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Abstract

In this paper we use Spanish data to test the restrictions that a dynamic

APT-type asset pricing model imposes on the risk-return relationship. For

monthly returns on ten size-ranked portfolios and a value-weighted index,

we find that those restrictions are rejected for different versions of the

model over the period 1963-1992, as well as over two subsamples. The

evidence for the conditional models suggests that the Spanish stock market

is segmented, which probably reflects the fact that it is only deep for a

few stocks.



1. Introduction

Empirical tests of asset pricing theories have traditionally focused

on their cross-sectional implications by checking if the models could

explain differences in asset returns, at least in terms of temporal

averages. For the Spanish case, for instance, Palacios (1973), Berges

(1984), Rubio (1988) and Gallego, Gómez and Marhuenda (1992) test, without

much success, whether there is a positive linear relationship between the

average return on an asset over time and the unconditional covariance of

that asset with the market portfolio, as postulated by the static version

of the Capital Asset Pricing Model (CAPM)

Recently, the emphasis has shifted towards intertemporal asset

pricing models in which agents actions are based on the distribution of

returns conditional on the available information, which is obviously

changing. This is partly motivated by the fact that, nowadays, it is well

documented and widely recognised that the volatility of financial markets

changes over time. Besides, the new approach has had some empirical

success. For instance, Ng, Engle and Rothschild (1992) found that, unlike

in a static setting, the basic restrictions of a CAPM-type model were not

rejected with US data when they allowed the variances and covariances of

the assets to vary over time.

At the same time, there has been a renewed interest in studying the

temporal variation in the volatility of the Spanish stock market (e.g.

Alonso (1994), Peiró (1992), or Peña and Ruiz (1993)). Nevertheless, these

studies are mainly descriptive and have only considered the market index,

with some exceptions, like Alonso and Restoy (1995), who study the

risk-return relationship for the Spanish portfolio of the Morgan-Stanley

database.

Therefore, it seems appropriate to combine both strands of the

literature, and study the valuation of risk in the Spanish stock market at

a disaggregate level by testing dynamic asset pricing models which

explicitly allow for time-variation in the variances and covariances of

the assets. The purpose of this paper is precisely that. As theoretical
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model, we shall use the dynamic version of the Arbitrage Pricing Theory

(APT) developed in King, Sentana and Wadhwani (1994), which is briefly

reviewed in section 2. The econometric methodology is explained in section

3, while a description of the data can be found in section 4. The main

empirical results are discussed in section 5. We also look at the

seasonality of the Spanish stock market in section 6. Finally, section 7

contains the main conclusions.

2. Theoretical Model

The theoretical asset pricing model used is developed in King,

Sentana and Wadhwani (1994), where a more rigorous and detailed discussion

can be found. Formally, the model is based in a world with an infinite

number of primitive assets. The (gross) return of asset i during period t,

R (i=1,2,...) is generally uncertain since the asset is risky. Theit
exception is a riskless asset, whose return, R , is determined at the end

0t
of period t-1 when decisions are taken. It is important to emphasise that

the analysis is carried out in terms of the conditional distribution of

returns, where the relevant information set, I , contains at least thet-1
past values of asset returns.

The basic assumption made on the stochastic structure of returns for

the primitive assets is that their unanticipated components have a

conditional factor representation, so that we can write returns measured

in excess of the riskless asset, r =R -R , as:it it 0t

r = µ + β f + β f + ... + β f + v (i=1,2,...) (1)it it i1t 1t i2t 2t ikt kt it

where µ , the conditional expectation of r , is the risk premium onit it
asset i, f (j=1,2,...,k finite) are common factors which capturejt
systematic risk affecting all assets,β (i=1,2,...;j=1,2,...,k) are theijt
associated factor loadings known in t-1 which measure the sensitivity of

the asset to the common factors, while v are idiosyncratic terms whichit
reflect risks specific to asset i. It is important to stress that, in

general, the factor loadings change from asset to asset.
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To guarantee that common and specific factors are innovations, we

assume that they are unpredictable. Nevertheless, their conditional

variances, λ (j=1,...,k) and ω (i=1,...), which reflect theirjt it
volatility, may change over time in a predictable manner. In this way, it

is possible to allow for short and long periods of low and high

volatility, both for all asset simultaneously, and for each one

separately.

By construction, specific risks are (conditionally) orthogonal to the

common factors. We also assume (without loss of generality at the

theoretical level) that the common factors represent orthogonal

influences. Furthermore, for simplicity we assume that the idiosyncratic

terms are conditionally uncorrelated to each other.

Under mild no arbitrage conditions, and other assumptions about

diversification, it is possible to prove that the risk premium on asset i

will be a linear combination of the volatility associated with the common

factors, with weights proportional to the corresponding factor loadings.

Specifically,

µ = β λ τ + β λ τ + ... + β λ τ (2)it i1t 1t 1t i2t 2t 2t ikt kt kt

An important feature of (2) is that it provides a connection between

conditional means of returns, or risk premia, and their conditional

variances and covariances, which measure their volatility and covariation.

