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1 Introduction

Dynamic factor models have been extensively used in macroeconomics and finance since their

introduction by Geweke (1977) and Sargent and Sims (1977) as a way of capturing the cross-

sectional and dynamic correlations between multiple series in a parsimonious way. A far from

comprehensive list of early and more recent applications include not only traditional topics such

as business cycle analysis (see Litterman and Sargent (1979), Stock and Watson (1989, 1991,

1993), Diebold and Rudebusch (1996), Gregory et al (1997), Mariano and Murosawa (2003),

Aruoba et al (2009), Bańbura and Rünstler (2011)) and bond yields (Singleton (1981), Jegadeesh

and Pennacchi (1996), Dungey et al (2000) or Diebold et al (2006)), but also investment (Sargent

(1989)), wages (Engle and Watson (1981)), employment (Quah and Sargent (1993)), commodity

prices (Peña and Box (1987)) house prices (Del Negro and Otrok (2007)), financial contagion

(Mody and Taylor (2007)) or mortality rates (French and O’Hare (2013)).

Like its static counterpart, dynamic factor analysis can be either exploratory or confirmatory

in nature. The goal of exploratory analysis is to maximise the fraction of covariance explained

by the model without using any guidance on the economic interpretation of the common factors.

In confirmatory analysis, in contrast, researchers often rely on economic and finance theory or

previous studies to specify a priori the number of factors, their correlation structure and the

dynamic impact they have on the observable variables. For that reason, Geweke and Singleton

(1981) forcefully argued that in dynamic confirmatory factor models for economic time series

“hypotheses about the relations between the observable time series and the latent factors and

about the properties of the latent factors themselves may be tested”. The purpose of our paper

is precisely to derive such specification tests. In particular, we provide diagnostics for neglected

serial correlation in common and specific factors, as well as for misspecification of the dynamic

impact the former have on the observed variables. We focus on Lagrange Multiplier (LM) tests,

which only require estimation of the model under the null. As is well known, Likelihood ratio

(LR), Wald and LM tests are asymptotically equivalent under the null and sequences of local

alternatives, and therefore they share their optimality properties. In addition to computational

considerations, which are particularly relevant when one is concerned about several alternatives,

an important advantage of LM tests is that they are often easy to interpret as moment tests, so

that rejections provide a clear indication of the directions along which modelling efforts should

focus. We emphasise this moment test interpretation for all our proposals.

Earlier work on specification testing in models with a finite number of series include Engle

and Watson (1980), who explained how to apply the LM testing principle in the time domain for

dynamic factor models with static factor loadings, Geweke and Singleton (1981), who studied LR
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and Wald tests in the frequency domain, and Fernández (1990), who applied the LM principle

in the frequency domain to a multivariate “structural time series model”(see Harvey (1989) for

a comparison of time domain and frequency domain testing methods in that context).

Aside from considering a more general class of models, our main contribution is that our pro-

posed tests are very simple to implement with a few lines of code, and even simpler to interpret.

Once the parameters of a dynamic factor model have been estimated, its correct specification

becomes the hypothesis of interest. Individual or joint score tests focusing on several departures

from this null can then be computed from the auto- or cross-covariances of the smoothed values

of the innovations in the state variables regardless of the complexity of the model estimated

under the null. In this regard, our model validation proposal is entirely analogous to the battery

of LM -based regression diagnostics that accompany the usual OLS output in most econometric

packages. And even though our theoretical derivations make extensive use of spectral methods

for time series, we provide both time domain and frequency domain interpretations of the rel-

evant scores, so researchers who strongly prefer one method over the other could apply them

without abandoning their favourite estimation techniques.

We also explicitly relate our proposals to alternative tests based on one-period-ahead pre-

diction errors, which should be white noise under correct dynamic specification. In particular,

we express those reduced form tests in terms of homogeneous restrictions on the dynamic fac-

tor loadings and idiosyncratic components, which allows us to make them robust to parameter

uncertainty and study their relative power.

To keep the notation to a minimum, we focus on single factor models throughout, which

suffi ce to illustrate our main results, although extensions to multiple factors could be easily

entertained, as in Fiorentini and Sentana (2009). And even though we initially focus on Gaussian

factor models with a diagonal idiosyncratic dynamic covariance structure for pedagogical reasons,

we relax both these assumptions later on.

The rest of the paper is organised as follows. In section 2, we review the properties of

dynamic factor models and their filters. Then, we derive our testing procedures in section 3

under an increasingly weaker set of assumptions, and present a Monte Carlo evaluation of their

finite sample behaviour in section 4. This is followed in section 5 by an empirical illustration

that assesses the dynamic factor model used by Camacho et al (2015) to construct a coincident

indicator for the US. Finally, our conclusions, together with several interesting extensions, can

be found in section 6. Auxiliary results are gathered in appendices.
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2 Theoretical background
2.1 Dynamic factor models

A dynamic, exact, single factor model for a finite dimensional vector of N observed series,

yt, can be defined in the time domain by the system of stochastic difference equations

yt = µ+ c(L)xt + ut, αx(L)xt = βx(L)ft, A(L)ut = B(L)vt,

A(L) = diag[αu1(L), . . . , αuN (L)], B(L) = diag[βu1(L), . . . , βuN (L)],

(ft, v1,t, . . . , vN,t)|It−1;µ,φ ∼ N [0, diag(γf , γv1 , . . . , γvN )],

 (1)

where xt is the common factor, ut the N specific factors, c(L) =
∑n

k=−m ckL
k a vector of N

possibly two-sided polynomials in the lag operator ci(L) (with m or n potentially unbounded),

αx(L) and αui(L) are one-sided polynomials of finite orders px and pui , respectively, while βx(L)

and βui(L) are one-sided polynomials of finite orders qx and qui coprime with αx(L) and αui(L),

respectively, It−1 is an information set that contains the values of vt and ft up to, and including

time t − 1, µ is the unconditional mean vector and φ refers to all the d remaining static and

dynamic second moment parameters, which we assume variation-free.

The dynamic nature of model (1) is the result of three different characteristics:

1. The serial correlation of the common factor xt

2. The serial correlation of the idiosyncratic factors ut

3. The heterogeneous dynamic impact of the common factor on each of the observed variables

through the series-specific distributed lag polynomials ci(L).

To some extent, characteristics 1 and 3 overlap, as one could always write any dynamic factor

model in terms of white noise common factors as follows:

yt = µ+ α
−1
x (L)βx(L)c(L)ft +A−1(L)B(L)vt = µ+∆(L)ξt, (2)

∆(L) =


c1(L)βx(L)α

−1
x (L) βu1(L)α

−1
u1 (L) 0 · · · 0

c2(L)βx(L)α
−1
x (L) 0 βu2(L)α

−1
u2 (L) · · · 0

...
...

...
. . .

...

cN (L)βx(L)α
−1
x (L) 0 0 · · · βuN (L)α

−1
uN
(L)

 , (3)

ξt|It−1;µ,φ ∼ N(0,Γ), ξ′t = (ft, v1,t, . . . , vN,t), Γ = diag(γf , γv1 , . . . , γvN ).

Thus, the assumption of Arma(px, qx) dynamics for the common factor can be regarded as

a parsimonious way of modelling an infinite distributed lag for the dynamic factor loadings (see

sections 3.1 and 3.6 for further details). In any case, we would need to shut down all three sources

to go back to a traditional static factor model (see Lawley and Maxwell (1971)). Cancelling only

one or two of those channels still results in a dynamic factor model. For example, Engle and

Watson (1981) considered models with static factor loadings, while Peña and Box (1987) further

assumed that the specific factors were white noise.
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Nevertheless, when both m and n are finite, the dynamic factor model (1) can be written as

a “static”factor model with m+ n+ 1 common factors (xt+m, . . . , xt−n), a representation that

has been exploited in the recent literature to justify the use of ineffi cient estimation methods

for static factor models (see Bai and Ng (2008) or Stock and Watson (2011)). As we shall see in

section 3.6, though, our proposed testing procedures can also deal with models with no static

factor representation because the dynamic loadings ci(L) are rational functions.

The main difference between the exact model in (1) and the generalised dynamic factor

models considered by Forni, et al (2000), Forni and Lippi (2001, 2011) and Forni et al (2015) is

that it rules out any contemporaneous or dynamic cross-correlation between the idiosyncratic

terms. We revisit this issue in section 3.10. and our concluding remarks.

2.2 Reduced form representation

To obtain the reduced form of a dynamic factor model, we can pre-multiplying both sides of

the first equation in (1) by αx(L)A(L), which yields

αx(L)A(L)(yt − µ) = A(L)c(L)βx(L)ft + αx(L)B(L)vt = mt. (4)

The left hand side corresponds to a diagonal Var, while the right hand side to a restricted Vma

with the following dynamic factor structure: an Ma common factor βx(L)ft, dynamic loadings

A(L)c(L), and Ma specific factors αx(L)B(L)vt.1 Finding the Wold representation of mt, i.e.

mt = (IN +D1L+ . . .+DsL
s)wt = D(L)wt, (5)

with wt|yt−1,yt−2, . . . ∼ N(0,Σ) and the roots of |D(L)| = 1 on or outside the unit circle, is by

no means an easy task. The following multivariate version of the Ar(p) signal plus white noise

(Wn) studied by Dunsmuir (1979) and Dzhaparidze (1986) among others:

yt = µ+ cxt + ut, (1− α1L− . . .− αpLp)xt = ft, ut = vt, (6)

is a notable exception. Equation (4) implies that the Wold decomposition of yt corresponds

to a restricted Varma(p,p) process with scalar autoregressive polynomial and a dynamic single

factor model for the Vma(p) part. More importantly, we show in appendix B that both the

reduced form innovation matrix Σ and all the Wold coeffi cient matrices Dj (j = 1, . . . , p) are

overidentified, with a common exact single factor structure whose factor loadings and idiosyn-

cratic variances are proportional to c and Γu, respectively. Therefore, the reduced form will be

dynamically misspecified when any of three dynamic characteristics of model (1) is misspecified.
1As usual, cancellation between the Var and Vma polynomials can occur for some parameter configurations;

e.g. when the Ar polynomials of the common factor and all the specific ones share some common roots.
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2.3 Spectral density matrix and Wiener-Kolmogorov filter

Under the assumption that yt in (1) is a covariance stationary process, possibly after suitable

differencing or cointegration transformations, as in section 5, its spectral decomposition will be

yt − µ =
∫ π

−π
eiλtdZy(λ), V [dZy(λ)] = Gyy(λ)dλ,

with a spectral density matrix given by

Gyy(λ) = c(e−iλ)Gxx(λ)c
′(eiλ) +Guu(λ), (7)

Gxx(λ) =
βx(e

−iλ)βx(e
iλ)

αx(e−iλ)αx(eiλ)
γf ,

Guu(λ) = A−1(e−iλ)B(e−iλ)ΓuB
′(eiλ)A−1′(eiλ) = diag[Gu1u1(λ), . . . , GuNuN (λ)],

Guiui(λ) =
βui(e

−iλ)βui(e
iλ)

αui(e
−iλ)αui(e

iλ)
γvi .

