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D Auxiliary results

D.1 Some useful distribution results

A spherically symmetric random vector of dimension N , ε◦t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε◦t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2
t ) <∞,

we can standardise ε◦t by setting E(e2
t ) = N , so that E(ε◦t ) = 0, V (ε◦t ) = IN . Specifically, if ε◦t

is distributed as a standardised multivariate Student t random vector of dimension N with ν0

degrees of freedom, then et =
√

(ν0 − 2)ζt/ξt, where ζt is a chi-square random variable with N

degrees of freedom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance

2ν0. If we further assume that E(e4
t ) < ∞, then the coefficient of multivariate excess kurtosis

κ0, which is given by E(e4
t )/[N(N + 2)]− 1, will also be bounded. For instance, κ0 = 2/(ν0− 4)

in the Student t case with ν0 > 4, and κ0 = 0 under normality. In this respect, note that since

E(e4
t ) ≥ E2(e2

t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
√
N

so that ε◦t is proportional to ut, then κ0 ≥ −2/(N + 2), the minimum value being achieved in

the uniformly distributed case.

Then, it is easy to combine the representation of spherical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V (ε◦t ) = IN are given by

E(ε◦tε
◦
t
′ ⊗ ε◦t ) = 0, (D1)

E(ε◦tε
◦
t
′⊗ε◦tε◦t ′) =E[vec(ε◦tε

◦
t
′)vec′(ε◦tε

◦
t )] = (κ0 +1)[(IN2 +KNN )+vec (IN ) vec′ (IN )], (D2)

where Kmn is the commutation matrix of orders m and n (see e.g. Magnus and Neudecker

(1987)).

D.2 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(η) + g(ςt,η)] denote the assumed conditional density of ε∗t given It−1 and the

shape parameters, where c(η) corresponds to the constant of integration, g(ςt,η) to its kernel

and ςt = ε∗′t ε
∗
t . Ignoring initial conditions, the log-likelihood function of a sample of size T for

those values of θ for which Σt(θ) has full rank will take the form LT (φ) =
∑T

t=1 lt(φ), where

lt(φ) = dt(θ) + c(η) + g [ςt(θ),η], dt(θ) = ln |Σ−1/2
t (θ)| is the Jacobian and ςt(θ) = ε∗′t (θ)ε∗t (θ).

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. If µt(θ), Σt(θ), c(η) and

g [ςt(θ),η] are differentiable, then

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ), (D3)
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while

sθt(φ) =
∂dt(θ)

∂θ
+
∂g [ςt(θ),η]

∂ς

∂ςt(θ)

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (D4)

where

∂dt(θ)/∂θ = −Zst(θ)vec(IN ),

∂ςt(θ)/∂θ = −2{Zlt(θ)ε∗t (θ) + Zst(θ)vec
[
ε∗t (θ)ε∗′t (θ)

]
}, (D5)

Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′
t (θ),

Zst(θ) =
1

2
∂vec′ [Σt(θ)] /∂θ·[Σ−1/2′

t (θ)⊗Σ
−1/2′
t (θ)],

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ), (D6)

est(θ,η) = vec
{
δ[ςt(θ),η] · ε∗t (θ)ε∗′t (θ)−IN

}
, (D7)

and

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς (D8)

is a damping factor that reflects the tail-thickness of the distribution assumed for estimation

purposes. Importantly, while both Zdt(θ) and edt(φ) depend on the specific choice of square

root matrix Σ
1/2
t (θ), sθt(φ) does not, a property that inherits from lt(φ). As we shall see in

Supplemental Appendix E, this result is not generally true for non-spherical distributions.

Obviously, sθt(θ,0) reduces to the multivariate normal expression in Bollerslev and Wooldridge

(1992), in which case:

edt(θ,0) =

[
elt(θ,0)
est(θ,0)

]
=

{
ε∗t (θ)

vec [ε∗t (θ)ε∗′t (θ)−IN ]

}
.

Assuming further twice differentiability of the different functions involved, we will have that

the Hessian function ht(φ) = ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′ will be

hθθt(φ) =
∂2dt(θ)

∂θ∂θ′
+
∂2g [ςt(θ), η]

(∂ς)2

∂ςt(θ)

∂θ

∂ςt(θ)

∂θ′
+
∂g [ςt(θ), η]

∂ς

∂2ςt(θ)

∂θ∂θ′
, (D9)

hθηt(φ) = ∂ςt(θ)/∂θ · ∂2g [ςt(θ),η] /∂ς∂η′, (D10)

hηηt(φ) = ∂2c(η)/∂η∂η′ + ∂2g [ςt(θ),η] /∂η∂η′,

where

∂2dt(θ)/∂θ∂θ′=2Zst(θ)Z′st(θ)-
1

2

{
vec′

[
Σ−1
t (θ)

]
⊗ Ip

}
∂vec

{
∂vec′ [Σt(θ)] /∂θ

}
/∂θ′, (D11)

∂2ςt(θ)/∂θ∂θ′ = 2Zlt(θ)Z′lt(θ) + 8Zst(θ)[IN ⊗ ε∗t (θ)ε∗′t (θ)]Z′st(θ) + 4Zlt(θ)[ε∗′t (θ)⊗ IN ]Z′st(θ)

+4Zst(θ)[ε∗t (θ)⊗ IN ]Z′lt(θ)− 2[ε∗′t (θ)Σ
−1/2′
t (θ)⊗Ip]∂vec[∂µ

′
t(θ)/∂θ]∂θ′

−{vec′[Σ−1/2
t (θ)ε∗t (θ)ε∗′t (θ)Σ

−1/2′
t (θ)]⊗ Ip}∂vec{∂vec′[Σt(θ)]/∂θ}/∂θ′.

Note that ∂ςt(θ)/∂θ, ∂2dt(θ)/∂θ∂θ′ and ∂2ςt(θ)/∂θ∂θ′ depend on the dynamic model specifica-

tion, while ∂2g(ς, η)/(∂ς)2, ∂2g(ς, η)/∂ς∂η′ and ∂g(ς, η)/∂η∂η′ depend on the specific spherical
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distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for

expressions for δ(ςt,η), c(η), g(ςt,η) and its derivatives in the multivariate Student t case,

Amengual and Sentana (2010) for the Kotz distribution (see Kotz (1975)) and discrete scale

mixture of normals, and Amengual, Fiorentini and Sentana (2013) for polynomial expansions).

