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1 Introduction

Consider a stochastic process, xt, characterised by the sequence of parametric conditional densities

p(xt|Xt−1;ρ), where ρ denotes the d parameters of interest, and Xt−1 = {xt−1, xt−2, . . .}. Consider also
a possibly misspeciÞed auxiliary model, described by the sequence of conditional densities f(xt|Xt−1;θ),

where θ is a c dimensional vector of parameters, with d ≤ c. In those situations in which no closed-

form expression for p(xt|Xt−1;ρ) exists, but at the same time it is easy to estimate θ, or to compute

expectations of functions of xt, either analytically, or by simulation or quadrature, the indirect estimation

procedures of Gallant and Tauchen (1996) (GT96), Gouriéroux, Monfort and Renault (1993) (GMR) and

Smith (1993) provide convenient estimation methods, which have made a substantial impact on the

practice of econometrics over recent years. SpeciÞcally, the indirect estimation procedure of GMR uses

the pseudo-maximum likelihood (PML) estimators of θ as sample statistics on which to base a classical

minimum distance (CMD) estimator of ρ. In contrast, the procedure proposed by GT96 derives a

generalised method of moments (GMM) estimator of the parameters of interest on the basis of the score

of the auxiliary model evaluated at the PML estimators. Under certain conditions, both procedures lead

to asymptotically normal estimators of the structural parameters ρ, which, in fact, can be made equivalent

by an appropriate choice of the CMD and GMM weighting matrices (see Gouriéroux and Monfort, 1996)

(GM96).

One of those conditions, though, is that the parameters of the auxiliary model are unrestricted,

and consequently, that their PML estimators have an asymptotically normal distribution with a full rank

covariance matrix under standard regularity conditions (see e.g. Gouriéroux, Monfort and Trognon (1984)

or White (1982) for a discussion of unconstrained PML estimation, and its relationship to the Kullback

discrepancy between f(xt|Xt−1;θ) and p(xt|Xt−1;ρ)). The Þrst contribution of our paper is to show how

indirect estimation procedures can be generalised to handle equality and/or inequality restrictions on θ.

In particular, we propose an alternative set of moment restrictions based on the Þrst order conditions for

(in)equality restricted models, which nest the ones employed by GT96 when there are no constraints, or

when they are not binding, but which remain valid even if they are. We also derive the corresponding

optimal GMMweighting matrix, and explain how it can be consistently estimated in practice. In addition,

we combine the �constrained� parameter estimators and Lagrange/Kuhn-Tucker multipliers to extend

the original class of CMD indirect estimators of GMR to the possibly restricted case. We also prove

that we can Þnd �restricted� CMD indirect estimators that are asymptotically equivalent to the GMM

estimators by an appropriate choice of weighting matrix. And although we concentrate for expositional

purposes on PML estimation of the auxiliary model under the assumption that the form of the density

function is time-invariant, and xt strictly stationary and ergodic, our procedures can be extended to

cover other extremum estimators of just identiÞed auxiliary models with strictly exogenous regressors
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in more general contexts (see section 4.1.3 of GM96). For analogous reasons, we deliberately separate

the results directly related to our proposed modiÞcation of the existing indirect estimation procedures

from the way one would conduct numerical simulation in practice. However, since very often one has to

resort to simulation to implement indirect estimation procedures, we include an appendix in which some

relevant issues are discussed.

There are at least three important reasons for taking into account some inequality restrictions in

the estimation of the auxiliary model in actual empirical applications. The Þrst, and most obvious one,

is that the pseudo log-likelihood function may not be well deÞned when certain parameter restrictions

are violated, as would be the case when dealing with (transition) probabilities, (un)conditional vari-

ance/covariance structures, or some non-Gaussian distributions (see e.g. the examples in section 8.2 of

GMR and section 4.1 of GT96). In other cases, though, the log-likelihood function can always be com-

puted, but some of the auxiliary parameters may be poorly identiÞed, if at all, in certain regions of the

auxiliary parameter space, so that we may decide to restrict it to avoid such discontinuities (see section 3

below, or Calzolari, Fiorentini and Sentana (2004) for examples in which both situations concur). Finally,

there may be also non-statistical reasons for imposing inequality constraints; for instance, to guarantee

that an auxiliary model always generates a positive nominal short interest rate. In all cases, the resulting

parameter restrictions are often binding in practice.

As for the relevance of equality constraints, one just needs to realise that any parametric auxiliary

model implicitly contains a vast number of maintained assumptions, which can often be written in terms

of zero restrictions on some additional parameters, as shown by the extensive literature on Lagrange

multiplier speciÞcation tests. Furthermore, equality restricted procedures may be particularly useful

from a computational point of view, because in many situations of empirical interest, it is considerably

simpler to estimate a special restricted case of the auxiliary model than to maximise the unrestricted log-

likelihood function. In this context, our second contribution is an extensive discussion of the effects of the

introduction of constraints on the auxiliary model parameters, and of the way we take them into account,

on the efficiency of the resulting indirect estimators. To do so, we Þrst explicitly relate the asymptotic

efficiency of our indirect estimators to the usually infeasible maximum likelihood (ML) estimator. Then,

we show that the asymptotic efficiency of indirect estimators can never decrease by considering the

Lagrange multipliers associated with the implicit zero constraints mentioned above. Importantly, though,

such a result in no way requires that the restrictions are correct. Thus, from a practical point of view, our

result suggests a computationally very simple way to improve the efficiency of existing indirect estimators,

which can be particularly useful when the informational content of the original auxiliary parameters about

the structural parameters appears to be poor. Finally, we illustrate the variety of effects that can be

obtained when some constraints are imposed on the parameters of a previously unrestricted auxiliary
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model. For instance, we discuss several circumstances in which the imposition of constraints has no effect

on the efficiency of the resulting indirect estimators, and others in which false constraints enable the

restricted indirect estimators to achieve full efficiency.

For illustrative purposes, we apply our modiÞed procedures to the popular discrete time version of

the log-normal stochastic volatility process, which we estimate via a garch(1,1) model with either t

distributed errors, or Gaussian ones. This model is important in its own right, and has become the acid

test of any simulation-based estimation method. In addition, it also helps to illustrate the implementation

of our proposed procedures in some non-standard situations. In particular, the pseudo log-likelihood

function based on the t distribution cannot be deÞned in part of the neighbourhood of the parameter

values that correspond to the Gaussian case, and moreover, some of the auxiliary model parameters

become underidentiÞed under conditional homoskedasticity.

The rest of the paper is organised as follows. In section 2, we include a thorough discussion of

�restricted� indirect estimation procedures, and of the efficiency consequences of the constraints. Detailed

applications of such procedures to the aforementioned example can be found in section 3. Finally, our

conclusions are presented in section 4. Proofs and auxiliary results are gathered in the appendix.

2 Theoretical set up

2.1 �Restricted� indirect estimators

Let lt(θ) = ln f(xt|Xt−1;θ), where θ ∈ Θ ⊆ Rc, denote the log density function of a possibly misspec-
iÞed auxiliary model, and assume for simplicity of exposition that its functional form is time-invariant,

and that xt is strictly stationary and ergodic. The average pseudo log-likelihood function for a sample

of size T on xt based on the auxiliary model (ignoring initial conditions) will therefore be given by the

sample mean of lt(θ), l̄T (θ) say. Let us now deÞne the (scaled) Lagrangian function

QT (β) = l̄T (θ) + h
0(θ)µ (1)

where β = (θ0,µ0)0, and µ are the s �multipliers� associated with the s constraints implicitly characterised

by the vector of functions h(θ), which effectively force θ to lie in a compact and non-empty �restricted�

parameter space Θr ⊆ Θ. Such a set up is sufficiently general to cover most cases of practical interest,
including a mix of equality and inequality constraints. For the sake of clarity, though, we concentrate on

the three archetypal situations of (a) unconstrained estimation, (b) equality constraints, and (c) inequality

constraints, which can be characterised as follows:

(a) h(θ) unrestricted µ = 0 Θr ≡ Θ
(b) h(θ) = 0 µ unrestricted Θr ≡ {θ ∈ Θ : h(θ) = 0}
(c) h(θ) ≥ 0 µ ≥ 0 Θr ≡ {θ ∈ Θ : h(θ) ≥ 0}

(2)

Assuming that both the average pseudo-log likelihood function l̄T (θ), and the vector of functions

h(θ) are twice continuously differentiable with respect to θ, the latter with a Jacobian matrix ∂h0(θ)/∂θ
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whose rank coincides with the number of effective constraints at θ, the Þrst-order conditions that take

into account the �constraints� will be given by:

∂QT (�β
r

T )

∂θ
= m̄T (�β

r

T ) = 0, (3)

where m̄T (β) is the sample mean of

mt(β) =
∂lt(θ)

∂θ
+
∂h0(θ)
∂θ

µ,

which is the contribution of the tth observation to the modiÞed score of the auxiliary model, b indi-
cates (P)ML estimators, and the superscript r = (u, e, i) stands for unrestricted, equality restricted and

inequality restricted respectively. In addition, �β
r

T must satisfy the complementary slackness restrictions

h(�θ
r

T )¯ �µrT = 0, (4)

plus the appropriate (in)equality restrictions on h(�θ
r

T ) and/or �µ
r
T in (2), where the symbol ¯ denotes

the Hadamard (or element by element) product of two matrices of the same dimensions. Note that the

main difference with the usual unrestricted case is that mt(β) not only depends on the c auxiliary model

parameters θ, but also on the s multipliers µ associated with the restrictions.

Let us now deÞne

L(ρ;θ) = E £ l̄T (θ)¯̄ρ¤ , (5)

where E(.|ρ) refers to an expected value computed with respect to the distribution of the model of interest
evaluated at ρ. In what follows, we assume that

Assumption 1 l̄T (θ) converges almost surely to L(ρ;θ) uniformly in (θ,ρ) as T goes to inÞnity, where
L(ρ;θ) is twice continuously differentiable with respect to both its arguments.

For each value of ρ, we can deÞne the binding functions for the �constrained� auxiliary parameters θ

and the associated �multipliers� µ, βr(ρ) =
£
θr0(ρ),µr0(ρ)

¤0
say, as the values of β associated with the

maximum over the restricted parameter space Θr of the (population) Lagrangian function

Q(ρ;β) = L(ρ;θ) + h0(θ)µ.