Thus, Gyy(λ) is the sum of the rank 1 matrix c(e−iλ)Gxx(λ)c′(eiλ) and the diagonal matrix

Guu(λ), thereby inheriting the exact single factor structure of the unconditional covariance

matrix of a static factor model. The fact that the idiosyncratic impact of the common factor on

each of the observed variables is in principle dynamic implies that the spectral density matrix

of yt will generally be complex but Hermitian, even though the spectral densities of xt and uit

are all real because they correspond to univariate processes.

Assuming that Gyy(λ) is not singular at any frequency, the Wiener-Kolmogorov two-sided

filter for the common factor xt at each frequency is given by

dZx
K
(λ) = Gxx(λ)c

′(eiλ)G−1yy(λ)dZ
y(λ), (8)

where Gxx(λ)c′(eiλ)G−1yy(λ) is known as the transfer function of the common factor smoother.

As a result, the spectral density of the smoothed values of the common factors, xKt|∞, will be

GxKxK (λ) = G2xx(λ)c
′(eiλ)G−1yy(λ)c(e

−iλ) (9)

while the spectral density of the final estimation error xt − xKt|∞ will be given by

Gxx(λ)−GxKxK (λ) = Gxx(λ)−G2xx(λ)c′(eiλ)G−1yy(λ)c(e−iλ) = ω(λ).

Similarly, the Wiener-Kolmogorov smoother for the N specific factors will be

dZu
K
(λ) = Guu(λ)G

−1
yy(λ)dZ

y(λ) =
[
IN − c(e−iλ)Gxx(λ)c

′(eiλ)G−1yy(λ)
]
dZy(λ)

= dZy(λ)− c(e−iλ)dZx
K
(λ).

Hence, the spectral density matrix of the smoothed values of the specific factors is given by

GuKuK (λ) = Guu(λ)G
−1
yy(λ)Guu(λ),
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while the spectral density of their final estimation errors ut − uKt|∞ is

Guu(λ)−GuKuK (λ) = Guu(λ)−Guu(λ)G
−1
yy(λ)Guu(λ) = ω(λ)c(e−iλ)c′(eiλ) = Ξ(λ).

Further, the co-spectrum between xKt|∞ and uKt|∞ will be

GxKuK (λ) = Gxx(λ)c
′(eiλ)G−1yy(λ)Guu(λ).

Having obtained these, we can easily obtain the smoother for the innovations in common and

specific factors, fKt|∞, and v
K
it|∞, respectively, by applying to x

K
t|∞ and uKit|∞ the one-sided filters

αx(e
−iλ)/βx(e

−iλ) and αui(e
−iλ)/βui(e

−iλ). Thus, we can derive their joint spectral density,

which plays an important role in our tests, as well as the joint spectral density of their final

estimation errors ft − fKt|∞ and vit − vKit|∞.

Finally, we can obtain the autocovariances of xKt|∞, f
K
t|∞, u

K
t|∞, v

K
t|∞ and their final estimation

errors by applying the usual inverse Fourier transformation cov(zat, zbt−k) =
∫ π
−πe

iλkGzazb(λ)dλ.

Computations can be considerably speeded up by exploiting the Woodbury formula under

the assumption that neither Gxx(λ) nor Guu(λ) are singular at any frequency (see Sentana

(2000) for a generalisation):

|Gyy(λ)| = |Guu(λ)|Gxx(λ)ω(λ),

G−1yy(λ) = G−1uu(λ)− ω(λ)G−1uu(λ)c(e−iλ)c′(eiλ)G−1uu(λ), (10)

ω(λ) = [G−1xx (λ) + c′(eiλ)G−1uu(λ)c(e
−iλ)]−1.

The computational gains arise because Guu(λ) is a diagonal matrix and ω(λ) a scalar (see

appendix A of Fiorentini et al (2018) for further details).

If both N is very large and (1) admits a finite static factor representation, one can accurately

estimate the latent factors using simpler procedures (see Bai and Ng (2008) or Stock and Watson

(2011) and the references therein). But when the cross-sectional dimension is small, the filtered

estimates of the state variables are likely to be heavily influenced by the dynamic specification

of the model, which thus becomes a first order issue. The objective of our paper is precisely to

provide diagnostics for misspecification in Gxx(λ), Guu(λ) and c(e−iλ) in those small N models.

3 Inference procedures
3.1 Identification

The identification by means of homogeneous restrictions of linear dynamic models with

latent variables such as (1) was discussed by Geweke (1977) and Geweke and Singleton (1981),

and more recently by Scherrer and Deistler (1998) and Heaton and Solo (2004) (see also Forni

and Lippi (2001, 2011) and Bai and Wang (2014) for related results). These authors extend
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well known results from static factor models and simultaneous equation systems to the spectral

density matrix (7) on a frequency by frequency basis. Thus, two models will be observationally

equivalent for a Gaussian log-likelihood function if and only if they generate exactly the same

spectral density matrix for the observed variables at all frequencies. As in the traditional case,

there are two different identification issues:

1. the nonparametric identification of common and specific components,

2. the parametric identification of dynamic loadings and factor dynamics within the common

components.

The answer to the first question is easy when Guu(λ) is a diagonal, full rank matrix, as in

(1).2 We can show that for the dynamic single factor model (1), nonparametric identification of

common and idiosyncratic terms is guaranteed when N ≥ 3 provided that at least three series

load on the common factor. The intuition is as follows. We know that the condition above

coincides with the so-called Ledermann bound for single factor models (see e.g. Bekker and ter

Berge (1997) or Scherrer and Deistler (1998), as well as footnote 19). Since it is not possible

to transfer variance from the common to the idiosyncratic components (or vice versa) in those

circumstances, and any model with more than one factor will lead to some singular idiosyncratic

variance, we can uniquely decompose Gyy(λ) into the rank one matrix c(e−iλ)Gxx(λ)c′(eiλ) and

the full rank matrix Guu(λ) in this way.

The separate identification of c(e−iλ) and Gxx(λ) is trickier, as we can always write any

dynamic factor model (up to time shifts) in terms of white noise common factors, as in (2).

But it can be guaranteed (up to scaling and sign changes) if in addition the dynamic loading

polynomials ci(L) are one-sided of finite order and jointly coprime, so they do not share a

common root across all N series (see theorem 3 in Heaton and Solo (2004) for a more formal

argument along these lines).3 The only remaining issue is the unconditional scaling of the

common factor, which we can achieve by normalising the variance of ft to 1.4

In this paper we mostly focus in hypothesis tests of px = dx vs px = dx + 1 or pui = dui vs

pui = dui + 1, or the analogous hypotheses for qx and qui , although we can easily handle higher

order alternatives, as we explain at the end of section 3.4. In addition, we are interested in testing

the null hypothesis that the maximum lag order of the dynamic loadings is n instead of n+ 1.

For that reason, we henceforth maintain the assumption that the model is identified both under

the null and under the Ar and Ma versions of all those different alternatives (see Fiorentini

2Scherrer and Deistler (1998) refer to this situation as the Frisch case.
3The one-sided restriction is without loss of generality in models with m and n finite because any shift in the

dating of the common factor can be exactly matched by an opposite shift in the timing of the dynamic loadings.
4Other symmetric scaling assumptions would normalise V (xt), or some norm of the loadings vector c0 or their

long run counterparts c(1). Alternatively, we could asymmetrically fix one element of c0 or c(1) to 1.
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and Sentana (2016) for the effects of lack of identification under some analogous alternatives in

Ucarima models). This will indeed be the case for the models we consider in the Monte Carlo

experiment and empirical application in sections 4 and 5, respectively, for which the conditions

in this section guarantee identification both under the null and under all those alternatives.

3.2 Maximum likelihood estimation in the frequency domain

Let

Iyy(λ;µ) =
1

2πT

∑T

t=1

∑T

s=1
(yt − µ)(ys − µ)′e−i(t−s)λ (11)

denote the Hermitian positive semidefinite periodogram matrix of yt and λj = 2πj/T (j =

0, . . . T − 1) the usual Fourier frequencies. If we assume that Gyy(λ;φ) is positive definite at all

frequencies,5 the so-called Whittle (1962) discrete,6 spectral approximation to the log-likelihood

function is LT (µ,φ) =
∑T−1

j=0 `(λj ;µ,φ), where

`(λ;µ,φ) = −N
2
ln(2π)− 1

2
ln |Gyy(λ;φ)| −

1

2
tr[G−1yy(λ;φ)2πIyy(λ;µ)]. (12)

Expression (11), though, is far from ideal from a computational point of view, and for that

reason we make use of the Fast Fourier Transform (FFT). Specifically, given the T ×N original

real data matrix Y = (y1, . . . ,yt, . . . ,yT )
′, the FFT creates the centred and orthogonalised

T ×N complex data matrix Zy = (zy0 , . . . , z
y
j , . . . , z

y
T−1)

′ by effectively premultiplying Y− ιTµ′

by the T ×T Fourier matrix W. On this basis, we can easily compute Iyy(λj) as 2πzyj zy∗j , where

∗ denotes complex conjugate transpose. Hence, LT (µ,φ) becomes

−NT
2
ln(2π)− 1

2

∑T−1

j=0
ln |Gyy(λj ;φ)| −

2π

2

∑T−1

j=0
zy∗j G−1yy(λj ;φ)z

y
j ,

which can be regarded as the log-likelihood function of T independent but heteroskedastic com-

plex Gaussian observations.

But since zyj does not depend on µ for j = 1, . . . , T −1 because ιT is proportional to the first

column of the orthogonal Fourier matrix and zy0 = (ȳT − µ), where ȳT is the sample mean of

yt, it immediately follows that the MLE of µ will be ȳT , so from now on we focus on demeaned

variables, maximising the criterion function LT (ȳT ,φ) with respect to all the remaining static

and dynamic second moment parameters in φ over the admissible parameter space Φ ⊆ Rd. It

immediately follows that the score with respect to those parameters is

sφT (φ) =
∑T−1

j=0
sφj(φ),

sφj(φ) =
1

2
{∂vec′ [Gyy(λj ;φ)] /∂φ}M(λj ;φ)m(λj ;φ), (13)

m(λj ;φ) = vec[2πzycj zy′j −G′yy(λj ;φ)], (14)

M(λj ;φ) = G−1yy(λj ;φ)⊗G′−1yy (λj ;φ), (15)

5Otherwise, a linear combination of the components of the y′ts at frequency λ would be identically 0.
6There is also a continuous version which replaces sums by integrals (see Dusmuir and Hannan (1976)).
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where zycj = zy∗′j is the complex conjugate of zyj .