D.3 Asymptotic distribution under correct specification

Given correct specification, the results in Crowder (1976) imply that et(φ) = [e′dt(φ), ert(φ)]′

evaluated at φ0 follows a vector martingale difference, and therefore, the same is true of the score

vector st(φ). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the joint ML estimator will be
√
T (φ̂T − φ0)→ N

[
0, I−1(φ0)

]
, where I(φ0) =

E[It(φ0)|φ0],

It(φ) = V [st(φ)|It−1;φ] = Zt(θ)M(φ)Z′t(θ) = −E [ht(φ)|It−1;φ] ,

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
, (D12)

andM(φ) = V [et(φ)|φ]. In particular, Crowder (1976) requires: (i) φ0 is locally identified and

belongs to the interior of the admissible parameter space, which is a compact subset of Rp+q; (ii)

the Hessian matrix is non-singular and continuous throughout some neighbourhood of φ0; (iii)

there is uniform convergence to the integrals involved in the computation of the mean vector

and covariance matrix of st(φ); and (iv) −E−1
[
−T−1

∑
t ht(φ)

]
T−1

∑
t ht(φ)

p→ Ip+q, where

E−1
[
−T−1

∑
t ht(φ)

]
is positive definite on a neighbourhood of φ0.

As for θ̃T (η̄), assuming that η̄ coincides with the true value of this parameter vector, the

same arguments imply that
√
T [θ̃T (η̄) − θ0] → N

[
0, I−1

θθ (φ0)
]
, where Iθθ(φ0) is the relevant

block of the information matrix.

Proposition 1 in Fiorentini and Sentana (2007), which generalises Propositions 3 in Lange,

Little and Taylor (1989), 1 in Fiorentini, Sentana and Calzolari (2003) and 5.2 in Hafner and

Rombouts (2007), provides detailed expressions forM(φ). We reproduce it here to facilitate its

comparison to Proposition 2:
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Proposition 8 If ε∗t |It−1;φ is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)], then

M(η) =

 Mll(η) 0 0
0 Mss(η) Msr(η)
0 M′sr(η) Mrr(η)

 , (D13)

Mll(η) = mll(η)IN , (D14)

Mss(η) = mss(η) (IN2 + KNN ) + [mss(η)− 1]vec(IN )vec′(IN ), (D15)

Msr(η) = vec(IN )msr(η), (D16)

mll(η) = E
[
δ2(ςt,η)

ςt
N

∣∣∣η] = E

[
2∂δ(ςt,η)

∂ς

ςt
N

+ δ(ςt,η)

∣∣∣∣η] ,
mss(η) =

N

N + 2

{
1 + V

[
δ(ςt,η)

ςt
N

∣∣∣η]} =
N

N + 2
E

[
2∂δ(ςt,η)

∂ς

( ςt
N

)2
∣∣∣∣η]+ 1,

msr(η) = E
{[
δ(ςt,η)

ςt
N
− 1
]
e′rt(φ)

∣∣∣φ} = −E
[
ςt
N

∂δ(ςt,η)

∂η′

∣∣∣∣η] .
Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate

standardised Student t, while the expressions for the Kotz distribution and the DSMN are

given in Amengual and Sentana (2010) (The expression for mss(κ) for the Kotz distribution in

Amengual and Sentana (2010) contains a typo. The correct value is (Nκ+ 2)/[(N + 2)κ+ 2]).

D.4 Gaussian pseudo maximum likelihood estimators

Let θ̃T = arg maxθ LT (θ,0) denote the Gaussian PML estimator of θ. As we mentioned

in the introduction, θ̃T remains root-T consistent for θ0 under correct specification of µt(θ)

and Σt(θ) even though the true conditional distribution of ε∗t |It−1;φ0 is neither Gaussian nor

spherical, provided that it has bounded fourth moments. The proof is based on the fact that

in those circumstances, the pseudo log-likelihood score, sθt(θ,0), is also a vector martingale

difference sequence when evaluated at θ0, a property that inherits from edt(θ,0). This property

is preserved even when the standardised innovations, ε∗t , are not stochastically independent

of It−1. The asymptotic distribution of the PML estimator of θ is stated in the following

result, which specialises Proposition 1 in Bollerslev and Wooldridge (1992) to models with i.i.d.

innovations with shape parameters ρ:

Proposition 9 Assume that the regularity conditions A.1 in Bollerslev and Wooldridge (1992)

are satisfied.

1. If ε∗t |It−1;ϕ is i.i.d.D(0, IN ,ρ) with tr[K(ρ)]<∞, where ϕ = (θ′,ρ′)′, then
√
T (θ̃T−θ0)→

4



N [0, Cθθ(θ0,0;ϕ0)] with

Cθθ(θ,0;ϕ) = A−1
θθ (θ,0;ϕ)Bθθ(θ,0;ϕ)A−1

θθ (θ,0;ϕ),

Aθθ(θ,0;ϕ) = −E [hθθt(θ,0)|ϕ] = E [Aθθt(θ,0;ϕ)|ϕ] ,

Aθθt(θ,0;ϕ) = −E[hθθt(θ; 0)| It−1;ϕ] = Zdt(θ)K(0)Z′dt(θ),

Bθθ(θ,0;ϕ) = V [sθt(θ,0)|ϕ] = E [Bθθt(θ,0;ϕ)|ϕ] ,

Bθθt(θ,0;ϕ) = V [sθt(θ; 0)| It−1;ϕ] = Zdt(θ)K(ρ)Z′dt(θ),

and

K(ρ) =V [edt(θ,0)| It−1;ϕ] =

[
IN Φ(ρ)

Φ′(ρ) Υ(ρ)

]
, (D17)

where
Φ(ρ) = E[ε∗t vec

′(ε∗tε
∗′
t )|ϕ]

Υ(ρ) = E[vec(ε∗tε
∗′
t − IN )vec′(ε∗tε

∗′
t − IN )|ϕ]

depend on the multivariate third and fourth order cumulants of ε∗t , so that Φ(0) = 0 and

Υ(0) = (IN2 + KNN ) if we use ρ = 0 to denote normality.

2. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,ρ0) with κ0 <∞, then (D17) reduces to

K (κ) =

[
IN 0
0 (κ+1) (IN2 +KNN )+κvec(IN )vec′(IN )

]
, (D18)

which only depends on the true distribution through the population coefficient of multivari-

ate excess kurtosis κ0.

