κ−2 exp
h
− [+(1−)κ](1−κ)

2κ (θ)
i (5)

for the two-component mixture, and to 1 under Gaussianity.6

Given correct specification, the results in Crowder (1976) imply that the score vector s(φ)

evaluated at the true parameter values has the martingale difference property. His results also

imply that, under suitable regularity conditions, which typically require that both  and 2

5Fiorentini, Sentana and Calzolari (2003) provide expressions for () and  [(θ) ] in the multivariate

Student case, which under normality collapse to −(2) log  and − 1
2
(θ), respectively.

6See Fiorentini, Sentana and Calzolari (2003) for numerically reliable expressions for (φ) and (φ) in the

multivariate  case.
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are strictly stationary processes with absolutely summable autocovariances, the asymptotic dis-

tribution of the unrestricted ML estimator will be given by the following expression

√

³
φ̂ −φ0

´
−→ 

£
0I−1(φ0)

¤
where I(φ0) = [I(φ0)|φ0],

I(φ) =  [s(φ)| −1;φ] = − [h(φ)| −1;φ] 

and h(φ) denotes the Hessian function s(φ)φ
0 = 2(φ)φφ

0. These expressions adopt

particularly simple forms for our model of interest:

Proposition 1 If ε∗ | −1;φ in (1) is  (0 I η) with density exp[(η)+ ( η)], then

the only non-zero elements of I(φ0) will be:

I(φ) = m(η)

µ
1 

 2

¶
⊗Ω

−1


I(φ) =
m(η)

2
D0



£
Ω−1 ⊗Ω−1¤D +

m(η)− 1
4

D0


£
(Ω−1)0(Ω−1)

¤
D 

I(φ) =
1

2
m(η)D

0
(Ω

−1)

I(φ) =  [ s(φ)|φ] = −[h(φ)|φ]

where

m(η) = 

½
2[ (θ)η]

(θ)



¯̄̄̄
φ

¾
= 

½
2[ (θ)η]



 (θ)


+ [(θ)η]

¯̄̄̄
φ

¾


m(η) =


 + 2

h
1 + 

n
[ (θ)η]

 



¯̄̄
φ
oi
= 

½
2[(θ)η]



2 (θ)

( + 2)

¯̄̄̄
φ

¾
+ 1

m(η) = 

∙½
[(θ)η]

 (θ)


− 1
¾
e0(φ)

¯̄̄̄
φ

¸
= −

½
 (θ)



[ (θ)η]

η0

¯̄̄̄
φ

¾


In the multivariate standardised Student  case, in particular:

m() =
 ( + )

( − 2) ( +  + 2)


m() =
( + )

( +  + 2)


m() = − 2 ( + 2) 2

( − 2) ( + ) ( +  + 2)


which under normality reduce to 1, 1 and 0, respectively (see Fiorentini, Sentana and Calzolari

(2003)). As for the Kotz distribution, we can combine the moments of the gamma and reciprocal

gamma random variables to show that

m() =
1

[( + 2)+ 2]2

½
( + 2)22

 − [( + 2)+ 2]
+ 4[( + 2)+ 1]

¾
 (6)
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as long as   ( − 2)( + 2) when  6= 0,

m() =
1

[( + 2)+ 2]2

½
( + 2)22 +

4


[ + ( + 2)+ 2] + 4( + 2)

¾


and m() = 0 ∀, as in the Gaussian case. Finally, we provide the relevant expressions for the
case of the two-component scale mixture of normals in Supplemental Appendix D.

The next result follows directly from Proposition 1:

Proposition 2 If ε∗ | −1;φ0 in (1) is  (0 I η0) with density exp[(η) + (η)]

such that m(η0) ∞, and both  and 2 are strictly stationary processes with absolutely

summable autocovariances, then

√
 (γ̂ − γ0)→ 

£
0I−1 (φ0)

¤


where

I−1 (φ) =
1

m(η)

µ
(1 + 22) −2
−2 12

¶
⊗Ω (7)

 = (|φ) and 2 =  (|φ), so that  can be interpreted as the Sharpe ratio of

the reference portfolio.

Importantly, expression (7) is valid regardless of whether or not the shape parameters η are

fixed to their true values η0, as in the infeasible ML estimator, â say, or jointly estimated with

θ, as in the unrestricted one, â say. The reason is that the scores corresponding to the mean

parameters, s(φ0), and the scores corresponding to variance and shape parameters, s(φ0) and

(φ0), respectively, are asymptotically uncorrelated under our sphericity assumption in view of

Proposition 1.

2.2.2 GMM estimators

MacKinlay and Richardson (1991) developed a robust test of mean-variance efficiency by

using Hansen’s (1982) GMMmethodology. If we call R0
 ≡ ( r

0
), the orthogonality conditions

that they considered are

 [m (R;γ)] = 0

m (R;γ) =

µ
1



¶
⊗ ε(γ) (8)

The advantage of working within a GMM framework is that under fairly weak regularity

conditions inference can be made robust to departures from the assumption of normality, condi-

tional homoskedasticity, serial independence or identity of distribution. But since the above mo-

ment conditions exactly identify γ, the unrestricted GMM estimators coincide with the Gaussian

9



pseudo ML estimators, which in turn coincide with the equation by equation OLS estimators

in the regression of each element of r on a constant and . An alternative way of reaching

the same conclusion is by noticing that the influence function m (R;γ) is a full-rank linear

transformation with time-invariant weights of the Gaussian pseudo-score s(θη = 0).
7

It is convenient to derive an expression for the asymptotic covariance matrix of γ̂ under

 innovations:

Proposition 3 If ε∗ | −1;φ in (1) is  (0 I) with density function (ε∗ ;%), where %

are some shape parameters, and both  and 
2
 are strictly stationary processes with absolutely

summable autocovariances, then

√
 (γ̂ − γ0)→  [0 C(φ0)]  (9)

where

C(φ) = A−1(φ)B(φ)A−1(φ)
A(φ) = − [h(θ0)|φ] =  [A(φ)|φ] 

A(φ) = −[h(θ;0)|  −1;φ] =

µ
1 

 2

¶
⊗Ω−1

B(φ) =  [s(θ0)|φ] =  [B(φ)|φ] 
B(φ) =  [s(θ;0)|  −1;φ] = A(φ)

so that

C(φ0) =
µ
(1 + 20

2
0) −0

2
0

−0
2
0 120

¶
⊗Ω0 (10)

Importantly, note that C(φ0) does not depend on the specific distribution for the innovations
that we are considering, regardless of whether or not the conditional distribution of ε∗ is spherical,

as long as it is 8

2.2.3 HLV elliptically symmetric semiparametric estimators

HLV proposed a semiparametric estimator of multivariate linear regression models that up-

dates θ̂ (or any other root- consistent estimator) by means of a single scoring iteration

7The obvious GMM estimator of ω is given by Ω̂ = 1


P
=1 ε(γ̂ )ε

0
(γ̂ ), which is the sample

analogue to the residual covariance matrix.
8The asumption of constant conditional third and fourth moments implicit in the assumption of  innova-

tions also implies that the optimal GMM estimators of Meddahi and Renault (1998) do not offer any asymptotic

efficiency gains over â .
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without line searches. The crucial ingredient of their method is the so-called elliptically symmet-

ric semiparametric efficient score (see e.g. Proposition 7 in Fiorentini and Sentana (2007)):

s̊(φ0)= s(φ0)−W(φ0)

½∙
[ (θ0)η0]

 (θ0)


− 1̧ − 2

(+2)0+2

∙
 (θ0)


− 1̧

¾


where

W0
(φ) =

£
0 0 1

2
0(Ω−1)D

¤
in the case of model (1). In fact, the special structure ofW(φ) implies that we can update the

GMM estimator of γ by means of the following simple Berndt, Hall, Hall and Hausman (1974)

(BHHH) correction: "
X
=1

s(φ0)s
0
(φ0)

#−1 X
=1

s(φ0) (11)

which does not require the computation of s̊(φ0). In practice, of course, s(φ0) has to be

replaced by a semiparametric estimate obtained from the joint density of ε∗ . However, the

elliptical symmetry assumption allows one to obtain such an estimate from a nonparametric

estimate of the univariate density of  ,  ( ;η), avoiding in this way the curse of dimensionality

(see HLV and appendix B1 in Fiorentini and Sentana (2007) for details).