As we shall see below, such a relationship is very convenient for

estimation purposes.

Equation (2) above can also be interpreted as saying that the risk

premium on an asset is a linear combination of its factor loadings or

betas, with weights common to all assets. As usual, the common weights,

π =λ τ , can be understood as the risk premium on the j-th (limiting)jt jt jt
factor mimicking portfolio (i.e. a well-diversified portfolio with unit

loading on factor j and zero loadings on the others). Therefore, we can

also say that asset risk premia are linear combinations of k risk premia
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associated with the common factors. In that sense, expression (2) above

could also be obtained with a conditional version of the exact APT. Given

that λ is the volatility of both factor j and its representingjt
portfolio, and π the risk premium on that portfolio, we can interpretjt
τ =π /λ as the "price of risk" for that factor. That is, the amount ofjt jt jt
expected return that agents would be willing to give away to reduce its

variability by one unit.

It is important to emphasise that, according to the model, risk

prices depend on the factors, not on the assets, since otherwise there

would be arbitrage opportunities. Furthermore, the model also implies that

specific risk, as measured by the volatility of the idiosyncratic terms,

should not be priced because it can be diversified away. Its price, thus,

should be zero. These fundamental restrictions shall be tested.

The model to be estimated is then

r = β λ τ + ... + β λ τ +β f + ... + β f + v =it i1t 1t 1t ikt kt kt i1t 1t ikt kt it

= β (λ τ +f ) + ... + β (λ τ +f ) + v (3)i1t 1t 1t 1t ikt kt kt kt it

For the case of a single factor whose representing portfolio is

actually the market portfolio, the model above coincides with a

conditional version of the CAPM in which risk premia are proportional to
1the conditional covariance of each asset with the market .

One problem with the above expression is that it does not necessarily

price derivative assets correctly. Nevertheless, it can be safely applied

to portfolios of the primitive assets. Consider for simplicity the case of

a single common factor. Let r be the excess return on an portfolio withpt

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1 In fact, our model is also compatible with the CAPM under more general

circumstances. In particular, if the market portfolio is well-diversified

and the prices of risk are proportional to the influence of the factors on

the market portfolio, equation (2) above also coincides with a conditional

version of the CAPM.
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weights w (known in period t-1). Our assumptions imply that we can writept
r as:pt

r = β λ τ +β f +v = β (λ τ +f )+v (4)pt p1t 1t 1t p1t 1t pt p1t 1t 1t 1t pt

where the factor loading coefficient, β , and the specific riskp1t
component, v , are a linear combination of the individualβ ’s andpt i1t
v ’s, but the common factor, its variance and price of risk are the sameit
as in equation (3). Note that if the portfolio were well-diversified (i.e.

v =0), r could be used as factor representing portfolio.pt pt

From an economic point of view, the hypothesis of interest are the

following:

- Are the risk prices different from zero?

- Is the Spanish stock market integrated, in the sense that the

same risks are valued in the same way across assets?

- Is idiosyncratic risk priced?

- Are there systematic biases in risk premia which cannot be

explained by the model, such as "size effects" or "January effects"?

But before, we have to transform equation (3) above (which holds

period by period) into an estimable model of the time-variation in risk

premia. To do so, we assume for simplicity that, for a given unconditional

normalization of the factors, the factor loadings and the prices of risk

are time-invariant. Such an assumption is observationally equivalent to a

model in which the conditional variance of the factors is constant, but

the betas of different assets on a factor change proportionately over

time. Importantly, if the unconditional variances of the factors and

idiosyncratic disturbances are bounded, our assumption of constant betas

implies that the unconditional covariance matrix of the innovationsin

returns has an exact factor structure, making our model compatible with

traditional factor analysis. Besides, if we callµ =E(µ )=E(r ) thei it it
(temporal) average risk premium, such an assumption also implies that

µ = β λ τ +...+β λ τ (5)i i1 1 1 ik k k
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where λ =E(λ )=V(f ) is the unconditional variance of factor j.j jt jt

Finally, we need to specify the temporal variation in the volatility

of common and idiosyncratic factors to complete the model. In practice, we

shall assume that such variances can be modelled as univariate GARCH-type

processes. In particular, we assume that they follow the GQARCH(1,1)

(quadratic GARCH) model in Sentana (1994). This model not only captures

the autocorrelation in stock market volatility, but also allows for

asymmetric effects in the response of volatility to positive and negative

shocks of the same size, and has been successfully applied to US data (see

Campbell and Hentschel (1992)) and UK data (see e.g. Demos, Sentana and

Shah (1993)).

3. Econometric methodology

Under the assumption of conditional normality, the model can be

estimated for N assets simultaneously by maximum likelihood. But first, it

is convenient to obtain initial values by means of the EM algorithm in

Demos and Sentana (1992). This algorithm uses the Kalman filter, and

yields the best estimates of the common factors in the mean square error

sense. Given that the econometrician’s information set is smaller than the

agents, we have adopted the correction to the conditional variances in

Harvey, Ruiz and Sentana (1992).