As a result, if we denote by

m (ρ;β) = E [m̄T (β)|ρ] , (6)

the binding functions must satisfy the Þrst-order conditions:

m [ρ;βr(ρ)] = 0,

the exclusion restrictions

h [θr(ρ)]¯ µr(ρ) = 0, (7)
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plus the required (in)equality restrictions on h [θr(ρ)] and/or µr(ρ) in (2), as long as the differentiation

and expectation operators can be interchanged, which we assume henceforth. In addition, we assume

that βr(ρ) is unique, in the sense that L [ρ;θr(ρ)] > L (ρ;θ) for any θ ∈ Θr in an open neighbourhood

of θr(ρ). As a consequence, we can use standard PML results to prove the strong consistency of �β
r

T

for βr(ρ0), where ρ0 denotes the true value of the parameters of interest, and βr(ρ0) the �constrained�

pseudo-true values of β.

To ensure the local identiÞcation of ρ0, we assume that the systems of equations βr(ρ) = βr(ρ0)

and m
£
ρ;βr(ρ0)

¤
= 0 separately admit the unique solution ρ = ρ0, which obviously requires the order

condition c ≥ d (cf. GM96). If we further assume that both functions are continuously differentiable

in ρ, a sufficient condition for the identiÞcation of ρ is that the Jacobian matrices ∂βr(ρ)/∂ρ0 and

∂m(ρ;β)/∂ρ0 have full column rank. More formally,

Assumption 2

rank

·
∂βr(ρ)

∂ρ0

¸
= d

and

rank

(
∂m

£
ρ;βr(ρ0)

¤
∂ρ0

)
= d

for any ρ in an open neighbourhood of ρ0.

As usual, such assumptions are rather difficult to check in non-linear models, but they are crucial for

the consistency of the indirect estimators that we discuss. Intuitively, the reason is that when Assumption

2 holds, if we knew βr(ρ0), we could recover ρ0 by either inverting the binding functions, or solving the

possibly non-linear system of equations m
£
ρ;βr(ρ0)

¤
= 0 with respect to its Þrst argument holding the

second argument Þxed. In practice, though, we do not know the pseudo true values, but since they are

consistently estimated by the auxiliary model, we can obtain consistent estimators of ρ0 by choosing the

parameter values that minimise either some appropriately deÞned distance between βr(ρ) and �β
r

T , or

a given norm of the sample moments m(ρ; �β
r

T ). In particular, we can minimise with respect to ρ the

following quadratic forms:

Dr(ρ;Ω, �β
r

T ) =
h
βr(ρ)− �βrT

i0
·Ω ·

h
βr(ρ)− �βrT

i
or

G(ρ;Ψ, �β
r

T ) = m
0(ρ; �β

r

T ) ·Ψ ·m(ρ; �β
r

T )

where Ω and Ψ are positive semideÞnite weighting matrices of orders c + s and c respectively, and the

letters D and G are a reminder that these objective functions correspond to CMD and GMM estimation
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criteria respectively. In what follows, we shall refer to the resulting estimators

�ρrDT (Ω) = argmin
ρ
Dr(ρ;Ω, �β

r

T )

�ρrGT (Ψ) = argmin
ρ
G(ρ;Ψ, �β

r

T )

as the �restricted� CMD and GMM indirect estimators of ρ. Obviously, without a judicious choice

of metric that accounts for sample variation in the estimators of the (in)equality restricted auxiliary

parameters and/or multipliers in �β
r

T , the asymptotic covariance matrix of �ρ
r
DT (Ω) and �ρ

r
GT (Ψ) is likely

to be unnecessarily large in those overidentiÞed situations in which c > d.

Let us start by analysing the second criterion function. It is well known that if the sample moments

m(ρ; �β
r

T ) have a limiting normal distribution, the optimal weighting matrix (in the sense that the dif-

ference between the covariance matrices of the resulting estimator and an estimator based in any other

norm is positive semideÞnite) is given by the inverse of the asymptotic variance of
√
Tm(ρ; �β

r

T ) (see

e.g. Hansen, 1982). In order to derive the required asymptotic distribution, we assume the necessary

conditions for a law of large numbers and a central limit theorem to apply to the average Hessian and

modiÞed score of the log-likelihood of the auxiliary model respectively. More formally,

Assumption 3
∂l̄2T (θ

∗
T )

∂θ∂θ0
− J r

0 = op(1),

and
√
Tm̄T

£
βr(ρ0)

¤→ N(0, Ir0),

where J r
0 and Ir0 are non-stochastic c×c matrices, with Ir0 positive deÞnite, and θ∗T is any sequence such

that θ∗T − θr(ρ0) = op(1).

In this respect, it is important to note that relative to the standard unconstrained case, the main

effect of adding the constant term
©
∂h0

£
θr(ρ0)

¤
/∂θ

ª
µr(ρ0) to the original score ∂lt

£
θr(ρ0)

¤
/∂θ is to

centre around zero the asymptotic distribution of mt

£
βr(ρ0)

¤
. Therefore, if θr(ρ0) is in the interior of

the admissible auxiliary parameter space Θr, Assumption 3 is equivalent to the high level assumptions

made by GMR and GT96. In addition, it should be emphasised that there are many inequality restricted

situations in which the pseudo log-likelihood function is not well-deÞned outside the restricted parameter

space, Θr, and yet the (possibly directional) score and Hessian behave regularly at its boundary (see e.g.

the score of the Student�s t garch model used in section 3 under conditional Gaussianity, as discussed

in Fiorentini, Sentana and Calzolari (2003)).

Unfortunately, we cannot directly rely on the results in GT96 to derive the asymptotic distribution of

the sample moments m(ρ; �β
r

T ), since the �restricted� estimator �θ
r

T may not be asymptotically normal in
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large samples in the presence of inequality constraints (see Andrews (1999) and the references therein).1

In addition, the asymptotic distribution of �β
r

T is singular for r = (u, e, i). More speciÞcally:

Proposition 1 Under Assumptions 1,2, and 3

µr(ρ0)¯ ∂h
£
θr(ρ0)

¤
∂θ0

√
T
h
�θ
r

T−θr(ρ0)
i
+ h

£
θr(ρ0)

¤¯√T £�µrT−µr(ρ0)¤ = op(1).
Such a singularity is a direct consequence of the fact that the complementary slackness conditions

(4) must always be satisÞed by �β
r

T . Nevertheless, it is important to mention that since their population

counterparts (7) will be satisÞed for any value of ρ, the singular combinations of the auxiliary parameters

and multipliers contain no identifying information whatsoever about the parameters of interest.

In contrast, there are c linear combinations that are asymptotically well behaved:

Proposition 2 Under Assumptions 1,2, and 3"
J r
0 +

£
µr(ρ0)⊗ Ic

¤ ∂vec©∂h0 £θr(ρ0)¤ /∂θª
∂θ0

#√
T
h
�θ
r

T−θr(ρ0)
i

+
∂h0

£
θr(ρ0)

¤
∂θ

√
T
£
�µrT−µr(ρ0)

¤
+
√
Tm̄T

£
βr(ρ0)

¤
= op(1).

Hence, even though �θ
r

T and �µ
r
T have a singular and possibly non-Gaussian asymptotic distribution,

Proposition 2 shows that under our regularity conditions, there are always c linear combinations that are

asymptotically normally distributed, irrespective of the exact nature of the restrictions, and irrespective

of whether the restrictions on h
£
θr(ρ0)

¤
and µr(ρ0) are satisÞed with equality, or strict inequality. It

turns out that those c linear combinations are implicitly contained in the expected value of the modiÞed

score:

Proposition 3 Under Assumptions 1, 2, and 3
√
Tm(ρ0; �β

r

T ) +
√
Tm̄T

£
βr(ρ0)

¤
= op(1).

Therefore,
√
Tm(ρ0; �β

r

T ) has indeed a limiting Gaussian distribution, and the optimal weighting ma-

trix is precisely the inverse of Ir0 .
The following proposition speciÞes the asymptotic distribution of the (infeasible) optimal GMM esti-

mator of ρ based on the �restricted� auxiliary model:

Proposition 4 Under Assumptions 1, 2 and 3
√
T
©
�ρrGT

£
(Ir0)−1

¤− ρ0ª→ N
h
0, (Cr0)−1

i
,

where

Cr0 =
∂m0

£
ρ0;βr(ρ0)

¤
∂ρ

· (Ir0)−1 ·
∂m

£
ρ0;βr(ρ0)

¤
∂ρ0

. (8)

1 It may seem at Þrst sight that we could handle inequality restrictions on the parameters of the auxiliary model with
the existing unconstrained indirect estimation procedures by simply reparametrising the constraints appropriately. For
instance, a non-negativity constraint on θj can be formally avoided by replacing θj with (θ∗j )2, where −∞ < θ∗j < ∞.
Unfortunately, the regularity conditions in Assumptions 2 and 3 are no longer satisÞed in terms of the new parameter when
the inequality restricted pseudo-true value of the original parameter θij(ρ

0) is 0, as the Jacobian of the transformation is 0

at θij(ρ
0) = 0.
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Given that this expression is completely analogous to the one derived by GT96 for their GMM version

of the indirect estimator in the absence of constraints, the required matrices can also be consistently

estimated using their suggested procedures. In particular, since under our assumptions

E {m̄T [β
r(ρ)]|ρ} = 0 ∀T,

the time-invariant functional form of mt(β), and the strict stationarity and ergodicity of xt imply that

Ir0 = lim
T→∞

V
n√

Tm̄T

£
βr(ρ0)

¤¯̄̄
ρ0
o
=

∞X
τ=−∞

Sτ
£
ρ0;βr(ρ0)

¤
, (9)

where

Sτ (ρ;β) = E
©
mt(β)m

0
t−τ (β)

¯̄
ρ
ª

for τ ≥ 0, and Sτ (ρ;β) = S0−τ (ρ;β) for τ < 0, provided that the autocovariance matrices are absolutely
summable (see e.g. Hansen, 1982). Therefore, we could obtain a consistent estimator of the matrix Ir0 as

IrT =
T ιX

τ=−T ι
w(τ)S̄rτT (10)

with

S̄rτT =
1

T

TX
t=τ+1

mt(�β
r

T )m
0
t−τ (�β

r

T )

where w(τ) are weights suggested by a standard heteroskedasticity and autocorrelation consistent (HAC)

covariance estimation procedure, and ι the corresponding rate (see e.g. de Jong and Davidson (2000) and

the references therein). Then, a feasible two-step optimal GMM estimator will be given by �ρrGT
h
(IrT )−1

i
.