Proposition 7 in Fiorentini and Sentana (2007) shows that the elliptically symmetric semi-

parametric efficiency bound will be given by:

S̊(φ0) = I(φ0)−W(φ0)W
0
(φ0) ·

½∙
 + 2


m(η0)− 1

¸
− 4

 [( + 2)0 + 2]

¾


which implies that S̊(φ0) = I(φ0) in our case in view of the structure ofW(φ0). This result

confirms that the HLV estimator of γ is adaptive.9

2.3 Relative efficiency of estimators and test procedures under cor-

rect specification

Let â denote any of the asymptotically normal, root- estimators of a analysed in the previ-

ous section, and denote its asymptotic covariance matrix by  (â). To test 0 : a = 0, we can

in principle use any of the trinity of classical hypothesis tests, namely, Wald ( ), Lagrange

Multiplier ( ) and Likelihood Ratio/Distance Metric test ( ). For the sake of concrete-

ness, though, we shall centre our discussion around the Wald test, which examines whether the

9HLV also consider alternative estimators that iterate the semiparametric adjustment (11) until it becomes

negligible. However, since they have the same asymptotic distribution, we shall not discuss them separately.
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homogeneity constraints imposed by 0 are approximately satisfied by â.
10 More formally,

 =  · â0 −1(â)â

As is well known, will be asymptotically distributed as a 
2 with  degrees of freedom under

the null, and as a non-central 2 with the same degrees of freedom and non-centrality parameter

δ0 −1(â)δ under the Pitman sequence of local alternatives  : a = δ
√
 (see Newey and

MacFadden (1994)). In contrast,  will diverge to infinity for fixed alternatives of the form

 : a = δ, which makes it a consistent test. In that case, we can use Theorem 1 in Geweke

(1981) to show that

 lim
1


 = δ0 −1(â)δ

coincides with Bahadur’s (1960) definition of the approximate slope of the Wald test. This

expression differs from the non-centrality parameter in that the covariance matrix is no longer

evaluated under the null. However, since  (â) does not depend on a when the true distribution

is elliptical for any of the estimators considered in the previous section, both comparison criteria

coincide.

In addition, since  (â) = Caa(φ0) in view of (9), while  (â) =  (â) =  (â )

=m−1 (η0)Caa(φ0) in view of (7), we can use m(η0) to measure the relative efficiency of the

GMM-based test procedure regardless of the value of δ. In fact, since the proportionality applies

not only to a but also to b, we can also use m(η0) to measure the relative efficiency of the

estimators of both regression intercepts and slopes in other contexts.

We know from Proposition 9 in Fiorentini and Sentana (2007) that m(η0) = 1 if and only if

the true conditional distribution is indeed normal. Otherwise, 0 ≤m−1 (η0)  1. This means that
while there is no asymptotic efficiency loss in estimating η when the true conditional distribution

is Gaussian, the efficiency gains could be potentially very large for other elliptical distributions.

In the multivariate Student  case with 0  2, in particular, the relative efficiency ratio becomes

(0 − 2)(0 +  + 2)[0(0 + )]. For any given  , this ratio is monotonically increasing in

0, and approaches 1 from below as 0 →∞, and 0 from above as 0 → 2+. At the same time,

this ratio is decreasing in  for a given 0, which reflects the fact that the Student  information

matrix is “increasing” in  . Figure 2a presents a plot of this efficiency ratio as a function of

 for several values of  . Similarly, Figure 2b presents the efficiency ratio as a function of 

for different values of  in the case of the Kotz distribution, where we have obtained m−1 ()

10Another advantage of the Wald test, shared with the LM test, is that it is easy to robustify with respect to

misspecification, unlike the LR test.
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from (6). In this sense, it is worth mentioning that the excess kurtosis coefficient of any elliptical

distribution is bounded from below by −2( + 2), which is the excess kurtosis of a random

vector that is uniformly distributed on the unit sphere. This explains why the lower limit of

admissible values for  gets closer and closer to 0 from below as  increases. Finally, Figure

2c contains the corresponding efficiency ratios for a two-component scale mixture of normals in

which  = 1
2
as a function of the relative variance parameter κ. As expected, the GMM and

ML/HLV estimators are equally efficient for κ = 1, since in that case the mixture of normals is

itself normal. Once again, though, the relative efficiency of the ML/HLV estimators increases as

we move away from normality, the more so the bigger  is.

We can assess the power implications of such efficiency gains by computing the probability

of rejecting the null hypothesis when it is false as a function of a under the assumption that the

asymptotic non-central chi-square distributions of the Wald tests implied by (7) or (9) provide

reliable rejection probabilities in finite samples. The results for  = 500 at the usual 5% level are

plotted in Figure 3 under the fairly innocuous assumptions that Ω = I ,
√
12 = 1

2
and

a =  , with 
0
 = (1     1)

0 and  ∈ [0 2]. We consider two examples of elliptical distributions
whose m(η) correspond to those of a Student  with 8 and 20 degrees of freedom, respectively.

Not surprisingly, the power of all tests increases as we depart from the null. Similarly, their

power also increases with the number of series due to the lack of cross-sectional correlation of

the regression residuals. More importantly, the power of the efficient tests is always larger than

the power of the GMM tests, although the differences are unsurprisingly small when the true

distribution is not too far away from the normal.

In empirical applications, it is customary to pay attention not only to the joint Wald test

of 0 : a = 0, but also to individual tests of the form 0 :  = 0 for some  between 1 and

 . Given that the asymptotic power of such partial tests under either local or fixed alternatives

will depend on the non-centrality parameter 2  (̂), the discussion in the previous paragraphs

applies directly to those individual Wald tests too (see Sentana (2008) for a discussion on the

advantages and disadvantages of joint versus individual tests on these contexts).

3 Misspecification analysis

In section 2.2 we obtained the asymptotic covariance matrix of the estimators of the regression

intercepts, a, and slopes, b, under the assumption that the model used for estimation purposes

in the parametric maximum likelihood procedure and the data generation process coincide. The
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main purpose of this section is to study how our earlier results change in situations in which the

conditional distribution assumed for estimation purposes differs from the true one. In those cases

in which the parametric maximum likelihood estimators remain consistent, we will provide their

asymptotic variances, compare them to the full information parametric efficiency bounds and the

asymptotic variances of the GMM estimators, and explain how to robustify inference in practice.

We omit a discussion of the testing implications of the relative efficiency of the estimators because

the analysis is entirely analogous to the one in section 2.3. Given that the estimated model will

be incorrect, we consider a restricted parametric ML estimator that fixes the shape parameters

to some arbitrary value η̄ 6= 0 in place of the infeasible ML estimator discussed in section 2.2.1.

3.1 Misspecified elliptical distributions for the innovations

We begin by deriving the asymptotic distribution of the unrestricted and restricted ML es-

timators when the true conditional distribution of r given  and their past is  elliptical,

but does not coincide with the distribution assumed for estimation purposes. For the sake of

concreteness, we assume in what follows that those parametric (pseudo) ML estimators are based

on the erroneous assumption that ε∗ | −1;θ ∼  (0 I  ). Nevertheless, our results

can be trivially extended to any other spherically-based likelihood estimators, as the only ad-

vantage of the Student  likelihood for our purposes is the fact that its limiting relationship to

the Gaussian distribution can be made explicit. In this context, the restricted -based PML

estimator should be understood as the one that fixes the parameter  to some ̄ between 0 and

1
2
.

For simplicity, we shall also define the pseudo-true values of θ and  as consistent roots of

the expected  pseudo log-likelihood score, which under appropriate regularity conditions will

maximise the expected value of the  pseudo log-likelihood function. Specifically, if we define the

pseudo-true values of φ as the values of abΩ, and  that will set to zero the expected value of

the score vector, s(φ0), where the expected value is taken with respect to the true distribution of

the data, then we can derive the following result, which particularises to our context Proposition

15 in Fiorentini and Sentana (2007):

Proposition 4 If ε∗ | −1;ϕ0 in (1) is  (0 I %0) but not  and 0 ≤ 0, where ϕ0 =
(γ0ω0%0), then:

1. The pseudo-true value of the unrestricted Student t-based ML estimator of φ = (γω )0,

φ∞, is such that γ∞ and ω∞ are equal to their corresponding true values γ0 and ω0,

14



respectively, and ∞ = 0

2.
√
 (γ̂ − γ̂) = (1)

Intuitively, the reason is that since  must be estimated subject to the non-negativity re-

striction  ≥ 0, the most platykurtic Student  distribution that one can obtain is the normal
distribution, in which case the unrestricted Student -based PML estimator coincides with the

GMM one.