However, estimation can be considerably simplified if we have data on

factor representing portfolios. The intuition can be more easily obtained

for the case of single common factor. Given that the unconditional scaling

of the factors is free, we can setβ =1 in equation (4) without loss ofp1
generality. If we add such a portfolio to the N assets at hand, and

estimate by maximum likelihood, it is easy to prove, under our

assumptions, that efficient estimates of the price of risk and the

conditional variance parameters corresponding to the common factor can be

obtained from a univariate GQARCH-M model for the representing portfolio,

while efficient estimates of the factor loadings and the conditional
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variance parameters of the idiosyncratic terms are obtained from

univariate GQARCH regressions of each asset return on the return of the
2basis portfolio . In our empirical application, we shall use both

estimation procedures.

4. Data

The database used contains arithmetic monthly returns (adjusted for

dividends and capital changes) on 164 firms listed in the Spanish stock

market between January 1963 and December 1992. In particular, we work with

360 monthly observations for ten equally-weighted size-ranked portfolios,

and with an eleventh portfolio, hereinafter VW, which is a weighted

average of all assets, with weights that depend on market capitalization

at the end of the previous year. Studies for other markets suggest that, a

priori, such an aggregation should show more cross-sectional variation in

the factor loadings than a sectorial-based aggregation. It is important to

mention that all the assets available in each period were used to form

portfolios. In this way, we avoid survivor-type biases that could arise if

we only used data on those shares that have been listed for the complete

sample period. As a safe asset, we used T-bill returns on the secondary

market after 1982, and the average lending rate from banks and saving

institutions before (see Rubio (1988) for details).

Figure 1 shows the returns on the VW index in excess of the safe

asset. Apart from noticeable events, like the October 1987 crash, there

are periods of high volatility followed by more quiet ones, which confirms

the importance of modelling its time-variation, and suggests that there

may be substantial differences between the traditional static approach and

the conditional one that we propose. In fact, the changing nature of

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

2 Ordinary least squares regressions would yield consistent estimators,

which nevertheless are generally inefficient unless the conditional

idiosyncratic variance is constant. Note that the assumption of an exact

factor structure implies that there is no efficiency gain in using system

estimation techniques.
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volatility would be even more noticeable if we considered weakly and daily

returns. In this respect, it would certainly be desirable to use data at a

higher frequency. Unfortunately, such data is only available for some

aggregate indices, generally without adjustments for dividend payments or

stock splits. Besides, since the Spanish stock market is relatively thin,

with most trades concentrated in a few stocks, daily or weakly data could

suffer from non-synchronous trading.

5. Empirical results

5.1 The unconditional evidence

As a benchmark, we present the results obtained ignoring the dynamics

in first and second moments. The average excess return and standard

deviation for the eleven portfolios are included in table 1. As can be

observed, returns on small firms generally have larger mean and variances

than returns on big firms.

Assuming that the VW portfolio is diversified, and imposing the

restrictions derived from the asset pricing model in section 2, the

maximum likelihood estimators of the betas in a single factor model for

the ten size-ranked portfolios can be obtained from the least squares

regression of each portfolio return on the market return. OLS estimators

are efficient under the assumption that the conditional variances of the

idiosyncratic terms are constant. In this sense, the model is exactly

identical with a traditional CAPM. The parameter estimates are presented

in table 2. In such a static setting, the cross-sectional restrictions

amount to the ratio risk premium/beta being the same for all assets, and

equal to the risk premium on the market as a whole.

A simple, yet powerful way of testing such restrictions consists in

including a constant in each of the ten regressions, and checking if a

significant coefficient is obtained (cf. Gibbons, Ross and Shanken

(1989)). The regression intercepts, which measure "abnormal" returns from

the point of view of the model, are known as Jensen’s alphas in the
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portfolio evaluation literature. The estimated coefficients can be found

in table 3. The null hypothesis is rejected individually in several

instances at conventional levels, especially for firms with small

capitalizations, which suggests a certain "size effect". Besides, the

joint Wald test takes the value 45.195 (p-value<0.001%), so the null
3hypothesis that all intercepts are zero is also rejected . Hence, the

results confirm the existence of systematic biases in risk premia for the

Spanish stock market, at least when a value weighted index is used as

benchmark portfolio (see Rubio (1988)).

The results for the individual tests are graphically represented in

figure 2, where we have plotted the average excess return for the ten size

portfolios (cf. table 1), and their market betas (cf. table 2). In figure

2, Jensen’s alphas correspond to the vertical distances between the points

that represent each portfolio, and the risk premia implied by the model,

which lie on the security market line. As one would expect from the

statistical results, some differences are clearly substantial.

The joint test can also be represented graphically. As the

mathematics of mean-variance portfolio analysis implies that there is a

linear relationship between risk premia and betas with respect to any

efficient portfolio other than the safe asset (see Huang and Litzenberger

(1988)), at the end of the day, the only restriction that the CAPM

actually imposes is that the market portfolio is mean-variance efficient.