D.5 Spherically symmetric semiparametric estimators

As is well known, a single scoring iteration without line searches that started from θ̃T and

some root-T consistent estimator of η, say η̃T , would suffice to yield an estimator of φ that

would be asymptotically equivalent to the full-information ML estimator φ̂T , at least up to

terms of order Op(T
−1/2). Specifically,(

θ̌T − θ̃T
η̌T − η̃T

)
=

[
Iθθ(φ0) Iθη(φ0)
I ′θη(φ0) Iηη(φ0)

]−1
1

T

T∑
t=1

[
sθt(θ̃T , η̃T )

sηt(θ̃T , η̃T )

]
.

If we use the partitioned inverse formula, then it is easy to see that

θ̌T − θ̃T =
[
Iθθ(φ0)− Iθη(φ0)I−1

ηη (φ0)I ′θη(φ0)
]−1

× 1

T

T∑
t=1

[
sθt(θ̃T , η̃T )− Iθη(φ0)I−1

ηη (φ0)sηt(θ̃T , η̃T )
]

= Iθθ(φ0)
1

T

T∑
t=1

sθ|ηt(θ̃T , η̃T ),

where

Iθθ(φ0) = [Iθθ(φ0)− Iθη(φ0)I−1
ηη (φ0)I ′θη(φ0)]−1

and

sθ|ηt(θ0,η0) = sθt(θ0,η0)− Iθη(φ0)I−1
ηη (φ0)sηt(θ0,η0) (D19)
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is the residual from the unconditional theoretical regression of the score corresponding to θ,

sθt(φ0), on the score corresponding to η, sηt(φ0). This residual score is sometimes called the

unrestricted parametric efficient score of θ, and its covariance matrix, P(φ0) = [Iθθ(φ0)]−1, the

marginal information matrix of θ, or the unrestricted parametric efficiency bound.

In the spherically symmetric case, we can easily prove that (D19) and its covariance matrix

reduce to

sθ|ηt(φ0) = Zdt(θ0)edt(φ0)−Ws(φ0) ·
[
msr(η0)M−1

rr (η0)ert(φ0)
]

(D20)

and

P(φ0) = Iθθ(φ0)−Ws(φ0)W′
s(φ0) ·

[
msr(η0)M−1

rr (η0)m′sr(η0)
]
, (D21)

respectively, where

Ws(φ0) = Zd(θ0)[0′, vec′(IN )]′ = E[Zdt(θ0)|φ0][0′, vec′(IN )]′

= E

{
1

2

∂vec′ [Σt(θ0)]

∂θ
vec[Σ−1

t (θ0)]

∣∣∣∣φ0

}
= E[Wst(θ0)|φ0] = −E

[
∂dt(θ0)

∂θ

∣∣∣∣φ0

]
, (D22)

It is worth noting that the last summand of (D19) coincides with Zd(φ0) times the theoret-

ical least squares projection of edt(φ0) on (the linear span of) ert(φ0), which is conditionally

orthogonal to edt(θ0,0) from Proposition 3 of Fiorentini and Sentana (2007). Such an interpre-

tation immediately suggests alternative estimators of θ that replace a parametric assumption on

the shape of the distribution of the standardised innovations ε∗t by a more flexible alternative.

Specifically, Hodgson and Vorkink (2003), Hafner and Rombouts (2007) and other authors have

suggested spherically symmetric semiparametric estimators which allow for any member of the

class of spherically symmetric distribution. To derive such estimators, these authors replace the

linear span of ert(φ0) by the so-called spherically symmetric tangent set, which is the Hilbert

space generated by all time-invariant functions of ςt(θ0) with bounded second moments that

have zero conditional means and are conditionally orthogonal to edt(θ0,0). The next proposi-

tion, which originally appeared as Proposition 7 in Fiorentini and Sentana (2007), provides the

resulting spherically symmetric semiparametric efficient score and the corresponding efficiency

bound:

Proposition 10 When ε∗t |It−1,φ is i.i.d. s(0, IN ,η) with −2/(N+2) < κ0 <∞, the spherically

symmetric semiparametric efficient score is given by:

s̊θt(φ0) = sθt(φ0)−Ws(φ0)

{[
δ[ςt(θ0),η0]

ςt(θ0)

N
−1

]
− 2

(N+2)κ0 +2

[
ςt(θ0)

N
−1

]}
, (D23)

while the spherically symmetric semiparametric efficiency bound is

S̊(φ0) = Iθθ(φ0)−Ws(φ0)W′
s(φ0) ·

{[
N + 2

N
mss(η0)− 1

]
− 4

N [(N + 2)κ0 + 2]

}
. (D24)

In the case of the univariate Garch-m model (2), we estimate the model parameters using

parametrisation (17), with the expressions for the score that appear in the proof of Proposition
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6. On the other hand, we use the natural parametrisation of the multivariate market model in

(3), so that θ′ = (a′,b′,ω′), where ω = vech(Ω). Given the Jacobian matrices:

∂µt(θ)

∂(a′,b′,ω′)
= ( IN INrMt 0 ), (D25)

∂vec[Σt(θ)]

∂(a′,b′,ω′)
= ( 0 0 DN ), (D26)

because
∂vec(Ω)

∂vech′(Ω)
= DN ,

the results in Supplemental Appendix D.2 immediately imply that

sat(θ) = Ω−1δtεt(θ),

sbt(θ) = Ω−1rmtδtεt(θ),

sωt(θ) =
1

2
D′N (Ω−1 ⊗Ω−1)vec[δtεt(θ)ε′t(θ)−Ω],

where εt(θ) = rt − a− brmt.

The last ingredient we need is

Ws(φ0) = [0,0,
1

2
vec′(Ω−1)DN ]′

because

D′N (Ω−
1
2
′ ⊗Ω−

1
2
′)vec(IN ) = D′Nvec(Ω

−1).

In practice, edt(φ) has to be replaced by a semiparametric estimate obtained from the joint

density of ε∗t . However, the spherical symmetry assumption allows us to obtain such an estimate

from a nonparametric estimate of the univariate density of ςt, h (ςt;η), avoiding in this way the

curse of dimensionality. Specifically, if we use expression (2.21) in Fang, Kotz and Ng (1990) to

write the density function of ςt as

h(ςt;η) =
πN/2

Γ(N/2)
ς
N/2−1
t exp[c(η) + g(ςt,η)], (D27)

then we can estimate δ[ςt(θ),η] non-parametrically by exploiting that

−2∂g[ςt(θ),η]

∂ς
= −2∂ lnh[ςt(θ),η]

∂ς
+
N − 2

2

1

ςt(θ)
.