The information matrix is block diagonal between µ and the elements of φ, with the (1,1)-

element being G−1yy(0) and the (2,2)-block being

I(φ) = 1

4π

∫ π

−π
{∂vec′ [Gyy(λj ;φ)] /∂φ}M(λ;φ){∂vec′ [Gyy(λj ;φ)] /∂φ}∗dλ, (16)

a consistent estimator of which will be provided by either by the outer product of sφj(φ) or by

Φ(φ) =
1

2T

∑T−1

j=0
{∂vec′ [Gyy(λj ;φ)] /∂φ}M(λj ;φ){∂vec′ [Gyy(λj ;φ)] /∂φ}∗. (17)

In fact, by selecting an artificially large value for T in (17), one can approximate (16) to any

desired degree of accuracy.

Formal results showing the consistency and asymptotic normality of the resulting ML esti-

mators in identified dynamic latent variable models under suitable regularity conditions were

provided by Dunsmuir (1979) and Dzhaparidze (1986) among others, who generalised earlier

results for Varma models by Hannan (1970) and Dunsmuir and Hannan (1976). Those authors

also showed the asymptotic equivalence between time and frequency domain ML estimators and

the validity of the trinity of classical hypothesis tests in this context. In addition, they explicitly

acknowledged the possibility that the normality assumption does not hold, in which case the

criterion function (12) must be understood as a pseudo log-likelihood. Appendix D provides

a precise statement of Dunsmuir’s (1979) regularity conditions for the dynamic factor model

in (1), and derives the asymptotic covariance matrix of the Gaussian estimators. Importantly,

the models we consider in the Monte Carlo experiments in section 4 satisfy stronger versions of

those conditions.

To increase the speed and accuracy of the estimators and their standard errors, we can make

use of the numerically reliable and fast to compute expressions for the Jacobian of vec [Gyy(λ)]

and the spectral scores sφj(φ) in appendix C of Fiorentini et al (2018), whose appendix E

includes analogous formulae for the information matrix (16). Those expressions make extensive

use of the complex version of the Woodbury formula in (10).

3.3 The minimal suffi cient statistics for {xt}
In any given realisation of the vector process {yt}, the values of {xt} could be regarded as a

set of T parameters. With this interpretation in mind, we can define xGt|∞ as the spectral GLS

estimator of xt through the transformation

dZx
G
(λ) = [c′(eiλ)G−1uu(λ)c(e

−iλ)]−1c′(eiλ)G−1uu(λ)dZy(λ).

Similarly, we can define uGt|∞ though

dZu
G
(λ) = {IN − c(e−iλ)[c′(eiλ)G−1uu(λ)c(e

−iλ)]−1c′(eiλ)G−1uu(λ)}dZy(λ).
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It is then easy to see that the joint spectral density of xGt|∞ and uGt|∞ will be[
Gxx(λ)+[c

′(eiλ)G−1uu(λ)c(e
−iλ)]−1 0′

0 Gyy(λ)−c(e−iλ)[c′(eiλ)G−1uu(λ)c(e
−iλ)]−1c′(eiλ)

]
, (18)

with the second block being of rank N − 1. Since the Jacobian of this orthogonalisation is

1, we can factorise the spectral log-likelihood function of yt as the sum of the log-likelihood

function of xGt|∞, which is univariate, and the log-likelihood function of uGt|∞. Importantly,

the parameters characterising Gxx(λ) only enter through the first component. In contrast, the

remaining parameters affect both components. Moreover, we can easily show that

1. xGt|∞ = xt + ζ
G
t|∞, with xt and ζ

G
t|∞ orthogonal at all leads and lags

2. The smoothed estimator of xt obtained by applying the Wiener-Kolmogorov filter to xGt|∞

coincides with xKt|∞.

This confirms that xGt|∞ constitute minimal suffi cient statistics for xt, thereby generalising

earlier results by Jungbacker and Koopman (2015), who considered models in which c(e−iλ) = c

for all λ, and Fiorentini et al (2004), who looked at the related class of factor models with time-

varying volatility (see also Gouriéroux et al (1991)). In addition, the degree of unobservability

of xt depends exclusively on the size of [c′(eiλ)G−1uu(λ)c(e
−iλ)]−1 relative to Gxx(λ) (see Sentana

(2004) for a closely related discussion).

3.4 Neglected serial correlation in the common factor

We would like to test the null hypothesis H0 : ψx1 = 0 in the alternative model

yt = µ+ c(L)xt + ut, (1− ψx1L)αx(L)xt = βx(L)ft, A(L)ut = B(L)vt.

Given the spectral density of the dynamic GLS estimator of the common factor in (18),

∂GxGxG(λ)/∂ψx1 = ∂Gxx(λ)/∂ψx1.

Since ψx1 only enters through the marginal log-likelihood of x
G
t|∞, its score will be

1

2

∑T−1

j=0
[∂Gxx(λ)/∂ψx1]G

−1
xGxG

(λj)[2πIxGxG(λj)−GxGxG(λj)].

But ∂Gxx(λ)/∂ψx1 = 2 cosλGxx(λ) when ψx1 = 0, so after some straightforward algebraic

manipulations, we can show that this score can be written under the null as∑T−1

j=0
cosλjG

−1
xx (λj)[2πIxKxK (λj)−GxKxK (λj)] =

∑T−1

j=0
cosλj [2πIfKfK (λj)−GfKfK (λj)].

Hence, the time domain counterpart to the spectral score with respect to ψx1 is (asymptotically)

proportional to the difference between the first sample (circulant) autocovariance of fKt|∞ and

its theoretical counterpart under H0. Thus, the only difference with a situation in which xt is

10



observable is that the autocovariance of fKt|∞ is no longer 0 when ψx1 = 0, although it approaches

0 as the signal to noise ratio increases, in which case our proposed test would converge to the

usual Breusch (1978) - Godfrey (1978) LM test for neglected serial correlation.

Let us illustrate our procedure in a simple example. Imagine that the model under the

alternative is a second order version of (6). The results in section 2.6 of Fiorentini and Sentana

(2013) imply that xKt|∞ will have the autocorrelation structure of an Ar(2) when ψx1 = 0, while

fKt|∞ will follow an Ar(1) with first order autocovariance (c′Γ−1c)αx1/(1− α2fK ), where

αfK =
{
1 + α2x1 + (c

′Γ−1c)−
√
[(1 + αx1)2 + (c′Γ−1c)][(1− αx1)2 + (c′Γ−1c)]

}
/(2αx1).

Therefore, the larger (c′Γ−1c) is, the closer fKt|∞ will be to white noise. In general, the LM test

of H0 : ψx1 = 0 will simply compare the first sample autocovariance of fKt|∞ to its theoretical

value above. This interpretation is in line with Maravall’s (1987) suggestion that large discrep-

ancies between the theoretical and empirical autocovariance functions of the estimators of the

unobserved components provide an indication of model misspecification in Ucarima models.

However, our proposed LM statistics carry out this comparison as formal statistical tests. In ad-

dition, an important advantage of our frequency domain approach is that we implicitly compute

the required autocovariances without explicitly obtaining the time processes for the smoothed

estimates of the unobserved components through the Riccati equation.

Unfortunately, the approach that we have used to obtain the score for neglected autocor-

relation in the common factor cannot be generally applied to the specific factors because the

parameters in Guu(λ) affect both components of the orthogonalised spectral log-likelihood func-

tion. Nevertheless, we can start from first principles by exploiting the fact that

∂vec[Gyy(λ)]/∂ψx1 = [c(e
iλ)⊗ c(e−iλ)]∂Gxx(λ)/∂ψx1.

Not surprisingly, if we introduce these derivatives in the formula for the spectral score with

respect to ψx1, we end up with exactly the same frequency-domain and time-domain expressions.

Empirical researchers often assume that the common factors are white noise for identification

purposes, so that Gxx(λ) = 1 under the null. Since we make no assumptions on px and qx,

our tests trivially apply in that situation too. Similarly, generalisations to test Arma(p,q)

vs Arma(p+k,q) in the common factor are straightforward, as they only involve higher order

autocovariances of fKt|∞. Moreover, it is easy to show that Arma(p+k,q) and Arma(p,q+k)

multiplicative alternatives are locally asymptotically equivalent, as in the case of univariate

tests for serial correlation in observable time series (see e.g. Godfrey (1988)). Finally, we could

also consider (multiplicative) seasonal alternatives.
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3.5 Neglected serial correlation in specific factors

Next, we focus on the null hypothesis H0 : ψu1 = 0 in the alternative model

yt = µ+ c(L)xt + ut, αx(L)xt = βx(L)ft, [I− diag(ψu1)L]A(L)ut = B(L)vt,

where ψ′u1 = (ψu11, . . . , ψuN1). In this case, we have that

∂vec[Gyy(λ)]/∂ψ
′
u1 = EN · ∂vecd[Guu(λ)]/∂ψ

′
u1 ,

where E′N = (e1e
′
1| . . . |eNe′N ), with (e1| . . . |eN ) = IN , is the unique N2 ×N “diagonalisation”

matrix that transforms vec(A) into vecd(A) as vecd(A) = E′Nvec(A) (see Magnus (1988)).

Straightforward algebra implies that the score with respect to ψui1 under the null will be∑T−1

j=0
cosλjG

−1
uiui(λj)[2πIuKi uKi

(λj)−GuKi uKi (λj)] =
∑T−1

j=0
cosλj [2πIvKi vKi

(λj)−GvKi vKi (λj)].

Thus, the time domain counterpart to the spectral score with respect to ψui1 will be proportional

to the difference between the first sample autocovariance of vKit and its theoretical value under

H0. Joint tests that look at several idiosyncratic terms together, as well as the common factor,

can be easily obtained by combining the different scores involved. As we shall see in sections 4.2

and 5, though, the individual tests are rather good at identifying the source of the rejection.

3.6 Additional lags in the dynamic factor loadings

As we mentioned in section 2.1, the dynamic nature of model (1) is due to three char-

acteristics: 1) the serial correlation of the common factor xt; 2) the serial correlation of the

idiosyncratic factors ut and 3) the heterogeneous dynamic impact of the common factor on each

of the observed variables through the cross-sectionally heterogeneous dynamic loadings ci(L).

We have already discussed dynamic specification tests for the first two characteristics in

sections 3.4 and 3.5, respectively, so in this section we concentrate in the last one. For the sake

of brevity, we focus on multiplicative alternatives involving a single additional lag, although it is

straightforward to consider additive alternatives, multiple lags or indeed combinations of leads

and lags. Specifically, we look at the null hypothesis H0 : ψc = 0 in the alternative model

yt = µ+ [(ιN −ψcL)� c(L)]xt + ut, αx(L)xt = βx(L)ft, A(L)ut = B(L)vt, (19)

with � denoting Hadamard products and

(ιN −ψcL) = (1− ψc1L, . . . , 1− ψcNL)
′.

Given that the dynamic loadings become

(ιN −ψcL)� c(L) =
∑n

k=−m
ckL

k −
∑n+1

k=−m+1
(ck−1 �ψc)Lk

12



under the alternative, we will have that the score corresponding to ψc will be given by the sum

across frequencies of terms of the form

−
∑n+1

k=−m+1
G−1uu(λ)ck−1{e−ikλ[2πI′xKuK (λ)−G′xKuK (λ)] + e

−ikλ[2πIuKxK (λ)−GuKxK (λ)]}.

