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1 Introduction

As is well known, the Gaussian pseudo-maximum likelihood (PML) estimators advocated by

Bollerslev and Wooldridge (1992) among many others remain root-T consistent for the mean

and variance parameters of conditionally heteroskedastic dynamic regression models irrespective

of the degree of asymmetry and kurtosis of the conditional distribution of the observed variables,

so long as the �rst two moments are correctly speci�ed and the fourth moments are bounded.

Nevertheless, many empirical researchers prefer to specify a non-Gaussian parametric distri-

bution for the standardised innovations, which they use to estimate the conditional mean and

variance parameters by maximum likelihood (ML). The dominant commercially available econo-

metric packages have responded to this demand by o¤ering ML procedures that either jointly

estimate the parameters characterising the shape of the assumed distribution or allow the user

to �x them to some pre-speci�ed values. In particular, Eviews and Stata support Student

t and Generalised Error distributions (GED) in univariate models (see the Arch sections of

IHS Global Inc (2015) and StataCorp LP (2015)), while Stata additionally allows for Student

t innovations in multivariate ones (see the March section of StataCorp LP (2015)).

However, while such ML estimators (and their Bayesian counterparts) will often yield asymp-

totically more e¢ cient estimators than Gaussian PML if the assumed conditional distribution is

correct, they may end up sacri�cing consistency when it is not, as shown by Newey and Steiger-

wald (1997) and Gouriéroux, Monfort and Zakoïan (2016). Intuitively, the reason is that mean,

variances and covariances are natural location and scale measures for the multivariate normal

distribution but not for others, so one cannot generally expect to consistently estimate the mean

and covariance matrix of the standardised innovations under distributional misspeci�cation.

For univariate Garch models with zero conditional mean, Francq, Lepage and Zakoïan

(2011) and Fan, Qi and Xiu (2014) have proposed modi�cations of parametric non-Gaussian

pseudo ML estimators which achieve consistency even when the assumed distribution is misspec-

i�ed. The purpose of this paper is to study in detail the statistical properties of the alternative

consistent estimators we proposed in Fiorentini and Sentana (2007), whose closed-form expres-

sions in terms of residuals readily generated by the commercial packages make them very easy

to code. As we mentioned in Fiorentini and Sentana (2014) and formally prove in Appendix

C, our estimators are asymptotically equivalent to the Fan, Qi and Xiu (2014) estimators for

the univariate Garch model with no mean they considered, which in turn are asymptotically

equivalent to the Francq, Lepage and Zakoïan (2011) ones.

Nevertheless, our estimators remain consistent in multivariate models with non-zero means.

The inclusion of means and the explicit coverage of multivariate contexts make our procedures
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useful in many empirically relevant applications beyond Arch models, which have been the

motivating example for most of the existing work. In particular, our results apply to dynamic

linear models such asVars and multivariate regressions, which remain the workhorse in empirical

macroeconomics and asset pricing contexts. In addition, our estimators are not a¤ected by the

curse of dimensionality because they are e¤ectively sample means of residuals, their squares and

cross-products. Obviously, they also apply in univariate contexts as well as in static ones.

Another important di¤erentiating feature of our analysis is that we consider not only ML

estimators that �x the shape parameters but also procedures that jointly estimate them. In

both cases, we characterise the conditional mean and variance parameters that these procedures

can consistently estimate, providing closed-form estimators for the rest. In addition, we study

the relative e¢ ciency of these modi�ed procedures vis a vis Gaussian PML estimators and two

partially adaptive semiparametric procedures. We provide �nite sample results through Monte

Carlo simulations. Finally, we discuss two practical applications to individual stock returns and

mean-variance e¢ ciency/spanning tests.

The rest of the paper is organised as follows. In section 2, we introduce our proposed

estimators and study their asymptotic properties under misspeci�cation, paying special attention

to their e¢ ciency relative to the Gaussian PML estimators. Then, we evaluate their �nite sample

properties by means of a Monte Carlo exercise in section 3. Section 4 contains a discussion of the

two practical applications. Finally we present our conclusions and discuss avenues for further

research in section 5. Proofs and auxiliary results are gathered in appendices.

2 Distributional misspeci�cation and parameter consistency

2.1 The estimated model

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yt, is typically assumed to be generated as:

yt = �t(�) +�
1=2
t (�)"�t ;

�t(�) = �(It�1;�);
�t(�) = �(It�1;�);

where �() and vech [�()] areN�1 andN(N+1)=2�1 vector functions describing the conditional

mean vector and covariance matrix known up to the p� 1 vector of parameters �, It�1 denotes

the information set available at t � 1, which contains past values of yt and possibly some

contemporaneous conditioning variables, and �1=2t (�) is some particular �square root�matrix

such that �1=2t (�)�
1=20
t (�) = �t(�). Throughout the paper, we maintain the assumption that

the conditional mean vector and covariance matrix are correctly speci�ed, in the sense that there
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is a true value of �, say �0, such that

E(ytjIt�1) = �t(�0)
V (ytjIt�1) = �t(�0)

�
: (1)

To complete the model, a researcher needs to specify the conditional distribution of "�t . In

Supplemental Appendix E we study the general case. In view of the options that the dominant

commercially available software companies o¤er to their clients, though, in the main text we

study the situation in which a researcher makes the assumption that, conditional on It�1, the

distribution of "�t is independent and identically distributed as some particular member of the

spherical family with a well de�ned density, or "�t jIt�1;�;� � i:i:d: s(0; IN ;�) for short, where �

denotes q additional shape parameters (see Supplemental Appendix D.1 for a brief introduction

to spherically symmetric distributions). The most prominent example is the standard multivari-

ate normal, which we denote by � = 0 without loss of generality. Another important example

is a standardised multivariate Student t with � degrees of freedom, or i:i:d: t(0; IN ; �) for short.

As is well known, the multivariate t approaches the multivariate normal as � ! 1, but has

generally fatter tails. For that reason, we de�ne � as 1=�, which will always remain in the �nite

range [0; 1=2) under our assumptions. Obviously, in the univariate case, any symmetric distrib-

ution, including the GED (also known as the Generalised Gaussian distribution), is spherically

symmetric too.1

For illustrative purposes, we consider the following two examples throughout the paper:

Univariate GARCH-M Let rMt denote the excess returns on a broad-based portfolio. Drost

and Klaassen (1997) proposed the following model for such a series:

rMt = �t(�) + �t(�)"
�
t ;

�t(�) = ��t(�);
�2t (�) = ! + �r2Mt�1 + ��

2
t�1(�):

9=; (2)

The conditional mean and variance parameters are �0 = (� ; !; �; �). Importantly, this model

nests the one considered by Fan, Qi and Xiu (2014) when � = 0.

Multivariate market model Let rt denote the excess returns on a vector of N assets traded

on the same market as rMT . A very popular model is the so-called market model

rt = a+ brMt +

1=2"�t : (3)

The conditional mean and variance parameters are �0 = (a0;b0;!0), where ! = vech(
) and


 = 
1=2

01=2.

1See Gillier (2005) for a spherically symmetric multivariate version of the GED.
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2.2 Asymptotic properties of the available pseudo maximum likelihood esti-
mators

Let LT (�) denote the pseudo log-likelihood function of a sample of size T for the model

discussed in the section 2.1, where � = (�0;�0)0 are the p + q parameters of interest, which we

assume variation free. As we mentioned in the introduction, the most popular commercially

available software packages allow users to maximise LT (�) with respect to �. But they also

give them the option to �x the shape parameters to some admissible value ��. In what follows,

we will refer to �̂
0
T = (�̂

0
T ; �̂

0
T ) as the joint (or unrestricted) maximum likelihood estimator and

to �̂T (��) as the equality restricted one. An important special case arises when �� = 0, in which

case �̂T (0) coincides with the Gaussian PML estimator ~�T .

As a benchmark, in Supplemental Appendix D.3 we provide the asymptotic distribution of

these estimators under correct speci�cation. In this section, though, we obtain their distribution

under misspeci�cation. We consider several cases, in decreasing order of agreement with the true

distribution. We proceed as follows:

1. We transform the original set of conditional mean and variance parameters � into another

set � = (�0c;�
0
i)
0 such that the inconsistencies resulting from misspeci�cation a¤ect the

elements of �i but not the rest.

2. We simultaneously estimate both subsets of parameters by (pseudo) maximum likelihood,

which e¤ectively allows the estimators of �i to mop up the biases that would otherwise

a¤ect the estimators of �c. In this sense, it is important to emphasise that a restricted

PMLE of �c obtained by �xing �i to its true value would be generally inconsistent. The

same applies to GMM estimators that combine the non-Gaussian scores for �c with the

Gaussian scores for �i, unless the former do not depend on �i.

3. We discard the inconsistent pseudo-ML estimators of �i, replacing them by closed-form

consistent estimators that use the Gaussian scores with respect to �i evaluated at either

�̂c or �̂c(��) in a sequential GMM procedure. Given that our proposed estimators of those

parameters are e¤ectively sample means of residuals, their squares and cross-products,

they are not a¤ected by the curse of dimensionality. Importantly, we rely on standard

GMM theory to derive the joint asymptotic distribution of the original estimators and

the ones we propose by means of the usual sandwich formula, providing computationally

reliable expressions for the expected Jacobian and the asymptotic covariance matrix of the

in�uence functions.

4. We combine the consistent estimators of �c and �i thus obtained to recover consistent
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estimators of all the original parameters �, employing the delta method to derive their

asymptotic standard errors.

Throughout the paper, we use the high level regularity conditions in Bollerslev andWooldridge

(1992) because we want to leave unspeci�ed the conditional mean vector and covariance matrix

in order to maintain full generality. Primitive conditions for speci�c multivariate models can be

found for example in Ling and McAleer (2003).

2.2.1 When the true distribution is spherically symmetric

Let us �rst consider situations in which the true distribution is i:i:d: spherical but di¤erent

from the parametric one assumed for estimation purposes, which will often be chosen for con-

venience or familiarity. Note that this covers situations in which the conditional distribution is

correctly speci�ed, but we �x � to some �� which does not coincide with the true value �0.

In this case, all the parameters but one can be consistently estimated. To make this statement

more precise, it is convenient to introduce the following reparametrisation:

Reparametrisation 1 A homeomorphic transformation rs(:) = [r0sc(:); r
0
si(:)]

0 of the mean and
variance parameters � into an alternative set of parameters # = (#0c; #

0
i)
0, where #i is a positive

scalar, and rs(�) is twice continuously di¤erentiable with rank[@r0s (�) =@�] = p in a neighbour-
hood of �0, such that

�t(�) = �t(#c);
�t(�) = #i�

�
t (#c)

�
8t: (4)

Expression (4) simply requires that one can construct pseudo-standardised residuals

"�t (#c) = �
��1=2
t (#c)[yt � �t(#c)]

which are i:i:d: s(0; #iIN ;�), where #i is a global scale parameter, a condition satis�ed by most

static and dynamic models.