We can compute h[ςt(θ);η] either directly by using a kernel for positive random variables

(see Chen (2000)), or indirectly by using a faster standard Gaussian kernel after exploiting the

Box-Cox-type transformation v = ςk (see Hodgson, Linton and Vorkink (2002)). In the second

case, the usual change of variable formula yields

p(v;η) =
πN/2

kΓ(N/2)
v−1+N/2k exp[c(η) + g(v1/k;η)],

whence

g(v1/k;η) = ln p(v;η) +

(
1− N

2k

)
ln v − N

2
ln 2π + ln k − ln Γ(N/2)− c(η)

7



and
∂g(v1/k;η)

∂v1/k
= k

∂ ln f(v;η)

∂v
v1−1/k +

k −N/2
v1/k

.

We use the second procedure in our Monte Carlo simulations because the distribution of

ςt(θ) becomes more normal-like as N increases, which reduces the advantages of using kernels for

positive variables. Specifically, we use a cubic root transformation to improve the approximation,

with a common bandwidth parameter for both the density and its first derivative. Given that

a proper cross-validation procedure is extremely costly to implement in a Monte Carlo exercise

with N = 5, we have done some experimentation to choose the optimal bandwidth by scaling

up and down the automatic choices given in Silverman (1986).

In the univariate case, there is a conceptually simpler alternative that does not require

working with ςt = ε∗2t . In particular, we can exploit the fact that the density of ε∗t is the same

as the density of −ε∗t by assigning to ±ε∗t the equally weighted average of the non-parametric

density estimates at ε∗t and −ε∗t . Likewise, we can compute the equally weighted average of the

absolute value of its derivatives and assign its ± value to ε∗t and −ε∗t , respectively.

E The general case of non-spherical pseudo likelihoods

E.1 Likelihood, score and Hessian for non-spherical distributions

Let f(ε∗;%) denote the assumed conditional density of ε∗t given It−1 and some shape pa-

rameters %. Let also φ = (θ′,%)′ denote the p + q parameters of interest, which once again we

assume variation free. Ignoring initial conditions, the log-likelihood function of a sample of size

T for those values of θ for which Σt(θ) has full rank will take the form LT (φ) =
∑T

t=1 lt(φ),

where lt(φ) = dt(θ) + ln f [ε∗t (θ),%], dt(θ) = ln |Σ−1/2
t (θ)|, ε∗t (θ) = Σ

−1/2
t (θ)εt(θ), and εt(θ) =

yt − µt(θ).

The most common choices of square root matrices are the Cholesky decomposition, which

leads to a lower triangular matrix for a given ordering of yt, or the spectral decomposition, which

yields a symmetric matrix. The choice of square root matrix is non-trivial because Σ
1/2
t (θ) affects

the value of the log-likelihood function and its score in multivariate non-spherical contexts. In

what follows, we rely mostly on the Cholesky decomposition because it is much faster to compute

than the spectral one, especially when Σt(θ) is time-varying. Nevertheless, we also discuss some

modifications required for the spectral decomposition later on.

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

s%t(φ), whose dimensions conform to those of θ and %, respectively. Assuming that µt(θ),

Σ
1/2
t (θ) and ln f(ε∗,%) are differentiable, it trivially follows that

sθt(θ,%) =
∂dt(θ)

∂θ
+
∂ε′∗t (θ)

∂θ

∂ ln f [ε∗t (θ) ;%]

∂ε∗
.

But since

∂dt(θ)/∂θ = −∂vec
′[Σ

1/2
t (θ)]

∂θ
vec[Σ

−1/2′
t (θ)] = −Zst(θ)vec(IN )

8



and

∂ε∗t (θ)

∂θ′
= −Σ

−1/2
t (θ)

∂µt(θ)

∂θ′
− [ε∗′t (θ)⊗Σ

−1/2
t (θ)]

∂vec[Σ
1/2
t (θ)]

∂θ′

= −{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)}, (E28)

where
Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′

t (θ)

Zst(θ) = ∂vec′[Σ
1/2
t (θ)]/∂θ · [IN ⊗Σ

−1/2′
t (θ)]

}
, (E29)

it follows that

sθt(φ) = [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (E30)

s%t(φ) = ∂ ln f [ε∗t (θ) ;%]/∂% = ert(φ),

with

edt(φ) =

[
elt(φ)
est(φ)

]
=

[
−∂ ln f [ε∗t (θ);%]/∂ε∗,
−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗′t (θ)}

]
. (E31)

Similarly, let ht(φ) denote the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. Assuming

twice differentiability of the different functions involved, expression (E28) implies that

∂elt(θ,%)

∂θ′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
=
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)} (E32)

because

delt(θ,%) = −d{∂ ln f [ε∗t (θ);%]/∂ε∗}. (E33)

In turn,

dest(θ,%) = −dvec
[
∂ ln f [ε∗t (θ);%]

∂ε∗
· ε∗′t (θ)

]
= −[ε∗t (θ)⊗ IN ]d

{
∂ ln f [ε∗t (θ);%]

∂ε∗

}
−
{

IN ⊗
∂ ln f [ε∗t (θ);%]

∂ε∗

}
dε∗t (θ) (E34)

implies that

∂est(φ)

∂θ′
=
∂est(θ,%)

∂θ′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
−
{

IN ⊗
∂ ln f [ε∗t (θ);%]

∂ε∗

}
∂ε∗t (θ)

∂θ′{
[ε∗t (θ)⊗IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
+

[
IN⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]}
{Z′lt(θ)+[ε′∗t (θ)⊗IN ]Z′st(θ)}. (E35)

Finally, (E33) and (E34) trivially imply that

∂2elt(θ,%)

∂θ∂%′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂%′
,

∂2est(θ,%)

∂θ∂%′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂%′
.