Alternatively, we could consider continuously updated GMM estimators à la Hansen, Heaton and Yaron

(1996), by replacing S̄rτT in the above expressions with Sτ (ρ; �β
r

T ).

Another important implication of Proposition 4 is that the usual overidentifying restriction test

T ·G
n
�ρrGT

£
(Ir0)−1

¤
; (Ir0)−1; �β

r

T

o
= T ·m0

n
�ρrGT

£
(Ir0)−1

¤
; �β

r

T

o
· (Ir0)−1 ·m

n
�ρrGT

£
(Ir0)−1

¤
; �β

r

T

o
converges to a χ2 distribution with c− d degrees of freedom as T →∞, and hence it can be used in the
standard manner to assess the adequacy of the model of interest to the data.

Let us now turn to the indirect estimators of ρ based on the CMD function Dr(ρ;Ω ; �β
r

T ). Un-

fortunately, we cannot directly rely on standard CMD theory, because as we saw before, the limiting

distribution of
√
T
h
�β
r

T − βr(ρ0)
i
is singular and possibly non-normal. To overcome this difficulty, it

is convenient to write down the linear transformations in Propositions 1 and 2 together in terms of the

following square matrix of order c+ s:

Kr0 =

· J r
0 +

£
µr(ρ0)⊗ Ic

¤
∂vec

©
∂h0

£
θr(ρ0)

¤
/∂θ

ª
/∂θ0 ∂h0

£
θr(ρ0)

¤
/∂θ

diag
£
µr(ρ0)

¤
∂h
£
θr(ρ0)

¤
/∂θ0 diag

©
h
£
θr(ρ0)

¤ª ¸
=

· Kr11,0 Kr12,0
Kr21,0 Kr22,0

¸
,
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where diag (.) is the operator that transforms a vector into a diagonal matrix of the same order by placing

its elements along the main diagonal. Then, if we transform the CMD conditions by premultiplying them

by Kr0, we will have that the asymptotic distribution of
√
TKr0

h
�β
r

T − βr(ρ0)
i
will be normal, with the

singularity conÞned to the last s elements. In this framework, we can prove the following generalisation

of Proposition 4.3 in GM96, which in turn formalises earlier results in GMR:

Proposition 5 Under Assumptions 1, 2 and 3

√
T
h
�ρrGT (Ψ)− �ρrDT (Kr00 Ψ¢Kr0)

i
= op(1),

where

Ψ¢ =

µ
Ψ 0
0 0

¶
.

Given the equivalence between both estimators, in what follows we shall drop the D and G subscripts

when no confusion arises. Apart from the computational advantages highlighted by GT96, which we

discuss in the appendix, the GMM procedure has the additional advantage that the optimal weighting

matrix can be readily computed as the variance of the limiting normal distribution of the modiÞed score

(6), irrespective of the exact nature of the restrictions, and irrespective of whether the restrictions on

h
£
θr(ρ0)

¤
and/or µr(ρ0) are satisÞed as equalities, or strict inequalities. However, there is one instance

in which our proposed CMD and GMM procedures yield numerically identical estimators of ρ, as in

Proposition 4.1 in GM96:

Proposition 6 If c = d, so that the auxiliary model exactly identiÞes the parameters of interest, then
�ρrDT (Ω) = �ρ

r
GT (Ψ) for large enough T irrespective of Ω and Ψ.

2.2 Efficiency considerations

Given that both GMM and CMD can be regarded as particular cases of minimum chi-square methods

(see e.g. Newey and McFadden (1994) (NM)), an attractive way of interpreting our previous results is to

think of the population moments m
£
ρ;βr(ρ0)

¤
as a set of c new auxiliary parameters, which summarise

all the information in the original parameters θ and multipliers µ that is useful for estimating ρ. In this

light, Proposition 4 simply says that the precision with which we can estimate ρ depends exclusively on

(i) the precision that can be achieved in estimating those new parameters, which is given by the inverse of

the covariance matrix of the modiÞed sample score, (Ir0)−1, and (ii) the identiÞcation content of the same
parameters, as measured by the Jacobian of the population moments with respect to its Þrst argument,

∂m
£
ρ0;βr(ρ0)

¤
/∂ρ0. This Jacobian matrix can be given a rather intuitive interpretation. Let q̄T (ρ)

denote the sample average of the log-likelihood score of the structural model, so that

qt(ρ) =
∂ ln p(xt|Xt−1;ρ)

∂ρ
.
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Then, a variation of the generalised information matrix equality implies that

∂m
£
ρ;βr(ρ0)

¤
∂ρ0

= lim
T→∞

∂

∂ρ0
E

(Ã
1

T

TX
t=1

mt

£
βr(ρ0)

¤!¯̄̄̄¯ρ
)

= lim
T→∞

cov
n√

Tm̄T

£
βr(ρ0)

¤
,
√
T q̄T (ρ)

¯̄̄
ρ
o

(11)

(see GM96, Tauchen (1996), and NM for precise regularity conditions). Therefore, the second part of

Assumption 2 guarantees that this covariance matrix has full column rank in an open neighbourhood of

ρ0.

Expression (11) also allows us to formally characterise the asymptotic efficiency of our proposed

estimator �ρrT
£
(Ir0)−1

¤
relative to the possibly infeasible ML estimator of ρ, �ρT .

Proposition 7 DeÞne

Dr0 = lim
T→∞

V

(√
T q̄T (ρ

0)− ∂m
0 £ρ0;βr(ρ0)¤

∂ρ
[Ir0 ]−1

√
Tm̄T

£
βr(ρ0)

¤¯̄̄̄¯ρ0
)

as the asymptotic residual variance of the limiting least squares projection of
√
T q̄T (ρ

0) on
√
Tm̄T

£
βr(ρ0)

¤
.

Then, under Assumptions 1, 2 and 3, the inverse of the asymptotic covariance matrix of �ρrT
£
(Ir0)−1

¤
given

in (8), which can be interpreted in this context as the indirect asymptotic information matrix, will be given
by

Cr0 = B0 −Dr0,
where

B0 = lim
T→∞

V
n√

T q̄T (ρ
0)
¯̄̄
ρ0
o

is the usual asymptotic information matrix.

This result, which is related to Theorem 5.1 in NM, generalises to the constrained case Proposition

4.7 in GM96, as well as the analogous result in Tauchen (1996).2 Translated into words, Proposition (7)

essentially says that the higher the (multivariate) correlation between the (average) modiÞed score of the

auxiliary model and the (average) score of the true model, the higher the efficiency of the constrained

indirect estimator relative to the asymptotically efficient but potentially infeasible ML estimator. In

particular, it immediately follows from it that the optimal �restricted� indirect estimators of ρ will

achieve the usual asymptotic Cramer-Rao efficiency bound if and only if the residual covariance matrix

Dr0 is zero.3

Proposition 2 in GT96 provides a leading example that guarantees this condition in the context

of unrestricted indirect estimation. SpeciÞcally, GT96 show that full efficiency will be achieved if the

auxiliary model �smoothly embeds� the true model, in the sense that there is an open neighbourhood of ρ0

in which the unrestricted binding function θu(ρ) is twice continuously differentiable and p(xt|Xt−1;ρ) =

f [xt|Xt−1;θu(ρ)].

2 In Tauchen�s case, qt(ρ0) and lt
£
θu(ρ0)

¤
are effectively strictly stationary and ergodic martingale difference sequences.

As a consequence, Du0 is simply the residual variance of the linear projection of qt(ρ0) on lt
£
θu(ρ0)

¤
.

3 In that case, we can show that the ML estimator of ρ will effectively depend on the data only through a continuously
differentiable function of the Þrst q elements of Kr0�β

r
T (cf. Chiang, 1959).
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Regrettably, it is often the case that the auxiliary model does not nest the true model. However, as

the following corollary illustrates, there are other cases in which we can achieve full efficiency by adding

completely false constraints to a badly misspeciÞed auxiliary model:

Corollary 1 Consider the following stationary ar(1) process:

xt = φxt−1 + vt, vt|Xt−1 ∼ N(0, ω), |φ| < 1, 0 < ω <∞,

where the parameters of interest are ρ = (φ, ω)0. Then,
√
T
©
�ρeT
£
(Ie0)−1

¤− �ρTª = op(1)
regardless of the value of ρ0 if the estimated auxiliary model is the following ma(1) model

xt = ut − δut−1, ut|Xt−1 ∼ N(0, ψ), ψ ≥ 0,

subject to the constraint δ = 0.

Intuitively, the reason is that the auxiliary �parameter� estimators �µeδT =
P
t xtxt−1/

P
t x

2
t and

�ψ
e

T =
P
t x

2
t/T are sufficient statistics for the true ar(1) log-likelihood. In contrast, the unrestricted

indirect estimator of ρ is efficient only if φ0 = 0, which is precisely the only instance in which the

unrestricted pseudo log-likelihood will smoothly embed the true log-likelihood.

Other more subtle examples of full asymptotic efficiency arise when the number of parameters of the

auxiliary model is allowed to go to inÞnity. For instance, in the context of density estimation, Gallant and

Tauchen (1999) (GT99) use earlier results by Gallant and Long (1997) and Tauchen (1996) to show that

the score associated with the semi-non-parametric (SNP) density proposed by Gallant and Nychka (1987)

- which multiplies a standard Gaussian density by a squared Hermite polynomial expansion - spans the

true score in the limiting case in which the degree of the expansion goes to inÞnity. Similarly, GT99 also

indicate that a GMM estimator based on an increasing sequence of integer moments of xt can achieve

full efficiency in the limit for those distributions that have a well-deÞned moment generating function. In

this respect, we can show that such a GMM estimator is asymptotically equivalent for any Þnite integer

power to an equality restricted indirect estimator based on the score of a SNP model of the same degree

in which all the coefficients of the Hermite polynomial expansion are restricted to 0. Nevertheless, it is

important to note that the appropriate rate at which extra terms can be added while preserving standard

root-T asymptotics is unknown in both cases.