The following result derives the asymptotic distribution of the unrestricted -based PML

estimator of θ in the more realistic case of leptokurtic disturbances. To keep the algebra simple,

we will reparametrise Ω as Υ(υ), so that ϑ = (γυ ), where υ are (+1)2−1 parameters
that ensure that |Υ(υ)| = 1 ∀υ. In other words, our reparametrisation will be such that

 = |Ω|1 (12)

and

Υ(υ) = Ω|Ω|1  (13)

Nevertheless, the -based ML estimator of γ will be unaffected by this change.

Proposition 5 If ε∗ | −1;ϕ0 is  (0 I %0) but not  with 0  0, where ϕ0 =

(γ0υ0  0%0), then:

1. The pseudo-true value of the unrestricted Student-t based ML estimator of φ = (γυ   )0,

φ∞, is such that γ∞ and υ∞ are equal to their corresponding true values γ0 and υ0.

2. O(φ∞;ϕ0) = [O(φ∞;ϕ0)|ϕ0] and H(φ∞;ϕ0) = [H(φ∞;ϕ0)|ϕ0] will be block diagonal
between (γυ) and (  ), where both

O(φ∞;ϕ0) =  [s(φ∞)| −1;ϕ0]

and

H(φ∞;ϕ0) = −[h(φ∞)| −1;ϕ0]

will share the structure of I(φ∞;ϕ0) in Proposition 1, with O(φ;ϕ) =  [ (φ)|ϕ],
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H(φ;ϕ) = −[ (φ)|ϕ]

m
 (φ;ϕ) = 

©
2[ (ϑ) ] · [(ϑ) ]

¯̄
ϕ
ª

(14)

m
(φ;ϕ) = ( + 2)−1 [1 +  {[ (γυ ) ] · [(ϑ) ]|ϕ}] 

m
(φ;ϕ) =  [{[ (ϑ) ] · [(ϑ) ]− 1} (φ)|ϕ] 

m
 (φ;ϕ) =  {2[ (ϑ) ] · [(ϑ) ] + [(θ) ]|ϕ}  (15)

m
(φ;ϕ) = 

©
2[(ϑ) ] · 2 (ϑ)[( + 2)]

¯̄
ϕ
ª
+ 1

m
(φ;ϕ) = − {[(ϑ) ] · [(ϑ) ]|ϕ} 

Intuitively, what the first part of this proposition shows is that

 {s[γ0υ0 ∞() ]|γ0υ0  0%0} = 0

 {s[γ0υ0 ∞() ]|γ0υ0  0%0} = 0

for any elliptical distribution for the innovations, which implies in particular that the -based

PML estimators of a and b will be consistent. In contrast, when   0 we cannot find any

distribution for ε∗ other than the multivariate  for which

 [(φ)|ϕ0] = 0

 [(φ)|ϕ0] = 0

which means that the overall scale parameter  will be inconsistently estimated.

The asymptotic distribution of the unrestricted -based PML estimator of γ follows immedi-

ately from Proposition 5:

Corollary 1 If ε∗ | −1;ϕ0 is  (0 I %0) but not  with 0  0, where ϕ0 = (γ0υ0 0%0),

and both  and 
2
 are strictly stationary processes with absolutely summable autocovariances,

then:
√
 (γ̂ − γ0)→ 

"
0

m
 (φ∞;ϕ0)

[m
 (φ∞;ϕ0)]

2
· 1
∞
C(ϕ0)

#
 (16)

where ∞ =  0∞.

In practice, it is trivial to obtain consistent estimators of the robust asymptotic covariance

matrix in (16) because C(ϕ̂) converges in probability to −1∞ C(ϕ0) in view of (10) and
(13), and both m

 (φ∞;ϕ0) and m

 (φ∞;ϕ0) can be consistently estimated by using the sample

analogues of (14) and (15), respectively, evaluated at ϕ̂.
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The analysis of the restricted -based PML estimator is entirely analogous, except for the fact

that the pseudo-true value of  becomes ∞(̄), as opposed to ∞ = ∞(∞).

A natural question in this context is a comparison of the efficiency of the -based pseudo

ML estimator and the GMM estimator when the distribution is elliptical but not  We answer

this question by assuming that the conditional distribution is either normal, Kotz, or the two-

component scale mixture of normals discussed in section 2.1. It turns out that in all three cases

we can obtain analytical expressions for the efficiency ratio m
 (φ∞;ϕ0){∞[m

 (φ∞;ϕ0)]
2} (see

Supplemental Appendix B).

The panels of Figure 4 present the relative efficiency of these two estimators of γ as a func-

tion of ̄ for five cross-sectional dimensions. In addition, the vertical straight lines indicate the

position of the pseudo-true values when we also estimate , while the horizontal lines on the right

indicate the relative efficiency of the correct ML estimator. As expected, if the true conditional

distribution is Gaussian (Figure 4a), then the restricted ML estimator that makes the erroneous

assumption that it is a Student  with ̄−1 degrees of freedom is inefficient relative to the GMM

estimator, the more so the larger the value of ̄. Nevertheless, this inefficiency becomes smaller

and less sensitive to ̄ as the number of assets increases. But of course ∞ = 0 in this case in view

of Proposition 4, which suggests that estimating  is clearly beneficial under misspecification.

In fact, the restricted -based PML estimator seems to be strictly more efficient than the GMM

one at the pseudo-true value of  when the true conditional distribution is leptokurtic. This is

indeed true for any value of ̄ for a Kotz distribution with 0 = 18 (Figure 4b), which is equal

to the excess kurtosis of a  with 20 degrees of freedom, as well as for a two-component mixture

of normals with  = 12 and 0 = 14 (Figure 4c), which coincides with the excess kurtosis of

the more empirically realistic  distribution with 12 degrees of freedom. It is noteworthy that as

 increases the restricted -based PML estimator tends to achieve the full efficiency of the ML

estimator for any ̄  0.11 Whether such efficiency gains always accrue at the pseudo true value

of  is left for future research.12

11The values corresponding to  =∞ in Figures 4 and 5 are intended to reflect the maximum efficiency gains

that could be obtained by increasing the number of series; and hence, they are derived under sequential limits, i.e.,

 converges to infinity with a fixed  and then  converges to infinity. In this sense, lim→∞m(η) = (1−)−1

in the case of both Kotz innovations and discrete scale mixture of normals innovations.
12Another pending issue is whether ∞ is always larger than max(0 0)[4max(0 0) + 2], which is the value

of  that matches the excess kurtosis of the  distribution with the excess kurtosis of the true distribution, as

Figures 4a and 4b seem to suggest.
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3.2 Elliptical distributions for returns

In this section we explicitly study the framework analysed by MacKinlay and Richardson

(1991) and Kan and Zhou (2006), who considered a  distribution of excess returns for the

 assets r and the reference portfolio, . When the joint distribution of R is  Gaussian,

the distribution of r conditional on  must also be normal, with a mean a + b that is

a linear function of , and a covariance matrix Ω that does not depend on . However,

while the linearity of the conditional mean will be preserved when R is elliptically distributed

but non-Gaussian, the conditional covariance matrix will no longer be independent of . For

instance, if we assume that Σ−12(ρ)[R − μ(ρ)] ∼  (0 I+1 ), where

μ(ρ) =

µ


a+ b

¶
 (17)

Σ(ρ) =

µ
2 2b

0

2b 2bb
0 +Ω

¶
 (18)

and ρ0 = (a0b0ω0   2), then

 [r|;ρ ] = a+ b

 [r|;ρ ] =

µ
 − 2
 − 1

¶"
1 +

( − )
2

( − 2)2

#
Ω ≡ Ψ(ρ)

which means that model (1) will be misspecified due to contemporaneous, conditionally het-

eroskedastic innovations. In other words, the variances and covariances of the regression residuals

will be a function of the regressor.