Using these results, we can easily obtained the required expressions for

hθθt(φ) = Zlt(θ)
∂elt(φ)

∂θ′
+ Zst(θ)

∂est(φ)

∂θ′

+
[
e′lt(φ)⊗ Ip

] ∂vec[Zlt(θ)]

∂θ′
+
[
e′st(φ)⊗ Ip

] ∂vec[Zst(θ)]

∂θ′
, (E36)

hθ%t(φ) = Zlt(θ)∂elt(φ)/∂%′ + Zst(θ)∂est(φ)/∂%′, (E37)

h%%t(φ) = ∂2 ln f [ε∗t (θ) ;%]/∂%∂%′.
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Importantly, while Zlt(θ), Zst(θ), ∂vec[Zlt(θ)]/∂θ′ and ∂vec[Zst(θ)]/∂θ′ depend on the dy-

namic model specification, the first and second derivatives of ln f(ε∗;%) depend on the specific

distribution assumed for estimation purposes.

For the standard (i.e. lower triangular) Cholesky decomposition of Σt(θ), we will have that

dvec(Σt) = [(Σ
1/2
t ⊗ IN ) + (IN ⊗Σ

1/2
t )KNN ]dvec(Σ

1/2
t ).

Unfortunately, this transformation is singular, which means that we must find an analogous

transformation between the corresponding dvech′s. In this sense, we can write the previous

expression as

dvech(Σt) = [LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ]dvech(Σ

1/2
t ), (E38)

where LN is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long

as Σ
1/2
t has full rank, which means that we can readily obtain the Jacobian matrix of vech(Σ

1/2
t )

from the Jacobian matrix of vech(Σt).

In the case of the symmetric square root matrix, the analogous transformation would be

dvech(Σt) = [D+
N (Σ

1/2
t ⊗ IN )DN + D+

N (IN ⊗Σ
1/2
t )DN ]dvech(Σ

1/2
t ),

where D+
N = (D′NDN )−1D′N is the Moore-Penrose inverse of the duplication matrix (see Magnus

and Neudecker, 1988).

From a numerical point of view, the calculation of both LN (Σ
1/2
t ⊗ IN )L′N and LN (IN ⊗

Σ
1/2
t )KNNL′N is straightforward. Specifically, given that LNvec(A) = vech(A) for any square

matrix A, the effect of premultiplying by the 1
2N(N+1)×N2 matrix LN is to eliminate rows N+1,

2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LNKNNvec(A) = vech(A′),

the effect of postmultiplying by KNNL′N is to delete all columns but those in positions 1, N+1,

2N+1,. . . ,N+2, 2N+2,. . . , N+3, 2N+3,. . . , N2.

Let Ft denote the transpose of the inverse of LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ,

which will be upper triangular. The fastest way to compute

∂vec′[Σ
1/2
t (θ)]

∂θ
[IN ⊗Σ

−1/2
t (θ)] =

1

2

∂vech′ [Σt(θ)]

∂θ
FtLN (IN ⊗Σ

−1/2
t ) (E39)

is as follows:

1. From the expression for ∂vec′ [Σt(θ)] /∂θ we can readily obtain ∂vech′ [Σt(θ)] /∂θ by

simply avoiding the computation of the duplicated columns

2. Then we postmultiply the resulting matrix by Ft
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3. Next, we construct the matrix

LN (IN ⊗Σ
1/2
t ) = LN


Σ
−1/2
t 0 · · · 0

0 Σ
−1/2
t · · · 0

...
...

. . .
...

0 0 · · · Σ
−1/2
t


by eliminating the first row from the second block, the first two rows from the third block,

. . . , and all the rows but the last one from the last block

4. Finally, we premultiply the resulting matrix by ∂vech′ [Σt(θ)] /∂θ · Ft.

E.2 Asymptotic distribution

E.2.1 Under correct specification

Proposition 11 If ε∗t |;φ is i.i.d. D(0, IN ,%) with density f(ε∗,%), then

It(φ) = Zt(θ)M(%)Z′t(θ),

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,

and

M(%) =

[
Mdd(%) Mdr(%)
M′dr(%) Mrr(%)

]
=

 Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 ,
with

Mll(%) = V [elt(φ)|φ] = E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′

∣∣%] ,
Mls(%) = E[elt(φ)est(φ)′|φ] = E

[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε′∗t ⊗ IN )

∣∣%] ,
Mss(%) = V [est(φ)|φ] = E

[
(ε∗t ⊗ IN ) · ∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε∗′t ⊗ IN )|%

]
−KNN ,

Mlr(%) = E[elt(φ)e′rt(φ)|φ] = −E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

Msr(%) = E[est(φ)e′rt(φ)|φ] = −E
[
(ε∗t ⊗ IN )∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

and

Mrr(%) = V [ert(φ)|φ] = −E
[
∂2 ln f(ε∗t ;%)/∂%∂%′|φ

]
.

E.2.2 Under misspecification

Proposition 12 If (14) holds, and ε∗t |It−1;ϕ0 is i.i.d. (0, IN ), where ϕ includes ψ and the true

shape parameters ρ, but the distribution assumed for estimation purposes does not necessarily

nest the true density, then the pseudo-true value of the feasible parametric ML estimator of

φ = (ψ′c,ψ
′
im,ψ

′
ic,%)′, φ∞, is such that ψc∞ is equal to the true value ψc0.

Proof. We can directly work in terms of the ψ parameters thanks to our assumptions on

the mapping rg(.). Let us initially keep % fixed to some admissible value. The parametric
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score vector for the remaining parameters will then be given by (E30), with Zψiclt(ψ) = 0 and

Zψimst(ψ) = 0.

Since we are systematically working with lower triangular square root decompositions, we

can write

Zψcst(ψ) = ∂vech′[Σ
�1/2
t (ψc)]/∂ψc · LN [Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic ],

Zψics(ψ) = ∂vech′(Ψ
1/2
ic )/∂ψic · LN [IN ⊗Ψ

−1/2′
ic ].

Given that Ψ
1/2′
ic is upper triangular, Ψ

−1/2
ic Σ

�−1/2
t (ψc) is lower triangular and IN is diagonal,

Theorem 5.7.i in Magnus (1988) implies that

[Ψ
1/2′
ic ⊗Ψ

−1/2
ic Σ

�−1/2
t (ψc)]L

′
N = L′NLN [Ψ

1/2′
ic ⊗Ψ

−1/2
ic Σ

�−1/2
t (ψc)]L

′
N ,

(IN ⊗Ψ
−1/2
ic )L′N = L′NLN (IN ⊗Ψ

−1/2
ic )L′N ,

whence

Zψcst(ψ) =
∂vech′[Σ

�1/2
t (ψc)]

∂ψc
LN [Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic ]L′NLN ,

Zψics(ψ) =
∂vech′(Ψ

1/2
ic )

∂ψic
LN (IN ⊗Ψ

−1/2′
ic )L′NLN .