The time domain analogue to this expression is easiest to understand with white noise idio-

syncratic components. Then, the score with respect to ψci evaluated under H0 would be exactly

proportional to the difference between the sample and population (circulant) covariance of uit

with the distributed lag
∑n+1

k=−m+1 ci,k−1x
K
t−k. More generally, it will contain the difference be-

tween the sample and population covariance of vit with the distributed lag
∑n+1

k=−m+1 ci,k−1x
∗K
i,t−k,

where x∗Ki,t−n−1 is the smoothed value of the (n+ 1)
th lag of the GLS-transformed regressor

x∗i,t = αui(L)β
−1
ui (L)xt.

Importantly, we obtain the same score (with an opposite sign) if we consider the alternative

(1− ψciL)
−1ci(L) = ci(L)

∑∞

s=0
ψsciL

s, (20)

for which there is no longer a static factor model representation with less than N factors.

An interesting special case arises if we consider the following restricted version of (20):

yt = µ+ [(1− ψcL)−1c(L)]xt + ut,

so that the null hypothesis is H0 : ψc = 0. Given that we can write this alternative model as

yt = µ+ c(L)x∗t + ut, (1− ψcL)αx(L)x∗t = βx(L)ft,

the spectral score with respect to a common value of ψc is numerically identical to the score

of an additional autoregressive term ψx in the process for x
∗
t . This result confirms the partial

substitutability of dynamics in the common factor by dynamics in the factor loadings that we

mentioned in section 2.1. It also implies that we cannot simultaneously test the null hypotheses

H0 : ψc = 0 and H0 : ψx = 0 because the latter is implied by the former.
7

3.7 Parameter uncertainty

So far we have implicitly assumed the true values of the parameters of model (1) are known.

In practice, those parameters will have to be estimated under the null. Maximum likelihood

estimation of the dynamic factor model parameters can be done either in the time domain us-

ing the Kalman filter or in the frequency domain, as explained in section 3.2. The sampling

7This problem would not arise if xt were observed because ψc enters through the conditional model of yt given
xt while ψx enters through the marginal model for xt. In that case, the score with respect to ψc would simply be
the sum across the N series of the scores for the different ψ′cis.
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uncertainty surrounding the sample mean µ is asymptotically inconsequential because the infor-

mation matrix is block diagonal. The sampling uncertainty surrounding the other parameters

is not necessarily so. Let us partition the d vector of model parameters φ as (θ′,ψ′)′, where

θ contains the d1 parameters of the model under the null and ψ and the d2 parameters that

are tested under the alternative. A block diagonal information matrix for θ and ψ is only

obtained in some special cases. One example arises when c(e−iλ) = c and both common and

idiosyncratic factors follow Ar(1) processes with a common autoregressive coeffi cient. Another

important example are the static factor models considered by Fiorentini and Sentana (2015).

In that situation, all final prediction errors are white noise under the null, and one can safely

ignore the estimation error in θ.

More generally, we need to take into account the asymptotic dependence between θ and ψ.

The solution is the standard one: replace I−1ψψ(θ0,0) with

Iψψ(θ0,0) = [Iψψ(θ0,0)−I−1ψθ(θ0,0)I
−1
θθ (θ0,0)I

−1′
ψθ (θ0,0)]

−1, (21)

which is the (ψ,ψ) block of the inverse information matrix, so that the test statistic becomes

LMT = T · s̄′ψT (θ̃T ,0)Iψψ(θ0,0)̄s
′
ψT (θ̃T ,0), (22)

where θ̃T is the MLE obtained under the null. The analytical expressions for the information

matrix in appendix E of Fiorentini et al (2018) provide a computationally effi cient method

for (21). Importantly, the dual nature of our proposed tests implies that they can be applied

regardless of the model having been estimated in the time or frequency domains.

3.8 Reinterpreting reduced form tests for neglected serial correlation

In the context of univariate time series models written in state space form, Harvey (1989),

Harvey and Koopman (1992) and Durbin and Koopman (2012) suggest the calculation of ne-

glected serial correlation tests for the reduced form residuals, which should be white noise under

the null of correct dynamic specification. The analogue procedure in the context of the dynamic

factor model (1) involves testing for neglected serial correlation in the multivariate vector of

Wold innovations wt in (5). In the first order case, in particular, one would test the null hy-

pothesis H0 : Ψw = 0 in the Var(1) model wt = Ψwwt−1 + ηt, as in Hendry (1971), Guilkey

(1974) and Harvey (1982) (see also Hosking (1981)).

Such a test may seem to offer a substantial computational edge over ours because apparently

it only require the OLS regression of the Kalman filter one-period ahead prediction errors on their

first lag. However, we know from Durbin (1970) that the asymptotic size of serial correlation

tests for observed variables applied to estimated residuals in dynamic models is wrong. In fact,
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their correct computation requires purging the scores corresponding to the elements of Ψw of

the sampling variability in all the model parameters estimated under the null.

In turns out that one can express the parametric restrictions assessed by reduced form tests

in terms of the structural parameters of a dynamic factor model. For pedagogical reasons, in

this section we do so for the simpler null hypothesis H0 : ψw = vecd(Ψw) = 0, postponing the

discussion of the general case to appendix C.8 In particular,

Proposition 1 After correcting for parameter uncertainty, the LM test of H0 : ψw = 0 in the
model [I− diag(ψw)L]wt = ηt for the reduced form residuals coincides with the LM test of the
same null hypothesis in the dynamic factor model:

yt = µ+[(ιN−ψwL)�c(L)]xt+ut, αx(L)xt = βx(L)ft, A(L)ut = [I−diag(ψw)L]B(L)vt. (23)

In other words, testing for univariate serial correlation in the reduced form of one of the

observed series, say yit, is equivalent to simultaneously testing against an alternative whose

factor loading is ci(L)(1 − ψciL), as in section 3.6, and the Ma part of the process for the

idiosyncratic component uit contains the neglected multiplicative term (1−ψuiL), as in section

3.5, under the maintained assumption that ψci = ψui = ψwi . In contrast, a test for neglected

serial correlation in the loadings only focuses on ψci , while a test for neglected serial correlation

in the idiosyncratic component concentrates on ψui . As a result, the relative power of those

three tests will depend on the nature of the true model under the alternative. In particular, if

we represent ψci on the horizontal axis and ψui on the vertical axis, the reduced form test will

have maximum power for alternatives along the 45◦ degree line ψci = ψui , while the structural

form tests of the null hypotheses H0 : ψci = 0 and H0 : ψui = 0 will have maximum power along

their respective axis. Finally, it is also possible to compare the power of those three tests to the

power of the joint test of H0 : ψci = ψui = 0, which has twice as many degrees of freedom (see

Demos and Sentana (1998) for a related discussion in the context of Arch tests).

None of those procedures, though, is likely to have much power against neglected serial

correlation in the common factor, as this misspecification will manifest itself mostly in the

dynamic cross-correlations, especially if the signal to noise ratio is low. For that reason, we

explicitly compare the power of all the different tests in the Monte Carlo experiments.

Importantly, given that the reduced form will be dynamically misspecified when any of three

dynamic characteristics of model (1) is misspecified, the validity of the null distribution of all

the tests that we consider, including those based on the reduced form, requires the correct

specification of the structural model (1) under H0.
8Nevertheless, we take into account that the elements of wt will be contemporaneously correlated even when

they are serially uncorrelated. Thus, our test differs from Test 2 in Harvey (1982), which looks at the null
hypothesis H0 : ψw = 0 when wt is observed under the maintained assumption that V (ηt) is diagonal.
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3.9 Robustness of the Gaussian tests

We have so far treated the Gaussian assumption made for estimation as an integral part of

the model. But for the purposes of testing the validity of the dynamic specification, it should be

regarded as a maintained assumption instead. A valid concern, therefore, is whether our tests

will be affected if the latent variables are non-Gaussian but we still use Iψψ(θ0,0) in (22).

Given that under the regularity conditions stated in appendix D, which are satisfied by the

models considered in section 4, the asymptotic distribution of the Gaussian pseudo maximum

likelihood estimator of φ (appropriately centred and scaled) will be normal with zero mean

and covariance matrix given by the usual sandwich formula C0 = A−10 B0A
−1
0 , where A is the

plim of the (minus) expected Hessian and B the asymptotic variance of the Gaussian pseudo

log-likelihood score s̄φT (φ), we could always resort to the robust Gaussian pseudo score test

T · s̄′ψT (θ̃T ,0)A
ψψ (θ0,0)C

−1
ψψ (θ0,0)A

ψψ (θ0,0) s̄ψT (θ̃T ,0), (24)

where Cψψ and Aψψ are the relevant blocks of C and the inverse of A, respectively (see

e.g. Engle (1984)). Under normality, of course, the information matrix equality B = A = I

holds, so that (24) and (22) coincide, but in general B will differ from I under non-normality.

Consistently estimating A is straightforward because A = I irrespective of the Gaussian log-

likelihood being the true one for many models, including the dynamic factor model in (1). In

the time domain, it is also easy to consistently estimate B by means of the outer product of the

score. In the frequency domain, in contrast, the sample variance of the spectral scores converges

in probability to I instead regardless of the assumption of normality. In principle, we could try

to estimate B by using the analytical expressions we develop in appendix D. Nevertheless, it

turns out that those calculations are unnecessary. To argue our claim, we proceed in two steps.

First, Proposition 2 below provides a necessary and suffi cient condition for Cψψ to coincide with

Iψψ(θ0,0). Second, we verify that it is satisfied under certain assumptions by the alternatives

that we have considered in sections 3.4, 3.5 and 3.6 when the null hypothesis H0 : ψ = 0 holds.

Proposition 2 Let s̄ψ|θT (φ) = s̄ψT (φ) −AψθA
−1
θθ s̄θT (φ). Under the maintained assumption

that A = I holds,

Cψψ = Iψψif and only if lim
T→∞

V [
√
T s̄ψ|θT (φ0)] = − lim

T→∞
E[∂s̄ψ|θT (φ0)/∂ψ

′]. (25)

Importantly, this proposition remains valid regardless of the true value of ψ being 0 and

applies to many other situations beyond dynamic factor models. To interpret it in contexts

other than Aψθ = 0 and Bψψ = Aψψ, it is convenient to recall that the generalised information

matrix equality (see Newey and McFadden (1994)) implies that

− lim
T→∞

E[∂s̄ψ|θT (φ0)/∂θ] = lim
T→∞

cov[
√
T s̄ψ|θT (φ0),

√
T r̄θT (φ0)] = Aψθ −AψθA

−1
θθAθθ = 0,
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where r̄ψT (φ0) is the true but unknown log-likelihood (average) score. Therefore, we can under-

stand s̄ψ|θT (φ) as the Gaussian pseudo log-likelihood average score of ψ purged of the sampling

variability in estimating θ, so that the asymptotic distribution of the estimator of ψ based on it

is the same regardless of θ0 being known or estimated. In this context, the necessary and suffi -

cient condition in (25) coincides with the effi ciency condition for sequential estimators in Newey

and Powell (1998), who showed that this condition guarantees that there is no effi ciency loss in

sequentially estimating ψ keeping θ fixed at some initial consistent estimator (see also Amengual

et al (2013), who applied condition (25) to find the optimal sequential GMM estimator of the

shape parameters in multivariate dynamic location scale models).