AsMacKinlay and Richardson (1991) pointed out, the GMM estimator of γ remains consistent

in this case. In addition, we know from Lemma D3 in Peñaranda and Sentana (2008) that if

R is independently and identically distributed as an elliptical random vector with mean μ(ρ),

covariance matrix Σ(ρ), and bounded fourth moments, then the asymptotic covariance matrix

of
√
m̄ (R;γ0) will be given by

S(γ0) =

∙
1 0

0 (0 + 1) 
2
0 + 20

¸
⊗Ω0

where m̄ (R;γ0) is the sample mean of m (R;γ0) in (8). Hence,

 (γ̂) =

∙
1 + (1 + 0) (

2
0

2
0) − (1 + 0) (0

2
0)

− (1 + 0) (0
2
0) (1 + 0) (1

2
0)

¸
⊗Ω0 (19)

In this sense, note that the only difference with respect to (10) is the factor (1 + 0). Although

in principle one could use the sample analogue of (19), in practice, we will typically estimate
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 (γ̂) by using White (1980) heteroskedastic robust standard errors. Specifically, we would

use the sandwich expression C(φ) = A−1(φ)B(φ)A−1(φ), but this time with

B̂(φ) = 1



X
=1

s(θ;0)s
0
(θ;0) (20)

while we will continue to use

Â(φ) =
1



X
=1

µ
1 

 2

¶
⊗Ω−1 (21)

At the other extreme of the efficiency range, we can consider the joint ML estimator that

makes the correct assumption that Σ−12(ρ)[R −μ(ρ)] ∼  (0 I+1η), whose asymptotic

distribution can be obtained from the following result:

Proposition 6 Let ²∗ (ρ) = Σ
−12

(ρ)²(ρ), where ²(ρ) = R − μ(ρ), μ(ρ) and Σ(ρ) are de-

fined in (17) and (18), respectively, and ρ0 = (a0b0ω0   2). If ²
∗
 (ρ0)|−1;ρ0η0 ∼ 

(0 I+1η0) with density exp[+1(η) + +1(η)], then the only non-zero elements of the

information matrix other than I(φ) =  [ s(φ)|φ] = −[h(φ)|φ] will be:

I(φ) =

∙
m(η)

µ
1 
 2

¶
+m(η0)

µ
0 0

0 2

¶¸
⊗Ω−1

I(φ) =
m(η)

2
D0



£
Ω−1 ⊗Ω−1¤D +

m(η)− 1
4

D0


£
(Ω−1)0(Ω−1)

¤
D0

 

I
(φ) =

m(η)

2
 I2


2

(φ) =

3m(η)− 1
44



I2

(φ) =

m(η)− 1
42

D0
(Ω

−1) I(φ) = m(η)

2
D0

(Ω
−1) I2


(φ) =

m(η)

22


where m(η0), m(η0) and m(η0) for this ( + 1)-dimensional distribution are defined analo-

gously to Proposition 1.

We can use this Proposition to extend the result in equation (31) in Kan and Zhou (2006)

and show that

 (γ̂) =

∙
m−1 (η0)+m

−1
 (η0)(

2
0

2
0) −m−1 (η0)(0

2
0)

−m−1 (η0)(0
2
0) m−1 (η0)(1

2
0)

¸
⊗Ω0 (22)

where θ̂ denotes the joint ML estimator that makes the correct assumption thatΣ
−12()[R−

μ()] ∼  (0 I+1η), and both m(η0) and m(η0) correspond to this (+1)-dimensional

distribution. However, γ̂ assumes omniscience on the part of the researcher, which is unre-

alistic.

The following proposition shows the consistency of the -based estimators which make the

erroneous assumption that  [r|] = Υ(υ), where  and Υ(υ) are defined in (12) and (13),
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and provides expressions for the conditional variance of the score and expected Hessian matrix

under such misspecification:

Proposition 7 If Σ−12(ρ)[R − μ(ρ)]|−1;ϕ0 ∼  (0 I+1%0) with 0  0, where μ(ρ)

and Σ(ρ) are defined in (17) and (18) respectively, ρ0 = (a0b0ω0   2) and ϕ = (ρ0%0)0,

then:

1. The pseudo-true value of the unrestricted Student-t based PML estimator of φ = (γυ   )0,

φ∞, is such that γ∞ and υ∞ are equal to their corresponding true values γ0 and υ0.

2. O(φ∞;ϕ0) = [O(φ∞;ϕ0)|ϕ0] and H(φ∞;ϕ0) = [H(φ∞;ϕ0)|ϕ0] will be block diagonal
between (γυ) and (  ), where both

O(φ∞;ϕ0) =  [s(φ∞)| −1;ϕ0]

and

H(φ∞;ϕ0) = −[h(φ∞)| −1;ϕ0]

will share the structure of I(φ∞;ϕ0) in Proposition 1, with O(φ;ϕ) =  [ (φ)|ϕ],
H(φ;ϕ) = −[ (φ)|ϕ],

m
 (φ;ϕ) = 

©
2[ (ρ) ] · [(ρ) ]

¯̄
ϕ
ª

m
(φ;ϕ) = ( + 2)−1 [1 +  {[ (ρ) ] · [ (ρ) ]|ϕ}] 
m
(φ;ϕ) =  [{[ (ρ) ] · [(ρ) ]− 1} (φ)|ϕ] 

m
 (φ;ϕ) =  {2[ (ρ) ] · [(ρ) ] + [(θ) ]|ϕ} 

m
(φ;ϕ) = 

©
2[(ρ) ] · 2 (ρ)[( + 2)]

¯̄
ϕ
ª
+ 1

m
(φ;ϕ) = − {[ (ρ) ] · [(ρ) ]|ϕ} 

The asymptotic distribution of the unrestricted -based PML estimator of γ follows immedi-

ately from Proposition 7:

Corollary 2 If Σ−12(ρ)[R−μ(ρ)]|−1;ϕ0 ∼  (0 I+1%0) with 0  0, where μ(ρ) and

Σ(ρ) are defined in (17) and (18) respectively, ρ0 = (a0b0ω0   2) and ϕ = (ρ
0%0)0, then:

√
 (γ̂ − γ0)→ 

"
0

m
 (φ∞;ϕ0)

[m
 (φ∞;ϕ0)]

2
· 1
∞
C(ϕ0)

#
 (23)

where ∞ =  0∞.
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As we mentioned after Corollary 1, it is very easy to obtain consistent estimators of the

robust asymptotic covariance matrix in (23), and the same is true in the case of the restricted

estimators.

Figure 5 presents the efficiency of the -based PML estimators of γ in relation to the cor-

responding GMM estimator as a function of ̄ when R is distributed as a multivariate  with

8 degrees of freedom (0 = 125) for three cross-sectional dimensions. In addition, the vertical

straight lines in the top panel indicate the position of the pseudo-true values ∞ when we also es-

timate this parameter, while the horizontal ones describe the efficiency of the joint ML estimator

of γ in (22) relative to GMM estimator in (19).13 As in Figures 4a and 4b, the restricted -based

PML estimator of γ is more efficient than the GMM estimator for all values of ̄, the more so

the larger  is. Furthermore, the unrestricted -based PML estimator that also estimates  gets

close to achieving the full efficiency of the joint ML estimator, especially for large  . Finally,

another noteworthy fact is the very small asymptotic bias of the -based PML estimator of .

In principle, Proposition 7, and in particular the block diagonal structure of O(φ∞;ϕ0) and
H(φ∞;ϕ0) will continue to hold if we replace the unrestricted -based ML estimator by any other
estimator based on a specific  elliptical distribution for r|. But since the HLV estimator

is asymptotically equivalent to a parametric estimator that uses a flexible elliptical distribution

as we increase the number of shape parameters, Proposition 7 suggests that the HLV estimator

of γ will continue to be consistent. In fact, an argument analogous to the one made by Hodgson

(2000) in a closely related univariate context would imply that the HLV estimator is as efficient

as the parametric estimator that used the true unconditional distribution of the innovations

ε = r−a0−b0. Nevertheless, inferences about a and b would have to be adjusted to reflect

the contemporaneous conditional heteroskedasticity of ε, which is not straightforward.

3.3 Asymmetric distributions

To focus our discussion, we assume in this section that ε∗ is distributed as an multivariate

asymmetric . Following Mencía and Sentana (2009), if we choose

ε∗ = β
£
−1 − (β)

¤
+

s


Ξ12u (24)

where u is uniformly distributed on the unit sphere in R ,  is a 2 random variable with

 degrees of freedom,  is Gamma random variable with parameters (2)−1 and 22 with

13These graphs are based on the expressions in Proposition 7, with the relevant expectations computed by

Monte Carlo integration with 106 drawings.
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 = (1− 2)−1(β), β is a  × 1 parameter vector, and Ξ is a  × positive definite matrix

given by

Ξ =
1

(β)

∙
 +

(β)− 1
β0β

ββ0
¸


with

(β) =
− (1− 4) +

q
(1− 4)2 + 8β0β (1− 4) 
4β0β



then  [ε∗ ] = 0 and  [ε
∗
 ] = I . In this sense, note that lim0−→0 (β) = 1, so that the above

distribution collapses to the usual multivariate symmetric  when β = 0. Therefore, we allow for

asymmetries by introducing the vector of parameters β.