As a result,

sψict(ψ,%) = −
∂vech′(Ψ

1/2
ic )

∂ψic
LN (IN ⊗Ψ

−1/2′
ic )L′Nvech

{
IN +

∂ ln f [ε∗t (ψ);%]

∂ε∗
ε∗′t (ψ)

}
sψimt(ψ,%) = −Ψ

−1/2′
ic

∂ ln f [ε∗t (ψ);%]

∂ε∗

and

sψct(ψ,%) =

{
∂µ�′t (ψc)

∂ψc
+
∂vec′[Σ

�1/2
t (ψc)]

∂ψc
(ψim ⊗ IN )

}
Σ
�−1/2′
t (ψc)sψimt(ψ,%)

−∂vec
′[Σ
�1/2
t (ψc)]

∂ψc
· LN [Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic ]L′Nvech

{
IN +

∂ ln f [ε∗t (ψ);%]

∂ε∗
ε∗′t (ψ)

}
since vech(A) = LNvec(A) for any N ×N square matrix A regardless of its structure.

Let ψim∞(%) and ψic∞(%) denote the solution to the implicit system of N + N(N + 1)/2

equations (A13), which we assume is such that Ψic∞(%) is p.d. Given the expression for

ε∗t (ψ) in (A14), we can immediately see that ε∗t (ψc0,ψim,ψic) will be i.i.d.[Ψ
−1/2
ic (ψim0 −

ψim),Ψ
−1/2
ic Ψic0Ψ

−1/2′
ic ] conditional on It−1. This, together with the full rank of Ψ

−1/2′
ic im-

plies that

E

[
∂ ln f [ε∗t [ψc0,ψim∞(%),ψic∞(%)];%]

∂ε∗

∣∣∣∣ It−1;ϕ0

]
= 0.

In addition, we know from Theorem 5.6 in Magnus (1988) that the matrix

LN (IN ⊗Ψ
−1/2′
ic )L′N
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will be upper triangular of full rank. Similarly, given that we have defined ψic = vech(Ψic),

the matrix ∂vech′(Ψ
1/2
ic )/∂ψic would also be of full rank in view of the discussion that follows

expression (E38).

As a result, we will also have that

vech

{
E

[
IN +

∂ ln f [ε∗t [ψc0,ψim∞(%),ψic∞(%)];%]

∂ε∗
ε∗′t [ψc0,ψim∞(%),ψic∞(%)]

∣∣∣∣ It−1;ϕ0

]}
= 0.

Consequently,

E{sψt[ψc0,ψim∞(%),ψic∞(%),%]|It−1;ϕ0} = 0, (E40)

which confirms that ψc0, ψim∞(%) and ψic∞(%) will be the pseudo-true values corresponding

to a restricted PML estimator that keeps % fixed.

If we define %∞ as the solution to the q equations

E{s%t[ψc0,ψim∞(%),ψic∞(%),%]|ϕ0} = 0,

which we assume lies in the interior of the admissible parameter space, then it is clear that ψc0,

ψim∞ = ψim∞(%∞), ψic∞ = ψic∞(%∞) and %∞ will be the pseudo-true values of the parameters

corresponding to an unrestricted PMLE that also estimates %. �

If we further assume that the true conditional mean of yt is 0, and this restriction is imposed

in estimation, then ψim becomes unnecessary, thereby generalising the second part of Theorem

1 in Newey and Steigerwald (1997).

The next result, which extends propositions 2 and 4, contains the ingredients necessary

to compute the joint asymptotic covariance matrix of the consistent estimators ψim(ψ̂cT ) and

ψic(ψ̂cT ) defined in (21) and (22), respectively, and φ̂T :

Proposition 13 If (14) holds, and ε∗t |It−1;ϕ0 is i.i.d. (0, IN ), where ϕ includes ψ and the true

shape parameters, but the distribution assumed for estimation purposes does not necessarily nest

the true density, then:

1.

A=

(
Aφφ 0
Aψ̄iφ

Aψ̄iψ̄i

)
=



Aψcψc
Aψcψim

Aψcψic
Aψc% 0 0

A′ψcψim
Aψimψim

Aψimψic
Aψic% 0 0

A′ψcψic
A′ψimψic

Aψicψic
Aψim% 0 0

A′ψc%
A′ψim%

A′ψic%
A%% 0 0

Aψ̄imψc
0 0 0 Aψ̄imψ̄im

0

Aψ̄icψc
0 0 0 0 Aψ̄icψ̄ic


,

B=

(
Bφφ Bφψ̄i

B′
φψ̄i

Bψ̄iψ̄i

)
=



Bψcψc
Bψcψim

Bψcψic
Bψcη Bψcψ̄im

Bψcψ̄ic

B′ψcψim
Bψimψim

Bψimψic
Bψimη Bψimψ̄im

Bψimψ̄ic

B′ψcψic
B′ψimψic

Bψicψic
Bψicη Bψicψ̄im

Bψicψ̄ic

B′ψcη
B′ψimη

B′ψicη
Bηη Bηψ̄im

Bηψ̄ic

B′
ψcψ̄im

B′
ψimψ̄im

B′
ψicψ̄im

B′
ηψ̄im

Bψ̄imψ̄im
Bψ̄imψ̄ic

B′
ψcψ̄ic

B′
ψicψ̄im

B′
ψicψ̄ic

B′
ηψ̄ic

B′
ψ̄imψ̄ic

Bψ̄icψ̄ic


,

with detailed expressions for all the elements in the proof.
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2. If in addition (16) holds, then both A and B become block diagonal between ψc and

(ψim,ψic,%, ψ̄im, ψ̄ic).

Proof. To obtain the asymptotic distribution of the unrestricted pseudo ML estimators ψ̂T and

%̂T , we need the asymptotic covariance matrix of the average scores as well as the expected value

of the average Hessian matrix evaluated at the pseudo true values φ′∞ = (ψ′c0,ψ
′
im∞,ψ

′
ic∞,%

′
∞).