For practical purposes, it is convenient to express condition (25) as

( −AψθA
−1
θθ Id2 )(B−A) = 0,

which is very easy to check.

Fiorentini and Sentana (2016) state that one could use Dunsmuir’s (1979) results for a

univariate Ar(p) process cloaked in white noise in which the innovations to the signal component

are independent of the noise to show that Gaussian tests for neglected serial correlation in the

signal or the noise continue to have asymptotically valid sizes under non-normality.

It turns out that a similar result holds far more generally. Specifically, we can make use of

the analytical expressions for the expected Hessian and the variance of the score in appendix

D under the maintained assumption that the innovations (ft, v1,t, . . . , vN,t) are stochastically

independent to verify that condition (25) is satisfied by the alternative models that we have

considered in sections 3.4, 3.5 and 3.6 when the null hypothesis H0 : ψ = 0 holds.

3.10 Block-diagonal idiosyncratic autocovariance matrices

It is straightforward to extend the testing procedures we have developed in previous sections

to models with multiple common factors. Although this would be intensive in notation, the

only additional question would be dealing with identification issues before estimating the model.

But sometimes researchers feel compelled to add more common factors to adequately capture

the off-diagonal elements of the autocovariance matrices even though there seems to be a single

pervasive source of variation. When the cross-sectional dimension, N , is commensurate with the

time series dimension, T , one possibility is to rely on the approximate factor structures originally

introduced by Chamberlain and Rothschild (1983) in the static case, which allow for some

mild contemporaneous and dynamic correlation between idiosyncratic terms. An expanding,

influential body of literature has shown that one may accurately recover the unobserved series

by using the frequency domain version of principal components put forward by Brillinger (1981,

ch. 9) and further extended by Forni et al (2000), which is based on a nonparametric estimate
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of the spectral density matrix of the observed series (see Forni et al (2015) for more recent

developments). In fact, it might even be possible to use static principal components if the

model has a static representation (see e.g. Bai and Ng (2008) and the references therein).

Unfortunately, the cross-sectional asymptotic boundedness conditions on the eigenvalues of the

autocovariance matrices of the idiosyncratic terms underlying those approximate factor models

are largely meaningless in empirical situations such as the one discussed in section 5 in which

N is very small relative to T .

In those situations in which it is natural to group the N series in yt into R homogeneous

blocks, y1t, . . . ,yrt, . . . ,yRt of dimension N1, . . . , Nr, . . . NR, with N1+ . . .+Nr+ . . .+NR = N ,

an attractive solution are dynamic bifactor models with two types of factors:

1. Pervasive common factors that affect all N series

2. Block factors that only affect those series from the same block.

Specifically, a model with a single global factor and a single factor per block is defined in the

time domain by the system of dynamic stochastic difference equations

yrt = µr + crg(L)xgt + crr(L)xrt + urt, r = 1, . . . , R

αxg(L)xgt = βxg(L)fgt,

αxr(L)xrt = βxr(L)frt, r = 1, . . . , R

αui(L)ui,t = βui(L)vi,t, i = 1, . . . , N,

(fgt, f1t, . . . , fRt, v1t, . . . , vNt)|It−1;µ,φ ∼ N [0, diag(1, 1, , . . . , 1, γv1 , . . . , γvN )],


(26)

where xgt is the global factor, xrt the rth block factor, ut = (u′1t, . . . ,u
′
rt, . . . ,u

′
Rt)
′ the N

specific factors, crg(L) =
∑ng

k=−mg
crgkL

k and crr(L) =
∑nr

l=−mr
crrlL

k are NR × 1 vectors

of possibly two-sided polynomials in the lag operator, αxg(L), αxr(L) and αui(L) are one-

sided polynomials of orders pxg , pxr and pui , respectively, while βxg(L), βxr(L) and βui(L)

are one-sided polynomials of orders qxg , qxr and qui , coprime with αxg(L), αxr(L) and αui(L),

respectively, It−1 is an information set that contains the values of yt and ft = (fgt, f1t, . . . , fRt)
′

up to, and including time t−1, µ is the mean vector and φ refers to all the remaining parameters.

It is easy to see that the spectral density matrix of yt corresponds to a dynamic single factor

model with a block-diagonal idiosyncratic autocovariance structure.

Fiorentini et al (2016) explain how to effi ciently exploit the sparsity of the factor loading

matrix of models such as (26) to successfully estimate them by maximising the spectral Gaussian

log-likelihood function with a large number of series from multiple blocks. More importantly for

our purposes, the spectral scores for pervasive factors, block factors and idiosyncratic factors,

as well as for the corresponding dynamic loadings that they provide in their appendix A are

entirely analogous to the ones we derive in sections 3.4, 3.5 and 3.6, respectively. As a result, it

is straightforward to compute LM tests for dynamic misspecification in any of those components
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in models with block-diagonal idiosyncratic autocovariance matrices. As expected, those tests

have exactly the same time domain interpretation as moment tests that compare the sample

autocovariances and cross-covariances of the different latent variables with their theoretical

values under the null of correct specification.

The first step in the specification of bifactor models is the assignment of the N series to

the R blocks. Inspecting the off-diagonal elements of a preliminary, consistent estimator of

the “idiosyncratic” spectral density matrix of the N -variate process yt, such as the difference

between nonparametric estimators of Gyy(λ) and the spectral density matrix of the common

components suggested by Forni et al (2000)), may provide a very good starting point for a

clustering algorithm that assigns individual series to blocks in large N models.9

4 Monte Carlo simulation
4.1 Size experiment

We assess the finite sample size of the different tests that we have discussed by generating

10,000 samples of length 500 (roughly 4 decades of monthly data), plus 50 for initialization, of

a trivariate dynamic factor model. The main reason for looking at such a small cross-sectional

dimension is to handicap our proposed tests relative to the general first order version of the

reduced form test, which involves N2 moment conditions. The first model that we simulate and

estimate under the null is  y1,t

y2,t

y3,t

 =
 0.70.5
0.4

xt +
 u1,t

u2,t

u3,t

 ,
(1− .4L− .2L2)xt = ft, (1 + .4L)u1,t = v1,t, (1− .6L)u2,t = v2,t, (1− .2L)u3,t = v3,t,

V (ft) = 1, vecd′[V (vt)] = (0.4, 0.3, 0.8).

with (ft, v1t, v2t, v3t) being contemporaneously independent Gaussian white noises. Thus, un-

der the null the common factor follows an Ar(2), its loadings are static and the idiosyncratic

terms follow Ar(1) processes. Since we work with demeaned variables, the true value of µ is

numerically inconsequential, so we fix it to 0.

We compute LM tests against first order versions of:

1. Neglected residual autocorrelation in the common factor (χ21)

2. Neglected residual autocorrelation in all the specific factors (χ23)

3. Neglected multiplicative polynomials in the dynamic loadings (χ23)

4. A combination of 1. and 2. (χ24)

5. A combination of 2. and 3. (χ26)
9We are grateful to the referee for this suggestion.
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6. Neglected serial correlation in the reduced form residuals (χ29)

7. Diagonal version of the reduced form test in 6. (χ23)

Importantly, all our tests are numerically invariant to whether in estimating the model we

normalise the variance of the common factor xt or its innovation ft to 1 because of the way

we compute the information matrix (see Dufour and Dagenais (1991)). Further, additive and

multiplicative versions of the dynamic loadings tests are also numerically identical once we

correct for sampling uncertainty under the null.

The left panel of Table 1 shows that all tests have remarkably small size distortions.

Then, we conduct a second experiment with a virtually identical design, except that the

Gaussian white noises are replaced by Student t′s with ten degrees of freedom but the same

variances. The results reported in the right panel of Table 1 confirm the robustness of the

Gaussian test we explained in section 3.9.

Table 1: Size of dynamic misspecification tests
Empirical rejection rates (%)

Gaussian Student t
Nominal size 10% 5% 1% 10% 5% 1%
Common Factor 9.64 4.86 0.86 9.87 4.86 0.97
Specific Factors 10.46 5.16 1.07 10.24 5.01 1.03
Loadings 9.85 4.8 0.97 9.88 5.10 0.99
All Factors 10.08 5.04 0.88 10.08 4.75 0.85
Loadings+Specific 10.07 5.18 0.99 10.04 4.78 1.88
Reduced form 10.53 5.41 1.02 10.09 5.04 1.06
Diagonal reduced form 10.86 5.19 0.99 9.71 4.89 0.98

4.2 Power experiments

Next, we carry out four additional simulation experiments to assess the relative power of our

proposed tests and the reduced form tests. In the first experiment, we simulate and estimate

another 10,000 samples of length 500 in which the DGP for the common factors has ψx(L) =

(1− .5L)−1 but the same first and second-order autocorrelation as under the null, so that

xt = 0.874xt−1 − 0.037xt−2 + ft − 0.5ft−1. (27)

We also re-scale the loadings so as to maintain the same unconditional covariance matrix as in

section 4.1 in order to achieve the same average signal to noise ratio (see the discussion at the

end of section 3.3). Anything else is left unchanged. The raw empirical rejection rates at the 5%

nominal level are reported in the first column of Table 2 under the heading “alternative 1”. As

can be seen, the test that focuses on the common factor has the largest power by far, followed

by the dynamic loadings test. In contrast, the reduced form tests have much less power, as we

had anticipated in section 3.8 for alternatives such as (27) (see Fiorentini and Sentana (2015)

for a related discussion for static factor models). Not surprisingly, the least powerful test looks
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at the specific factors, which nevertheless retains some small power because their estimators are

affected by the neglected serial correlation in the common factor.

We also simulate and estimate 10,000 samples of the same length as above in which the

DGP for the specific factors has ψui(L) = (1 + .2L), for i = 1, 2, 3, but the same first-order

autocorrelation as under the null, so that

u1,t = −0.418u1,t−1 − 0.044u1,t−2 + v1,t,
u2,t = 0.514u2,t−1 + 0.143u2,t−2 + v2,t,

u3,t = 0.185u3,t−1 + 0.077u3,t−2 + v3,t.

 (28)

Again, we re-scale V (vt) in order to exactly match the unconditional covariance matrix under

the null, leaving everything else unchanged. The results, reported in the second column of Table

2 under the heading “alternative 2”, clearly show that the test that focuses on the idiosyncratic

factors has the largest power, followed by the joint test. In this case, though, the reduced

form tests have reasonable power, as we anticipated in section 3.8 for alternatives such as (28).