Such a reparametrisation is not unique, since we can always multiply the overall scale pa-

rameter #i by some scalar positive smooth function of #c, k(#c) say, and divide ��t (#c) by the

same function without violating (4) or rede�ning #c. As we shall see in Proposition 2 below, a

convenient normalisation for the purposes of simplifying some of the expressions would guarantee

E[ln j��t (#c)jj�0] = k 8#c; (5)

where k is any constant that does not depend on #c. However, this is by no means essential

because the estimators of #c are numerically invariant to the choice of scaling, so their asymptotic

covariance matrix is una¤ected.

For the examples in section 2.1, reparametrisation 1 is as follows:
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Univariate GARCH-M We can write model (2) as

rMt = �t(#c) + #
1=2
i ��t (#c)"

�
t ;

�t(#c) = ���t (#c);
��2t (#) = 1 + r

2
Mt�1 + ��

�2
t�1(#c):

9=; (6)

The transformed conditional mean and variance parameters are #0c = (�; ; �) and #i, whose

relationship with the original parametrisation is � = #
�1=2
i �, � = #i and ! = #i.

Imposing (5) in this model would be tricky because we need to obtain

E

�
ln

�
1

1� � + 
X1

j=0
�jr2Mt�1�j

��
as a function of #c, which is probably best computed by numerically quadrature.

Multivariate market model We can write model (3) as

rt = a+ brMt + #
1=2
i 
�1=2($)"�t : (7)

The transformed conditional mean and variance parameters are #0c = (a0;b0;$0) and #i,

where $ contains N(N + 1)=2� 1 elements. Following Amengual and Sentana (2010), we can

achieve (5) by writing #i = j
j1=N and 
�($) = 
=j
j1=N , which yields j
�($)j = 1 8$.

Appendix B discusses explicit parametrisations of 
�($) that ensure this condition.

For simplicity, we shall de�ne the pseudo-true values of # and � as consistent roots of the

expectation of the spherical pseudo log-likelihood score, which under appropriate regularity

conditions will maximise the expected value of the pseudo log-likelihood function.

The next proposition extends the �rst part of Theorem 1 in Newey and Steigerwald (1997)

to multivariate dynamic models:

Proposition 1 If (4) holds, and "�t jIt�1;'0, is i:i:d: s(0; IN ), where ' includes # and the
true shape parameters, but the spherical distribution assumed for estimation purposes does not
necessarily nest the true density, then the pseudo-true value of the joint ML estimator of � =
(#0c; #i;�)

0, �1, is such that #c1 is equal to the true value #c0.

To gain some intuition, let us �x � to some admissible value. Using the expressions in

Supplemental Appendix D.2, the pseudo log-likelihood score with respect to #i is given by

s#it(#;�) =
1

2#i
f�[&t(#);�]&t(#)�Ng ; (8)

where &t(#) = "�0t (#)"
�
t (#), "

�
t (#) = �

�1=2
t (#)[yt � �t(#)] and �[&t(#);�] is a damping factor

that re�ects the tail-thickness of the distribution assumed for estimation purposes. For example,

�[&t(#);�] = (N� + 1)=[1� 2� + �&t(#)] in the Student t case. If we then de�ne #i1(�) > 0 as
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the value that solves the implicit equation in #i(�)

E [�f[#i0=#i(�)]&t;�g[#i0=#i(�)](&t=N)� 1j'0] = 0;

then it is straightforward to show that

Efs#t[#c0; #i1(�);�]jzt; It�1;'0g = 0; (9)

which means that #c0 and #i1(�) will be the pseudo-true values of the restricted PML esti-

mators. E¤ectively, #i(�) fully absorbs the inconsistency resulting from distributional misspec-

i�cation, so that the remaining parameters can be consistently estimated. A similar reasoning

applies when � is jointly estimated.

Proposition 1 implies that in general, a parametric ML estimator based on a misspeci�ed

spherically symmetric distribution cannot consistently estimate the expected value of

&�t (#c) = [yt � �t(#c)]0���1t (#c)[yt � �t(#c)] = #i&t(#c): (10)

Figure 1 illustrates the extent of the inconsistency in estimating #i in a �ve-dimensional

version of model (7) estimated by pseudo maximum likelihood assuming a multivariate Student t

with unknown degrees of freedom when the true distribution is a discrete scale mixture of normals

as a function of the mixing probability and the ratio of the variances of the two components.

As can be seen from the depicted binding function, the relative bias #i1=#i0 can be substantial,

especially when the mixture is such that both components are equally likely but one has a much

larger variance than the other. Importantly, these relative biases are invariant to the true value

of #i. More importantly, while they depend on the cross-sectional dimension N , they do not

depend on the speci�cation of the conditional mean vector or covariance matrix of the model.

In this context, in Fiorentini and Sentana (2007) we proposed to estimate #i by #iT (#̂cT ),

where

#iT (#c) =
1

N

1

T

TX
t=1

&�t (#c): (11)

The rationale for this estimator comes from the fact that since the damping factor �[&t(�);�]

reduces to 1 under normality, expression (8) simpli�es to:

s#it(#;0) =
1

2#i
[&t(#)�N ] ; (12)

whose expected value when evaluated at #0 is 0 because the expected value of &�t (#c0) in (10)

is precisely N#i0, and whose variance is proportional to the theoretical counterpart to Mardia�s
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(1970) coe¢ cient of multivariate excess kurtosis of "�t ,

�0 = E(&2t )=[N(N + 2)]� 1; (13)

where &t = "�0t "
�
t and the expectation is taken with respect to the true unconditional distribution

of the innovations. Therefore, we can regard (12) as an additional in�uence function that allows

us to consistently estimate #i given a consistent estimator for #c0.

This interpretation implies that we can rely on standard GMM arguments for just identi�ed

models to obtain the asymptotic variance of #iT (#̂cT ), as well as its asymptotic covariances with

the pseudo ML estimators #̂T and �̂T by means of the usual sandwich formula C = A�1BA0�1,

where A is the expected Jacobian and B the asymptotic covariance matrix of the sample average

of all the in�uence functions involved (see e.g. Newey and MacFadden (1994) for details). In

doing so, though, we must carefully distinguish between #i, which is the parameter estimated

with the misspeci�ed log-likelihood function, and the parameter estimated with the Gaussian

score, which we shall refer to �#i to avoid confusion. Speci�cally,

Proposition 2 If (4) holds, and "�t jIt�1;'0, is i:i:d: s(0; IN ) with �0 < 1, where ' includes
# and the true shape parameters, but the spherical distribution assumed for estimation purposes
does not necessarily nest the true density, then

1.

A =

�
A�� 0
A�#i� A�#i�#i

�
=

0BB@
A#c#c A#c#i A#c� 0
A0#c#i A#i#i A#i� 0

A0#c� A0#i� A�� 0

A�#i#c 0 00 A�#i�#i

1CCA ;

B =

 
B�� B��#i
B0
��#i

B�#i�#i

!
=

0BBB@
B#c#c B#c#i B#c� B#c�#i
B0#c#i B#i#i B#i� B#i�#i
B0#c� B0#i� B�� B��#i
B0
#c�#i

B#i�#i B0
��#i

B�#i�#i

1CCCA ;

with detailed expressions for all the elements in the proof.

2. If in addition (5) holds, then both A and B become block diagonal between #c and (#i;�; �#i).

This proposition is very general, nesting several previous results in the literature. In partic-

ular, it generalises Proposition 5 in Amengual and Sentana (2010), who obtained expressions for

A�� and B�� in a multivariate regression model under exactly the same type of misspeci�cation.

Obviously, it also applies under correct speci�cation, in which case the information equality will

imply that A�� = B�� (see Proposition 8 in Supplemental Appendix D.3).

Importantly, the above results also apply mutatis mutandi to restricted spherically-based ML

estimators of # that �x � to some a priori chosen value ��. In that case, we would simply need to
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replace #i1 by #i1(��) and eliminate the rows and columns corresponding to � from the A and

B matrices. In that way, we would also nest Proposition 1 in Bollerslev and Wooldridge (1992),

who focused on the Gaussian PML estimators (see Proposition 9 in Supplemental Appendix

D.4).

Finally, it is important to emphasise that reparametrisation 1 only plays an auxiliary role.

After obtaining consistent estimators of the transformed parameters #c and #i with the pro-

cedures we propose, it is straightforward to consistently estimate the original parameters � by

inverting the mapping rs(�). Moreover, the regularity of this mapping guarantees that we can

obtain asymptotic standard errors for these consistent estimators by means of the delta method.

2.2.2 When the true distribution is asymmetric

Although the assumption of spherical symmetry is widespread in theoretical and empirical

�nance, its failure will invalidate the consistency results in Proposition 1. Fortunately, it is

possible to �nd analogous results in the asymmetric case too, but at the cost of restricting further

the set of parameters that can be consistently estimated under misspeci�cation. E¤ectively, the

number of parameters that are inconsistently estimated goes from 1 to N(N + 3)=2, which

represents a minimal increase in the univariate case (from 1 to 2). To make this statement more

precise, it is convenient to introduce an alternative reparametrisation:

Reparametrisation 2 A homeomorphic transformation rg(:) = [r0gc(:); r
0
gim(:); r

0
gic(:)]

0 of the
mean and variance parameters � into an alternative parameter set  = ( 0c; 

0
i)
0, where  i =

( 0im; 
0
ic)
0,  im is N � 1,  ic = vech(	ic), 	ic is an unrestricted positive de�nite symmetric

matrix of order N and rg(�) is twice continuously di¤erentiable in a neighbourhood of �0 with
rank

�
@r0g (�0) =@�

�
= p, such that

�t(�) = �
�
t ( c) +�

�1=2
t ( c) im

�t(�) = �
�1=2
t ( c)	ic�

�1=20
t ( c)

)
8t: (14)

This parametrisations simply requires the pseudo-standardised residuals

"�t ( c) = �
��1=2
t ( c)[yt � ��t ( c)] (15)

to be i:i:d: with mean vector  im and covariance matrix 	ic.

Again, (14) is not unique, since it continues to hold with the same  c if we replace 	ic by

K�1=2( c)	icK
�1=20( c) and  im by K

�1=2( c) im� l( c), and adjust ��t ( c) and �
�1=2
t ( c)

accordingly, where l( c) and K( c) are a N � 1 vector and a N � N positive de�nite matrix

of smooth functions of  c, respectively. As we shall see in Proposition 4 below, a convenient
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normalisation for the purposes of simplifying some of the expressions would be such that:

E
h
@��0t ( c)=@ c ��

��1=2
t ( c)

����0i = 0
E
n
@vec[�

�1=2
t ( c)]=@ c �

h
IN 
���1=20t ( c)

i����0o = 0
9=; : (16)

However, this is by no means essential because the estimators of  c are numerically invariant

to these location-scale normalisations, so their asymptotic covariance matrix is una¤ected.

For the examples in section 2.1, reparametrisation 2 is as follows:

Univariate GARCH-M We can write model (2) as

rMt =  im�
�
t ( c) +  

1=2
ic ��t ( c)"

�
t ;

��t ( c) = ��t ( c);
��t ( c) = 1 + r

2
Mt�1 + ��

�2
t�1(#c):

9=; (17)

The new conditional mean and variance parameters are  0c = (; �),  im and  ic, whose

relationship with the original parametrisation is � =  
�1=2
ic  im, � =  ic and ! =  ic.