Figure 3 shows the position in mean-standard deviation space of the ten

size-ranked portfolios, the efficient frontier and the tangency portfolio.

If the restrictions of the model were satisfied, the VW portfolio should

coincide with the tangency portfolio. However, it is clear that this is

not the case. In this framework, the joint Wald test above examines if the

ratio mean-standard deviation for the VW portfolio coincides with the same

ratio for the tangency portfolio (see Gibbons, Ross and Shanken (1989)).

In the portfolio evaluation jargon, the joint test checks if the Sharpe

ratio for the VW portfolio is smaller than the maximum average return

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

3 Sánchez Torres (1994) reaches the same conclusion with a modified Wald

test robust to autocorrelation and heteroskedasticity.
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attainable per unit of risk.

The above tests have also been computed for two subsamples:

1963:01-1978:12 and 1979:01-1992:12. The motivation for the chosen sample

split is twofold: the institutional changes in the Spanish stock market

during 1977 and 1978, and the changes in capital gains taxation resulting

from the 1979 fiscal reform (see also section 6 below). For both

subsamples the model restrictions are rejected at the 5% level (joint Wald

tests of 26.005 and 36.982, with p-values 3.73% and 0.006% respectively).

In principle, though, it is possible that the VW index may not be the

best portfolio to proxy for the "market" in the CAPM sense; or in the

context of our model, it may not be an appropriate representing portfolio

for the common factor. One potential solution would be to use alternative

benchmark portfolios, such as an equally-weighted index. However, since

the ten size-ranked portfolios are themselves equally-weighted, figure 3

clearly suggests that an equally-weighted market portfolio would be too

far away from the efficient frontier for the model restrictions not to be

rejected.

Another attractive possibility consists in avoiding the specification

of the basis portfolio, and estimating a model with a single common factor

for the ten size-ranked portfolios by maximum likelihood. Here we shall

follow this second route. Nevertheless, it can be proved that, at the end

of the day, this approach is basically equivalent to repeating the

analysis above using the Kalman filter estimate of the common factor as
4the benchmark portfolio (see Quah and Sargent (1993)) .

In this sense, it is important to mention that although its

composition is in principle different, the return of the estimated basis

portfolio is rather similar to the VW portfolio, with a correlation

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4 Such a portfolio can also be understood as the one that best explains

the covariances between the asset returns (see Sentana and Shah (1994)).
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5coefficient of 0.9 . A convenient way of interpreting the common factor

can be obtained by regressing the estimated factor on the set of stock

returns. Since we are assuming that the variances and covariances of the

asset returns are constant over time, so will be the weights used by the
2Kalman filter to estimate the factor, and hence, the regression R is 1.

2However, if we compute an analogous regression for the VW index, the R

will not be exactly 1, as the VW index is not equally weighted, although
2the approximation is rather good (R =0.975). The average weights obtained

in this way can be found in table 4. As expected, the VW portfolio mainly

represents those firms with larger capitalisations. By contrast, the

weightings for the estimated factor are more evenly distributed, although

they are far from corresponding to those of an equally-weighted index.

The results are presented in table 5 for the normalizationβ =1.10
Note that the price of common risk is positive and significantly different

from zero. However, if we include nine constants in the equations for the

smallest rank-sized portfolios, the results in table 6 show that the
2intercepts are jointly significant (LR=33.196,χ =16.919), but not
9,0.05

individually. The latter result, though, could be partly attributed to the

normalization used (i.e.α =0).10

The results for the two subsamples are broadly similar, although the

price of risk for the common factor is not significantly different from

zero in the first period. When we add 9 constants to the risk premia, we

reject the null hypothesis at the 5% in both subsamples (LR tests of

27.112 and 19.678 respectively). Thus, it would seem that the change in

the factor representing portfolio does not improve much the limited

empirical success of the static model.

It is possible that the single factor structure may be too

restrictive. Unfortunately, not much can be said with only ten assets, and

the choice of the number of factors and their specification ends up being

to a large extent arbitrary. An interesting possibility would be to

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

5 The estimation of the factor is rather accurate in the sense that its

estimated mean square error is 3%
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combine unobservable factors with observable macroeconomic factors,

because it would help in the interpretation of the results. However,

previous studies at an international level suggest that the macroeconomic

factors typically used, often explain only a small proportion of the

variance of asset returns (see King, Sentana and Wadhwani (1994)). As a

compromise solution, we have estimated a model with two common factors for

the eleven portfolios, one observable and one unobservable. The latter

does not affect the returns on the VW portfolio, which we still assume

diversified, but it affects the risk premia on the ten size-ranked
6portfolios through the cross-sectional restriction in equation (2) . The

estimated model is as follows:

r = τ λ β +τ λ β +β f +β f +v (i=1,...,10;β =1) (6a)i t 1 1 i1 2 2 i2 i1 1t i2 2t it 10,2

r = τ λ + f (6b)
VWt 1 1 1t

It is worth mentioning that the estimate of the second factor, which

is orthogonal to the VW portfolio by construction, has significant

positive weightings on the smaller size-ranked portfolios, and a negative

weighting on the tenth portfolio. The results obtained, though, show that

when we add 9 constants to equations (6a), theα coefficients are still
2jointly significant (LR=40.712, χ =16.919), and the same happens in
9,0.05

the two subsamples. Therefore, a static model with both an observable and

an unobservable factor does not adequately explain risk premia in the

Spanish stock market.