Given that s%t(φ∞) only depends on ε∗t (ψc0,ψim∞,ψix∞), which is i.i.d. over time, it follows

that

E[s%t(φ∞)|It−1;ϕ0] = 0, (E41)

which in conjunction with (9) proves the martingale difference nature of the spherical score

evaluated at the pseudo-true values. As a result, we only need the contemporaneous covariance

matrix of the component of the score corresponding to the tth observation, which in turn depends

on the contemporaneous covariance matrix of edt(φ∞) and ert(φ∞). Given the expression for

edt(φ∞) in (E31), it immediately follows that

E[elt(φ∞)e′lt(φ∞)|ϕ0]=E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗′

∣∣∣∣ϕ0

}
=MO

ll (φ∞;ϕ0), (E42)

E[elt(φ∞)e′st(φ∞)] = E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗

×vec′
{

IN +
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}∣∣∣∣ϕ0

}
=MO

ls(φ∞;ϕ0), (E43)

E[est(φ∞)e′st(φ∞)] = E

{
vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}
×vec′

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ)

}∣∣∣∣ϕ0

}
=MO

ss(φ∞;ϕ0). (E44)

Similarly,

E[elt(φ∞)e′rt(φ∞)|ϕ0]=E

{
−∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′

∣∣∣∣ϕ0

}
=MO

lr(φ∞;ϕ0)

(E45)

E[est(φ∞)e′rt(φ∞)] = E

{
−vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
· ∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′

}
×[ε∗′t (ψ∞)⊗ IN ])

∣∣ϕ0

}
=MO

sr(φ∞;ϕ0) (E46)

and

E[ert(φ∞)e′rt(φ∞)] = E

{
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%

∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′
|ϕ0

}
=MO

rr(φ∞;ϕ0).

(E47)

Hence, we will have that Bφφ = E[Bφφt(φ∞;ϕ0)], where

Bφφt(φ∞;ϕ0) = V [st(φ∞)|It−1;ϕ0] = Zt(ψ∞)MO(φ∞;ϕ0)Zt(ψ∞), (E48)

and MO(φ;ϕ) = V [et(φ)|ϕ].
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Tedious algebra shows that Aφφ = E[At(φ∞;ϕ0)], where

At(φ∞;ϕ0) = −E[ht(φ∞)|It−1;ϕ0] = Zt(ψ∞)MH(φ∞;ϕ0)Zt(ψ∞), (E49)

and MH(φ∞;ϕ0) contains the following elements

MH
ll (φ∞;ϕ0) = E

{
∂2 ln f [ε∗t (ψ∞);%∞]/∂ε∗∂ε∗′

∣∣ϕ0

}
, (E50)

MH
ls (φ;ϕ) = E

{
∂2 ln f [ε∗t (ψ);%]/∂ε∗∂ε∗′ · [ε∗′t (ψ)⊗ IN ])

∣∣ϕ} , (E51)

MH
ss(φ;ϕ) = E

{
[ε∗t (ψ)⊗ IN ] · ∂2 ln f [ε∗t (ψ);%]/∂ε∗∂ε∗′ · [ε∗′t (ψ)⊗ IN ]|ϕ

}
−KNN (E52)

MH
lr (φ;ϕ) = −E

[
∂2 ln f [ε∗t (ψ);%]/∂ε∗∂%′|ϕ

]
, (E53)

MH
sr(φ;ϕ) = −E

[
[ε∗t (ψ)⊗ IN ]∂2 ln f [ε∗t (ψ);%]/∂ε∗∂%′|ϕ

}
, (E54)

and

MH
rr(φ;ϕ) = −E

{
∂2 ln f [ε∗t (ψ);%]/∂%∂%′|ϕ

}
. (E55)

Let us now turn to our consistent estimators of ψic and ψim. The fact that the Gaussian

pseudo score for these parameters are influence functions that only depend on ψc and ψ̄i trivially

implies that
∂sψit(ψc, ψ̄i; 0)

∂ψ′i
= 0 and

∂sψit(ψc, ψ̄i; 0)

∂%′
= 0.

For analogous reasons,

∂sψct(ψc,ψi,%)

∂ψ̄
′
i

= 0,
∂sψit(ψc,ψi,%)

∂ψ̄
′
i

= 0,
∂s%t(ψc,ψi,%)

∂ψ̄
′
i

= 0,

We will also have that
∂s′ψit

(ψc, ψ̄i; 0)

∂ψc
= h′ψcψit

(ψ,0)

and
∂s′ψit

(ψc, ψ̄i; 0)

∂ψ̄i
= h′ψiψit

(ψ,0).

But since we are evaluating these expressions at consistent estimators of ψ, we will have that

ε∗t (ψ0) = ε∗t , whence we can obtain the remaining elements of A. In particular, given that (A14)

implies that for a fixed value of ψc we could understand the Gaussian log-likelihood function

of yt as a Gaussian log-likelihood for the pseudo-standardised residuals ε�t (ψc) with mean ψim

and covariance matrix Ψic, it immediately follows that Aψ̄imψ̄ic
= 0.

Next, we need to find out the asymptotic covariance matrix of the sample averages of

sψict(ψ0; 0) and sψimt(ψ0; 0), as well as their asymptotic covariances with the sample aver-

ages of sψt(φ∞) and s%t(φ∞), which coincide with contemporaneous variance and covariances

of these influence functions because they are martingale difference sequences. In turn, they

depend on the covariance matrix of edt(ψ0,0), which is given by (D17), as well as on the covari-

ances of this vector with edt(φ∞) and ert(φ∞). Specifically, the required additional elements
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are

E[elt(φ∞)e′lt(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ0)

∣∣∣∣ϕ0

}
=MO

ll̄ (φ∞;ϕ0), (E56)

E[est(φ∞)e′lt(ψ0,0)] = E

{
vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}
ε∗′t (ψ0)

∣∣∣∣ϕ0

}
=MO

sl̄(φ∞;ϕ0), (E57)

E[ert(φ∞)e′lt(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′
ε∗′t (ψ0)|ϕ0

}
=MO

rl̄(φ∞;ϕ0), (E58)

and

E[elt(φ∞)e′st(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
vec′

[
ε∗t (ψ0)ε∗′t (ψ0)− IN

]∣∣∣∣ϕ0

}
=MO

ls̄(φ∞;ϕ0),

(E59)

E[est(φ∞)e′st(ψ0,0)] = E

{
vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}
×vec′

[
ε∗t (ψ0)ε∗′t (ψ0)− IN

]∣∣ϕ} =MO
ss̄(φ;ϕ), (E60)

E[ert(φ∞)e′ct(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′
vec′

[
ε∗t (ψ0)ε∗′t (ψ0)− IN

]∣∣∣∣ϕ} =MO
rs̄(φ;ϕ).