Multivariate market model We can write model (3) as

rt =  im + brMt +	
1=2
ic "

�
t :

The new conditional mean and variance parameters are  c = b,  im and  ic = vech(	ic).

The next proposition provides the multivariate generalisation of Theorem 2 in Newey and

Steigerwald (1997):

Proposition 3 If (14) holds, and "�t jIt�1;'0 is i:i:d: (0; IN ), where ' includes  and the true
shape parameters, but the distribution assumed for estimation purposes does not necessarily nest
the true density, then the pseudo-true value of the joint ML estimator of � = ( 0c; 

0
i;�)

0, �1,
is such that  c1 is equal to the true value  c0.

If we further assume that the true conditional mean of yt is 0, and this restriction is imposed

in estimation, then  im becomes unnecessary, thereby generalising the second part of Theorem

1 in Newey and Steigerwald (1997).

To gain some intuition, let us once again �x � to some admissible value. Using the expressions

in Supplemental Appendix E.1, the pseudo log-likelihood scores with respect to  im and  ic

will be given by

s imt( ;�) =
1

2
	
�1=20
ic �[&t( );�] � "�t ( ) (18)

and

s ict( ;�) =
1

2
D0
N (	

�1=20
ic 
	�1=20

ic )vec
�
�[&t( );�] � "�t ( )"�0t ( )�IN

	
; (19)
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respectively, where DN is the duplication matrix (see Magnus and Neudecker, 1988). If we

then de�ne  im1(�) and  ic1(�) = vech[	ic1(�)], with 	ic1(�) p.d., as the solution to the

N(N + 3)=2 moment conditions

Ef�[&t( c0; im; ic;�);�] � "�t ( c0; im; ic;�)j'0g = 0
Efvech f�[&t( c0; im; ic;�);�] � "�t ( c0; im; ic;�)"�0t ( c0; im; ic;�)�INg j'0g = 0

�
;

then it is straightforward to show that

Efs ct[ c0; im1(�); ic1(�);�]jIt�1;'0g = 0; (20)

which con�rms that  c0,  im1(�) and  ic1(�) will be the pseudo-true values of the restricted

PML estimators. E¤ectively,  im1(�) and  ic1(�) fully absorb the inconsistency resulting from

distributional misspeci�cation so that the remaining parameters can be consistently estimated.

A similar reasoning applies when � is jointly estimated.

Proposition 3 implies that in general, a parametric ML estimator based on a spherically

symmetric distribution cannot consistently estimate either the mean or the covariance matrix

of the i:i:d: pseudo-standardised residuals "�t ( c0) in (15) when the true distribution is not

spherically symmetric.2

Figures 2A-B illustrate the extent of the inconsistency in estimating  im and  ic in a univari-

ate model estimated by pseudo maximum likelihood assuming a Student t with unknown degrees

of freedom when the true distribution is an admissible fourth-order Gram-Charlier expansion of

the standard normal as a function of the skewness and kurtosis coe¢ cients.3 As can be seen

from the depicted binding functions, the relative mean and scale biases ( im1 �  im0)= 
1=2
ic0

and  ic1= ic0, respectively, can be substantial when the skewness increases and especially the

kurtosis is large. Importantly, these relative biases are invariant to the true values of  im and

 ic. More importantly, they do not depend on the speci�cation of the rest of the conditional

mean or variance of the model.

In this context, in Fiorentini and Sentana (2007) we proposed to estimate  im and  ic
2Section 3.3 of Amengual and Sentana provide a detailed argument that explains why the Student t estimator

of the intercepts a in model (3) will be inconsistently estimated when the true distribution of the innovations is
an asymmetric Student t.

3Since the magnitudes of the biases do not depend on the sign of the skewness coe¢ cient, we only show the
positive side of the admissible region. See Jondeau and Rockinger (2003) for a characterisation of the set of
skewness and kurtosis values that give rise to a non-negative density for the fourth-order expansion.
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as  imT ( ̂cT ) and  icT ( ̂cT ), respectively, where

 imT ( c) =
1

T

TX
t=1

"�t ( c); (21)

 icT ( c) = vech

(
1

T

TX
t=1

["�t ( c)� imT ( c)] ["�t ( c)� imT ( c)]
0
)
: (22)

Once again, the rationale for these estimators comes from the fact that since the damping

factor �[&t(�);�] reduces to 1 under normality, expressions (18) and (19) simplify to:

s imt( ;0) =
1

2
	
�1=20
ic "�t ( );

s ict( ;0) =
1

2
D0
N (	

�1=20
ic 
	�1=20

ic )vec
�
"�t ( )"

�0
t ( )�IN

	
;

whose expected values at  0 are 0 because the expected value of

"�t ( c0; i) = 	
�1=2
ic ( im0 � im) +	

�1=2
ic 	

1=2
ic0 "

�
t

is 0 and the expected value of "�t ( c0; i)"
�0
t ( c0; i) is IN when  i =  i0.

If we regard s imt( ;0) and s ict( ;0) as additional in�uence functions, we can again rely

on standard GMM arguments for just identi�ed models to obtain the asymptotic covariance

matrix of  imT ( ̂cT ) and  icT ( ̂cT ), as well their asymptotic covariances with the pseudo ML

estimators  ̂T and �̂T by means of the usual sandwich formula. Nevertheless, we must carefully

distinguish between  i, which are the parameters estimated with the misspeci�ed log-likelihood

function, and the namesake parameters estimated with the Gaussian score, which we shall refer

to as � i to avoid confusion. Speci�cally,

Proposition 4 If (14) holds, and "�t jIt�1;'0 is i:i:d: (0; IN ) with bounded fourth moments,
where ' includes  and the true shape parameters �, but the distribution assumed for estimation
purposes does not necessarily nest the true density, then:

1.

A=
�
A�� 0
A� i�

A� i
� i

�
=

0BBBBBBB@

A c c A c im A c ic A c� 0 0
A0 c im A im im A im ic A im� 0 0

A0 c ic A0 im ic A ic ic A ic� 0 0

A0 c� A0 ic� A0 im� A�� 0 0

A� im c
0 0 0 A� im

� im
0

A� ic c
0 0 0 0 A� ic

� ic

1CCCCCCCA
;

B=
 
B�� B�� i
B0
�� i

B� i� i

!
=

0BBBBBBBB@

B c c B c im B c ic B c� B c� im B c� ic
B0 c im B im im B im ic B im� B im� im B im� ic
B0 c ic B0 im ic B ic ic B ic� B ic� im B ic� ic
B0 c� B0 im� B0 ic� B�� B�� im B�� ic
B0
 c
� im

B0
 im

� im
B0
 ic

� im
B0
�� im

B� im� im B� im� ic
B0
 c
� ic

B0
 ic

� im
B0
 ic

� ic
B0
�� ic

B0� im� ic B� ic� ic

1CCCCCCCCA
;
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with detailed expressions for all the elements in the proof.

2. If in addition (16) holds, then both A and B become block diagonal between  c and
( i;�; � i).

As in section 2.2.1, the above results also apply mutatis mutandi to restricted spherically-

based ML estimators of  that �x � to some a priori chosen value ��. In that case, we would

simply need to replace  im1 and  ic1 by  im1(��) and  ic1(��), respectively, and eliminate

the rows and columns corresponding to � from the A and B matrices.

Once again, we should emphasise that reparametrisation 2 only plays an auxiliary role. After

obtaining consistent estimators of the transformed parameters  c and  i with the procedures

that we propose, it is straightforward to consistently estimate the original parameters � by

inverting the mapping rg(�). Moreover, the regularity of this mapping guarantees that we can

obtain asymptotic standard errors for these consistent estimators by means of the delta method.

2.2.3 When the shape parameters are inequality restricted

So far, we have maintained the assumption that the shape parameters � are freely estimated.

In several important cases, though, they will be estimated subject to inequality constraints. In

the Student t case, for example, the reciprocal of the degrees of freedom � cannot be negative.

This means that what we have called the unrestricted estimator �̂T will in fact be characterised

by Kuhn-Tucker (KT) conditions instead of the usual �rst-order ones. Somewhat surprisingly,

such inequality constraints may imply that the whole of � will be consistently estimated despite

distributional misspeci�cation. The following proposition illustrates our claim:

Proposition 5 1. Let �1 denote the pseudo-true values of the parameters � and � implied
by a multivariate Student t log-likelihood function. If the true coe¢ cient of multivariate
excess kurtosis of "�t , �0, is not positive, then �1 = �0 and �1 = 0.

2. If �0 is strictly negative, then
p
T �̂T = op(1) and

p
T (~�T � �̂T ) = op(1), where (�̂T ; �̂T ) are

the unrestricted maximum likelihood estimator based on the Student t and ~�T the Gaussian
pseudo maximum likelihood one.

3. If �0 is exactly 0, then
p
T �̂T will have an asymptotic normal distribution censored from

below at 0, and ~�T will be identical to �̂T with probability approaching 1/2. If in addition

A��(�1;'0) = E[[N + 2� &t(�0)]f"�0t (�0)jvec0["�t (�0)"�0t (�0)]gZ0dt(�0)j'0] = 0; (23)

then
p
T (~�T � �̂T ) = op(1) the rest of the time.

Intuitively, the reason is that the score with respect to the reciprocal degrees of freedom

parameter � evaluated under normality is proportional to the second generalised Laguerre poly-

nomial

&2t (�)=4� (N + 2)&t(�)=2 +N(N + 2)=4 (24)
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in the multivariate Student t case (see Fiorentini, Sentana and Calzolari (2003)). In fact, as far

as �̂T is concerned, Proposition 5 is valid not only for the Student t, but also for any pseudo ML

estimator based on a symmetric generalised hyperbolic distribution (see Mencía and Sentana

(2012) for details). In addition, it is also true for ML estimators based on fourth-order spherically

symmetric expansions of the multivariate normal density, as well as on discrete scale mixtures of

normals in which the odds ratio of the components is given (see Amengual and Sentana (2011)).

More generally, it will be true for any leptokurtic spherical distribution that nests the normal as

a limiting case, and which is such that the scores with respect to the shape parameters evaluated

under Gaussianity are proportional to (24). In all those cases �̂T = ~�T whenever �̂T = 0, which

will occur when the sample coe¢ cient of excess kurtosis of the innovations evaluated at the

Gaussian PMLE is non-positive.4

2.3 E¢ ciency comparisons

As explained by Fan, Qi and Xiu (2014), the equality restricted estimators  ̂cT (��) are not

necessarily more e¢ cient than the Gaussian PML estimators under misspeci�cation, the obvious

counterexample being an estimator that �xes � to a non-zero value when the true distribution

is in fact Gaussian. In the next two subsections, we will make use of Proposition 2 above and

Proposition 13 in Supplemental Appendix E, which generalises Proposition 4 to non-spherical

log-likelihoods, to compare the Gaussian and non-Gaussian PMLEs in detail for the univariate

Garch-m model (2) and the multivariate regression (3).