To study the consistency of the symmetric -based PML estimator when the data generating

process (DGP) is asymmetric, it is once again convenient to look at its score. Specifically, given

the definition of (24), we can write

sa(γ0ω0 ) = Ω
−12
0

 + 1

1− 2 + ()

(
β
£
−1 − (β)

¤
+

s


Ξ12u

)
 (25)

The expected value of ε∗ in (24) is clearly zero by construction. Similarly, the expected

value of (25) is also zero when β0 = 0 since u and () are independent. But when β0 6= 0,
the expected value of (25) will be generally different from zero because −1 appears both in

the numerator and denominator. Consequently, the mean parameters a will be inconsistently

estimated. In contrast, b will be consistently estimated precisely because the estimator of a will

fully mop up the bias in the mean. More formally, re-write model (1) as

r = Ω12δ + b + ε

where Ω−12a = δ. This homeomorphic reparametrisation satisfies the conditions of Proposition

17 in Fiorentini and Sentana (2007), which implies the consistency of b. Unfortunately, mean-

variance efficiency tests are based on a, not b.

For analogous reasons, the HLV estimator of a also becomes inconsistent under asymmetry.

Intuitively, the problem is that it will not be true any more that the  -dimensional density of

ε∗ could be written as a function of  = ε∗0 ε
∗
 alone. Therefore, a semiparametric estimator of

s(φ0) that combines the elliptical symmetry assumption with a non-parametric specification

for [(θ)η] will be contaminated by the skewness of the data.

In contrast, the GMM estimator always yields a consistent estimator of a, on the basis of

which we can develop a GMM-based Wald test with the correct asymptotic size since (9) remains

valid under asymmetry.
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4 Monte Carlo analysis

In this section we assess the finite sample size and power properties of the GMM, HLV and

unrestricted -based ML test statistics of the joint null hypothesis 0 : a = 0 for five different

distributional assumptions for the innovations, namely Gaussian, Student- with 4 degrees of

freedom, Kotz with  = 18, two-component scale mixture of normals with the same kurtosis,

and asymmetric- innovations.14 We also consider a 4 distributional assumption for the returns,

R.
15 In all cases, we carry out 10,000 replications with  = 500,  = 5 Ω = 42 × I5,

√
12 = 1

2
and b = 0 both under the null hypothesis, and under the alternative that

a = 4 × 5.
16

We sample Gaussian and Student  random numbers using standard MATLAB routines. To

sample the Kotz innovations, we exploit the fact that ε∗ =
p
u, where  is a univariate Gamma

with mean  and variance  [( +2)+2]. Similarly, we use (2) to sample the discrete mixture

of normals. Finally, to draw asymmetric  innovations we first generate a univariate Gamma and

 independent standard Gaussian variates, and then use the decomposition presented in (24).

As mentioned in section 2.2.2, the GMM estimators of γ coincide with the equation by

equation coefficient estimates in the OLS regression of  on a constant and . Similarly, a

GMM estimator of Ω can be easily obtained from the covariance matrix of the OLS regression

residuals, as explained in footnote 7. We use the expressions in Proposition 3 to compute its

covariance matrix under the maintained assumption of  innovations. In contrast, we combine

(20) with (21) to obtain heterokedasticity robust standard errors.

Following Fiorentini, Sentana and Calzolari (2003), we obtain a consistent estimator of the

reciprocal degrees of freedom parameter  on the basis of the GMM estimators as

̂ =
max[0 ̄ (θ̂)]

4max[0 ̄ (θ̂)] + 2
 (26)

where

̄ (θ̂) =
−1

P

=1 
2
 (θ̂)

( + 2)
− 1

is Mardia’s (1970) sample coefficient of multivariate excess kurtosis of the estimated standardised

residuals. Then, we use ̂ as initial value to obtain the sequential ML estimator of  proposed

14In these cases, a sample of  is drawn from a Gaussian distribution for each replication.
15Amengual and Sentana (2008) present additional Monte Carlo results for other distributions, as well as for

the individual  tests of 0 :  = 0.
16The value of b does not affect the asymptotic distribution of the different estimators of a and the corresponding

test procedures, while the value of  simply scales up or down all the return series, and consequently Ω, 
and a.
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by Fiorentini and Sentana (2007), ̂ say, which maximises the -based log-likelihood function

with respect to  keeping θ fixed at θ̂ .

Having obtained θ̂ and ̂, we compute a one-step ML estimator of θ by means of

the BHHH correction "
X
=1

s(θ)s
0
(θ)

#−1 X
=1

s(θ) (27)

with the analytical expressions for the -score derived in section 2.2.1.17 Next, we carry out a

few EM iterations over θ using this one-step ML estimator as initial value (see Supplemental

Appendix C), and finally switch to a quasi-Newton procedure until convergence. The (non-

robust) asymptotic covariance matrix is computed using the expressions in Proposition 1, while

for the robust standard errors we use the expressions in Corollaries 1 and 2.

As for the HLV estimator and its asymptotic covariance matrix, we follow the computa-

tional approach described in Appendix B1 of Fiorentini and Sentana (2007). Specifically, for the

purposes of computing reliable standard errors they recommend a simple average of the sam-

ple analogue of the outer product of the score expression for m(η) in Proposition 1, and an

alternative estimator based on the following expression:

m(η) = 
n
[ (θ)η] [ (θ)η]

 



¯̄̄
η
o
+ ( − 2)[−1(θ)|η]

which is valid as long as [−1|η0] is bounded, which in the Gaussian case, for instance, requires
 ≥ 3.

4.1 Sampling distribution of the different estimators

Although we are mostly interested in the test statistics, it is convenient to study first the

finite sample distributions of the estimators of a, which are not affected by the estimation of

their asymptotic covariance matrices.

In this sense, Figure 6 presents box-plots of the unrestricted -based PML, HLV and GMM

estimators for eight different DGP’s that we have considered. As usual, the central boxes describe

the first and third quartiles of the sampling distributions, as well as their median. The maximum

length of the whiskers is one interquartile range.

By and large, the behaviour of the different estimators is in accordance with what the as-

ymptotic results would suggest. The only “surprises” are the fact that the dispersion of the

17This one-step ML estimator is asymptotically equivalent to ̂. An alternative asymptotically equivalent

estimator of ̂ will update the whole of θ̂ by means of a simple BHHH correction based on s.
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distribution of the HLV estimator is systematically larger than the distribution of the ML esti-

mator under correct specification of the latter, and that this result continues to hold even when

the innovations follow a discrete mixture of normals. The other interesting results occur when

the joint distribution of r and  is elliptical, so that the conditional mean of r given 

continues to be linear in  but the conditional variance is no longer constant. In this case

not only the HLV and ML estimators of a remain consistent despite this misspecification, as we

discussed in section 3.2, but they are also more efficient than the GMM estimator.

4.2 Sampling distribution of the associated test statistics

The first question that we need to address is whether the asymptotic distribution under the

null attributed to the joint Wald test statistics introduced in section 2.3 is reliable in finite sam-

ples. To do so, we employ the -value discrepancy plots proposed by Davidson and MacKinnon

(1998). Let  denote the simulated value of a given test statistic, and let  be the asymptotic

-value of , that is the probability of observing a value of the test statistic at least as large

as  according to its asymptotic distribution under the null. Let also ̂ () for  ∈ (0 1) be
the empirical distribution function of  i.e. the sample proportion of 

0
 which are not greater

than . A -value discrepancy plot is a plot of [̂ ()− ] against , i.e. a plot of the difference

between actual and nominal size for a range of nominal sizes. If the candidate distribution for

 is correct, then the -value discrepancy should be close to zero.

The left panels of Figures 7a-7c show -value discrepancy plots of the joint tests (“Wald

statistics”) of 0 : a = 0 for the six DGPs that we have considered. The most striking fact

that we find is that the HLV-based joint and individual tests have systematically the largest size

distortions irrespective of whether the assumptions that justify them are correct. In contrast, the

GMM tests that use expression (9) to compute the asymptotic weighting matrix have finite sample

sizes that are close to their asymptotically equivalent in all cases, including when the correct

expression should be (19). As for the tests that use the unrestricted -based PML estimator,

there is also little to choose between the robust and non-robust versions, which are both well

behaved even when the conditional distribution is heteroskedastic. The only exception seems

to be the discrete mixture of normals example (Figure 7b), in which case the non-robust test

is surprisingly better behaved than the robust one. As expected, though, when the distribution

of the innovations is asymmetric (Figure 7c), the HLV and ML tests present considerable size

distortions.