5.2. The conditional evidence

Obviously, we can increase the number of unobservable factors until

we explain risk premia satisfactorily. In fact, ten factors suffice! But

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

6 Otherwise, we would be simply allowing for a covariance structure of

returns richer than the one considered in the CAPM model above, but the

betas and alphas in tables 3 and 4, as well as their standard errors would

be numerically identical.
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another possibility more closely related to the motivation of this paper

is to examine whether the ignored time-variation in risk premia and the

conditional covariance matrix of returns may help reconcile the empirical

evidence with the model, as Ng, Engle and Rothschild (1992) found for US

data. At the same time, the emphasis on conditional moments would allow us

to test whether the model restrictions are satisfied not only on average,

but also over time. For instance, apart from checking if Jensen’s alphas

are 0, we can also test hypothesis directly related to the integration or

segmentation of the Spanish stock market. In particular, we can test if

the prices of the common risks are the same for all assets, and also, if

asset risk premia depend on the volatility of their idiosyncratic terms,

ω . Therefore, it is possible in this framework to distinguishit
empirically between the differential valuation of common risk and the

valuation of idiosyncratic risk, which is impossible in an unconditional

setting.

As we discussed in section 3, given our maintained assumptions,

efficient estimates of the parameters of a conditional factor model with a

single observable factor can be obtained from a univariate GQARCH-M model

for the VW portfolio, together with 10 univariate GQARCH regressions of

the returns of the size-ranked portfolios on the VW index. The parameter

estimates obtained in this way can be found in tables 7 and 8, while the

estimated conditional standard deviation is represented in figure 4. At a

purely descriptive level, it is worth mentioning the very high degree of

persistence in volatility, as measured by the sum of the ARCH and GARCH

coefficients, and also the asymmetric response of volatility to positive

and negative shocks of the same size. However, the asymmetric effect is

the opposite to the one found for US and UK returns, in that positive

shocks seem to have a larger impact than negative ones in the Spanish

stock market.

Turning now to the market price of risk, notice that it is positive

but not significantly different from zero. This result is similar to the

one obtained by Alonso and Restoy (1995) for the Spanish portfolio in the

Morgan-Stanley database with different conditional variance

specifications. The estimates in the subsamples are qualitatively similar.
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However, the ARCH structure is rather poorly estimated, especially in the

second subsample. As we discussed before in section 4, a larger number of

observations would be required to capture the temporal variation in

volatility at the monthly frequency. For that reason, in the remaining of

this section we shall only discuss results for the whole sample.

The estimated betas in table 8 are different from the ones obtained

by least squares in table 2, and significantly so in some cases. Such

changes are mainly due to the substantial degree of time-variation in the

volatility of idiosyncratic components, which imply a substantive

difference between the ordinary least squares used in section 5.1 and the

"weighted" least squares implicit in the maximum likelihood estimation of

the GQARCH regressions. Nevertheless, unlike in the Ng, Engle y Rothschild

(1992) paper, the changes in estimated betas are not enough to drive away

the joint significance of the alphas in table 9 (LR=37.24,
2χ =19.675). Actually, the alphas are larger than in table 3, since
11,0.05

the estimate of the market price of risk becomes negative, albeit

insignificant, when we add the constants. Furthermore, note that the alpha

for the market portfolio is significant too.

Besides, the model is also rejected in other directions more

informative from an economic point of view. For instance, when we allow

for systematic risk to be valued differently across assets, so thatτ may

vary with i, we find that the price of risk does not seem to be common
2(LR=30.78, χ =18.307). Similarly, if we ask whether unsystematic
10,0.05

risk, as measured by the asset-specific conditional variance,ω , affectsit
risk premia, the result suggest that such risks seem to be rewarded

2(LR=35.82, χ =18.307). In view of the assumptions underlying the
10,0.05

asset pricing model, our findings can be interpreted as evidence against

the integration of the Spanish stock market.

We have also considered a conditional version of the model with an

unobservable factor, without substantive changes in the results (cf.

section 5.1). The test statistics presented in table 10 confirm that the

price of systematic risk, τ, does not seem to be significant; that, in

fact, it does not seem to be common; that idiosyncratic risks,ω , affectit
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risk premia; and that Jensen’s alphas are jointly significant, and

suggestive of a certain size effect.

Finally, we have also estimated a conditional version of the model

with two factors, one observable and one unobservable, with the same basic

conclusion: the empirical implications of the asset pricing model in

section 2 are again rejected for the Spanish stock market (see table 11).