Proposition 7 may also seem to suggest that if we consider a somewhat more complicated auxiliary

model, which implies that the number of components in m̄T

£
βr(ρ0)

¤
will increase, then the new indirect

estimators will be at least as efficient as those based on the original model because the limiting residual

covariance matrix of the regression of
√
T q̄T (ρ

0) on
√
Tm̄T

£
βr(ρ0)

¤
cannot increase by adding new

�regressors�. However, as GT99 point out, such a monotonicity property does not necessarily apply to

unrestricted indirect estimators (see panel (a) in Figure 3 of GT99 for a counterexample). The reason

11



is that when we unrestrictedly estimate an augmented auxiliary model, we are not simply adding new

elements to its score, but also changing the parameter values at which we evaluate the original components.

In contrast, by considering the Lagrange multipliers associated with the implicit constraints that

allow the nesting of the original model into the augmented one, we will always achieve asymptotic

efficiency gains, in the sense that the equality constrained indirect estimators of ρ that take into account

the information contained in those multipliers will be at least as efficient as the unconstrained indirect

estimators based on the original auxiliary model.

More formally, consider a homeomorphic (i.e. one-to-one and bicontinuous) transformation g(.) =

[g01(.), g02(.)]
0 of the auxiliary model parameters θ into an alternative set of (c − s) + s parameters

π=(π01,π
0
2)
0, where π2=g2(θ)=h(θ), and g(θ) is twice continuously differentiable with rank[∂g0 (θ) /∂θ]

= c in a neighbourhood of θe(ρ0). The purpose of this reparametrisation is to write the original

implicit constraints h(θ) = 0 in explicit form as π2 = 0. Let �πu1T = g1(�θ
e

T ) denote the uncon-

strained PML estimator of π1 obtained by maximising with respect to π1 the auxiliary objective func-

tion l̄T (θ) reparametrised in terms of π, with π2 set to 0. Similarly, let πu1 (ρ) = g1 [θ
e(ρ)] and

mπ1(ρ;π1) = E
£
∂l̄T (π1;0)/∂π1

¯̄
ρ
¤
, denote the corresponding binding function and population mo-

ment condition, respectively, so that mπ1 [ρ;π
u
1 (ρ)] = 0. In this context, we can deÞne the unconstrained

indirect estimators of ρ based on the original model, ùρuT (Φ) say, as the values of ρ that minimise the

norm of mπ1(ρ; �π
u
1T ) in the metric of a positive semideÞnite matrix Φ of order (c − s), or some chosen

distance between πu1(ρ) and �π
u
1T . The rationale for such estimators would be that since π2 is set to

zero by assumption, there is no information about the true value of ρ in those parameters that do not

belong to the active set. Therefore, it is not surprising that ùρuT (Φ) is the estimator that all existing

empirical implementations of indirect estimation procedures have effectively used in practice. As the

following proposition shows, though, ignoring the Lagrange multipliers associated with the constraints

π2 = 0 usually leads to asymptotic efficiency losses:

Proposition 8 Under Assumptions 1, 2 and 3:

1. �ρeT
£
(Ir0)−1

¤
is asymptotically at least as efficient as ùρuT (Φ) for any positive semideÞnite matrix Φ,

and

2. the optimal ùρuT (Φ) is asymptotically just as efficient as �ρ
e
T

£
(Ir0)−1

¤
if and only if the limiting

covariance matrix between
√
T q̄T (ρ

0) and
√
T
£
�µeT − µe(ρ0)

¤
is 0 after partialling out the effect of√

T∂l̄T
£
πu1 (ρ

0);0
¤
/∂π1.

Not surprisingly, we can show using (11) that the condition in part 2 of Proposition 8 is analogous in

our context to condition (B) in Theorem 1 of Breusch et al. (1999). Therefore, there will be no efficiency

gains in using �µeT if and only if the additional moment conditions associated with ∂lt
£
πu1 (ρ

0);0
¤
/∂π2

have no incremental identiÞcation information about ρ. At the same time, there are other circumstances

in which πu1 (ρ) would not suffice to identify ρ, and hence, the relative efficiency gains from taking into
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account the information in �µeT would be inÞnite.
4

Proposition 8 has important consequences for actual practice because any auxiliary parametric model

contains a potentially very large number of implicit constraints, as the extensive literature on LM (or

efficient score) tests illustrates (see e.g. Godfrey (1988) and the references therein). Moreover, in many

situations of interest, it is considerably simpler to estimate a special restricted case of the auxiliary model

than the unrestricted model itself. Therefore, given that in practice users of indirect estimation procedures

typically do the reduction on the auxiliary model rather than deal with the modiÞed Þrst order conditions,

the scope for improving the efficiency of existing unconstrained indirect estimators by explicitly taking

into account the multipliers associated with those implicit constraints could be signiÞcant. We shall

investigate this issue with the example in section 3.

Finally, if θ were the parameters of interest, and f(xt|Xt−1;θ) provided the correct conditional density

function for xt, the imposition of correct equality restrictions on θ would weakly improve the efficiency of

the resulting estimators (see e.g. Rothenberg (1973) for details). However, such a result is not necessarily

robust to misspeciÞcation of the density function, even if both �θ
u

T and �θ
e

T remain consistent for the true

value of θ under misspeciÞcation of the pseudo-log likelihood function (see e.g. Arellano (1989) for a

counterexample). The situation is even less clear cut in our �constrained� indirect estimation set up, in

which both the density function of the auxiliary model and the restrictions on θ may well be incorrect. The

root of the problem is that by adding restrictions to the auxiliary model in those circumstances in which

they are not required to properly deÞne the auxiliary objective function, we are implicitly changing the

auxiliary model, and thereby, the binding functions. Therefore, a discussion of the efficiency consequences

of imposing equality constraints on a previously unrestricted auxiliary model will typically require us to

compare the residual covariance matrices Du0 and De0 deÞned in Proposition 7. Nevertheless, we can state
the following sufficient condition for asymptotic equivalence:

Proposition 9 Under Assumptions 1, 2 and 3
√
T
©
�ρuT
£
(Iu0 )−1

¤− �ρeT £(Ie0)−1¤ª = op(1)
if

lim
T→∞

V
n√
Tm̄T

£
θe(ρ0)

¤−H0√Tm̄T

£
θu(ρ0)

¤o
= 0,

where H0 is the matrix of limiting projection coefficients, and rank(H0) = s.

Intuitively, this condition says that the two estimators are asymptotically equivalent if their modiÞed

scores generate the same linear span. A particularly important example is given by the following result:

Corollary 2 Under Assumptions 1, 2 and 3
√
T
©
�ρuT
£
(Iu0 )−1

¤− �ρeT £(Ie0)−1¤ª = op(1) if h
£
θu(ρ0)

¤
= 0.

4As an extreme case, suppose that s = c ≥ d, and that h(θ) = θ − θ�, so that the only admissible value for the equality
restricted estimator �θ

e
T is precisely θ�. In this case, the dimension of π1 would be zero, and no unconstrained indirect

estimator based on those inexistent parameters could be deÞned. In contrast, our equality constrained indirect estimation
procedures will work by simply matching the c equality restricted binding functions µe(ρ) with the sample estimates of the
c Lagrange multipliers.
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Of course, if we knew that the equality constraints were indeed correct, we might be able to obtain

more efficient estimators of the parameters of interest by using the solution proposed by Dridi (2000), who

derives indirect estimators of ρ on the basis of a correctly overidentiÞed auxiliary model. At the same time,

the main advantage of our solution over Dridi�s is that by effectively saturating his overidentifying moment

conditions with Lagrange multipliers to mop up any possible bias, it produces consistent estimators of the

parameters of interest even if the overidentifying restrictions are not really fulÞlled by the unrestricted

pseudo-true values of the auxiliary parameters.

But the equivalence between �ρuT
£
(Iu0 )−1

¤
and �ρeT

£
(Ie0)−1

¤
may also hold with incorrect constraints.

For instance, this is always the case when the auxiliary model is a linear autoregression with drift, and

the restrictions are linear in the autoregression coefficients. More formally:

Corollary 3 Under Assumptions 1, 2 and 3
√
T
©
�ρuT
£
(Iu0 )−1

¤− �ρeT £(Ie0)−1¤ª = op(1)
if

lt (θ) = −1
2
ln 2π − 1

2
lnω − 1

2ω
(xt − φ0 − φ1xt−1 − . . .− φkxt−k)2,

and h (θ) = Rφ−r, with rank(R0) = s, where φ = (φ0, φ1, . . . , φk), and θ = (φ0, ω)0.

Note that such a result does not really depend on the nature of the true model, whose parameters

only enter through the mean of xt, ν(ρ) = E (xt|ρ), and its Þrst k + 1 theoretical �autocovariances�,
γj(ρ) = E (xtxt−j |ρ) (j = 0, . . . , k), but rather on the particular form of the auxiliary model used.

Intuitively, the reason is that from the point of indirect estimation, the sample mean x̄T and the Þrst

k + 1 sample �autocovariances� γ̄rjT (j = 0, . . . , k) play the role of �sufficient statistics� of the auxiliary

model from which we infer ρ.

In contrast, the asymptotic relationship of the inequality restricted estimators of the parameters of

interest with �ρuT
£
(Iu0 )−1

¤
and �ρeT

£
(Ie0)−1

¤
can be derived under general circumstances. For the sake of

clarity, though, we shall only present a formal result in the case of a single restriction:

Proposition 10 Under Assumptions 1, 2 and 3
√
T
©
�ρiT
£
(Ii0)−1

¤− �ρuT £(Iu0 )−1¤ª = op(1) if h
£
θu(ρ0)

¤
> 0,√

T
©
�ρiT
£
(Ii0)−1

¤− �ρeT £(Ie0)−1¤ª = op(1) if h
£
θu(ρ0)

¤
< 0,

and
√
T
©
�ρiT
£
(Ii0)−1

¤− �ρuT £(Iu0 )−1¤ª = op(1) = √T ©�ρiT £(Ii0)−1¤− �ρeT £(Ie0)−1¤ª if h
£
θu(ρ0)

¤
= 0.