Univariate GARCH-M In Fiorentini and Sentana (2014) we investigated whether the

joint and restricted estimators of  c are more e¢ cient than the Gaussian PML estimators in

the univariate Garch model with no mean considered by Fan, Qi and Xiu (2014) when the

distribution used for estimation purposes is a Student t but the true distribution is a GED. Our

results indicated that the Gaussian PMLE is always worse than the unrestricted ML estimator

that simultaneously estimates �. Those results are in line with the local power comparisons in

Fiorentini and Sentana (2018b), whose focus is testing for mean and variance predictability in

univariate models using non-Gaussian-based classical ML tests. The next proposition extends

those results to the univariateGarch-mmodel (17) without imposing any symmetry assumption

on the distribution used for estimating purposes or the true one, a fact that we emphasise by

4Condition (23) is a moment condition whose validity depends on the true distribution. Therefore it should
be empirically veri�able using a standard moment test that takes into account the sampling variability in the
parameter estimators. In addition, it is also possible to verify it theoretically given a true distribution. Speci�cally,
in the spherically symmetric case it will hold in the mesokurtic case of �0 = 0, as shown in the proof of Proposition
15 in Fiorentini and Sentana (2007).
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denoting the shape parameters of the former by %.5

Proposition 6 1. Under standard regularity conditions, the asymptotic covariance matrix of
the Pseudo ML estimator of  c in model (17) for �xed values of % is given by S(�1;'0) �
V�1
 c
( c0;'0), where

S(�;') =

�
 2im1(%)
 ic1(%)

MO
ll (�;') +

2 im1(%)

 
1=2
ic1(%)

MO
ls(�;') +MO

ss(�;')

�
�
 2im1(��)
 ic1(��)

MH
ll (�;') +

2 im1(%)

 
1=2
ic1(%)

MH
ls (�;') +MH

ss(�;')

�2 ; (25)

V c( c;') = V

�
1

2��2t ( c)

@��2t ( c)

@ c

����'� ; (26)

�E
�
@2 ln f [�t[ c0; i1(%)];%]

@"@"

�
1 �t[ c0; i1(%)]

�t[ c0; i1(%)] �2t [ c0; i1(%)]

�����'�
=

�
MH

ll (�;') MH
ls (�;')

MH
ls (�;') MH

ss(�;')

�
=MH

dd(�;') (27)

and

V

��
@ ln f [�t[ c0; i1(%)];%]=@"

1 + �t[ c0; i1(%)]@ ln f [�t[ c0; i1(%)];%]=@"

�����'�
=

�
MO

ll (�;') MO
ls(�;')

MO
ls(�;') MO

ss(�;')

�
=MO

dd(�;'): (28)

2. In turn, the asymptotic covariance matrix of our consistent estimator of  i is"
 ic0 � 

3=2
ic0

� 
3=2
ic0 ({ � 1) 2ic0

#
+S(�1;'0)c( i0)c

0( i0)W
0
 c
( c0;'0)V

�1
 c
( c0;'0)W c( c0;'0); (29)

where � and { are the coe¢ cients of skewness and kurtosis, respectively, of the true stan-
dardised innovations, c( i) = (  im 2 ic )

0 and

W c( c;') = E

�
1

2��2t ( c)

@��2t ( c)

@ c

����'� : (30)

3. When % is jointly estimated, exactly the same expressions apply if we replace �% by %1 in
�1.

Somewhat surprisingly, (29) provides an additive decomposition of the asymptotic covari-

ance matrix of our consistent estimators of  i,  iT ( ̂cT ). The �rst term corresponds to the

asymptotic covariance matrix of our estimators of  im and  ic in (21) and (22) if we knew  c,

while the second term re�ects the additional sampling uncertainty resulting from the estimation

of  c. Interestingly, though, this second term has rank 1 only.
5An analogous proposition applies when both the assumed distribution and the true one are symmetric. The

main di¤erence is that  im becomes consistent, so only  ic needs to be replaced. Furthermore, some expressions
simplify because MO

ls(�;') =MH
ls(�;') = � = 0 under symmetry. We discuss this case in detail at the end of

the proof of Proposition 6.

15



Importantly, Proposition 6 also gives us the asymptotic covariance matrix of the correspond-

ing Gaussian pseudo-ML estimators by setting % = 0. Thus, we can compare the e¢ ciency of

the two estimators of  c by simply comparing the scalars (25). For the Gaussian pseudo-ML

estimators, the relevant scalar simpli�es to

S( 0;0;'0) =

�
 2im0
 ic0

+ 2 im0

 
1=2
ic0

�0 + {0 � 1
�

�
 2im0
 ic0

+ 2
�2 (31)

regardless of the true distribution. In contrast, we will usually have to resort to numerical

quadrature to compute (25) in the general case.

Figure 3 displays the ratio of (25) to (31) for all admissible fourth-order Gram-Charlier

expansions of the Gaussian density for a Garch(1,1)-m model in which  im0= 
1=2
ic0 = :05 when

the pseudo log-likelihood is based on the Student t, a design we will revisit in the Monte Carlo

section. Although it is not clear a priori how the scaling factor S(�1;'0) vary with %, the

results clearly show that %1 systematically leads to more e¢ cient estimators than % = 0, at

least for the parametric con�guration we have chosen.

Similarly, if we subtract (29) from the asymptotic covariance matrix of the Gaussian PMLE

of  i, we are left with

c( i0)c
0( i0)W

0
 c
( c0;'0)V

�1
 c
( c0;'0)W c( c0;'0) [S(0;%0)� S(��;%0)] :

Therefore, our proposed estimator of  i will be more e¢ cient than its Gaussian PMLE coun-

terpart if and only if the Pseudo ML estimator of  c is more e¢ cient than the corresponding

Gaussian PMLE. As a result, the evidence presented in Figure 3 implies that our consistent

estimators of  im and  ic will also be more e¢ cient than the Gaussian PMLEs when the true

distribution is a Gram-Charlier expansion of the Gaussian density.

These e¢ ciency gains in estimating  c and  i will be inherited by our estimators of the

original parameters, whose distribution we can obtain as a straightforward application of the

delta method.6 Speci�cally, the estimators of � =  
�1=2
ic  im, � =  ic and ! =  ic obtained

by combining the non-Gaussian PMLE of  with our consistent estimators of  im and  ic will

be more e¢ cient that both their Gaussian PML counterparts and �mix and match�estimators

6For example, in the case of a simple Arch(1) model, the original parametrisation is

�2t =  ic(1 +  cx
2
t�1) =  ic + �x2t�1;

so that we need to �nd the asymptotic distribution of �( c;  ic) =  ic c. But since the Jacobian of the trans-
formation is

[ @�( c;  ic)=@ c @�( c;  ic)=@ c ] = (  ic  c );

the asymptotic variance of ~�T =  ̂c ic( ̂c) can be easily obtained as a quadratic form in the joint asymptotic
covariance of  ̂cT and  iT ( ̂cT ).
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that combine the non-Gaussian PMLE of  with the Gaussian PMLEs of  im and  ic.

Finally, we have also assessed whether the consistent estimators of  i in (21) and (22) entail

any e¢ ciency loss when the distribution assumed for estimation purposes is correct, in which

case the MLE of these parameters is fully e¢ cient. Figure 4 displays the asymptotic variances

of the MLEs and Gaussian PMLEs of  im and  ic relative to the asymptotic variance of our

consistent estimators for the case in which the true and estimated distribution is a Student t

with unknown degrees of freedom. Given that the fourth moment of this distribution diverges to

in�nity as the number of degrees of freedom converges to 4 from above, the asymptotic e¢ ciency

loss of the Gaussian PMLEs of  i can be made arbitrarily large, and the same is true of our

consistent estimator of  ic. But even in those circumstances, our proposed estimator of this

parameter is substantially more e¢ cient than the Gaussian one. In addition, the e¢ ciency loss

of (21) and (22) is much smaller for larger, more empirically realistic values of the degrees of

freedom, and their advantages over the Gaussian PMLEs persists for longer. Those e¢ ciency

losses are not the same for the two parameters, though, being more pronounced for  ic than

 im.

Multivariate regression In the context of the multivariate market model that we have

used as our second illustrative example, Amengual and Sentana (2010) compared the e¢ ciency

of the non-Gaussian pseudo ML estimator of the conditional mean parameters a and b with the

Gaussian estimator when the true conditional distribution is spherical and leptokurtic. Speci�-

cally, their corollary 1 states that the former is more e¢ cient that the latter if and only if

#i1(�)

#i0

mOll (�1;'0)�
mHll (�1;'0)

�2 < 1: (32)

They found that when true distribution is a two-component scale mixture of normals but the

distribution used for estimation purposes is a Student t, the pseudo ML estimator that jointly

estimates � is always strictly more e¢ cient than the Gaussian-based one. Figure 5A illustrates

their results. However, they did not compare the e¢ ciency of the estimators of the residual

variance parameters, which are also of interest in empirical applications.

Let us parametrise 
� in terms of the Cholesky decomposition 
L

�
D


0
L, with 
L unit

lower triangular and 
�D diagonal. For convenience, we partition $ into $L = vecl(
L)

and $D = ($D1; : : : ; $DN�1)
0, which contains the N � 1 free parameters that we use to en-

sure that j
�D($D)j = 1, as explained in Appendix B. Further, we can partition $L into

$L1;$L2 : : : ;$LN�1, of dimension N � 1; N � 2; : : : ; 1 respectively, which contain the strict

lower triangular elements in each of the columns of the matrix 
L. We can then prove that:

17



Proposition 7 1. Under standard regularity conditions, the asymptotic covariance matrix
of the Pseudo ML estimator of $ in model (7) is given by

mOss(�1;'0)

[mHss(�1;'0)]
2 (33)

times the inverse of a (12N
2 + 1

2N � 1) � (12N
2 + 1

2N � 1) block diagonal matrix with
respect to $D;$L1;$L2 : : : ;$LN�1which only depends on $, whose detailed expression
we provide in the proof.

2. The asymptotic variance of our consistent estimator of #i is given by

N [(N + 2)�0 + 2]

N2
#2i0: (34)

3. When � is jointly estimated, exactly the same expressions apply if we replace �� by �1 in
�1.

Given that this result applies to a Gaussian log-likelihood function too, in which case

mOss(#0;0;'0) = 1 + � and mHss(#0;0;'0) = 1, the �rst part of the proposition immediately

implies that the non-Gaussian pseudo ML estimator of the variance parameters $ will be more

e¢ cient than the Gaussian estimator if and only if (33) is less than 1 + �.

Figure 5B shows the ratio of (33) to (1 + �) for all possible two-component scale mixture of

normals when the assumed distribution is a Student t and � is simultaneously estimated. As

can be seen, the Gaussian estimator is systematically dominated, except when the mixture is

such that there is a small probability of drawing from a component with very small variance,

i.e. the so-called inlier case in Amengual and Sentana (2011).

On the other hand, the second part of the proposition says that our proposed consistent

estimator of the overall scale parameter is as asymptotically as e¢ cient as the Gaussian PMLE.