6. Seasonality in stock returns

So far, we have ignored potential seasonal effects in stock returns.

However, the international evidence suggests that returns tend to be

higher in January than in other months. Moreover, this anomaly appears to

be more pronounced in companies with relatively small market

capitalizations. While most of the initial studies only examined US data,

subsequent work has found that the January effect is very much an

international phenomenon. For instance, Rubio (1988), and Basarrate and

Rubio (1990, 1994) have shown that it is also relevant in Spain.

The posited explanations for such a finding go from differential tax

treatment of capital gains, to seasonality in the risk-return

relationship, and include window-dressing type effects induced by

extensive repositioning of professionally managed portfolios at the turn

of the year after evaluation. In any case, it is clear that the study of

the risk-return relationship in Spain should not be independent of the

analysis of the seasonality in returns.

A crude measure of the importance of the January effect during our

sample period is given by the 3.897% average monthly excess return for the

VW portfolio in January, in contrast to the 0.132% average monthly excess

return during the rest of the year (t-ratio =3.708). A similar pattern is

also found in the other ten portfolios (joint Wald test=23.862,

p-value=0.798%). Nevertheless, seasonality in the risk premium on the

market portfolio is compatible with a very simple version of the

conditional CAPM in which the market price of risk,τ, is allowed to be
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different in January from the rest of the year. Such a version could also

explain the seasonality in the risk premia of the ten size-ranked

portfolios, provided that it were fully induced by the market according to

the relationshipµ =β µ .it i VWt

To test this hypothesis, we have added a seasonal dummy variable for

January to the regressions of the returns of the ten size-ranked

portfolios on the returns of the VW index. The results obtained suggest

that seasonal variation in the market price of risk on its own is not

enough to explain seasonality in asset risk premia (joint Wald test=

22.339, p-value=1.35%).

An indirect way of examining whether the seasonal behaviour in

returns is due to tax considerations consists in controlling for changes

in the tax law. In this respect, it is worth mentioning that the taxation

of capital gains in Spain was radically changed after the introduction of

the income tax reform in 1979, which increased the incentives for

end-of-year tax-loss trading. In order to capture the legal change, we

have repeated the analysis for the 1963:01-1978:12 and 1979:01-1992:12

subsamples, with rather interesting results. While the average January

excess return for the VW portfolio is significantly larger than in the

remaining months in both periods, seasonality in the risk premium on the

market portfolio is enough to explain seasonality in asset returns in the

first period (joint Wald test= 4.665, p-value=91.23%), but not in the

second. Therefore, the rejection that we find using data for the whole

sample is mainly due to the second subsample (joint Wald test= 29.720,

p-value=0.095%). These results are in line with the ones in Basarrate and

Rubio (1994), and suggest that risk premia seasonality could be related to

tax incentives.

Nevertheless, the seasonality in the mean excess returns for the

size-ranked portfolios could also be rationalised within the context of a

conditional version of our asset pricing model in which we allow for

seasonal variation, not only in the market price of risk, but also in the

betas (see Demos, Sentana and Shah (1993)). Indeed, when we regress the

size-ranked portfolios returns on the return of the VW index, and the
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product of the VW return times a January seasonal dummy, the results

suggest that the market betas seem to be significantly different in

January, particularly for the second subsample. Such a seasonal effect

could be due either to seasonal trading for tax reasons, or to the

increasing importance of mutual funds during recent years, and the

"window-dressing" effect that their annual evaluation may induce.

But from the point of view of testing the asset pricing restrictions,

the fundamental question to answer is whether the seasonal variation found

in the market price of risk and the betas is enough to explain seasonality

in risk premia according to the relationshipµ =β µ . In this respect,it it VWt
we have tested the significance of including a January dummy in the

regressions of the size-ranked portfolio returns on the VW returns, in

which betas are allowed to be different in January. The results for the

whole sample and the two subsamples indicate that such a seasonal

conditional version of the CAPM could explain the "January effect",

although in the second subsample they are less conclusive (p-value=6.23%).

However, such a model is not capable of eliminating the systematic

pricing biases found in section 5. For instance, even when we allow for

seasonal variation in betas, Jensen’s alphas are still significantly

different from zero for the whole sample and the two subsamples.

7. Conclusions

In this paper we use monthly return data for ten size-ranked

portfolios and a capitalisation-weighted index for the Spanish stock

market for the period January 1963 - December 1992. We test the

restrictions implied by a dynamic APT-type asset pricing model on the

risk-return relationship. Our results suggest that such restrictions do

not appear to be sustained by the data. The same conclusion is reached in

static CAPM-type models with a single observable factor, as well as in

models with a single unobservable factor or a combination of the two. The

evidence for the 1963:01-1978:12 and 1979:01-1992:12 subsamples is similar

in this respect.
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Besides, our results do not qualitatively change when we model the

time-variation in the covariance matrix of asset returns. In this less

restrictive model, we generally find that there are still biases in risk

premia, that the price of systematic risk does not appear to be

significant when we restrict it to be common, that, in fact, it does not

seem to be common, and that idiosyncratic risks matter. Thus,

time-variation in conditional moments does not explain the well-documented

failure of static asset pricing models for the Spanish case (cf. Ng, Engle

and Rothschild (1992) for US data). Moreover, the empirical results for

the conditional models clearly point out that the Spanish stock market is

probably not integrated.