In other words, the optimal inequality restricted indirect estimator of ρ will converge to the optimal

unrestricted indirect estimator if the inequality restriction is �correct�, in the sense that h[θu(ρ0)] > 0,

where θu(ρ0) is the unrestricted pseudo true value of θ, while it will converge to the equality restricted

one when the constraint is �incorrect�, by which we mean that h[θu(ρ)] < 0.
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In fact, the inequality constrained and unconstrained indirect procedures will yield numerically iden-

tical results if the inequality restriction is not binding in a given sample, since in that case �θ
i

T coincides

with the unconstrained PML estimator, �θ
u

T (and �µ
i
T with �µ

u
T = 0). Similarly, the inequality and equality

constrained procedures will yield numerically identical results if the inequality restriction is binding in a

given sample, because in that case �θ
i

T coincides with the equality constrained PML estimator, �θ
e

T , and

consequently �µiT with �µ
e
T . In the case of multiple inequality constraints, �ρ

i
T

£
(Ii0)−1

¤
will numerically co-

incide with either the unrestricted estimator, or an equality restricted estimator that imposes the subset

of the s constraints that happen to be satisÞed with equality by �θ
i

T . Therefore, it is not surprising that

the inequality constrained optimal indirect estimator will be asymptotically equivalent to �ρuT
£
(Iu0 )−1

¤
if

h
£
θu(ρ0)

¤
> 0, or to some equality restricted estimator otherwise.

2.3 Extensions

One approach commonly followed by users of indirect estimation methods is to select a simple auxiliary

model that closely resembles the model of interest, but whose pseudo-log likelihood function is easy to

evaluate, so that they can fully optimise it very rapidly. Many other empirical researchers, though, prefer

to estimate a reasonably complex auxiliary model, in the hope of capturing the most distinctive features of

the data, and thereby, coming close to the idealised situation of Du0 = 0 discussed before. Unfortunately,
such attempts often encounter numerical optimisation problems (see Andersen, Chung, and Sorensen

(1999) (ACS)). It turns out that our results can be easily adapted to cover such a situation as well,

at the cost of increasing the complexity of the notation. For simplicity of exposition, we concentrate

on unconstrained GMM-based indirect estimation procedures, and assume that the numerical procedure

used to maximise the pseudo log-likelihood function LT (θ) is the Newton-Raphson method without line

searches, and that the researcher abandons her attempts to maximise the pseudo-log likelihood function

after kmax steps, with kmax ≥ 0.
Let us initially consider the case of kmax = 0, so that no optimisation whatsoever takes place. If

the initial value �θ
(0)

T is non-stochastic, θ(0) say, we simply have a special case of the equality constrained

GMM-based indirect estimator, with the restrictions θ = θ(0). In effect, this transforms the GMM indirect

estimation procedure in a CMD indirect estimation procedure in which we match the values of the

multipliers �µ(0)T in the actual sample and the population. Nevertheless, note that if the value of θ(0) is

not sensibly chosen by the practitioner, it may well fail to satisfy the required conditions in Assumptions

2 and 3. Typically, however, �θ
(0)

T would be the result of an earlier optimisation procedure, during which

some of the parameters were Þxed at constant values as part of a step-by-step computational strategy

(see Calzolari, Fiorentini and Sentana (2004) for an example). If that is the case, the results in section

2.1 imply that the fully non-optimised GMM indirect estimator of ρ based on �θ
(0)

T and �µ(0)T , �ρ
(0)
T say, will

be consistent and asymptotically normal, as long as the regularity conditions in Assumptions 2 and 3
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(with ∂h0(θ)/∂θ = Ic) remain valid when (i) �θ
r

T is replaced by �θ
(0)

T , (ii) θr(ρ0) by the pseudo-true value

of �θ
(0)

T , θ(0)(ρ0) say, (iii) �µrT by �µ
(0)
T , which are the Lagrange multipliers required to satisfy the sample

Þrst-order conditions (3) at θ = �θ
(0)

T , and (iv) µ
r(ρ0) by the corresponding pseudo-true value, µ(0)(ρ0).

Let us now consider the more interesting case of kmax = 1. It is then clear that �θ
(1)

T and �µ(1)T will

also be stochastic, with pseudo-true values given by θ(1)(ρ0) = θ(0)(ρ0) + J (0)
0 µ(0)(ρ0) and µ(1)(ρ0) =

−E
n
∂l̄T

h
θ(1)(ρ0)

i
/∂θ

¯̄̄
ρ0
o
. If, mutatis mutandi, the regularity conditions in Assumptions 2 and 3

remain valid, then the one-step optimised GMM estimator of ρ based on �θ
(1)

T and �µ(1)T , �ρ(1)T say, will

also be consistent and asymptotically normal. But since the above argument does not really depend on

kmax being 1, or the way in which �θ
(0)

T was obtained, it remains valid for any kmax. Although situations

in which an applied researcher knowingly decides to proceed with a partially optimised auxiliary model

may seem hard to envisage, there are at least two practical cases in which the results of this subsection

may be of some use: (i) to allow for the fact that the numerical algorithm used to optimise the auxiliary

objective function may have converged very close to, but not exactly at the optimum, as we do in section

3, and (ii) to cater for an increasing number of practitioners who use the SNP auxiliary model with an

ever growing number of terms in the Hermite expansions to obtain what has become commonly known

as EMM estimators of ρ. In both cases, the important conclusion from the analysis in this section is that

an unsuccessful attempt to optimise the pseudo-log likelihood function can still be successfully used to

obtain a consistent indirect estimator of the parameters of interest ρ, as long as the moment conditions

used include Lagrange multipliers to reßect the lack of convergence of the algorithm.

For analogous reasons, an empirical researcher may alternatively decide to conduct a speciÞcation test

to assess if there is any evidence for an additional feature of the data that she has not yet incorporated

in her auxiliary model. Since most existing speciÞcation tests are of the LM form, a numerically sensible

strategy could be to base the indirect estimator on the unrestricted estimator of the more complex model

if the speciÞcation test rejects the null hypothesis, or on the equality restricted version if does not,

provided that in the latter case she exploits the information in the corresponding Lagrange multiplier.

If the speciÞcation test is consistent (in the sense that it rejects the null hypothesis with probability

approaching one as the sample size increases when the unrestricted pseudo-true value of the relevant

parameter is different from zero), then the limiting distribution of the pre-test indirect estimator of ρ is

the same as the limiting distribution of the fully optimised unconstrained indirect estimator. In contrast,

if the limiting unrestricted pseudo-true value is exactly zero, then the limiting distribution of the pre-test

estimator of ρ will be a mixture of the equality restricted estimator, and the unconstrained estimator.

But since equality restricted and unconstrained estimators would have the same distribution under the

(pseudo) null from Corollary 2, then the pre-test estimator will share the same asymptotically normal

distribution. We shall look at the empirical performance of such a pre-test estimator in the next section.
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3 An illustrative example: Stochastic volatility estimated as
GARCH(1,1) with Gaussian and Student�s t innovations

Consider the following log-normal stochastic volatility process

xt =
√
htut

lnht = α+ δ lnht−1 + σvvt
(12)

where |δ| < 1, 0 < σv < ∞, and (ut, vt)0|Xt−1 ∼ N(0, I2). This model was originally proposed as an

alternative to the arch class of volatility models, and can be regarded as the discrete time analogue of the

continuous time Orstein-Uhlenbeck stochastic processes for instantaneous log volatility frequently used in

the theoretical Þnance literature. In this context, the autoregressive parameter δ is typically interpreted as

a measure of the persistence of shocks to the volatility process, while the standard deviation parameter

σv reßects its instantaneous sensitivity to those shocks. Finally, α is a simple scaling parameter that

determines the average volatility level.

Unfortunately, it is impossible to Þnd analytical expressions for the conditional distribution of xt

based on its own past values alone, despite the fact that its distribution conditional on ht, xt−1, . . . is

Gaussian, with zero mean and variance ht. Given its importance, though, it is not surprising that a

voluminous collection of research papers has been devoted to the estimation of the parameters of interest

ρ = (α, δ, σv)
0 (see ACS for a recent survey). In an inßuential such paper, Kim, Shephard and Chib

(1998) (KSC) consider likelihood-based estimators of (12), and analyse its goodness of Þt relative to some

popular arch-type competitors. In particular, they Þnd that the log-normal stochastic model above and

a garch(1,1) model with (standardised) Student t distributed errors Þt the data equally well, as long as

the additional tail-thickness parameter is not set to its limiting value under Gaussianity. Therefore, since

the latter has a conditional density that can be written in closed form, it looks like the ideal candidate

for auxiliary model. On this basis, the most general model that we will estimate is given by

xt =
√
λtεt

λt = ψ + ϕx
2
t−1 + πλt−1

where εt|Xt−1 follows a standardised Student�s t distribution with η−1 degrees of freedom, so that θ =

(ψ,ϕ, π, η)0. As is well known, the standardised t distribution nests the standard normal for η = 0, but

has otherwise fatter tails. Broadly speaking, ψ and (ϕ + π) play in the GARCH model the roles that

α and δ have in the stochastic volatility model (12), while there is no such a close counterpart to σv.

Nevertheless, it is important to note that the auxiliary and true models are non-nested, except in the

trivial case in which xt is Gaussian white noise.

The parameters of the auxiliary model are usually estimated subject to several inequality restrictions

for the following reasons:

1. As discussed by e.g. Nelson and Cao (1991), the conditional variance λt will be nonnegative with

probability one if ψ ≥ 0, ϕ ≥ 0 and π ≥ 0.
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2. The PML estimators of θ may not be well behaved when ϕ+ π > 1 (see Lumsdaine, 1996).

3. The pseudo log-likelihood function based on the standardised Student�s t distribution cannot be

deÞned when the inverse of the degrees of freedom parameter is either negative, or exceeds 1/2.