The di¤erence with Proposition 6 is that the asymptotic covariance matrices are block diagonal

between #c and #i in this model.

An interesting question is the e¤ect of increasing the cross-sectional dimension N on the

relative e¢ ciency of the estimators of the mean and variance parameters. To answer this ques-

tion, we have computed expressions (32) and (33) for all values of N between 2 and 100 for the

discrete mixture of normals we consider in the multivariate Monte Carlo exercise in the next

section. A summary of the corresponding e¢ ciency ratios is as follows:

N 2 5 10 20 50 100
a,b 0.5386 0.5037 0.4839 0.4668 0.4506 0.4436
$ 0.5241 0.4615 0.4278 0.4064 0.3903 0.3840

Therefore, increases in the cross-sectional dimension seem to lead to relative e¢ ciency gains.

Finally, it is also of some interest to assess the e¢ ciency loss in re-estimating #i when the

true distribution is indeed a Student t with unknown degrees of freedom. As in the univariate
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case, we can make this loss arbitrarily large by choosing the number of degrees of freedom

arbitrarily close to 4. However, Figure 6 shows that the e¢ ciency loss is more reasonable for

more realistic values. Therefore, it seems to us that this loss is probably worth paying to ensure

the consistency of the entire parameter vector.

3 Monte Carlo evidence

In this section, we assess the �nite sample performance of the di¤erent parametric estimators

discussed above by means of some extensive Monte Carlo exercises. We also compare them to two

semiparametric procedures: a fully unrestricted one, and an estimator that limits the admissible

distributions to the class of spherically symmetric ones.

Univariate GARCH-M In our �rst simulation exercise we consider the univariate Garch-m

model (2). As we saw before, this model can be easily written in terms of reparametrisation 2

with  c = (�; )0,  im and  ic, while in terms of reparametrisation 1 we have #c = (�; ; �)0

and #i.

We generate random draws of "�t from four di¤erent distributions: a standard normal, a

standardised Student t with � = 10 degrees of freedom, a standardised symmetric fourth-order

Gram-Charlier expansion with an excess kurtosis of 2.0, and another standardised Gram-Charlier

expansion with skewness and excess kurtosis coe¢ cients equal to -0.6 and 2.0, respectively. For

a given distribution, random draws are obtained with the NAG library G05DDF and G05FFF

functions, as detailed in Amengual, Fiorentini and Sentana (2013). In all four cases, we generate

10,000 samples of length 1,000 (plus another 100 for initialisation) with � = 0:85, � = 0:1,

� = 0:05 and ! = 1, which implies that � =  im = 0:05,  = 0:1 and #i =  ic = 1. These

parameter values ensure strict stationarity of the generating process.

We estimate the model parameters twice: �rst by Gaussian PML and then by maximis-

ing the log-likelihood function of the Student t distribution. In both cases, we initialise the

conditional variance processes by setting ��21 = (1 + r2)=(1 � �), where r2 = 1
T

PT
1 r

2
t , which

corresponds to an estimate of the unconditional variance of rt=!1=2. In addition, we compute our

closed-form consistent estimators both assuming symmetry of the true distribution (FS Sym.),

and also allowing for asymmetries (FS Asym.). Finally, we also include the fully unrestricted

semiparametric estimator (SP) and the spherically symmetric one (SSP). As shown in Fiorentini

and Sentana (2018a), the SSP estimators of #c are partially adaptive when the true distribution

is spherically symmetric while the SP estimators of  c are partially adaptive more generally.

This means that asymptotically, those estimators are as e¢ cient (up to the �rst order) as the
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infeasible maximum likelihood estimators which correctly specify not only the shape of the true

conditional distribution of "�t but also the true value of its parameters.

We maximise the Gaussian and Student t log-likelihood functions with a quasi-Newton al-

gorithm implemented by means of the NAG library E04LBF routine with the analytical ex-

pressions for the score vector and conditional information matrix in Fiorentini, Sentana and

Calzolari (2003). Computational details for the two semiparametric procedures can be found in

the Supplemental Appendices D.5 (SSP) and E.3 (SP).

We carry out our comparison of the di¤erent estimators in Table 1 in terms of medians and

interquartile ranges because those statistics are insensitive to extreme observations at the tails of

the sampling distributions. We also report results for the estimators of � and � in the canonical

parametrisation of the model in equation (2). It is worth mentioning, however, that the support

of the sampling distribution of the two semiparametric estimators may exceed the boundaries of

the admissible parameters space. For example, when the true distribution is the symmetric GC

expansion, both the SSP and SP estimators of the scale parameters #i and  ic take negative

values roughly 1% of the time while the estimators of the Arch parameter  are negative in

0.8% of the simulations. Similarly, the SP estimator of the scale parameter  ic is negative 1.1%

of the time when the true distribution is the asymmetric GC expansion.

Under normality, the four parametric estimators perform equally well in terms of small

sample bias and sampling variability. And although the performance of the two semiparametric

estimators is comparable, their small sample biases and variability are slightly larger.

When the innovations follow a Student t with 10 degrees of freedom, the ML estimators

outperform the Gaussian PML estimators, as expected. On the other hand, our consistent

estimators are very similar to the MLEs, especially the symmetric version. Not surprisingly,

the SSP estimator is better than the SP estimator, which does not impose symmetry, but its

variability clearly exceeds that of the ML estimator.

For the symmetric GC distribution, our consistent symmetric estimator performs very well.

In contrast, the Student t-based ML estimator of #i is markedly biased, with a Monte Carlo

median of 1.1605, in broad agreement with the results displayed in Figure 2B. This bias is carried

forward to the estimators of � and � in the original parametrisation. Nevertheless, the Student

t-based ML estimators of the consistently estimated parameters (�,  and �), and therefore

our consistent symmetric estimators FS Sym, are considerably more e¢ cient than the Gaussian

PMLE, as expected from Figure 3. In addition, the SSP estimator performs remarkably well in

terms of both bias and variability.

Finally, when we draw the innovations from the skewed GC distribution, the Student t-

20



based ML estimator of � also shows large biases, in agreement with Figure 2A. A comparison

among the three estimators that remain consistent under asymmetric distributions reveals that

the Gaussian PML is the worst while the other two are similar, the SP being the one with

smallest variability. Somewhat surprisingly, though, our consistent estimator of #i that assumes

symmetry is hardly biased, probably because #i is large relative to �. Once again, the Student

t-based ML estimators of the consistently estimated parameters � and , and therefore our

consistent estimators FS Asym, are more e¢ cient than the Gaussian PMLEs. Overall, our

simulation exercises con�rm the asymptotic results displayed in Figures 2A, 2B, 3 and 4.7

Multivariate market model In our second exercise, we study the multivariate market model

(3). Again, we consider several standardised multivariate distributions for "�t , including a multi-

variate Gaussian, a Student t with 8 degrees of freedom, a discrete scale mixture of two normals

(DSMN) with mixing probability equal to 0.2 and variance ratio equal to 10, and an asymmetric

Student t distribution with � = 8 and � = �1000 (see Amengual and Sentana (2010) for fur-

ther details). For each distribution we generate 10,000 samples of dimension N = 5 and length

T = 500 with a = 05, b = `5 and 
 = D1=2RD1=2 with D = 3:136 I5 and all the o¤ diagonal

terms of the correlation matrix R equal to 0.3, where 05 and `5 are vectors of �ve zeros and ones,

respectively. As we shall see in section 4, we have chosen those values of a and b so that the

resulting mean-variance frontiers satisfy some important properties which are frequently tested

in practice. Finally, we generate the strongly exogenous regressor rMt in each replication as an

i:i:d: normal with unit mean and standard deviation.

The Gaussian PML estimators of a, b are very easy to obtain using equation by equation

OLS. Similarly, the estimated covariance matrix of the OLS residuals (with denominator T )

yields the closed-form Gaussian PML estimator of 
. The Student t-based ML estimator is

computationally more demanding because we need to numerically maximise the criterion func-

tion with respect to 2N +N(N +1)=2+ 1 = 26 parameters. For that reason, it is convenient to

�nd very good initial values to start up the numerical maximisation of the joint log-likelihood

function. In that regard, we �rst compute the method of moments estimator of the reciprocal of

the degrees of freedom parameter � suggested by Fiorentini, Sentana and Calzolari (2003), which

is based on the sample version of the coe¢ cient of multivariate excess kurtosis (13). Next, we

obtain a sequential ML estimator by maximising the Student likelihood function with respect

to � keeping the other parameters �xed at their Gaussian PML estimates, as in Amengual,

Fiorentini and Sentana (2013). Finally, we jointly maximise the Student likelihood function
7The medians of the estimators of the shape parameter � in the four designs are .0010, .0961, .2456 .2621,

respectively. Those values compare favourably with the corresponding (pseudo) true values: 0, .1, .2481 and
.2649. Further, they are precisely estimated, with interquartile ranges .0119, .0389, .0370 and .0379.
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with a quasi-Newton method. Our numerical procedure is fast and reliable. Computational

details for the spherically symmetric and general semiparametric procedures can be found in the

Supplemental Appendices D.5 and E.3, respectively.

Using the same format as in Table 1, we report the results of the Monte Carlo experiments

in Table 2 for several groups of parameters. Speci�cally, we exploit the exchangeability of our

design to report medians and interquartile ranges of representative elements of the vectors of

intercepts a and slopes b, the global scale parameter #i = j
j1=N , and representative elements

of the vectors vecd(
�), vecl(
�), vecd(
) and vecl(
).

Under normality all parametric estimators perform comparably, as expected from Proposition

5. However, both semiparametric estimators of slopes and intercepts have a slightly larger �nite

sample variability.

Not surprisingly, when the true distribution of the innovations is a Student t, the ML es-

timator is the best performer, a property that inherit our estimators of a and 
� (FS Sym)

and b (FS Sym and Asym). In addition, our proposed consistent symmetric estimator of a (FS

Asym) fares remarkably well, and better than the Gaussian PMLE. The SSP estimator, which is

adaptive for all parameters except the global scale, also does quite well, but worse than the MLE

or our consistent estimators. As expected, the SSP estimator is better than the SP estimator,

which is even worse than the Gaussian PMLE because of the curse of dimensionality.

When the innovations follow a DSMN distribution, the Student t-based PML estimators of

#i and the residual covariance matrix in the original parametrisation 
 are upward biased, con-

�rming the theoretical results in Figure 1. In those circumstances, though, both the symmetric

and asymmetric versions of our consistent estimators perform very well, the former better than

the latter, as expected. As already observed in the univariate simulation experiments, the Stu-

dent t-based PML estimators of a, b and 
� are substantially more e¢ cient than their Gaussian

PML counterparts in this case. Once again, the curse of dimensionality implies that the SP es-

timators of intercepts and slopes show a very high �nite sample variability. In addition, the

SP estimator is also slightly worse than our comparable consistent estimator (FS Asym) for 
.

Finally, the SSP estimators of a, b and 
�, which under this design should be asymptotically

the most e¢ cient, behave more poorly than the symmetric version of our consistent estimator

(FS Sym).