Finally, the test that focuses on the common factor has power essentially equal to nominal size.

We consider a third design in which the common factor follows the same Ar(2) process as

under the null, but the static factor loadings are multiplied by heterogeneousMa(1) polynomials

(1 − ψciL). Since the unconditional covariance matrix of the resulting model has a two factor

structure, it is impossible to adjust the remaining model parameters to achieve the single factor

structure of the null model in section 4.1. For that reason, after setting ψc1 = .42, ψc2 = .5 and

ψc3 = .58 so that their cross-sectional mean coincides with alternative 1, we scale the loadings as

in that alternative to minimise the difference between the two unconditional covariance matrices.

The third column of Table 2 displays the results, which indicate that the dynamic loading tests

is noticeably more powerful than the rest, while the specific factor test is the least powerful.

Finally, we look at a fourth design which combines features of the previous two. Specifically,

we multiply both the static loading and the idiosyncratic term for each series by the heterogenous

Ar(1) polynomial (1−ψiL)−1, with ψ1 = .1, ψ2 = .2 and ψ3 = .3, but keep the common factor

as under the null. As we mentioned in section 3.6, this model no longer has a static factor

representation with fewer than 3 factors, so it is not possible to replicate the unconditional

covariance structure of the null design either. The results in the fourth column of Table 2 show

that the diagonal reduced form test is the most powerful, as expected. Nevertheless, the joint

test that simultaneously looks at factor loadings and idiosyncratic factors but without imposing

that ψci = ψui ∀i also does very well. In contrast, the dynamic specification test for the common

factor has very little power.

In summary, our Monte Carlo results clearly indicate that the main advantage of our proposed
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Table 2: Power of dynamic misspecification tests
Empirical rejection rates (%) at 5% sigificance level

Alternative 1 2 3 4
Common Factor 47.67 4.78 38.26 6.00
Specific Factors 5.7 48.23 10.07 51.06
Loadings 32.67 10.02 64.68 36.60
All Factors 28.90 44.07 29.42 48.27
Loadings+Specific 24.86 38.1 53.14 60.17
Reduced form 9.51 27.89 38.47 51.10
Diagonal reduced form 8.56 38.08 43.48 67.36

LM tests is that rejections provide a very strong indication of the directions along which the

efforts to improve the specification of the model should focus.

5 Empirical illustration

We initially replicate the results in Camacho et al (2015), who construct a monthly US

coincident index by combining the indicators of economic activity previously analysed by Stock

and Watson (1991), Chauvet (1998) and Chauvet and Pigier (2008). Specifically, they use the

industrial production index (IPI), nonfarm payroll employment (EMP), personal income less

transfer payments (INC) and real manufacturing and trade sales (SAL). The sample covers the

period January 1967 to November 2010 for a total effective sample length of 526 observations. As

usual, the seasonally adjusted series are log-transformed and differenced to achieve stationarity.

Their basic specification, which naturally contains a single factor, is
IPIt

EMPt

INCt

SALt

 =

b1

b2

b3

b4

xt +

u1,t

u2,t

u3,t

u4,t

 ,
xt = φx,1xt−1 + φx,2xt−2 + ft, ui,t = φi,1ui,t−1 + φi,2ui,t−2 + vi,t, i = 1, . . . , 4.

Each variable is individually standardised, the first two observations are discarded and the

scale indeterminacy is eliminated by setting V ar(ft) = 1. We report the spectral maximum

likelihood estimates of the parameters in Table 3, which are very close to the estimates obtained

on the basis of the usual time domain log-likelihood.

Table 3: Spectral maximum likelihood estimates

x IPI EMP INC SAL
bi - 0.68 0.50 0.28 0.45
φ1 0.43 -0.25 0.24 -0.20 -0.36
φ2 0.22 -0.21 0.52 -0.05 -0.16
σ2 1 0.27 0.25 0.85 0.59
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Camacho et al (2015) argue that many features of the business cycle are better represented

by a Markov switching model than by a linear model. In this regard, we proved in appendix C

of Fiorentini and Sentana (2013) that a simple two-regime Markov model for the mean of the

common factor would generate the autocorrelation structure of an Arma(1,1) process for xt,

which suggests that their Ar(2) specification should be rejected. And indeed it is. Our spectral

LM test against first order neglected residual serial correlation in the common factor takes the

value of 4.28 with a p-value of 3.9%. The same specification test for all four idiosyncratic factors

is 34.01, a large fraction of which comes from the nonfarm payroll employment and personal

income series. In turn, a joint test for a first-order lag in the factor loadings yields a highly

significant 29.78, mostly due to the real manufacturing and trade sales series. Not surprisingly,

the test for first order multivariate serial correlation in the reduced form rejects the model

massively. In contrast, the only rejection of the individual first order univariate reduced form

test corresponds to the fourth residual.

We then decided to estimate a model with an Arma(2,1) process for the common factor and

Ma(1)-type dynamic factor loadings for all series, which led to a very substantial improvement

in fit of 62 log-likelihood units with only five additional parameters. Although the common

factor test no longer rejects, the test for additional lags in the dynamic factor loadings still does

(again, mostly due to the sales series) and the same is true for the idiosyncratic factors test. On

this basis, we ended up adding two further lags to the dynamic loadings of real manufacturing

and trade sales, one Ma root to the employment idiosyncratic factor and another Ar root to

the income one. The resulting model achieved a further 19 points increase in the log-likelihood

and more importantly, it successfully passed all the different dynamic specification tests.

Therefore, our results suggest that Camacho et al (2015) should probably consider a more

general Markov switching model, allowing for more flexible dynamics not only in common and

idiosyncratic factors but also in the dynamic impact of the common factor on the observed series.

6 Conclusions and extensions

We derive computationally simple expressions for score tests of neglected serial correlation in

common and idiosyncratic factors, as well as dynamic misspecification of the factor loadings in

dynamic confirmatory factor models using frequency domain methods. Our tests can assess those

dynamic characteristics either individually or jointly. Importantly, we interpret the specification

tests that we propose in terms of simple to understand moment tests which assess whether certain

covariances involving the smoothed values of the latent variables are in line with their theoretical

values under the null. We show that the implicit orthogonality conditions are analogous to the

conditions obtained by treating the Wiener-Kolmogorov-Kalman smoothed estimators of the
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innovations in common and idiosyncratic factors as if they were observed, but they account for

their final estimation errors. And although we initially focus on Gaussian factor models with a

diagonal idiosyncratic dynamic covariance structure for pedagogical reasons, we relax both these

assumptions later on. In particular, we exploit the results in Dunsmuir (1979) to show that our

Gaussian tests are robust to nonnormality when the innovations are independent.

We also explicitly relate our proposals to alternative tests based on one-period-ahead pre-

diction errors, which should be white noise under correct dynamic specification. In particular,

we express those reduced form tests in terms of homogeneous restrictions on the dynamic factor

loadings and idiosyncratic components, explain how to make them robust to parameter uncer-

tainty and study their relative power.

Our simulation results suggest that all the tests that we consider have rather accurate sizes

in finite samples both when the innovations in the latent variables are Gaussian, and when

they follow Student t′s, thereby confirming our theoretical results. They also indicate that our

proposed model validation tools have power to detect dynamic misspecification, and that they

are systematically able to correctly identify the source of the rejection.

Finally, we evaluate the empirical usefulness of our tests by assessing the dynamic factor

model used by Camacho et al (2015) to construct a coincident indicator for the US. Once again,

our proposals prove very informative for improving the original specification. In particular, our

results suggest that adding additional lags to common and specific factors is not enough, being

necessary to allow the common factor to dynamically impact the observed series.

Our paper is a reminder that spectral methods for time series are very powerful, and can still

be successfully applied to tackle important issues of practical interest. For example, we could

exploit the asymptotic orthogonality of the frequency components of the Whittle likelihood

to devise suitable bootstrap procedures (see Dahlhaus and Janas (1996) or Kirch and Politis

(2011)). A more thorough analysis of the power of our tests using both local power calculations

and a more extensive set of Monte Carlo exercises would also be worthwhile.

The extension of our methods to models in which N/T is non-negligible would also constitute

a very valuable addition with potentially interesting empirical applications. Doz et al (2012)

proved the consistency of the common factor estimators for their true underlying values, while

Bai and Li (2016) have also obtained rates of convergence and asymptotic variances under some

restrictions.

The relationship between small N models and large N models that nest them is also worth

studying. Take for example the model in section 5 and a much larger model that augments it

with the so-called Stock and Watson dataset (see e.g. Stock and Watson (2006)). The spectral
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density matrix of the quadrivariate model and the 4 × 4 block of the spectral density matrix

of the large N model should be identical if the two models are consistent. Therefore, their

differences with respect to the periodogram of those four series should have zero mean under

correct specification, the reason being that the periodogram is a rather inneficient but unbiased

nonparametric estimator of the true spectral density. As a result, both models can be subject

to the spectral moment tests that we have put forward in our paper.

However, their comparison presents non-trivial challenges too. Specifically, although the

number of dynamic factors in the high-dimensional model can be consistently estimated using

for example the procedure in Amengual and Watson (2007), it cannot necessarily be used in

the small N model. The problem is one of identification. The so-called Ledermann bound10 for

static factor models applied on a frequency by frequency basis implies that even if we assume

a diagonal idiosyncratic spectral density matrix at all frequencies, we can nonparametrically

identify a model with a single common factor at most in a model with four series.

Another challenge is the following. The objective of the Camacho, Pérez-Quirós and Poncela

(2015) paper was to come up with a real activity indicator using four carefully selected series

observed at the monthly frequency. Assuming one could estimate a model for four series with

the number of dynamic factors determined in the large-N model by making rather restrictive

parametric assumptions on the dynamics of those common factors and their loadings, as well as

the dynamics of the idiosyncratic terms, a sensible way of combining those factors into a single

index of real activity would be necessary, possibly along the lines of Forni et (2000) or Altissimo

et al (2010).

Finally, it is worth mentioning that although we have exploited some specificities of dynamic

factor models, our procedures can be easily extended to most unobserved components time series

processes in which a finite dimensional vector of N observed series, yt, can be recursively defined

in the time domain by the system of equations

yt = µ+C(φ)xt, xt = A(φ)xt−1 +B(φ)ut, ut|It−1;µ,φ ∼ N [0,Ω(φ)].

Such models are the subject of the monographs by Harvey (1989) and Durbin and Koopman

(2012), among others, and the list of empirical studies that make use of them is vast. We are

currently pursuing some of these research avenues.