4. When ϕ = 0, π becomes asymptotically underidentiÞed, which may also happen in Þnite samples

depending on the treatment of the initial observations (see e.g. Andrews, 1999).

As a consequence, we estimate the auxiliary model subject to the following set of inequality constraints:

ψ ≥ 0, ϕ ≥ ϕmin, π ≥ 0, ϕ+ π ≤ 1, 0 ≤ η ≤ ηmax (13)

where ϕmin, and 1/2− ηmax are arbitrarily chosen small values.5

Unfortunately, the tail-thickness parameter η is often very imprecisely estimated even if the sample

size is reasonably large. This is due to the fact that the log-likelihood function becomes rather ßat for

very small values of η. For that reason, we also consider an estimator that sets η to 0 to obtain a Gaussian

pseudo log-likelihood function, but which takes into account the value of the corresponding multiplier

from the relevant Þrst order condition. We also compute a third estimator along the lines described in

section 2.3, which alternates between the previous two depending on whether or not the value of the

one-sided LM normality test proposed by Fiorentini, Sentana and Calzolari (2003) exceeds the relevant

5% critical level. Finally, we consider a fourth estimator that is also based on the Gaussian pseudo

log-likelihood function, but which discards the information in the multiplier, as discussed in section 2.2.

For the sake of brevity, we shall refer to the estimator that allows η to vary freely within its bounds

as the �inequality restricted� indirect estimator, to the one that sets η to 0 as the �equality restricted�

indirect estimator, to the mixed one as the �pre-test� indirect estimator, and to the fourth one as the

�unrestricted� indirect estimator. In all cases, though, the remaining auxiliary parameters are always

estimated subject to the other bounds in (13).

We assess the performance of our proposed procedures by means of an extended Monte Carlo analysis,

with the same experimental designs as Jacquier, Polson and Rossi (1994) (JPR). In this respect, the results

in JPR suggest that the most important determinant of the performance of the different estimators is

the unconditional coefficient of variation of the unobserved volatility level ht, κ say, where

κ2 =
V (ht)

E2(ht)
= exp(

σ2v
1− δ2 )− 1

Intuitively, the reason is that when κ2 is low, the observed process is close to Gaussian white noise, and

the estimation of the stochastic volatility parameters is difficult. Unfortunately, the existing empirical

evidence suggests that low κ20s (around .5) are the rule, rather than the exception (see JPR and the

references therein). JPR considered nine Monte Carlo designs, arranged in three rows and columns. The

5After some experimentation, we chose ϕmin = .025, and ηmax = .499, which corresponds to 2.04 degrees of freedom.
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rows are deÞned in terms of κ2, and the columns by the autocorrelation coefficient for log volatility,

δ. Finally, the remaining parameter α is chosen for scaling purposes so that the unconditional mean of

the volatility level equals .0009. Although most of their reported results correspond to a sample size of

T = 500 observations, we have also considered T = 1, 000 and 2, 000. For the sake of brevity, though,

we only report the results for smallest and largest sample sizes, and two designs: ρ0 = (−.736, .9, .363)0

(κ2 = 1) and ρ0 = (−.141, .98, .0614)0 (κ2 = .1), which roughly match what we tend to see in the empirical
literature with weekly and daily data, respectively.

For convenience, we Þrst optimise the pseudo log-likelihood function in terms of some unrestricted

parameters θ∗, where ψ = θ∗21 , ϕ = ϕmin+(1−ϕmin) sin2(θ∗2), π = (1−ϕ) sin2(θ∗3) and η = sin2(θ∗4)ηmax.
Then, we compute the score in terms of the original parameters θ = (ψ,ϕ, π, η)0 using the analytical

expressions derived by Fiorentini, Sentana and Calzolari (2003) to avoid large numerical errors, and

introduce one multiplier for each of the four Þrst order conditions in order to take away any slack left.

Since there are no closed-form expressions for the expected value of the modiÞed score, we compute them

on the basis of single simulations of length TH, with H = 10, as explained in the appendix. A larger

value of H should in theory reduce the Monte Carlo variability of the indirect estimators according to

the relation (1 + H−1), but at the cost of a signiÞcant increase in the computational burden. Finally,

we minimise numerically the GMM criterion function in terms of some unrestricted parameters ρ∗, with

α = ρ∗1, δ = δmax sin(ρ
∗
2) and σv = ρ∗23 , where δmax = .9999, so as to ensure that |δ| < 1 and σv ≥ 0.

In order to avoid the biases that an infeasible choice of initial values could induce on our Monte Carlo

results, we decided to follow a sensible estimation strategy that an empirical researcher could repeat

with real data. SpeciÞcally, we considered three different sets of initial values for the stochastic volatility

parameters ρ:

1) a method of moments estimator based on E(x2t ), V (x
2
t ) and cov(x

2
t , x

2
t−1), with δ restricted to be

between .01 and .99,

2) another method of moments estimator based on E(lnx2t ), V (lnx
2
t ) and cov(lnx

2
t , lnx

2
t−1), with δ

restricted again to be in the same range, and

3) an average of the previous two.

Then, we looked at the minimum value of the GMM criterion function, and reported the parameter

estimates that corresponded to the minimum minimorum. Our procedure has two additional advantages

that are important in practice: it uses consistent initial values, and it performs a sensitivity analysis of

the convergence of the numerical optimisation procedure.

Table 1 contains the proportion of inequality and equality restricted PML estimators of θ that satisfy

with equality the different restrictions in (13). In this respect, note that the auxiliary model estimated

by the unrestricted procedure coincides with the model estimated by the equality restricted one. When
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κ2 is 1, such restrictions are almost never binding, especially for T = 2, 000. However, when κ2 is .1,

parameter conÞgurations in which ϕ+ π = 1 (i.e. igarch) are hardly ever estimated, but the estimates

of the arch and garch coefficients ϕ and π, respectively, and the reciprocal of the degrees of freedom

parameter η, reach their lower bounds fairly often, especially for the smaller sample size. In particular,

when T = 500, 40% of the simulations have PML estimators based on the normal distribution for which

at least one of the inequality restrictions on the arch and garch coefficients is binding, a percentage that

rises to almost 60% in the case of the student t. As pointed out by Shephard (1996), part of the empirical

success of the stochastic volatility and t-garchmodels simply lies on their ability to capture the fat-tailed

behaviour of asset returns. Therefore, when one tries to Þt a t-distributed garch(1,1) auxiliary model

to artiÞcial data that shows little volatility clustering, and only a small degree of leptokurtosis, it is not

totally surprising that one ends up with parameter estimates that correspond to Gaussian white noise.

In any case, the results clearly show that our proposed generalisations of indirect estimation procedures

are not only of theoretical interest, but also highly relevant in practice.

Figures 1 and 2 display kernel estimates of the sampling distributions of the �unrestricted�, �equality

restricted�, �inequality restricted�, and �pre-test� GMM-based indirect estimators of the structural para-

meters δ and σv for the case in which the optimal weighting matrix is estimated using the variance in the

original data of the modiÞed score of the auxiliary model evaluated at the PML parameter estimates.6 In

this respect, note that by including a multiplier in each Þrst order condition, we automatically centre the

scores around their sample mean. Given that the auxiliary model tends to Þt the simulated data rather

well, in the sense that the score of the auxiliary model is close to being a vector martingale difference

sequence, we have not included any correction for serial correlation (cf. GT96). As for bandwidth, we

have used the automatic choice given in expression (3.29) in Silverman (1986).

In line with the existing literature (see ACS), we Þnd that the sampling distributions of the different

estimators of the autoregressive parameter δ are systematically skewed to the left. This is particularly

so when δ0 is high and σ0v low, which mimics the behaviour of a PML estimator of the autoregressive

parameter of an ar(1) process observed subject to measurement error. Intuitively, the reason for such

a similarity is that the Þrst equation in (12) can be transformed into the measurement equation lnx2t =

lnht+lnu
2
t . And exactly like in that situation, the downward bias in the estimator of δ is transmitted into

an upward bias in the absolute value of the estimates of the mean constant, α, and the standard deviation

of the log-volatility innovations σv, whose sampling distribution is skewed to the right. Therefore, it is

not surprising that the most important determinant of the performance of the estimators is precisely κ2,

which effectively plays the role of a signal to noise ratio.

If we now compare the �unrestricted� indirect estimators with the equality restricted estimator, the

6Note that since the �unrestricted� indirect estimator is effectively using a just-identiÞed auxiliary model, it is generally
invariant to the weighting matrix. Nevertheless, by using the optimal weighting matrix, we ensure that the objective
function is evenly scaled across parameters, which improves the numerical properties of the optimisation algorithm.
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most noticeable effect of taking into account the information in the score for η evaluated at η = 0 is

that the precision with which we estimate the volatility of volatility parameter σv increases substantially,

the more so the smaller the signal to noise ratio. This is due to the fact that σv is the parameter that

most directly inßuences the degree of leptokurtosis of the conditional distribution of xt, which is mainly

captured in the garchmodel through the value of η, or its associated multiplier. As for the autoregressive

parameter δ, the reported simulation evidence also conÞrms the efficiency gains stated in Proposition 8,

although for κ = .1 large sample sizes seem to be required for normal asymptotics to apply.

In contrast, the �equality�, �inequality� and �pre-test� versions of the indirect estimator are quite

close to each other for these two Monte Carlo designs. Although the equality restricted indirect estimator

typically outperforms the inequality restricted one, with the �pre-test� estimator being somewhere in

between, the differences are minor. In this respect, it is important to point out that the pseudo-true

values of η reported in Table 1, which were computed on the basis of 500, 000 observations, are different

from zero, especially for κ = 1, which means that the sufficient condition for asymptotic equivalence

stated in Corollary 2 and Proposition 10 does not apply.

Finally, a comparison of our results with the ones reported by JPR and ACS suggests that our

indirect estimation procedures tend to outperform the PML and GMM estimators described in those

papers for the realistic parametric conÞgurations that we consider. In contrast, our indirect estimators

are dominated by the Bayesian estimators proposed by JPR and KSC, which is not very surprising given

that our auxiliary model does not nest the model of interest, and we do not use any prior information. In

this sense, it is important to mention that the relatively good performance of the Bayesian estimators in

small samples is partly due to the imposition of priors that assign low density near the boundary values

of the domains of δ and especially σv.