Finally, when the innovations follow an asymmetric Student t distribution, the symmetric

Student t-based MLE and the SSP estimator of the intercepts are noticeably biased. In contrast,

the version of our consistent under asymmetries estimators (FS Asym) of the intercepts a is the

best and clearly outperforms the Gaussian PMLE. On the other hand, our consistent estimators
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of the diagonal and o¤-diagonal elements of the residual covariance matrix 
 are essentially

identical to the Gaussian PMLEs, with interquartile ranges of 0.5924 vs 0.5911 and 0.4547 vs

0.4539, respectively, a 0.2% insigni�cant di¤erence. Once again, though, the Student t-based

MLE of the slopes are not only consistent but they also dominate the Gaussian PMLEs. The

same obviously applies to our two consistent estimators. As expected, though, the t-based

MLE, the SSP estimator and our consistent under symmetry estimator of 
 are biased. As

for the SP estimator, which in this case should be asymptotically the most e¢ cient for b,

it is dominated in small samples by our consistent under asymmetries estimator (FS Asym),

especially for intercepts and slopes. In fact, it is worse than the Gaussian PMLE. Overall, our

multivariate simulation exercises con�rm the asymptotic results displayed in Figures 1, 5A, 5B

and 6.8

4 Practical applications

In this section, we illustrate the empirical relevance of our proposed consistent estimators in

practice.

Univariate GARCH-M We �t the univariateGarch-m model (2) to the returns of 200 large

cap stocks from the main eurozone markets: Amsterdam, Brussels, Frankfurt, Lisbon, Madrid,

Milan, Paris and Vienna. The sample spans from January 3rd, 2014 to August 21st, 2018 for a

maximum number of 1,185 observations. For each of those 200 series we compute the Gaussian

and t-based ML estimators of the model parameters. Following the empirical application in Fan,

Qi and Xiu (2014), we also consider a restricted ML estimator that �xes the degrees of freedom

of the Student t distribution at 4. Finally, we compute our closed-form consistent estimators

both assuming symmetry of the true distribution and allowing for asymmetries.

The �rst thing we do is to assess the signi�cance of the price of risk parameter �, which

is estimated as positive for 77% of the 200 series. Speci�cally, we formally test the null H0:

� = 0 against H0 : � > 0 with the Gaussian PMLE, which is always valid. As is well known,

the precision with which this parameter is estimated is generally low. Nevertheless, we reject

the null for 18 series at the 5% level and 40 series at the 10%. In addition, those 200 t-ratios

should be asymptotically distributed as standard normals under the null that H0 : � = 0 for all

the series. But the Kolmorogov-Smirnov statistic that assesses the adequacy of this distribution

has a p-value of 10�15. Finally, we have also tested whether the cross-sectional mean of those

8The medians of the estimators of the shape parameter � in the four designs are 0, .1237, .3347 and .2022,
respectively. Those values compare favourably with the corresponding (pseudo) true values: 0, .125, .3346 and
.2014. Further, they are precisely estimated, with interquartile ranges .0043, .0233, .0297 and .0322.
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t-ratios is 0. However, the corresponding t-statistic is 10.32, which is also massively signi�cant.

Therefore, we can safely conclude that a Garch-m speci�cation is required for a non-negligible

number of series.

Next, we check the adequacy of the parametric Student t assumption by means of score

versions of the Hausman tests proposed in Fiorentini and Sentana (2018a), whose null hypothesis

is that the Student t distribution assumed for estimation purposes is correctly speci�ed. The

advantage of using a formal testing procedure instead of looking at the distribution of the

estimators across those 200 stock return series is that it allows us to properly account for

their sampling variability. The �rst test statistic (S1) is based on the expected value of the

(orthogonalised) Gaussian score for #i evaluated at the unrestricted Student t estimators, which

should be equal to zero under null. This test is expected to have most power against symmetric

distribution alternatives. The second test (S2), which is based on the (orthogonalised) Gaussian

scores for  im and  ic evaluated at the Student t estimators, targets situations in which the

distribution is asymmetric under the alternative. We can also check the adequacy of the Student

t distribution with degrees of freedom 4 with a Hausman test statistic (S3) that computes the

average of the (orthogonalised) unrestricted Student t score for #i evaluated at the restricted

Student t estimators. Finally, given that S1 and S3 are asymptotically independent under the

null, we can also consider a joint test statistics (S4) obtained by simply adding up S1 and S3;

see Fiorentini and Sentana (2018a) for further details.

Figure 7 displays the empirical cumulative distribution function of the p-values of the di¤er-

ent tests for the 200 euro area return series. The properties of the probability integral transform

imply that those empirical distribution functions should converge to the 45o degree line under

the null of correct speci�cation. As can be seen, S1 rejects the null at the 1% signi�cance level

for one third of the series, with a maximum of 46.1% for the French stock market. At the 5%

level the null is rejected for 73 series and for more than one half of the French series. The S2 test

against asymmetric alternatives rejects the null at the 5% level for 82 out of 200 series and for

70% of the French series. Since this test is wasting degrees of freedom under symmetric alter-

natives to the Student t, the increase in the number of rejections indicates that the conditional

distribution of returns is asymmetric for a moderate number of stocks. Test S3, which checks

the adequacy of the Student t distribution with 4 degrees of freedom, rejects the null at the

5% signi�cance level for 79 series. Finally the joint test S4 also rejects the null for more than

half of the series under analysis. In summary, our results suggest that while for many series the

popular Student t distribution assumption may be reasonable, there is a substantial number of

individual stocks for which it is clearly rejected by the data. Therefore, the empirical evidence
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con�rms the need for estimators that correct the inconsistencies resulting from distributional

misspeci�cation.

Multivariate market model Mean-variance analysis is widely regarded as the cornerstone

of modern investment theory. Despite its simplicity, and the fact that more than six decades

have elapsed since Markowitz published his seminal work on the theory of portfolio allocation

under uncertainty (Markowitz (1952)), it remains the most widely used asset allocation method.

One particularly relevant question for both academics and practitioners is whether the mean-

variance frontier remains unchanged after increasing the number of assets that one analyses. In

the presence of a safe asset, the null hypothesis of no change is equivalent to the concept of

mean-variance e¢ ciency, while it corresponds to mean-variance spanning when no riskless asset

exists.

Formally, a portfolio with excess returns rMt is mean-variance e¢ cient with respect to a

given set of N assets with excess returns rt if it is not possible to form another portfolio of those

assets and rMt with the same expected return as rMt but a lower variance, or more appropriately,

with the same variance but a higher expected return.

As is well known, rMt will be mean-variance e¢ cient if and only if the intercepts in the

theoretical least squares projection of rt on a constant and rMt are all 0 (see Jobson and Korkie

(1982), Gibbons, Ross and Shanken (1989) and Huberman and Kandel (1987)). Therefore, if the

distribution of rt conditional on rMt were multivariate normal, with a linear mean a+brMt and

a constant covariance matrix 
, then OLS would produce e¢ cient estimators of the regression

intercepts a, and consequently, optimal tests of the mean-variance e¢ ciency restrictionsH0 : a =

0. However, many empirical studies with �nancial time series data indicate that the distribution

of asset returns is usually rather leptokurtic.

For that reason, Hodgson, Linton, and Vorkink (2002) developed a semiparametric estimation

and testing methodology that enabled them to obtain optimal mean-variance e¢ ciency tests

under the assumption that the distribution of rt conditional on rMt is elliptically symmetric.

Similarly, Amengual and Sentana (2010) explained how to robustify mean-variance tests based

on a non-Gaussian elliptical conditional distribution so that they retain the correct size even

when the parametric distribution assumed is misspeci�ed, as long as it remains elliptical. The

results in their paper exploit the fact discussed in section 2.2.1 that the regression intercepts

remain consistently estimated in that case.

However, when the conditional distribution of the standardised innovations is not spheri-

cally symmetric, the inconsistencies in the estimation of a renders the Hodgson, Linton, and

Vorkink (2002) and Amengual and Sentana (2010) procedures invalid. Fortunately, our consis-
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tent estimators provide a very convenient way out. The e¢ ciency gains of our estimators over

the Gaussian estimators shown in Table 2, which have been deliberately computed under the

null of mean-variance e¢ ciency, clearly show that tests of H0 : a = 0 based on our consistent

estimators will have higher local power than those based on the Gaussian estimators or indeed

the semi-parametric estimators.

Exactly the same arguments apply to spanning tests. If (R1t;R2t) denotes the gross returns

on N1 + N2 risky assets, R1t will span the mean-variance frontier for (R1t;R2t) if and only if

the intercepts in the theoretical least squares projection of R2t on a constant and R1t are all 0

and the row-wise sum of the slope coe¢ cients add up to 1 (see Huberman and Kandel (1987)).

Therefore, if the distribution of R2t conditional on R2t were multivariate normal, with a linear

mean a+BR1t and a constant covariance matrix
, then OLS would produce e¢ cient estimators

of the regression intercepts and slopes a and B, respectively, and consequently, optimal tests

of the mean-variance spanning restrictions H0 : a = 0;B`N1 = `N2 . Although in principle it

would be straightforward to generalise the Hodgson, Linton and Vorking (2002) and Amengual

and Sentana (2010) results to cover this null hypothesis too, those tests would become again

invalid when the distribution is not elliptically symmetric. In this case, the advantages of our

consistent estimators will be even more striking because as Table 2 shows, the distribution of

our estimators of the regression intercepts and especially slopes under the spanning null are

substantially more e¢ cient than the Gaussian estimators.

5 Conclusions

We characterise the subset of conditional mean and variance parameters that distributionally

misspeci�ed non-Gaussian maximum likelihood estimators can consistently estimate in multi-

variate conditionally heteroskedastic dynamic regression models. We consider not only ML esti-

mators that �x the parameters characterising the shape of the distribution but also procedures

that jointly estimate them.

We then exploit the Gaussian scores of the parameters that are inconsistently estimated by

the misspeci�ed log-likelihood to derive simple closed-form consistent estimators for the rest.

Our proposed estimators are in e¤ect �rst and second sample moments of residuals readily

generated by most software packages, which make them immune to the curse of dimensionality.

In addition, we show that when the true conditional distribution is either platykurtic or

mesokurtic, in the sense that the coe¢ cient of multivariate excess kurtosis is either negative or

zero, pseudo ML estimators based on certain leptokurtic spherical distributions, including the

multivariate Student t and indeed any symmetric generalised hyperbolic distribution, as well
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as some discrete scale mixtures and polynomial expansions of the multivariate normal, provide

consistent estimators of all the parameters irrespective of the ellipticity of the true distribution

because they converge to the Gaussian PML estimators.

It is important to emphasise that the reparametrisations that we consider only play an

auxiliary role. After obtaining consistent estimators of all the transformed mean and variance

parameters with the procedures that we propose, it is straightforward to consistently estimate

the original parameters and to obtain their asymptotic standard errors by means of the delta

method.

The inclusion of means and the explicit coverage of multivariate models make our procedures

useful in many empirically relevant applications beyond Arch models, which have been the

motivating example for most of the existing work. In particular, our results apply to dynamic

linear models such asVars and multivariate regressions, which remain the workhorse in empirical

macroeconomics and asset pricing contexts.