10As explained in Bekker and ten Berge (1997), the Ledermann bound - N + k ≤ (N − k)2 - yields the largest
possible number of factors for which a unique decomposition of the covariance matrix is possible.
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Appendix

A Proofs
A.1 Proposition 1

Given that the reduced form of the diagonal Vma augmented structural model (23) will be

αx(L)A(L)(yt − µ) = [I− diag(ψw)L][A(L)c(L)βx(L)ft + αx(L)B(L)vt],

the spectral scores with respect to ψw will be given by the sum of the spectral scores with respect

to ψu and and ψc derived in sections 3.5 and 3.6, respectively, evaluated at ψu = ψc = ψw. But

those scores are numerically identical to the scores of the alternative diagonal Var augmented

structural model

yt = µ+[I−diag(ψw)L]−1c(L)xt+ut, αx(L)xt = βx(L)ft, [I−diag(ψw)L]A(L)ut = B(L)vt,

whose reduced form will be precisely

[I− diag(ψw)L]αx(L)A(L)(yt − µ) = A(L)c(L)βx(L)ft + αx(L)B(L)vt.

Given that the null model is also the same, the tests that correct for parameter uncertainty

will coincide. �

A.2 Proposition 2

First of all, it is easy to see that

lim
T→∞

V [
√
T s̄ψ|θT (φ0)] = lim

T→∞
V [
√
T s̄ψT (φ0)−AψθA

−1
θθ

√
T s̄θT (φ0)]

= Bψψ +AψθA
−1
θθBθθA

−1
θθA′ψθ −BψθA

−1
θθA′ψθ −AψθA

−1
θθB′ψθ.

In turn, the generalised information matrix equality implies that

− lim
T→∞

E[∂s̄ψ|θT (φ0)/∂ψ] = lim
T→∞

cov[
√
T s̄ψ|θT (φ0),

√
T r̄ψT (φ0)] = Aψψ −AψθA

−1
θθA′ψθ,

where r̄ψT (φ0) is the true log-likelihood (average) score. Given that the partitioned inverse

formula

A−1 =

(
A−1θθ +A−1θθA′ψθA

ψψAψθA
−1
θθ −A−1θθA′ψθA

ψψ

−AψψAψθA
−1
θθ Aψψ

)
,

Aψψ = (Aψψ −AψθA
−1
θθA′ψθ)

−1,

implies that

Cψψ = AψψBψψAψψ +AψψAψθA
−1
θθBθθA

−1
θθA′ψθA

ψψ

−AψψBψθA
−1
θθA′ψθA

ψψ −AψψAψθA
−1
θθB′ψθA

ψψ = Aψψ lim
T→∞

V [
√
T s̄ψ|θT (φ0)]A

ψψ,

the result immediately follows from the maintained assumption that A = I. �
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B Reduced form of a multivariate AR(p) plus noise
The purpose of this appendix is to find the Wold representation (5) of theVma(p) component

mt = cft + (1− α1L− ...− αpLp)ut,

of process (6). Since we can trivially recover xt from yt without error when |Γu| = 0, we rule
this possibility out henceforth. As a result, we can work with the transformed system

y∗t = Γ−1/2u yt = Γ−1/2u cxt + Γ−1/2u ut = c∗xt + u∗t ,

which has the advantage that the covariance matrix of u∗t is the identity matrix. Importantly,

the diagonality of Γu plays no role in this transformation. Similarly, given that we are focusing

on second order properties of the observable process, normality will play no role either.

In this context, our goal is to obtain the invertible reduced form representation

m∗t = [Γ
−1/2
u D(L)Γ1/2u ]Γ−1/2u wt = D∗(L)w∗t = (IN +D∗1L+ . . .+D∗pL

p)w∗t ,

with w∗t |yt−1,yt−2, . . . ∼ N(0,Σ∗). Having done so, we can easily recover Σ = Γ
1/2
u Σ∗Γ

1/2
u and

Di = Γ
1/2
u D∗iΓ

−1/2
u for i = 1, . . . , p.

As we mentioned in section 2.2, m∗t also has a dynamic factor structure, although in this

case the common factor is white noise while the specific factors follow a Vma(p) process with

scalar polynomial (1− α1L− ...− αpLp)IN . Thus, the autocovariance matrices of m∗t will be:

V (m∗t ) = γfc
∗c∗′ + γ(0)IN ; cov(m

∗
t ,m

∗
t−j) = γ(j)IN , j = 1, . . . , p; cov(m

∗
t ,m

∗
t−j) = 0 j > p,

where γ(0), γ(1), . . . , γ(p) are the autocovariances of a univariateMa(p) process with polynomial

(1− α1L− ...− αpLp) and standardised innovations. But we also know that

V (m∗t ) = Σ∗ +D∗1Σ
∗D∗′1 + . . .+D∗pΣ

∗D∗′p ,

cov(m∗t ,m
∗
t−1) = D∗1Σ

∗ + . . .+D∗pΣ
∗D∗′p−1, . . . , cov(m

∗
t ,m

∗
t−p) = D∗pΣ

∗,

so we can obtain the required reduced form coeffi cients by matching the structural and reduced

form expressions for the autocovariance matrices of m∗t . There are several well-known methods

for solving the resulting equations in the univariate case (see Fiorentini and Planas (1998) for

a comparison), but the task is far more daunting in the multivariate context. Nevertheless, the

dynamic factor structure imposes many restrictions that we can successfully exploit.

First of all, the one-period ahead forecast errors of m∗t based on its past values alone coincide

with the one-period ahead forecast errors in y∗t given the past of the observed series. In turn, it

is easy to see that the state space representation of yt implies that the covariance matrix of the

one-period ahead forecasting errors of y∗t based on its entire past history will have a restricted

single factor structure regardless of p (see appendix A in Fiorentini and Sentana (2013) for

p = 2). Therefore, we can safely conclude that

Σ∗ = a0c
∗c∗′ + b0IN .

1



On this basis, we begin by conjecturing that

D∗1 = a1c
∗c∗′ + b1IN , . . . ,D

∗
p = apc

∗c∗′ + bpIN ,

where a0, b0, . . . ap, bp are unknown scalars to be determined, and then verify our conjecture. As

an illustration, suppose p = 2, in which case the system of equations becomes

Σ∗+D∗1Σ
∗D∗′1 +D∗2Σ

∗D∗′2 = γfc
∗c∗′+γ(0)IN ; D∗1Σ

∗+D∗2Σ
∗D∗′1 =γ(1)IN ; D∗2Σ

∗=γ(2)IN ,

γ(0) = 1 + α21 + α
2
2; γ(1) = −α1(1− α2); γ(2) = −α2.

The last matrix equation immediately implies that

D∗2 = γ(2)Σ∗−1 =
γ(2)

b0
IN −

γ(2)

b20(a
−1
0 + b−10 |c∗|2)

c∗c∗′,

where |c∗|2 = c∗′c∗ = c′Γ−1u c, which means that

a2 = −
γ(2)

b20(a
−1
0 + b−10 |c∗|2)

= b2
γ(2)

b0a
−1
0 + |c∗|2

, b2 =
γ(2)

b0
.

If we then replace D∗2 by this expression in the equation for cov(m
∗
t ,m

∗
t−1), we end up with

D∗1Σ
∗ + γ(2)D∗′1 = γ(1)IN .

But D∗1Σ
∗ = (a1c∗c∗′+ b1IN )(a0c

∗c∗′+ b0IN ) = (a1a0|c∗|2+ a1b0+ a0b1)c∗c∗′+ b1b0IN , whence
(a1a0|c∗|2+ a1b0+ a0b1+ γ(2)a1)c∗c∗′+ b1(b0+ γ(2))IN = γ(1)IN , which leads to the equations

b1 =
γ(1)

b0 + γ(2)
, a1 =

−a0b1
a0|c∗|2 + b0 + γ(2)

.

Finally, the equation for the covariance matrix of m∗t becomes

a0c
∗c∗′ + b0IN + [a

2
1a0|c∗|4 + (a21b0 + 2a1a0b1 + a1b1b0)]|c∗|2 + 2a1b1b0 + a0b21]c∗c∗′

+b21b0IN +
γ2(2)

b0
IN −

γ2(2)

b20(a
−1
0 + b−10 |c∗|2)

c∗c∗′,

where we have exploited the fact that

D∗1Σ
∗D∗′1 = [(a1a0|c∗|2 + a1b0 + a0b1)c∗c∗′ + b1b0IN ](a1c∗c∗′ + b1IN )

= [a21a0|c∗|4 + (a21b0 + 2a1a0b1 + a1b1b0)]|c∗|2 + 2a1b1b0 + a0b21]c∗c∗′ + b21b0IN .

This expression leads to the following two scalar equations

a0 + a
2
1a0|c∗|4 + (a21b0 + 2a1a0b1 + a1b1b0)]|c∗|2 + 2a1b1b0 + a0b21 −

γ2(2)

b20(a
−1
0 + b−10 |c∗|2)

= γf ,

b0 + b
2
1b0 +

γ2(2)

b0
= γ(0),

which can be used in combination with the expressions for a1 and b1 to find all the necessary

parameters. Importantly, we must choose the solution to this system of equations that renders

the reduced form process invertible, but this is easy to verify.

An extension of this procedure for higher values of p is tedious but straightforward.
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C Reduced form tests
Given the local asymptotic equivalence between Var and Vma alternatives, for simplicity,

but without loss of generality, in this appendix we generalise Proposition 1 by focusing on testing

the null hypothesis that the reduced form residuals wt in (5) are serially uncorrelated against

the alternative that they follow a Vma(1) process by considering the following structural model

yt = µ+A−1(L)(I−ΨwL)A(L)c(L)xt+ut, αx(L)xt = βx(L)ft, A(L)ut = (I−ΨwL)B(L)vt,

whose reduced form will be

αx(L)A(L)(yt − µ) = (I−ΨwL)[A(L)c(L)βx(L)ft + αx(L)B(L)vt].

Under this alternative, the spectral density matrix becomes

Gyy(λ) = A−1(e−iλ)(I−Ψwe
−iλ)A(e−iλ)c(e−iλ)gxx(λ)c

′(eiλ)A(eiλ)(I−Ψ′we
iλ)A−1(eiλ)

+A−1(e−iλ)(I−Ψwe
−iλ)B(e−iλ)ΣvvB(e

iλ)(I−Ψ′we
iλ)A−1(eiλ).

Since we already have all the other gradients under the null, we assume that all parameters

except Ψw are known, in which case the differential of Gyy(λ) will be given by

dGyy(λ) = −A−1(e−iλ)e−iλdΨwA(e−iλ)c(e−iλ)gxx(λ)c
′(eiλ)A(eiλ)(I−Ψ′we

iλ)A−1(eiλ)

−A−1(e−iλ)(I−Ψwe
−iλ)A(e−iλ)c(e−iλ)gxx(λ)c

′(eiλ)A(eiλ)dΨ′we
iλA−1(eiλ)

−A−1(e−iλ)e−iλdΨwB(e−iλ)ΣvvB(e
iλ)(I−Ψ′we

iλ)A−1(eiλ)

−A−1(e−iλ)(I−Ψwe
−iλ)B(e−iλ)ΣvvB(e

iλ)dΨ′we
iλA−1(eiλ).