(E61)

Finally, we can tediously show that the conditions for block-diagonality of the expected

value of the Hessian and the covariance matrix of the score are that E[Zψclt(ψ∞)|ϕ0] and

E[Zψcst(ψ∞)|ϕ0] are both 0. But given that

Zψclt(ψc0,ψim,ψic) =
[
∂µ�′t (ψc0)/∂ψc ·Σ

�−1/2′
t (ψc0)

]
Ψ
−1/2′
ic

+
{
∂vec′[Σ

�1/2
t (ψc0)]/∂ψc · [IN ⊗Σ

�−1/2′
t (ψc0)]

}
(ψim ⊗Ψ

−1/2′
ic ),

Zψcst(ψc0,ψim,ψic) =
{
∂vec′[Σ

�1/2
t (ψc0)]/∂ψc · [IN ⊗Σ

�−1/2′
t (ψc0)]

}
(Ψ

1/2
ic ⊗Ψ

−1/2′
ic ),

those conditions will be satisfied if (16) holds in view of the full rank of Ψic. �

E.3 Semiparametric estimators

In Supplemental Appendix D.5 we interpreted the last summand of (D19) as Zd(φ0) times

the theoretical least squares projection of edt(φ0) on (the linear span of) ert(φ0), which is con-

ditionally orthogonal to edt(θ0,0) from Proposition 3 in Fiorentini and Sentana (2007). Such

an interpretation allowed Gonzalez-Rivera and Drost (1999) to replace a parametric assumption

on the shape of the distribution of the standardised innovations ε∗t by a fully non-parametric

alternative. Specifically, in a univariate context they replaced the linear span of ert(φ0) by the

so-called unrestricted tangent set, which is the Hilbert space generated by all the time-invariant

functions of ε∗t with bounded second moments that have zero conditional means and are condi-

tionally orthogonal to edt(θ0,0). The next proposition, which originally appeared as Proposition

6 in Fiorentini and Sentana (2007), describes the resulting semiparametric efficient score and

the corresponding efficiency bound for multivariate conditionally heteroskedastic models whose

conditionally mean is not identically zero:
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Proposition 14 If ε∗t |It−1;θ,ρ is i.i.d. D(0, IN ,ρ) with density function f(ε∗t ;ρ), where ρ

denotes the possibly infinite dimensional vector of shape parameters and ρ = 0 normality, and

both its Fisher information matrix for location and scale,

Mdd (θ,ρ) = V [edt(θ,%)|It−1;θ,ρ]

= V

{[
elt(θ,ρ)
est(θ,ρ)

]∣∣∣∣θ,ρ} = V

{[
−∂ ln f [ε∗t (θ);ρ]/∂ε∗

−vec {IN + ∂ ln f [ε∗t (θ);ρ]/∂ε∗ · ε∗′t (θ)}

]∣∣∣∣θ,ρ}
and the matrix of third and fourth order central moments K (ρ) in (D17) are bounded, then the

semiparametric efficient score will be given by:

s̈θt(φ) = sθt(φ)− Zd(θ,ρ)
[
edt(θ,ρ)−K (0)K+(ρ)edt(θ,0)

]
, (E62)

while the semiparametric efficiency bound is

S̈(φ) = Iθθ(θ,ρ)− Zd(θ,ρ)
[
Mdd(θ,ρ)−K (0)K+(ρ)K (0)

]
Z′d(θ,ρ), (E63)

where + denotes Moore-Penrose inverses and Iθθ(θ,ρ) = E [Zdt(θ)Mdd(θ,ρ)Z′dt(θ)|θ,ρ].

In the case of the univariate Garch-m model (2), we estimate the model parameters using

parametrisation (17), with the expressions for the score that appear in the proof of Proposition

6. On the other hand, we use again the natural parametrisation of the multivariate market

model in (3). As a result, the Jacobian matrix (D25) remains relevant, so that

sat(θ) = −Ω−1/2∂ ln f [ε∗t (θ);ρ]/∂ε∗,

sbt(θ) = −Ω−1/2rmt∂ ln f [ε∗t (θ);ρ]/∂ε∗,

where Ω1/2 is a matrix square root of Ω.

If we choose the Cholesky decomposition, we can use expression (E39) in Supplemental

Appendix E.1 to obtain

sωt(θ) = −1

2
D′NFLN (IN ⊗Ω−

1
2 )vec

{
IN + ∂ ln f [ε∗t (θ);ρ]/∂ε∗ · ε∗′t (θ)

}
,

where F denotes the transpose of the inverse of LN (Ω1/2 ⊗ IN )L′N + LN (IN ⊗Ω1/2)KNNL′N .

Finally, it is worth noting that it is possible to avoid the use of explicit Moore-Penrose

generalised inverses in the computation of the correction by exploiting the fact that

K(ρ)=

(
IN 0
0 DN

)[
IN E[ε∗t vech

′(ε∗tε
∗′
t )|ϕ]

E[vech(ε∗tε
∗′
t )ε′∗t |ϕ] E[vech(ε∗tε

∗′
t )vech′(ε∗tε

∗′
t )− IN |ϕ]

](
IN 0
0 D′N

)
and

K(0) =

(
IN 0
0 IN2 + KNN

)
imply that

K (0)K+(ρ)edt(θ,0) =

(
I 0
0 2D+′

)
×
[

IN E[ε∗t vech
′(ε∗tε

∗′
t )|ϕ]

E[vech(ε∗tε
∗′
t )ε′∗t |ϕ] E[vech(ε∗tε

∗′
t )vech′(ε∗tε

∗′
t )− IN |ϕ]

]−1 [
ε∗t

vech(ε∗tε
∗′
t − I)

]
.
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Nevertheless, f(ε∗t ;ρ) has to be replaced by a nonparametric estimator, which increasingly

suffers from the curse of dimensionality as the cross-sectional dimension N increases. In line with

the usual practice, we employ a standard multivariate Gaussian kernel. Once again, we have

done some experimentation to choose optimal bandwidths by scaling up and down the automatic

choices given in Silverman (1986) because a proper cross-validation procedure is extremely costly

to implement in a Monte Carlo exercise when N = 5.
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