We can complement our finite sample analysis with - , which is another
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graphical method proposed by Davidson and MacKinnon (1998) to display the simulation evi-

dence on the power of the different tests. We can define ̂ ∗() for  ∈ (0 1) as the empirical
distribution function of the asymptotic -values under the null when the data are generated under

the alternative. A size-power curve is a plot of test power versus actual test size for a range of

test sizes.

The right panels of Figures 7a-7c show size-power curves for the same six DGPs. Not surpris-

ingly, the size-adjusted powers of the robust tests are very close to the corresponding non-robust

tests in all cases. Contrary to the asymptotic results, though, GMM tests seem to have more

power than the others under Gaussian innovations. In all other cases, in contrast, the HLV-based

tests are more powerful than the GMM ones, but less so that the ones that use the unrestricted

-based PML estimator —except in the discrete mixture of normals example. In addition, the

differences in power between HLV and -based PML tests are very small in the case of Kotz and

discrete mixture of normals innovations, despite the fact that the -based estimator is suboptimal.

5 Empirical application

In this section we use the alternative estimators previously discussed to test the mean-variance

efficiency of the US aggregate stock market portfolio using monthly data over the period July

1962 to June 2007 (540 observations). As for r, we consider two different sets of  = 5 portfolios

from Ken French’s Data Library: one grouped by industry, and another one sorted by their book-

to-market ratio. Specifically, each NYSE, AMEX, and NASDAQ stock is assigned to an industry

portfolio at the end of June of year  based on its four-digit SIC code at the time.18 Similarly,

quintile portfolios are formed on BE/ME at the end of each June using NYSE breakpoints. The

BE used in June of year  is the book equity for the last fiscal year end in  − 1, while ME is
price times shares outstanding at the end of December of − 1. The excess return on the market
portfolio corresponds to the value weighted return measure on all NYSE, AMEX and NASDAQ

stocks in CRSP, while the safe asset is the 1-month TBill return from Ibbotson and Associates

(see http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html for further

details).

The most obvious characteristic of these portfolios for our purposes is their leptokurtosis.

The LM test of normality against the alternative of multivariate Student  proposed by Fioren-

18Industry definitions: Cnsmr: Consumer Durables, NonDurables, Wholesale, Retail, and Some Services (Laun-

dries, Repair Shops). Manuf: Manufacturing, Energy, and Utilities. HiTec: Business Equipment, Telephone and

Television Transmission. Hlth: Healthcare, Medical Equipment, and Drugs. Other: Other — Mines, Constr,

BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance.
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tini, Sentana and Calzolari (2003) yields a value of 3173.71 for the industry portfolios residuals

from (1), and 1997.83 for the book to market ones. This confirms our empirical motivation for

estimation and testing procedures that exploit such a prevalent feature of the data.

Table 1a presents the parameter estimates and (asymptotic) robust standard errors for the

GMM, HLV and -based ML estimators of the intercept of model (1), while Table 1b reports

the corresponding joint tests of 0 : a = 0.
19Our results for industry portfolios indicate that the

Student -based joint test clearly rejects the efficiency of the market portfolio, even though the

univariate -tests would not, which confirms the recommendation of Gibbons, Ross and Shanken

(1989) to increase power by taking into account the covariance structure of the residuals in many

empirically relevant situations. Our results also show that the joint GMM test is borderline,

while the HLV-based test fails to reject, which is in line with the results reported by Vorkink

(2003).

Given the expressions for the test statistics in sections 2 and 3, the contradicting conclusions

obtained with the different tests must be due to three causes. First, the point estimates of

a are somewhat different, the HLV being on average closer to 0 in magnitude. Second, the

point estimates of the idiosyncratic covariance matrix Ω also differ, although even less so. More

importantly, the scalar factors that multiply Ω−1 are noticeably different too. In particular, they

are 1.87 and 1.98 for the robust and non-robust versions of the ML tests, but only 1.43 for the

HLV test. Both our Monte Carlo results and the results reported in Fiorentini and Sentana

(2007) indicate the unreliable nature of the non-parametric estimates of m in finite samples

In contrast, all three tests reject the mean-variance efficiency of the market portfolio relative

to the book-to-market sorted portfolios of Fama and French (1993). Still, we also find important

differences in the estimates of the scalar factors mentioned in the previous paragraph.

As we saw in section 3.3, though, both parametric and semiparametric elliptically-based

procedures are sensitive to the assumption of elliptical symmetry. For that reason, we follow

Mencía and Sentana (2009), and test the null hypothesis of multivariate Student  innovations

against the multivariate asymmetric  distribution in (24).20 The values of the test statistic and

19A full set of results is available on request.
20Mencía and Sentana (2009) also propose LM tests for kurtosis against symmetric generalised hyperbolic

distributions, as well as joint tests for asymmetry and kurtosis. Their kurtosis statistic tests that (1 + )
−1 ≡

 = 1 under the maintained hypothesis of β = 0, where  is the second tail shape parameter of a generalised

inverse Gaussian (GIG) distribution and β is the  × 1 vector of coefficients that appears in (24). In effect,
this amounts to testing that the tail behaviour of the multivariate  distribution adequately reflects the kurtosis

in the data. In turn, the asymmetry statistic tests that β = 0 under the maintained assumption that  = 1.

Unfortunately, the kurtosis-based test requires finite fourth moments under the null hypothesis, while the ML

estimates of , which is the reciprocal of the degrees of freedom of the multivariate  distribution, are above .25.

in the two data sets that we consider
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associated -values are 10003 and 0075, respectively, for the industry sorted portfolios; and

9880 and 0079 for the book-to-market sorted portfolios. Therefore, we cannot reject the null

hypothesis that the distribution of r conditional on  is multivariate Student  at conventional

levels.

Finally, we perform a simple conditional homoskedasticity test by regressing the squared OLS

residuals from the regression of  on a constant and , ̂
2
 say, on a constant, the market excess

return  and its squared 
2
 for  = 1      (see White (1980)). The results in Table 2 suggest

that the distribution of the innovations conditional on  is rather heteroskedastic, as we reject

the null hypothesis at 5% significance level in almost all cases. This result confirms the need to

use the robust estimates of the asymptotic covariance matrix of the -based ML procedures in

Proposition 7, as well as the problems that the HLV standard errors face, since they are based

on Proposition 1 instead.

6 Summary and directions for further research

In this paper we study the efficiency-consistency trade-offs of three approaches to test the

mean-variance efficiency of a candidate portfolio with returns  in excess of the riskless asset

with respect to a set of  assets with excess returns r. In particular, we consider tests based on

the GMM approach advocated by MacKinlay and Richardson (1991), the elliptically symmetric

semiparametric methods proposed by HLV, and an unrestricted parametric procedure that makes

the assumption that, conditional on the reference portfolio, the excess returns of the original assets

are independent and identically distributed as a multivariate . We would like to emphasise,

though, that most of our results apply not only to the multivariate , but also to any other

elliptically-based likelihood estimator. The main advantage of the Student  for our purposes is

that we can make explicit its limiting relationship to the Gaussian distribution.

We also apply these different procedures to test the mean-variance efficiency of the US ag-

gregate stock market portfolio using monthly data over the period July 1962 to June 2007. The

results that we obtain for industry portfolios indicate that the Student -based test clearly re-

jects the efficiency of the market portfolio, while the GMM test is borderline, and the HLV based

test fails to reject. In contrast, all three tests reject the mean-variance efficiency of the market

portfolio relative to the book-to-market sorted portfolios of Fama and French (1993). In view of

the trade-offs between efficiency and consistency that we characterise in our theoretical analysis,

the results of the misspecification tests that we compute suggest that it is probably worth using
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the multivariate  distribution for the purposes of testing mean-variance efficiency, as long as

empirical researchers bear in mind that such a distributional assumption may be wrong, and

robustify their inferences accordingly.

Morales (2009) extends our results in two interesting directions. First, she considers a sit-

uation in which one wants to test the mean-variance efficiency of several reference portfolios

simultaneously. She also allows both a and b to linearly depend on a vector of predictor vari-

ables known at time − 1, x−1 say, and in this way test for conditional mean variance efficiency,
as discussed in Beaulieu, Dufour and Khalaf (2007a) and others.