We study the statistical properties of our proposed consistent estimators. We also assess

their e¢ ciency relative to Gaussian pseudo maximum likelihood for two empirically relevant

examples: a univariate Garch-m and a multivariate market model. In accordance with earlier

results in Amengual and Sentana (2010) and Fiorentini and Sentana (2014, 2018b), it seems that

our modi�ed estimators are usually more e¢ cient than their Gaussian PML counterparts, at

least when the pseudo log-likelihood function is based on a Student t distribution whose shape

parameter is simultaneously estimated. Moreover, increases in the cross-sectional dimension

also seem to lead to relative e¢ ciency gains. Those e¢ ciency gains should translate into more

precise estimators of transformations of the model parameters of empirical interest, such as

impulse response functions in Var contexts or Sharpe ratios and optimal mean variance weights

in portfolio allocation ones, as well as more powerful tests.

In a detailed Monte Carlo experiment we con�rm that the ML estimators of the transformed

parameters we single out in our theoretical analysis are biased when the true distribution does

not coincide with the one assumed for estimation purposes. Nevertheless, our simulation results

also indicate that our proposed methods yield consistent estimators for all the parameters, and

with lower Monte Carlo dispersion than their Gaussian counterparts.

We also consider both a spherically symmetric semiparametric estimator, which is adaptive

for all the parameters but the overall scale one when the true distribution is elliptical, and a gen-

eral semiparametric estimator, which is adaptive for all the parameters except the mean vector

and covariance matrix of the pseudo-standardised residuals regardless of the true distribution.

Our results di¤er substantially depending on whether the model is univariate or multivariate.
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In the univariate case, both semiparametric estimators do a good job, although they do not

quite achieve the e¢ ciency gains that their adaptiveness promises. In addition, they do not

systematically dominate our proposed estimators. In the multivariate case, though, they perform

rather less well. This is true even for the spherically symmetric semiparametric estimator, whose

non-parametric component is unidimensional. As expected, the performance of the general

semiparametric procedure is rather poor when N = 5, and it will substantially deteriorate

in higher dimensions. In contrast, our proposed closed-form estimators do a very good job

regardless of the dimension.

Finally, we consider two practical applications. In the �rst one, we �t univariate Garch-m

models to the returns of 200 large cap stocks from the main eurozone markets. and check the

adequacy of the parametric Student t assumption by means of score versions of the Hausman

tests we propose in Fiorentini and Sentana (2018a), whose null hypothesis is that the Student t

distribution assumed for estimation purposes is correctly speci�ed. Our empirical results con�rm

the need for estimators that correct the inconsistencies resulting from distributional misspeci-

�cation. In our second application, we highlight the advantages of our proposed estimators in

mean-variance e¢ ciency and spanning tests. Their consistency for all the model parameters

when the true distribution is not spherically symmetric, coupled with the fact that they are

typically more e¢ cient than Gaussian PML estimators, directly translate into power gains.

As we have mentioned, our proposed procedures are not necessarily more e¢ cient than the

Gaussian PMLEs under incorrect speci�cation, although the theoretical analysis in section 2.3

and the Monte Carlo evidence in section 3 suggests they are generally so, at least for the two

examples that we have considered. If we knew the true distribution of "�t , but still decided to

use the wrong log-likelihood function, we could achieve e¢ ciency gains by choosing �� in such a

way that it minimises the asymptotic variance of the non-Gaussian ML estimators of  c with

respect to �, along the lines of Francq, Lepage and Zakoïan (2011). Figure 1 in Fiorentini

and Sentana (2014) con�rms that by doing so, one might achieve e¢ ciency gains over both the

Gaussian estimator and the unrestricted non-Gaussian estimator which simultaneously estimates

�. However, the example considered in that note has the peculiarity that �� a¤ects the asymptotic

variance through a single scalar, as in Proposition 6. Unfortunately, in general multiparameter

contexts, the asymptotic variance of the consistent estimators will depend on � in a more complex

manner. For example, in the multivariate regression model (7), the asymptotic covariance matrix

of the conditional mean parameters a and b depends on �� through the multiplicative factor (32)

while that of the normalised residual variance parameters $ depends on the the alternative

multiplicative factor (33). Therefore, di¤erent choices of parameters would lead to di¤erent
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choices for ��. In addition, in practice we do not know the true distribution, so we would need to

estimate the required expressions by means of sample analogues, with the unknown innovations

replaced by estimated ones, and then choose �� as the minimiser of the estimated asymptotic

variance. The limiting distribution of the resulting �optimised�estimator of  c deserves further

investigation.

It is di¢ cult to �nd empirically relevant examples of models for which reparametrisation 1

does not hold, so our spherically symmetric results can be directly applied to most static and

dynamic models. Our �rst example also shows that reparametrisation 2 applies seamlessly to

univariate Garch-m models, including sophisticated asymmetric alternatives such as the one

in Sun and Stengos (2006). In turn, our second example con�rms that this reparametrisation

can also be readily applied to multivariate regression models. Unfortunately, the same is not

generally true in multivariateGarchmodels when the true distribution is asymmetric even if the

conditional mean is 0. The constant conditional correlation (CCC) model of Bollerslev (1990),

which assumes that �t( c; ic) = St( c)RSt( c), where St is a positive diagonal matrix,

 ic = vecl(R) and R a correlation matrix, provides an important exception.9 In most other

models, though, we may need to arti�cially augment the original parametrisation with  ic and

 im even though we know that  im0 = 0 and  ic0 = vech(IN ), which might lead to a substantial

e¢ ciency cost. Furthermore, in doing so, we must guarantee that the parameters  c remain

identi�ed (see Newey and Steigerwald (1997) and Gouriéroux, Monfort and Zakoïan (2016) for a

detailed discussion of these issues in univariate and multivariate models, respectively). Assessing

the e¢ ciency costs of estimating those overparametrised models relative to using Gaussian PML

estimators in the original model would constitute a valuable addition.

In a univariate context with bounded fourth moments, Meddahi and Renault (1998) proposed

optimal GMM estimators that combine the Gaussian scores with an optimal weighting matrix,

which generally di¤ers from the one implicit in the Gaussian PMLE. It would also be interesting

to study the e¢ ciency properties of our procedures relative to a multivariate generalisation of

theirs.

Although our estimators remain consistent regardless of the spherical distribution assumed

for estimation purposes, an empirically unrealistic choice might lead to estimators less e¢ cient

than Gaussian PMLE. One possibility worth exploring would be a more �exible family of dis-

tributions, such as the discrete scale mixtures of normals or the Laguerre expansions considered

in Amengual, Fiorentini and Sentana (2013).

Nevertheless, when the true innovations have unbounded fourth moments, the variance of

9Ling and McAleer�s (2003) generalisation of the CCC model and example 1 in Hafner and Rombouts�(2007)
are other examples of multivariate models that can also be directly written using analogous reparametrisations.
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the Gaussian scores for scale will be unbounded too, and the asymptotic distribution of our

consistent estimators will be non-standard, a property shared with the Gaussian PMLE and

the Meddahi and Renault (1998) procedures (see Hall and Yao (2003)). Alternative �robust�

consistent estimators such as multivariate versions of the ones mentioned by Andrews (2014),

Francq and Zakoïan (2014) and Ling and Zhu (2014) would prove useful in those circumstances.

A comparison of the sequential estimators of the shape parameters discussed in Amengual,

Fiorentini and Sentana (2013), which keep � �xed at the Gaussian PMLEs, with an analogous

sequential procedure which instead keeps them �xed at the consistent estimators we have studied

in this paper would be worthwhile too. Similarly, it will be worth studying the �nite sample

properties of the partially adaptive semiparametric estimators discussed in the Supplemental

Appendices D.5 and E.3 when we use as initial values our estimators as opposed to the Gaussian

PMLE. Although the asymptotic distribution will not change up to �rst-order, the �nite sample

properties might improve.

Finally, one of the reasons why practitioners prefer to use non-Gaussian distributions for

estimating Garch models is that they are often not only interested in the conditional variance

of the process, but also in other features of the conditional distribution. For example, they

might be interested in its quantiles, which are required for the computation of commonly used

risk management measures such as V@R, or the probability of the joint occurrence of several

negative events, which is relevant for systemic risk measures. In contrast, the existing literature,

including our paper, focuses mostly on parameter estimation. An evaluation of the consequences

that the di¤erent estimation procedures which we consider have for such empirically relevant

functionals of the conditional distribution constitutes another fruitful avenue for future research.
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Appendices

A Proofs

A.1 Proposition 1

We can directly work in terms of the # parameters thanks to our assumptions on the mapping

rs(:). Let us initially keep � �xed to some admissible value so as to focus on the spherically

symmetric score vector for # in (D4). Given that the conditional covariance matrix of yt is of

the form #i�
�
t (#c), it is straightforward to show that

Zdt(#) =

�
Z#clt(#) Z#cst(#)

0 Z#ist(#)

�
=

(
#
�1=2
i [@�0t(#c)=@#c]�

��1=20
t (#c)

0

=
1
2f@vec

0[��t (#c)]=@#cg[�
��1=20
t (#c)
���1=20t (#c)]

1
2#
�1
i vec0(IN )

)
: (A1)

Thus, the conditional mean and variance parameter scores will be

s#ct(#;�) = #
�1=2
i

@�0t(#c)

@#c
�
��1=20
t (#c)�[&t(#);�]"

�
t (#)

+
1

2

@vec0[��t (#c)]

@#c
[�

��1=20
t (#c)
���1=20t (#c)]vec

�
�[&t(#);�] � "�t (#)"�0t (#)�IN

	
(A2)

and (8).

But since

"�t (#c0; #i) =
p
1=#i�

��1=2
t (#c0)[yt � �t(#c0)] =

p
#i0=#i"

�
t = ��1=2"�t ;

so that

&t(#c0; #i) = (#i0=#i)&t = ��1&t;

we will have that

elt(#c0; #i;�) = �(��1&t;�)�
�1=2"�t = �(��1&t;�)�

�1=2p&tut; (A3)

est(#c0; #i;�)=vec
�
�(��1&t;�)�

�1"�t"
�0
t �IN

�
=vec

�
�(��1&t;�)�

�1&tutu
0
t � IN

�
: (A4)

Then, it follows that E[elt(#c0; #i;�)jIt�1;'0] = 0 regardless of #i and � because of the

serial and mutual independence of &t and ut, and the fact that E(ut) = 0. Similarly,

E[est(#c0; #i;�)jIt�1;'0] = E[�(��1&t; �)�
�1(&t=N)� 1

��'0] � vec(IN )
because of the serial and mutual independence of &t and ut, and the fact that E(utu0t) = N�1IN .

34



Given that we have de�ned #i1(�) > 0 as the value of #i that satis�es the moment condition

E
�
�[��11 (�)&t;�]�

�1
1 (�)(&t=N)� 1

��'0� = 0; (A5)

with

�1(�) = #i1(�)=#i0; (A6)

then it is straightforward to show that (9) holds, which con�rms that #c0 and #i1(�) will be the

pseudo-true values of the parameters corresponding to a restricted PML estimator that keeps �

�xed. Thus, we can understand �1(�) in (A6) as the �relative asymptotic bias� in estimating

#i.