4 Conclusions

In this paper, we generalise the indirect estimation approaches of GT96 and GMR to those situations

in which there are equality and/or inequality constraints on the parameters of the auxiliary model.

SpeciÞcally, we propose an alternative set of moment restrictions based on the Þrst order conditions for

(in)equality restricted models, which nest the ones employed by GT96 when there are no constraints, or

when they are not binding, but which remain valid even if they are. We also derive the corresponding

optimal GMM weighting matrix, and explain how it can be consistently estimated in practice. In this

respect, we consider not only the usual two-step GMMmethod proposed by GT96, but also a continuously

updated one (à la Hansen, Heaton and Yaron, 1996). In addition, we combine the �constrained� parameter

estimators and Lagrange/Kuhn-Tucker multipliers to extend the original class of CMD indirect estimators

of GMR to the possibly restricted case, and prove that one can Þnd �restricted� CMD indirect estimators
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that are asymptotically equivalent to the GMM estimators by an appropriate choice of weighting matrix.

Inequality restrictions must often be considered in practice because the pseudo log-likelihood function

may not be well deÞned when certain parameter restrictions are violated, some of the auxiliary parameters

may become (almost) underidentiÞed in certain regions of the auxiliary parameter space, and/or some of

the implications of the auxiliary model could be unacceptable from an economic viewpoint. In addition,

equality constrained estimators may be particularly useful from a computational point of view, since in

many situations of interest, it is considerably simpler to estimate a special restricted case of the auxiliary

model. In this respect, our second contribution is an extensive discussion of the impact of the constraints

on the efficiency of the resulting indirect estimators. To do so, we Þrst relate the asymptotic efficiency

of our indirect estimators to the usually infeasible ML estimator. Then, we show that the asymptotic

efficiency of indirect estimators can never decrease by explicitly taking into account the Lagrange multi-

pliers associated with additional equality constraints, regardless of whether such restrictions are correct.

This result is particularly important in practice, as any parametric auxiliary model implicitly contains a

vast number of maintained assumptions, which can often be written in terms of zero restrictions on some

additional parameters. In addition, we illustrate the variety of effects that can be obtained when some

constraints are imposed on the parameters of a previously unrestricted auxiliary model. For instance,

we discuss several circumstances in which the imposition of constraints has no effect on the efficiency

of the resulting indirect estimators, and others in which false constraints enable the restricted indirect

estimators to achieve full efficiency. The reason for these seemingly counterintuitive results is that by

adding restrictions to the auxiliary model in those circumstances in which they are not required to prop-

erly deÞne the auxiliary objective function, we are implicitly changing the auxiliary model, and thereby,

the binding functions.

Finally, we also introduce indirect estimators based on partially optimised unconstrained estimators,

as well as those that impose the constraints depending on the signiÞcance of some preliminary speciÞcation

test. Such estimators are particularly useful in practice, especially when the auxiliary model is rather

complex (e.g. an SNP speciÞcation with a large number of terms in the Hermite expansion) because they

can successfully transform an unsuccessful attempt to optimise the pseudo-log likelihood function into a

consistent estimator of the parameters of interest.

For illustrative purposes, we compare the performance of our proposed procedures for a log-normal

stochastic volatility process estimated as a garch(1,1) model with either Gaussian or t-distributed errors.

In this case, we Þnd that the PML estimators are quite often at the boundary of the parameter space,

which conÞrms the practical relevance of our proposed procedures. We also document that when the

auxiliary model is estimated under Gaussianity, we can substantially increase the efficiency of the usual

indirect estimators by including the information in the multiplier corresponding to the reciprocal of the
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degrees of freedom.

Further work is required in at least three main directions. From a numerical point of view, sequential

indirect estimators may be the only feasible alternative in large-scale multivariate models involving many

parameters (see Calzolari, Fiorentini and Sentana (2004) for further details and an application).

From a statistical point of view, the Þnite sample reliability of the asymptotic results obtained in

this paper may sometimes be questionable. For instance, we may need fairly large sample sizes for

the asymptotic distributions of the indirect estimators presented in Proposition 4 to approximate their

Þnite sample distributions, as we saw in some of the Monte Carlo experiments reported in section 3.

And although our simulations suggest otherwise, the asymptotic efficiency gains promised by Proposition

8, which result from considering additional Lagrange multipliers, may not always materialise in small

samples. In this context, there are several research avenues that would be worth exploring. In particular,

the recent GMM literature suggests that the continuously updated GMM-like methods suggested in

section 2.1 may improve the Þnite sample performance of our indirect estimators. In addition, constrained

versions of the implicit bias adjustment procedures discussed by Gouriéroux, Renault and Touzi (2000),

either on their own (see Arvanitis and Demos (2003)), or together with the control variates techniques

developed by Calzolari, Di Iorio and Fiorentini (1998) may also prove useful in this respect. Similarly, the

Laplace-type procedures recently proposed by Chernozhukov and Hong (2003) may result in estimators

with better Þnite sample properties, particularly in dynamic latent variable models, like the SV example

discussed in section 3, in which the role of prior information on MCMC-based Bayesian estimators is

non-negligible.

Finally, from a modelling point of view, the application of constrained indirect estimation procedures

and other simulation-based inference methods to dynamic models with predetermined (as opposed to

strictly exogenous) conditioning variables remains an important unresolved issue that merits further

investigation.
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Appendix

Proofs of results

Proposition 1

If we linearise the complementary slackness conditions

h(�θ
r

T )¯ �µrT = 0

around βr(ρ0), taking into account that h
£
θr(ρ0)

¤¯µr(ρ0) = 0, and that Hadamard products are commutative,
we obtain:

µ∗T ¯
∂h (θ∗T )
∂θ0

√
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�θ
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T−θr(ρ0)
i
+ h(θ∗T )¯
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T
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�µrT−µr(ρ0)

¤
= 0
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0 is an �intermediate� value (in fact, a different one for each row). Then, given that in view of
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¤
= op(1), and ∂h(θ∗T )/∂θ−∂h
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¤
/∂θ =

op(1), the result follows. ¤

Proposition 2

If we linearise the Þrst-order conditions √
Tm̄T (�θ

r

T ) = 0

around βrT (ρ
0), we obtain:
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0 is another �intermediate� value. Then, since in view of our assumptions
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)
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a straightforward application of Crámer�s theorem completes the proof. ¤

Proposition 3

Let us now linearise the sample moments m(ρ0; �β
r

T ) around β
r(ρ0) to obtain

√
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ρ0;βr(ρ0)

¤
+
∂m(ρ0;β¦T )

∂θ0
√
T
h
�θ
r

T−θr(ρ0)
i
+
∂m(ρ0;β¦T )

∂µ0
√
T
£
�µrT−µr(ρ0)

¤
where β¦T is yet another �intermediate� value. Given that m

£
ρ0;βr(ρ0)

¤
= 0, this implies that under our

assumptions,
√
Tm(ρ0; �β

r

T ) has the same asymptotic distribution as

∂m
£
ρ0;βr(ρ0)

¤
∂θ0

√
T
h
�θ
r

T−θr(ρ0)
i
+
∂m

£
ρ0;βr(ρ0)

¤
∂µ0

√
T
£
�µrT−µr(ρ0)

¤
where

∂m
£
ρ0;βr(ρ0)

¤
∂θ0

= J r
0 +

£
µr(ρ0)⊗ Ic

¤ ∂vec©∂h0 £θr(ρ0)¤ /∂θª
∂θ0

= Kr11,0

∂m
£
ρ0;βr(ρ0)

¤
∂µ0

=
∂h0

£
θr(ρ0)

¤
∂θ

= Kr12,0

But then, Proposition 2 directly yields the required result ¤
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Proposition 4

The Þrst order conditions associated with �ρrT
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as required. ¤

Proposition 5

The result follows directly if we combine the proofs of Propositions 2 and 3 to show that
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Proposition 6

By deÞnition, �ρrGT (Ψ) must always satisfy the Þrst-order conditions:
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If d = c and T is large enough, though, our assumptions imply that �ρrGT (Ψ) will in fact be the solution to the
system of equations

m
h
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T

i
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the Þrst order conditions that characterise the binding functions imply that

βr [�ρrGT (Ψ)]− �β
r

T = 0,

which means that βr [�ρrGT (Ψ)] trivially minimises
h
βr (ρ)− �βrT

i0 ·Ω· hβr (ρ)− �βrT i for any Ω. ¤

Proposition 7

The fact that Dr
0 is the asymptotic residual covariance matrix in the limiting least squares projection of√

T q̄T (ρ
0) onto

√
TmT

£
βr(ρ0)

¤
follows from (11) and the second part of Assumption 3. But then, since the

projection error will be asymptotically orthogonal to the �regressors�
√
TmT

£
βr(ρ0)

¤
by the usual Þrst order

condition of least squares projections, it trivially follows that B0 = Cr0 +Dr
0 . ¤
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Corollary 1

Let θ = (δ, ψ)0 denote the auxiliary model parameters, and µ = (µδ, µψ)
0 the multipliers associated with the

constraints δ = 0 and ψ ≥ 0, respectively. The average pseudo log-likelihood function of the ma(1) model for a
sample of size T (ignoring initial conditions) will be given by:

l̄T (θ) = −1
2
ln 2π − 1

2
lnψ − 1

2ψ

1

T

X
t

[xt − νt(δ)]2 ,

and the (scaled) Lagrangian function by
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2
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2
lnψ − 1
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X
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where
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∞X
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Since
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¸
+ µψ =
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·
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ψ
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¸
+ µψ,

where

ut(δ) =
∞X
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δjxt−j ,
∂νt(δ)

∂δ
= −

∞X
j=1
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it is easy to see that

mδ[(φ, ω);(0, ψ, µδ, µψ)] = E

·
− 1
ψ
xtxt−1 + µδ

¯̄̄̄
φ, ω

¸
=

−φω
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·
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ψ
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¸
=

1

2ψ2

µ
ω
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¶
+ µψ.