Hence, we obtain that dvec[Gyy(λ)] will be given by

−KNN [A
−1(e−iλ)⊗A−1(eiλ)(I−Ψwe

iλ)A(eiλ)c(eiλ)gxx(λ)c
′(e−iλ)A(e−iλ)]e−iλdvec(Ψ′w)

−[A−1(eiλ)⊗A−1(e−iλ)(I−Ψwe
−iλ)A(e−iλ)c(e−iλ)gxx(λ)c

′(eiλ)A(eiλ)]eiλdvec(Ψ′w)

−KNN [A
−1(e−iλ)⊗A−1(eiλ)(I−Ψwe

iλ)B(eiλ)ΣvvB(e
−iλ)]e−iλdvec(Ψ′w)

−[A−1(eiλ)⊗A−1(e−iλ)(I−Ψwe
−iλ)B(e−iλ)ΣvvB(e

iλ)]eiλdvec(Ψ′w),

where KNN is the commutation matrix of orders (N,N) such that vec(Ψw) = KNNvec(Ψ
′
w).

As a result, the Jacobian of vec[Gyy(λ)] with respect to vec(Ψ′w) at Ψw = 0 will be

dvec[Gyy(λ)]

dvec′(Ψ′w)
= −KNN [A

−1(e−iλ)⊗G′yy(λ)A(e
−iλ)]e−iλ − [A−1(eiλ)⊗Gyy(λ)A(e

iλ)]eiλ,

where we have used the fact that

A−1(e−iλ)B(e−iλ)ΣvvB(e
iλ) = Guu(λ)A(e

iλ), A−1(eiλ)B(eiλ)ΣvvB(e
−iλ) = G′uu(λ)A(e

−iλ).

Given thatA(e−iλ) andA−1(e−iλ) are diagonal matrices, the required Kronecker products adopt

particularly simple forms. Finally, the advantage of working with dvec(Ψ′w) instead of dvec(Ψw)

is that we can easily test for neglected serial correlation in a single series if desired.
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D Asymptotic distribution of the spectral ML estimators
In this appendix we formally derive the asymptotic distribution of the spectral maximum

likelihood estimators of the dynamic factor model parameters on the basis of the results in

Dunsmuir (1979), who made the following three assumptions on the spectral matrix

1. Gyy(λ;φ) is positive definite for all frequencies and all values of φ in the admissible

parameter space Φ ⊆ Rd, a twice differentiable manifold of dimension d < ∞, and φ0 ∈
int(Φ) is locally identified.

2. Gyy(λ;φ) is twice continuously differentiable with respect to φ, and those second deriva-

tives are continuous in λ.

3. The elements of Gyy(λ;φ) belong to the Lipschitz class of order α, with 1/2 < α ≤ 1.

and the following four assumptions on the vector of N + 1 latent innovations ξt

4.1 E(ξt|It−1) = 0 a.s.

4.2 V (ξt|It−1) = Γ a.s.

4.3 E[vec(ξtξ
′
t)⊗ ξ′|It−1] = Ψ a.s.

4.4 E[vec(ξtξ
′
t)⊗ vec′(ξtξ′t)] = (Γ⊗Γ)(I(N+1)2 +KN+1,N+1) + vec(Γ)vec

′(Γ) +Υ.

As long as the identification conditions discussed in section 3.1 are satisfied, the dynamic

factor model in (1) will fulfill conditions 1, 2 and 3 because Gyy(λ;φ) is a linear combination of

the rational spectral densities of the underlying univariate Arma models. As for assumptions

4.1-4.4, we impose them by design in the Monte Carlo experiments in section 4. Thus, we can

apply the generalised version of Theorem 2.1 in Dunsmuir (1979), § 3, p. 502, to prove that

√
T s̄φT (φ0) → N(0,B0),

√
T (φT − φ0) → N(0,C0),

C0 = A−10 B0A
−1
0 ,

A0 = −p lim
T→∞

∂s̄φT (φ0)/∂φ
′.

Before providing detailed expressions for A and B, though, let us highlight some incon-

sequential but potentially confusing differences in notational conventions between Dunsmuir’s

paper and ours. First of all, he does not divide the spectral log-likelihood function by 2, so that

A =
1

2
Ω, B =

1

4
(2Ω+Π) = A+

1

4
Π.

In addition, he defines the periodogram as

1

2πT

∑T

t=1

∑T

s=1
(yt − µ)(ys − µ)′ei(t−s)λj = 2πz′jz

c
j

and the spectral density matrix as E(2πz′jz
c
j), which means that what we callGyy(λ;φ) following

e.g. Harvey (1981, p. 91), is the (simple) transpose of his spectral density and what we have

called Iyy(λj) is the transpose of his periodogram. Finally, he considers frequencies in the

interval (−π, π) while we look at (0, 2π).
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In our notation, Dunsmuir (1979) expression for the (j, k)th element of Ω is

Ωjl =
1

2π

∫ π

−π
tr{G′−1yy (λ;φ)[∂G′yy(λ;φ)/∂φj ]G

′−1
yy (λ;φ)[∂G′yy(λ;φ)/∂φk]}dλ

=
1

2π

∫ π

−π
vec′{[∂G′yy(λ;φ)/∂φj ]G

−1
yy(λ;φ)}vec{

[
G′−1yy (λ;φ)[∂G′yy(λ;φ)/∂φk]}

]
dλ

=
1

2π

∫ π

−π
vec′[∂G′yy(λ;φ)/∂φk]

[
G−1yy(λ;φ)⊗G′−1yy (λ;φ)

]
KNNvec[∂G′yy(λ;φ)/∂φk]dλ.

Given that ∂vec [Gyy(λ;φ)] /∂φk is the k
th column of ∂vec [Gyy(λ;φ)] /∂φ

′, while the jth

row of ∂vec′ [Gyy(λ;φ)] /∂φ is ∂vec′ [Gyy(λ;φ)] /∂φj , we can write

Ω =
1

2π

∫ π

−π
∂vec′ [Gyy(λ;φ)] /∂φ

[
G−1yy(λ;φ)⊗G−1′yy (λ;φ)

]
KNN∂vec [Gyy(λ;φ)] /∂φ

′dλ.

The Hermitian nature of Gyy(λ;φ) implies that Ω coincides with 2I(φ) in (16).
Let us now move on to Π for the dynamic single factor model in (1), but replacing the

normality assumption by conditions 4.1-4.4. To do so, it is convenient to write the observed

series as in (2), so that their spectral density matrix will be

Gyy(λ;φ) = ∆(e−iλ)Γ∆′(eiλ) = c(e−iλ)
βx(e

−iλ)

αx(e−iλ)
γf
βx(e

iλ)

αx(eiλ)
c′(eiλ)

+diag

[
β1(e

−iλ)

α1(e−iλ)
γv1

β1(e
iλ)

α1(eiλ)
,
β2(e

−iλ)

α2(e−iλ)
γ2
β2(e

iλ)

α2(eiλ)
, . . .

βN (e
−iλ)

αN (e−iλ)
γvN

βN (e
iλ)

αN (eiλ)

]
.

As stated in condition 4.4, the (1 + N)2 × (1 + N)2 matrix of fourth-order cumulants

Υ is the difference between E[vec(ξtξ
′
t)vec

′(ξtξ
′
t)] and its value under normality, which is

(Γ⊗Γ)(I(N+1)2 +KN+1,N+1) + vec(Γ)vec′(Γ). For example, in the case of N = 2 the fourth-

order cumulant matrix is 9 × 9 with typical element υabcd = E(ξaξbξcξd) − E(ξaξb)E(ξcξd) −
E(ξaξc)E(ξbξd)− E(ξaξd)E(ξbξc).

In addition to the multivariate Gaussian case, in which all fourth order cumulants are 0,

closed-form expressions for Υ can be obtained in some other interesting cases. Specifically, if

we follow section 4 in Dunsmuir (1979) in assuming that the elements of ξt are stochastically

independent, the only non-zero elements of Υ are υff,ff , υ11,11 and υ22,22, whose values coincide

with the univariate fourth-order marginal cumulants of the corresponding series.

In our notation, Dunsmuir’s (1979) expression for the (j, k)th element of Π is

Πjk =
∑1+N

a=1

∑1+N

b=1

∑1+N

c=1

∑1+N

d=1
υabcdΦ

(j)
ab Φ

(k)
cd ,

where Φ
(j)
ab denotes the (a, b)

th element of the (1 +N)× (1 +N) matrix

Φ(j) =

∫ π

−π
∆′(e−iλ)[∂G′−1yy (λ;φ)/∂φj ]∆(e

iλ)dλ.

Tedious algebra shows that

Πjk =
∑1+N

a=1

∑1+N

b=1

∑1+N

c=1

∑1+N

d=1
υabcdΦ

(j)
ab Φ

(k)
cd = vec′[Φ(j)]Υvec[Φ(k)],

vec[Φ(j)] =

∫ π

−π
vec

[
∆′(e−iλ)[∂G′−1yy (λ;φ)/∂φj ]∆(e

iλ)
]
dλ

=

∫ π

−π

[
∆′(eiλ)⊗∆′(e−iλ)

]
{∂vec[G′−1yy (λ;φ)]/∂φj}dλ.

5



But since dG′−1yy (λ;φ) = −G′−1yy (λ;φ)dG
′
yy(λ;φ)G

′−1
yy (λ;φ), we can write

vec[Φ(j)] = −
∫ π

−π

[
∆′(eiλ)⊗∆′(e−iλ)

] [
G−1yy(λ;φ)⊗G′−1yy (λ;φ)

] ∂vec[G′yy(λ;φ)]
∂φj

dλ

= −
∫ π

−π

[
∆′(eiλ)G−1yy(λ;φ)⊗∆′(e−iλ)G′−1yy (λ;φ)

]
KNN

∂vec[Gyy(λ;φ)]

∂φj
dλ.

Therefore, we can finally write

Π =

∫ π

−π
{∂vec′[Gyy(λ;φ)]/∂φ}

[
G−1yy(λ;φ)∆(e

−iλ)⊗G′−1yy (λ;φ)∆(e
iλ)
]
dλ

×Υ×
∫ π

−π

[
∆′(e−iλ)G′−1yy (λ;φ)⊗∆′(eiλ)G−1yy(λ;φ)

]
{∂vec[Gyy(λ;φ)]/∂φ

′}dλ

because

KN+1,N+1ΥKN+1,N+1=KN+1,N+1E[vec(ξtξ
′
t)⊗vec′(ξtξ′t)]KN+1,N+1=E[vec(ξtξ

′
t)⊗vec′(ξtξ′t)].

The Φ(j) matrices simplify considerably in restricted Varma models with no latent variables

because the matrix ∆(L) is square and the integrals of the derivatives of the spectral density

with respect to the dynamic parameters are all 0. In the general case, we can once again use the

Woodbury formula in (10) to expressG−1yy(λ;φ) in terms of its constituents under the assumption

that neither Gxx(λ) nor Guu(λ) are singular at any frequency.
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