The fact that the number of assets that we consider in our Monte Carlo experiments and in our

empirical application is fairly small means that they are unlikely to be affected by the criticism

raised by Gibbons, Ross and Shanken (1989) in relation to the sensitivity of the asymptotic (in

 ) distribution of mean-variance efficiency tests to the cross-sectional dimension  . However,

situations in which  cannot be regarded as negligible would require different asymptotic

approximations to the one used in this paper.

We could increase the efficiency of the GMM estimator of a discussed in section 2.2.2 and the

power of the associated test procedures by including additional moment restrictions that exploit

the elliptical distribution of the innovations. For instance, we could follow Renault and Sentana

(2003), and consider moment conditions of the form:

 {ε(γ)⊗ [ε(γ)ε
0
(γ)]} = 0 (28)

GMM estimators that combine (8) with this moment condition will typically have a lower as-

ymptotic variance than γ̂ . In fact, we could regard the HLV estimator as a GMM estimator

that optimally exploits the ellipticity of ε∗ , which means that in principle such augmented GMM

procedures could achieve the elliptically symmetric semiparametric efficiency bound I(φ0).
Like the HLV estimator, though, such GMM estimators will also become inconsistent if (28) does

not hold, but their main advantage is that GMM integrates estimation and testing.

Importantly, we have not looked at mean-variance efficiency tests when a riskless asset is

not available (as in e.g. Shanken (1986), Zhou (1991), and more recently Beaulieu, Dufour and

Khalaf (2007b)). In those circumstances, it is important to distinguish between mean-variance

efficiency tests on the one hand, and spanning tests on the other, in which the null hypothesis

involves restrictions on both intercepts and slopes of the multivariate regression model (1) (see

Huberman and Kandel (1987), and De Roon and Nijman (2001) for a recent survey, as well

as Peñaranda and Sentana (2008) for a comparison of alternative GMM procedures). Another
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example in which the null hypothesis involves restrictions on both intercepts and slopes of a

multivariate regression would be tests of the uncovered interest parity hypothesis (see Hodgson,

Linton and Vorkink (2004)).

Finally, to test the validity of the specific distributional assumption for ε∗ made for the

purposes of obtaining γ̂ in our empirical application, we have used the asymmetric LM test of

Mencía and Sentana (2009), who use the generalised hyperbolic family as the nesting distribution.

And although there are many other tests of ellipticity in the statistical literature (see e.g. Beran

(1979)), for the purposes of testing mean-variance efficiency we could also use the Hausman

specification tests proposed by Fiorentini and Sentana (2007), which compare the consistent but

inefficient estimator â with the efficient but potentially inconsistent estimators â and

â. An alternative procedure would be a moment test that checks whether the information

matrix equality for m implicit in Proposition 1 holds, as suggested by Fiorentini and Sentana

(2007). All these issues constitute interesting avenues for further research.
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Appendix

A Proofs

Proposition 1:

The result follows directly from Proposition 1 in Fiorentini and Sentana (2007) by using the

fact that in the case of model (1)

Z0(θ) = Ω−12
(a+ b)

θ0
= Ω−12

£
(1 )⊗ I 0

¤
(A1)

and

Z0(θ) =
1

2
(Ω−12 ⊗Ω−12)(Ω)

θ0
=
1

2
(Ω−12 ⊗Ω−12) ¡ 0 D

¢
 (A2)

Proposition 2

The asymptotic normality of the ML estimator of a follows from standard arguments by

combining a central limit theorem for the score with a uniform law of large numbers for the

Hessian matrix under the explicit assumptions that ε∗ is  and both  and 
2
 are strictly

stationary process with absolutely summable autocovariances. The expression for the asymptotic

covariance matrix is a direct product of the partitioned inverse formula.

Proposition 3

The expressions for the matrices A(φ), B(φ) and C(φ) follow directly from replacing
(A1) and (A2) in Proposition 2 in Fiorentini and Sentana (2007). The asymptotic normality of

the GMM estimator of γ can be obtained using the arguments in the proof of Corollary 1.

Proposition 4

The first part of the Proposition follows directly from the first part of Proposition 15 in

Fiorentini and Sentana (2007). The second part of the distribution also follows directly from the

second and third parts of the same proposition because mesokurtic elliptical distributions satisfy

their condition (39), as Fiorentini and Sentana (2007) explain in their proof.

Proposition 5

The first part of the Proposition follows directly from the first part of Proposition 16 in

Fiorentini and Sentana (2007). Specifically, let us initially keep  fixed to some positive value.
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Since ε is elliptical, it can be written as ε
∗
 =
√
 u where u is uniformly distributed on the

unit sphere surface in R and   is a non-negative random variable independent of u. Since

(γ0υ0 ) =
1


ε0(γ0)Υ

−1(υ0)ε(γ0) =
 0


 

where   = (γ0υ0  0), we can write the blocks of the score corresponding to γ, υ and  as

s(γ0υ0   ) =

µ
1



¶
⊗ 1√


Υ−12(υ0) [( 0) ]

p
( 0)

√
 u (A3)

s(γ0υ0   ) =
1

2

0[Υ(υ0)]
υ

h
Υ(υ0)

−12 ⊗Υ(υ0)−12
i

(A4)

×
n
 [( 0) ]

 0


 uu

0
 − I

o
and

(γ0υ0   ) =
1

2
0(I)

n
 [( 0)  ]

 0


 uu

0
 − I

o
 (A5)

Then, it follows that  [s(γ0υ0   )| −1;ϕ0] = 0 regardless of  and  because of the

serial and mutual independence of   and u, and the fact that (u) = 0.

If we define ∞() as the value that solves the implicit equation



∙
 + 1

1− 2 + ( 0) 

 0



 


− 1
¯̄̄̄
ϕ0

¸
= 0 (A6)

then it is straightforward to show that

 [s(γ0υ0 ∞() )| −1;ϕ0] = 0

 [(γ0υ0 ∞() )| −1;ϕ0] = 0

by using the fact that (uu
0
) = −1I .

If we choose ∞ as the solution to the implicit equation

 [(γ0υ0 ∞() )|ϕ0] = 0 (A7)

then it is clear that υ0 ∞(∞) and ∞ will be the pseudo true values of the parameters.

To obtain the variance of the -score and the expected value of the -hessian under misspeci-

fication it is convenient to rewrite the score as

s(ϑ ) =

∙
Z(ϑ) Z(ϑ)

0 Z(ϑ)

¸
× [e(ϑ ) e(ϑ )]

where

Z(ϑ) =

µ
1



¶
⊗ 1√


Υ−12(υ)

Z(ϑ) =
1

2

0[Υ(υ)]
υ

h
Υ(υ)

−12 ⊗Υ(υ)
−12

i
Z(ϑ) =

1

2

1


0(I)
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and

e(ϑ ) =  [(ϑ) ]
p
 (ϑ)u

e(ϑ ) =  { [ (ϑ) ] (ϑ)uu0 − I} 

Then, we can follow exactly the same steps as in the proof of Proposition 1 in Fiorentini and

Sentana (2007) by exploiting that (A6) and (A7) hold at the pseudo-true parameter values φ∞.

Finally, we can show that O(φ∞;ϕ0) and H(φ∞;ϕ0) will be block diagonal between (γυ)
and (  ) if [(ϑ)υ|ϕ0] = 0. But this trivially holds in our parametrization because

|Υ(υ)| = 1 for all υ.

Proposition 6

If we use the subscript  to denote the joint log-likelihood function of R, expression (2) in

Fiorentini and Sentana (2007) implies that

s(ρη) =
μ0(ρ)
ρ

Σ−1 (ρ)+1[²
∗0
 (ρ)²

∗
 (ρ)η] · ²(ρ)

+
1

2

0 [Σ(ρ)]

ρ
[Σ−1 (ρ)⊗Σ−1 (ρ)]

× {+1[²∗0 (ρ)²∗ (ρ)η] · ²(ρ)²0(ρ)−Σ(ρ)} 

In our case,

μ(ρ)

ρ0
=



ρ0

µ


a+ b

¶
=

µ
0 00 00 1 0

I I 0 0 0

¶


As for
 [Σ(ρ)]

ρ0
=



ρ0

µ
2 2b

0

2b 2bb
0 +Ω

¶


it is more convenient to obtain its elements by blocks, so that



ρ0

µ
2
2b

¶
=

µ
0 00 00 0 1

0 2I 0 0 b

¶
and

(2bb
0 +Ω)

ρ0
=
£
0 (I2 +K)(

2
b⊗ I) D 0 (b⊗ b) ¤ 

and then re-arrange them appropriately.