From here, it is clear that the binding functions βe(ρ) that satisfy the moment conditions m [ρ;βe(ρ)] = 0,
together with the exclusion restriction ψe(ρ) · µeψ(ρ) = 0, plus the original parametric restrictions δe(ρ) = 0 and
ψe(ρ) ≥ 0, will be given by

δe(ρ) = 0, µeδ(ρ) = φ, ψe(ρ) =
ω

1− φ2 ≥ 0, µψ(ρ) = 0.

As a result,

√
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½
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¾
.

But since the (scaled) average score of the true log-likelihood is given by

√
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ω0
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,

which can be written as a (limiting) linear combination of m̄T

£
βe(ρ0)

¤
, then the result immediately follows from

Proposition 7 regardless of the value of ρ0. ¤
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Proposition 8

Part 1: By the usual chain rule for Þrst derivatives,

√
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£
βe(ρ0)

¤
=
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θe(ρ0)

¤
∂θ
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¤
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µe(ρ0).

Then, given our assumptions about g(θ), and the fact that π2 = g2(θ) = h(θ), so that the Lagrange multipliers
are unaffected by the reparametrisation, it is clear that

√
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£
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¤
spans exactly the same linear space
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√
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πu1 (ρ

0);0
¤
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ª
together. Hence, the equality restricted

indirect estimators of ρ based on �θ
e

T and �µ
e
T simultaneously must be at least as efficient as unrestricted indirect

estimator based on �πu1T alone in view of Proposition 7.
Part 2: Under the stated condition, the asymptotic residual covariance matrix in the limiting least squares
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√
T q̄T (ρ

0) on
√
T∂l̄T

£
πu1 (ρ

0);0
¤
/∂π1 will be unaffected by the addition of

√
T{∂l̄T

£
πu1 (ρ

0);0
¤
/∂π2
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Proposition 9

It follows immediately from Proposition 7. ¤

Corollary 2

If the equality constraints are satisÞed by the unrestricted pseudo-true values of θ, in the sense that h
£
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¤
=
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result then follows from Proposition 9. ¤

Corollary 3

For simplicity of notation, let us deÞne zt = (1, xt−1, . . . , xt−k)0, σxx(ρ) = E
¡
x2t
¯̄
ρ
¢
, σzx(ρ) = E (ztxt|ρ)

and Σzz(ρ) = E (ztz
0
t|ρ). It is then straightforward to see that
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from where we can obtain the following binding functions
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Therefore, we will have that
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and

mφ
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¤
=
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Let us now deÞne the k+1 vector of functions γ(ρ) = [γ0(ρ),γ1(ρ), . . . ,γk(ρ)]

0, where γj(ρ) = E (xtxt−j |ρ),
and also ν(ρ) = E (xt|ρ), so that all the elements of γxx(ρ), σzx(ρ) and Σzz(ρ) can be trivially written as
functions of γ(ρ) and ν(ρ). Then, tedious but otherwise straightforward algebra shows that both m

£
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¤
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£
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¤
can be written as homeomorphic functions of γ(ρ) and ν(ρ). As a result, the estimators of ρ
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£
ν(ρ)− x̄T ,γ0(ρ)− γ̄0T

¤0, where γ̄T contains the Þrst k + 1
sample (uncentred) autocovariances of xt. ¤

Proposition 10

The proof of these three cases, which correspond to an asymptotically strictly unconstrained auxiliary model,
an asymptotically strictly constrained auxiliary model, and an asymptotically correctly equality constrained aux-
iliary model follows the lines of the proof of Corollary 1.

In the Þrst case, we have that βi(ρ0) = βu(ρ0), so that mt
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are asymptotically equivalent. ¤

Simulation-based estimators

For the clarity of exposition, we have assumed throughout that analytical expressions for the population
objective function (5) and its Þrst order conditions (6) can be readily obtained. However, in many cases such
expressions may be very difficult, or simply impossible to Þnd, and yet they can often be easily obtained by
numerical simulation (see e.g. GM96). In particular, we can approximate the required expectations by means of
ensemble averages of the levels and derivatives of the Lagrangian function (1) across H realizations of size T of
the true process simulated with parameter values equal to ρ. SpeciÞcally, if {xht (ρ), t = 1, . . . , T} denotes the hth
such realization (h = 1, . . . , H), then

LT (ρ;θ) = E(l̄T (θ)|ρ) ' 1

H

HX
h=1

1

T

TX
t=1

ln f [xht (ρ)|Xh
t−1(ρ); θ] = L̄T (ρ;θ),

mT (ρ;β) = E

µ
∂l̄T (θ)

∂θ

¯̄̄̄
ρ

¶
+
∂h0(θ)
∂θ

µ ' 1

H

HX
h=1

1

T

TX
t=1

∂ ln f [xht (ρ)|Xh
t−1(ρ); θ]

∂θ
+
∂h0(θ)
∂θ

µ = m̄T (ρ;β),

where we can make the right hand side terms arbitrarily close in a numerical sense to the left hand side ones as
H →∞. Nevertheless, it is important to bear in mind that these simulated functions will seldom be differentiable
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with respect to ρ unless the underlying uniform variates are kept Þxed across simulations, there are no discrete
variables in xt, and smooth transformations of the underlying uniforms are used to obtain the desired distributions.
In this respect, we would like to stress that in the stochastic volatility example in section 3, in which we relied
on simulations to compute the required moments, all three conditions were fulÞlled.

Since we are assuming that xt is strictly stationary and ergodic, there is, in fact, an alternative simulation
scheme, which replaces the required expectations by their sample analogues in a single but very large realization
of the process, {xn(ρ), n = 1, . . . , T ·H} . In particular, we will have:

L(ρ; θ) = E(l̄T (θ)|ρ) ' 1

T ·H
T ·HX
n=1

ln f [xn(ρ)|Xn−1(ρ);θ] = LTH(ρ;θ),

m(ρ;β) = E

µ
∂l̄T (θ)

∂θ

¯̄̄̄
ρ

¶
+
∂h0(θ)
∂θ

µ ' 1

T ·H
T ·HX
n=1

∂ ln f [xn(ρ)|Xn−1(ρ);θ]

∂θ
+
∂h0(θ)
∂θ

µ = mTH(ρ;β).

In this case, we can again make left and right hand sides arbitrarily close in a numerical sense as H →∞.
Finally, we can approximate the different binding functions βr(ρ) by means of either β̄rT (ρ) or β

r
TH(ρ),

which are the appropriately constrained pseudo ML estimators and associated multipliers computed on the basis
of L̄T (ρ;θ) and LTH(ρ; θ), respectively. The main attraction of the Þrst procedure is that it may sometimes
improve the small sample properties of the estimators of ρ (see e.g. Gouriéroux, Renault and Touzi (2000) and
Arvanitis and Demos (2003)).

From a computational point of view, though, the crucial advantage of GMM-based estimators over CMD-
ones is that they avoid the calculation of the possibly constrained estimators for each simulation of the process.
However, given that �µuT = 0, we can always regard the GMM-based indirect estimation procedure as a CMD
procedure that matches the value in the observed sample of a vector that contains one multiplier per auxiliary
parameter with the (average) value of the same vector in the simulated sample(s). At the same time, since the
term

h
∂h0(�θ

r

T )/∂θ
i
· �µrT is Þxed across simulations, what we effectively do in practice is to minimise the distance

between the score in the actual sample and the (average) score in the simulated samples.
Finally, note that the autocovariance matrices Sτ (ρ;βT ) used in the computation of the optimal weighting

matrix for the continuously updated GMM-based indirect estimators can also be arbitrarily approximated by
replacing the required expected values by their sample counterparts in a long simulation of length T ·H. In any
case, it is important to bear in mind that since H is Þnite in practice, the asymptotic covariance matrix of the
GMM and CMD indirect estimators in Proposition 4 must be multiplied by the scalar quantity (1 +H−1) (see
GMR).
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Table 1

Auxiliary model characteristics:

Pseudo-true values, proportion of auxiliary model parameter estimates at the

boundary (Equality/Inequality), and rejection frequencies of normality test

H=10, Fixed GMM weighting matrix, 1,000 replications

κ2 α0 δ0 σ0v
1 -.736 .9 .363

ψe(ρ0)/ψi(ρ0) ϕe(ρ0)/ϕi(ρ0) πe(ρ0)/πi(ρ0) µeη(ρ
0)/ηi(ρ0)

7.8/7.9×10−3 .166/.177 .754/.746 .418/.156

T = 500 T = 2000

�ϕrT = ϕmin .001/.002 0/0
�πrT = 0 0/0 0/0
�ϕrT + �π

r
T = 1 .007/.013 0/0

�ηT = 0 1/0 1/0
total .008/.015 0/0
LM rejections .977 1

κ2 α0 δ0 σ0v
.1 -.141 .98 .0614

ψe(ρ0)/ψi(ρ0) ϕe(ρ0)/ϕi(ρ0) πe(ρ0)/πi(ρ0) µeη(ρ
0)/ηi(ρ0)

1.7/1.7×10−3 .026/.026 .955/.955 .046/.027

T = 500 T = 2000

�ϕrT = ϕmin .323/.302 .190/.191
�πrT = 0 .137/.139 .015/.019
�ϕrT + �π

r
T = 1 .005/.006 .009/.001

�ηT = 0 1/.248 1/.065
total .400/.577 .203/.256
LM rejections .206 .504
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 Figure 1A: Sampling distribution of unrestricted, equality restricted, inequality restricted and pretest indirect estimators of δ

H=10, Fixed GMM weighting matrix, 1000 replications (κ=1, α=-.736, δ=.9, σv=.363)
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 Figure 1B: Sampling distribution of unrestricted, equality restricted, inequality restricted and pretest indirect estimators of σv

H=10, Fixed GMM weighting matrix, 1000 replications (κ=1, α=-.736, δ=.9, σv=.363)
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 Figure 2A: Sampling distribution of unrestricted, equality restricted, inequality restricted and pretest indirect estimators of δ

H=10, Fixed GMM weighting matrix, 1000 replications (κ=.1, α=-.141, δ=.98, σv=.0614)
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 Figure 2B: Sampling distribution of unrestricted, equality restricted, inequality restricted and pretest indirect estimators of σv

H=10, Fixed GMM weighting matrix, 1000 replications (κ=.1, α=-.141, δ=.98, σv=.0614)
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