We have also analysed the seasonality in returns, and in particular,

the so-called "January effect". Our results confirm its presence, and

suggest that it could be due to tax reasons, or to seasonality in the

risk-return relationship. Nevertheless, a version of the CAPM in which we

allow the market price of risk and the betas to be different in January

from the rest of the year is not able to fully explain systematic biases

in risk premia.

Obviously, as is true of virtually all econometric tests of

theoretical restrictions, we are testing not only those restrictions, but

also all the maintained assumptions that underlie our intertemporal asset

pricing model and its empirical implementation. Therefore, as always,

rejection could also be due to the failure of some of the maintained

assumptions. In this respect, there are some potential extension that may

reconcile theory and empirical evidence. An interesting possibility is a

version of the model without a safe asset, in which a zero beta portfolio

plays a similar role. At the same time, even though the GQARCH model for

the conditional variances of common and specific terms can accommodate

many of the stylised features of the time variation in volatility, the

assumptions of constant factor loadings and prices of risk are, no doubt,

potentially restrictive. Therefore, it is conceptually possible that a

more flexible parametrisation of the variation over time in the covariance

matrix may produce more satisfactory results. Its practical
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implementation, though, would not be easy. Even with all our restrictions,

the conditional model with two factors already involves the joint

estimation of 69 parameters.

From an economic point of view, a more illustrative strategy would be

to repeat the analysis above, but using returns for individual stocks

instead of portfolio returns. Since shares in the Spanish stock market can

be broadly divided into two groups, one of larger and well-known firms,

with high volume and frequency of trading, and a second group of smaller

firms, with low volume and frequency of trading, it may well be that the

latter are responsible for the rejection of the different versions of the

model. By working with individual stocks, it would be possible to test

such a conjecture rigorously, as well as to analyse if the apparent

segmentation of the market that we find, is due to tax, sectorial or other

reasons. We are currently pursuing this approach.
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TABLE 1

SIZE RANKED PORTFOLIOS AND

VALUE WEIGHTED INDEX

Descriptive Statistics

Sample Period 1963:01-1992:12

DECILE MEAN STD. DEV.

1 1.2644 8.7704

2 1.1681 6.6271

3 0.7969 7.3153

4 1.1453 6.9835

5 0.8047 6.5425

6 0.9325 6.1133

7 0.2946 6.4178

8 0.3566 6.4780

9 0.4581 5.8035

10 0.5514 5.4494

VW 0.4454 5.4198



TABLE 2

SIZE RANKED PORTFOLIOS

MARKET $'s (Value weighted index)

OLS Regressions  rit = $irvwt+vit   (i=1,...,10)

Sample Period 1963:01-1992:12

DECILE $
(s.e.)

s.e. Regression R²

1 1.1827 6.095 0.524

(0.0592)

2 0.9047 4.591 0.533

(0.0446)

3 1.0357 4.736 0.583

(0.0459)

4 0.9770 4.675 0.562

(0.0454)

5 1.0297 3.478 0.720

(0.0338)

6 0.9284 3.571 0.666

(0.0346)

7 0.9879 3.523 0.699

(0.0342)

8 0.9993 3.544 0.701

(0.0344)

9 0.9911 2.200 0.856

(0.0213)

10 0.9566 1.715 0.901

(0.0166)



TABLE 3

SIZE RANKED PORTFOLIOS

Jensen's "'s (Value weighted index)

OLS Regression   rit = "i+$irvwt+vit   (i=1,...,10)

Sample Period 1963:01-1992:12

DECILE "
(s.e.)

1 0.7427

(0.3204)

2 0.7704

(0.2397)

3 0.3379

(0.2502)

4 0.7149

(0.2447)

5 0.3484

(0.1833)

6 0.5225

(0.1871)

7 -0.1464

(0.1864)

8 -0.0890

(0.1876)

9 0.0168

(0.1165)

10 0.1263

(0.0906)



TABLE 4

AVERAGE WEIGHTS (%)

Based on OLS regression of rvwt and

 the factor estimate on rit   (i=1,...,10)

Sample Period 1963:01-1992:12

DECILE VW Unobservable factor

1 3.629 4.728

2 0.929 8.050

3 -0.382 8.125

4 -1.346 8.163

5 5.323 13.497

6 4.618 10.748

7 3.959 15.001

8 12.718 11.838

9 14.392 12.612

10 56.160 7.238

Total 100 100

R² 0.9754 1



TABLE 5

SIZE RANKED PORTFOLIOS

Unobservable factor $'s 

MLE rit = J8$i+$ift+vit  (i=1,...,10; $10=1)

Sample Period 1963:01-1992:12

DECILE $
(s.e.)