It is also easy to see that

Σ−1(ρ) =

µ
−2 + b0Ω−1b −b0Ω−1
−Ω−1b Ω−1

¶


by exploiting the Cholesky decomposition of Σ(ρ) in (A8).
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We can also tediously prove that

£
Σ−1(ρ)⊗Σ−1(ρ)¤ (Σ(ρ))

2
=

∙
14
0

¸


and
0[Σ(ρ)]

b

£
Σ−1(ρ)⊗Σ−1(ρ)¤ = ¡ −2Ω−1b Ω−1 ⊗ e1+1

¢
where e1+1 is a vector whose first element is one and has zeros in its remaining  positions.

On this basis, we can write

s(ρη) =

∙µ
1



¶
⊗Ω−1

¸
+1[²

∗0
 (ρ)²

∗
 (ρ) ]

£ −b I
¤
²(ρ)

+

µ
0 0

−2Ω−1b Ω−1 ⊗ e1+1

¶


©
+1[²

∗0
 (ρ)²

∗
 (ρ) ]²(ρ)²

0
(ρ)−Σ(ρ)

ª


and

s(ρη) =
1

2
D0



£
Ω−1 ⊗Ω−1

¤


©
+1[²

∗0
 (ρ)²

∗
 (ρ)η]²r(ρ)²

0
r(ρ)−Ω

ª


where ²r() = r − a− b .
In addition,

 (ρη) =
1

22
+1[²

∗0
 (ρ)²

∗
 (ρ)η]()

and

2

(ρη) =

1

24

©
+1[²

∗0
 (ρ)²

∗
 (ρ)η]

2
 ()− 2

ª


where () =  −  .

Finally, the result follows from Proposition 1 in Fiorentini and Sentana (2007) if we exploit

the fact that
0[Σ(ρ)]

b
[Σ−1(ρ)] = 0

and
0[Σ(ρ)]

2
[Σ−1(ρ)] =

1

2

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Specifically,

m(η) = 

½
2+1[²

∗0
 (ρ)²

∗
 (ρ)η]

²∗0 (ρ)²
∗
 (ρ)

 + 1

¯̄̄̄
φ

¾
= 

½
2+1[²

∗0
 (ρ)²

∗
 (ρ)η]



²∗0 (ρ)²
∗
 (ρ)

 + 1
+ +1[²

∗0
 (ρ)²

∗
 (ρ)η]

¯̄̄̄
φ

¾


m(η) =
 + 1

 + 3

∙
1 + 

½
+1[²

∗0
 (ρ)²

∗
 (ρ)η]

²∗0 (ρ)²
∗
 (ρ)

 + 1

¯̄̄̄
φ

¾¸
= 

(
2+1[²

∗0
 (ρ)²

∗
 (ρ)η]



[²∗0 (ρ)²
∗
 (ρ)]

2

( + 1)( + 3)

¯̄̄̄
¯φ
)
+ 1

m(η) = 

∙½
+1[²

∗0
 (ρ)²

∗
 (ρ)η]

²∗0 (ρ)²
∗
 (ρ)

 + 1
− 1
¾
e0(φ)

¯̄̄̄
φ

¸
= −

½
 (θ)

 + 1

+1[²
∗0
 (ρ)²

∗
 (ρ)η]

η0

¯̄̄̄
φ

¾


and the subscript  + 1 in  emphasises the cross-sectional dimension.

Interestingly, note that under Gaussianity I2

(φ) = 0, which confirms that the estimators of

the parameter of the marginal model for  and the conditional model for r will be independent

Proposition 7

Since Σ−12(ρ)[R −μ(ρ)]|−1;ϕ0 ∼  (0 I+1%0), we can write

Σ−12(ρ)[R −μ(ρ)] = 

µ
0p

1− 20ũ

¶
where  is a positive random variable such that (2 ) =  + 1, 20 is a beta random variable

with parameters (12 2) and ũ is an independent uniform on the unit sphere surface in R .

Given that the Cholesky decomposition of Σ(ρ) can be written as

Σ12(ρ) =

µ
 0

b Ω12

¶
(A8)

with Ω12 denoting the Cholesky decomposition of Ω, we can write

R − μ(ρ) =
µ

00

b000 +Ω
12
0 

p
1− 20ũ

¶


where 0 is a random variable on (−1 1) with density (1− 20)
2−1(12 2). This follows

from the symmetry of 0 and the fact that the density of |0| is 2(1 − 20)
2−1(12 2)

because the density of 20 is (
2
0)
−12(1 − 20)

2−1(12 2). As a result, ε(γ0;R) =

r − a0 − b0 = Ω
12
0 

p
1− 20ũ and

ε0(γ0;R)Ω
−1
0 ε(γ0;R) = 2 (1− 20)
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because ũ0ũ = 1.

Let’s now consider the following misspecified model

Ω−12(r − a− b)|φ ∼ (0 I  )

and assume (γ0υ0 ) = ε0(γ0)
−1Υ−1(υ0)ε(γ0) = ( 0)

2
 (1−20). Hence, the blocks of the

score corresponding to γ, υ and  are given by (A3), (A4) and (A5) with 2 (1 − 20) replacing

. Then, the first part of this proposition can be obtained using the arguments in the proof of

the first part of Proposition 4.

The proof of the second part is analogous to the proof of the second part of Proposition 4.

Note, in particular, that having contemporaneous, conditionally heteroskedastic innovations is

innocuous to obtain the relevant expressions since all the scalar termsm
 (φ;ϕ) =

©


 [(ρ)]

¯̄
ϕ
ª

appearing in O(φ∞;ϕ0) and H(φ∞;ϕ0) satisfy


©


 [ (ρ)]

¯̄
ϕ

ª
= 

©


 [(ρ)]

¯̄
ϕ
ª


Finally, our parametrization implies that O(φ∞;ϕ0) and H(φ∞;ϕ0) will be block diagonal
between (γυ) and (  ), as in Proposition 4.
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Table 1

Table 1.a: Intercept estimates in: r = a+ b + u
Industry portfolios

GMM HLV  ML

Category Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err.

Cnsmr 0099 0.091 0026 0.076 0023 0.056

Manuf 0134 0.076 0069 0.063 0123 0.064

SHiTec −0086 0.117 −0064 0.097 −0146 0.099

Hlth 0205 0.146 0072 0.123 0092 0.135

Other 0088 0.087 0016 0.073 0003 0.085

Book-to-market sorted portfolios

GMM HLV  ML

Quintile Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err.

1 −0108 0.062 −0111 0.053 −0121 0.035

2 0040 0.060 −0068 0.050 0018 0.049

3 0151 0.073 0019 0.061 0116 0.062

4 0328 0.087 0105 0.073 0215 0.064

5 0430 0.109 0221 0.093 0308 0.111

Table 1.b: Mean-variance efficiency tests (0 : a = 0)

Industry portfolios

GMM GMM robust HLV  ML  ML robust

Statistic 12056 10911 2194 15226 14365

-value 0034 0053 0822 0009 0013

Book-to-market sorted portfolios

GMM GMM robust HLV  ML  ML robust

Statistic 21350 21417 12837 21846 19772

-value 0001 0001 0025 0001 0001

Notes: Sample: July:1962-June:2007. Industry definitions: Cnsmr: Consumer Durables, Non-

Durables, Wholesale, Retail, and Some Services (Laundries, Repair Shops). Manuf: Manufacturing,

Energy, and Utilities. HiTec: Business Equipment, Telephone and Television Transmission. Hlth:

Healthcare, Medical Equipment, and Drugs. Other: Other — Mines, Constr, BldMt, Trans, Hotels, Bus

Serv, Entertainment, Finance.



Table 2: Conditional heteroskedasticity test

Industry portfolios

Category Cnsmr Manuf HiTec Hlth Other

Statistic 45026 9633 14635 48257 4866

-value 0000 0008 0001 0000 0088

Book-to-market sorted portfolios

Quintile 1 2 3 4 5

Statistic 24070 11748 27480 41262 62098

-value 0000 0003 0000 0000 0000

Notes: July:1962-June:2007. Based on the statistical significance of  = (1 2)
0 in ̂2 =  +

1 + 2
2
+ , where ̂’s are the OLS residuals from a regression of  on a constant and .

The test statistic, 2 —where 2 is the coefficient of determination of the regression—, is distributed

as a 22 under the null hypothesis of conditional homoskedasticity.