Idiosyncratic
 Std. Deviation

R²

1 1.6370 5.1361 0.6561

(0.0949)

2 1.3021 3.5081 0.719

(0.0713)

3 1.4447 3.6826 0.7458

(0.0783)

4 1.3828 3.5906 0

(0.0746)

5 1.3567 2.7685 0.8204

(0.0669)

6 1.2320 2.9545 0.7658

(0.0649)

7 1.3317 2.6077 0.8344

(0.0656)

8 1.3145 2.9144 0.797

(0.0664)

9 1.1736 2.6668 0.7882

(0.0580)

10 1 3.2468 0.644

J 0.0284

(0.0128)



TABLE 6

SIZED RANKED PORTFOLIOS

Jensen's "'s (Unobservable factor)

MLE rit = "i+J8$i+$ift+vit  (i=1,...,10; $10=1; "10=0) 

Sample Period 1963:01-1992:12

DECILE "
(s.e.)

1 0.3671

(0.3930)

2 0.4569

(0.2969)

3 0.0001

(0.3422)

4 0.3886

(0.2910)

5 0.0574

(0.2792)

6 0.2569

(0.2826)

7 -0.4477

(0.2752)

8 -0.3745

(0.2943)

9 -0.1921

(0.2438)

10 0



TABLE 7

VALUE WEIGHTED RETURNS

GQARCH (1,1) - M Parameter Estimates and Standard Errors

Sample Period 1963:01-1992:12

rvwt =  0.00651 8t  + ft

 (0.09687)

8t  =  0.05039 +  0.11256 ft-1 +  0.06286 f2
t-1  +  0.93034 8t-1

                 (0.03906) (0.02222) (0.02342) 



TABLE 8

SIZE RANKED PORTFOLIOS

MARKET $'s (Value weighted index)

FIML rit = $irvwt+vit  (i=1,...,10)  vit*It-1-N(0,Tit)

Sample Period 1963:01-1992:12

DECILE $
s.e.

1 0.9895

(0.0621)

2 0.8070

0.0000

3 1.0604

(0.0592)

4 0.9619

(0.0468)

5 0.9974

(0.0350)

6 0.9098

(0.0350)

7 0.9362

(0.0390)

8 0.9779

(0.0306)

9 0.9779

(0.0233)

10 1.0139

(0.0142)



TABLE 9

SIZE RANKED PORTFOLIOS AND

VALUE WEIGHTED INDEX

Jensen's "'s (Value weighted index)

FIML  rit = "i+$irvwt+vit  (i=1,...,10) vit*It-1-N(0,Tit)

 rvwt = "vw+J8t+ft         ft*It-1-N(0,8t)

Sample Period 1963:01-1992:12

DECILE "
(s.e.)

1 1.1924

(0.2884)

2 0.8542

(0.2650)

3 0.9261

(0.3246)

4 0.9689

(0.2865)

5 0.7398

(0.2563)

6 0.9283

(0.2394)

7 0.1201

(0.2400)

8 0.3311

(0.2351)

9 0.6160

(0.2215)

10 0.7059

(0.2126)

VW .60861

(0.2015)



TABLE 10

SIZE RANKED PORTFOLIOS

(Unobservable Factor)

FIML rit = J8t$i+$ift+vit   (i=1,...,10; $10=1) 

  ft*It-1-N(0,8t);   vit*It-1-N(0,Tit)

ASSET PRICING TESTS

1.- Is systematic risk significantly priced?  LR = 2.270 (P2
1;0.05 = 3.841)

2.- Is the systematic risk priced differently
across assets? LR = 25.100 (P2

9;0.05 = 16.919)

3.- Is idiosyncratic risk priced? LR = 20.846 (P2
10;0.05 = 18.307)

4.- Does the model price assets correctly
on average? LR = 38.972 (P2

10;0.05 = 18.307)



TABLE 11

SIZE RANKED PORTFOLIOS & VW INDEX

(Observable & Unobservable Factor)

FIML rit = J181t$i1+J282t$2t+$i1f1t+$i2f2t+vit

  rvwt = J181t$i1+f1t     (i=1,...,10; $10, 2=1) 

  fjt*It-1-N(0,8jt);     vit*It-1-N(0,Tit) 

ASSET PRICING TESTS

1.- Is systematic risk significantly priced? Factor 1 LR = 0.420 (P2
1;0.05 = 3.841)

Factor 2 LR = 4.146 (P2
1;0.05 = 3.841)

2.- Is systematic risk priced differently Factor 1 LR = 24.986 (P2
10;0.05 = 18.307)

across assets? Factor 2 LR = 26.012 (P2
9;0.05 = 16.919)

3.- Is idiosyncratic risk priced? LR = 27.376 (P2
10;0.05 = 18.307)

4.- Does the model price assets correctly
on average? LR = 53.476 (P2

11;0.05 = 19.675)