If we de�ne �1 as the value of � that satis�es the moment condition

Efs�t[#c0; #i1(�1);�1]j'0g = 0; (A7)

which we assume lies in the interior of the admissible parameter space, then it is clear that

#c0; #i1 = #i1(�1) and �1 will be the pseudo-true values of the parameters corresponding to

the unrestricted PMLE that jointly estimates �, and �1 = #i1=#i0 the corresponding �relative

asymptotic bias�.

A.2 Proposition 2

To obtain the asymptotic distribution of the unrestricted pseudo ML estimators #̂T and �̂T ,

we need the asymptotic covariance matrix of the average scores as well as the expected value

of the average Hessian matrix evaluated at the pseudo true values �01 = (#0c0; #i1;�
0
1). Given

that s�t(�1) only depends on &t(#c0; #i1), which is i:i:d: over time, it follows that

E[s�t(�1)jIt�1;'0] = 0; (A8)

which in conjunction with (9) proves the martingale di¤erence nature of the misspeci�ed spher-

ical score evaluated at the pseudo-true values. As a result, we only need the contemporaneous

covariance matrix of the component of the score corresponding to the tth observation, which in

turn depends on the contemporaneous covariance matrix of edt(�1) and ert(�1).

If we re-write edt(�1) as in (A3) and (A4), it immediately follows that

E[elt(�1)e
0
lt(�1)] = E

�
�2(��11 &t;�1)�

�1
1 &tutu

0
t

	
= E[�2(��11 &t;�1)�

�1
1 (&t=N)]IN = m

O
ll (�1;'0)IN ;

E[elt(�1)e
0
st(�1)] = E

n
�(��11 &t;�1)�

�1=2
1

p
&tut � vec0

�
�(��11 &t;�1)�

�1
1 &tutu

0
t � IN

�o
= 0
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by virtue of (D1), and

E[est(�0)e
0
st(�0)] = E

�
vec

�
�(��11 &t;�1)(�

�1
1 &t=N)Nutu

0
t � IN

�
�vec0

�
�(��11 &t;�1)(�

�1
1 &t=N)Nutu

0
t � IN

�	
= E

�
�(��11 &t;�1)(�

�1
1 &t=N)

�2 N

N + 2
[(IN2 +KNN ) + vec (IN ) vec

0 (IN )]

�2E
�
�(��11 &t;�1)(�

�1
1 &t=N)

�
vec (IN ) vec

0 (IN ) + vec (IN ) vec
0 (IN )

=
N

(N + 2)
E
�
�(��11 &t;�1)(�

�1
1 &t=N)

�2
(IN2 +KNN )

+

�
N

(N + 2)
E
�
�(��11 &t;�1)(�

�1
1 &t=N)

�2 � 1� vec (IN ) vec0 (IN )]
= mOss(�1;'0) (IN2 +KNN ) + [mOss(�1;'0)� 1]vec(IN )vec0(IN )

by virtue of (D2) and (A5).

Moreover, it is clear from (D3) that ert(�1) will be a function of &t but not of ut, which

immediately implies that E[elt(�1)e
0
rt(�1)] = 0 and

E[est(�1)e
0
rt(�1)] = E

�
vec

�
�(��11 &t;�1)�

�1
1 &t � utu0t � IN

�
e0rt(�1)

	
= vec(IN )E

��
�(��11 &t;�1)(�

�1
1 &t=N)� 1

�
e0rt(�1)

	
= vec(IN )mOsr(�1;'0):

If we combine these expressions with (A1) and apply the law of iterated expectations, after

some algebraic manipulations we obtain

B#c#c(�1;'0) = E[s#ct(�1)s
0
#ct(�1)j'0] =

mOll (�1;'0)
#i1

E

�
@�0t(#c0)

@#c
���1t (#c0)

@�t(#c0)

@#0c

����'0�
+
mOss(�1;'0)

2
E

�
@vec0[��t (#c0)]

@#c
[���1t (#c0)
���1t (#c0)]

@vec[��t (#c0)]

@#0c

����'0�
+
mOss(�1;'0)�1

4
E

�
@vec0[��t (#c0)]

@#c
vec[���1t (#c0)]vec

0[���1t (#c0)]
@vec[��t (#c0)]

@#0c

����'0� ; (A9)

B#c#i(�1;'0) = E[s#ct(�1)s#it(�1)j'0] =
mOss(�1;'0)(N + 2)�N

2#i1
W#c(#c0;'0);

B#i#i(�1;'0) = E[s2#it(�1)j'0] =
N [(N + 2)mOss(�1;'0)�N ]

4#2i1
;

B#c�(�1;'0) = E[s#ct(�1)s
0
�t(�1)j'0] =W#c(#c0;'0)m

O
sr(�1;'0);

B#i�(�1;'0) = E[s#it(�1)s
0
�t(�1)j'0] =

N

2#i1
mOsr(�1;'0);
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whereW#c contains the elements ofWs(�0) in (D22) corresponding to #c,

mOll (�;') = E
�
�2[&t(#);�] � [&t(#)=N ]

��'	
mOss(�;') = N(N + 2)�1 [1 + V f�[&t(#);�] � [&t(#)=N ]j'g] ;

mOsr(�;') = E
�
f�[&t(#);�] � [&t(#)=N ]� 1g e0rt(�)

��'� ;
and

B��(�1;'0) = E[s�t(�1)s
0
�t(�1)j'0] = mOrr(�1;'0):

To obtain the expected value of the Hessian, it is convenient to write h##t(�1) in (D9) as

�4Zst(#1)[IN 
 f�(��11 &t;�1)�
�1
1 "

�
t"
�0
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 IN ]Z0lt(#1)
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0
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�
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0["�t (#1)"
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0
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�
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�
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0
lt(#1)

+ Zst(#1)vec["
�
t (#1)"

�0
t (#1)]vec

0["�t (#1)"
�0
t (#1)]Z

0
st(#1)

	
:

Clearly, the �rst four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (D1). As for the remaining terms, we can write them as

��(��11 &t;�1)Zlt(#1)Z
0
lt(#1)� 2@�(��11 &t;�1)=@& � Zlt(#1)��11 &tutu

0
tZ
0
lt(#1)

�2Zst(#1)Z0st(#1)� 2@�(��11 &t;�1)=@& � (��11 &t)
2Zst(#1)vec(utu

0
t)vec

0(utu
0
t)Z

0
st(#1);

whose conditional expectation will be

�E[�(��11 &t;�1) + 2(�
�1
1 &t=N) � @�(��11 &t;�1)=@&] � Zlt(#1)Z0lt(#1)� 2Zst(#1)Z0st(#1)

�2NE[(�
�1
1 &t=N)

2 � @�(��11 &t;�1)=@&]

(N + 2)
Zst(#1)[(IN2 
KNN ) + vec(IN )vec

0(IN )]Z
0
st(#1)

= �mHll (�1;'0)Zlt(#1)Z0lt(#1)

�Zst(#1)
�
mHss(�1;'0) (IN2 +KNN ) + [mHss(�1;'0)� 1]vec(IN )vec0(IN )

	
Z0st(#1);
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where

mHll (�;') = E f2@�[&t(#);�]=@& � [&t(#)=N ] + �[&t(#);�]j'g ;

mHss(�;') = N(N + 2)�1E
�
2@�[&t(#);�]=@& � &2t (#)=[N(N + 2)]

��'	+ 1:
As for h#�t(�1), it follows from (D10) and (D5) that we can write it as

fZlt(#1)"�t (#1) + Zst(#1)vec
�
"�t (#1)"

�0
t (#1)

�
g � @�(��11 &t;�1)=@�

0

= [Zlt(#1)ut�
�1=2
1

p
&t + Zst(#1)vec(utu

0
t)�

�1
1 &t � @�(��11 &t;�1)=@�

0;

whose conditional expected value will be

Zst(#1)vec(IN )E[(�
�1
1 &t=N) � @�(��11 &t;�1)=@�

0] = �Zst(#1)vec(IN )mHsr(�1;'0);

with

mHsr(�;') = �E f[&t(#)=N ] � @�[&t(#);�]=@�j'g :

Replacing once again Zlt(#1) and Zst(#1) by the relevant expressions in (A1) and applying

the law of iterated expectations, we obtain

A#c#c(�1;'0) = �E[h#c#ct(�1)j'0] =
mHll (�1;'0)

#i1
E

�
@�0t(#c0)

@#c
���1t (#c)

@�t(#c0)

@#0c

����'0�
+
mHss(�1;'0)

2
E

�
@vec0[��t (#c0)]

@#c
[���1t (#c0)
���1t (#c0)]

@vec[��t (#c0)]

@#0c

����'0�
+
mHss(�1;'0)�1

4
E

�
@vec0[��t (#c0)]

@#c
vec[���1t (#c0)]vec

0[���1t (#c0)]
@vec[��t (#c0)]

@#0c

����'0� ; (A10)

A#c#i(�1;'0) = �E[h#c#it(�1)j'0] =
mHss(�1;'0)(N + 2)�N

2#i1
W#c(#c0;'0);

A#i#i(�1;'0) = �E[h#i#it(�1)j'0] =
N [(N + 2)mHss(�1;'0)�N ]

4#2i1
;

A#c�(�1;'0) = �E[h#c�t(�1)j'0] =W#c(#c0;'0)m
H
sr(�1;'0);

A#i�(�1;'0) = �E[h#i�t(�1)s0�t(�1)j'0] =
N

2#i1
mHsr(�1;'0);

and

A��(�1;'0) = �E[h��t(�1)j'0] = mHrr(�1;'0):

Let us now turn to our consistent estimator of #i in (11). The fact that the Gaussian pseudo

score for this parameter is an in�uence function that only depends on #c and �#i trivially implies
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that
@s#it(#c;

�#i;0)

@#i
= 0 and

@s#it(#c;
�#i;0)

@�
= 0:

For analogous reasons,

@s#ct(#c; #i;�)

@�#i
= 0;

@s#it(#c; #i;�)

@�#i
= 0 and

@s�t(#c; #i;�)

@�#i
= 0:

We will also have that

@s#it(#c;
�#i;0)

@#c
= h0#c#it(#;0) = �

1

#
3=2
i

@�0t(#c)

@#c
�
��1=20
t (#c)"

�
t (#)

� 1

2#i

@vec0[��t (#c)]

@#c
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��1=20
t (#c)
���1=20t (#c)]vec

�
"�t (#)"

�0
t (#)

�
;

@s#it(#c;
�#i;0)

@#i
= h#i#it(#;0) =

1

�#
2
i

[&t(#)�N ]�
N

2�#
2
i

:

But "t(#0) = "t because we are evaluating these two expressions at consistent estimators of

both #c and #i, whence we can prove that

A#c�#i(#0;0;'0) = A#c#i(#0;0;'0) =W#c(#c0;'0)
1

#i0
;

A�#i�#i(#0;0;'0) = A#i#i(�1;'0) =
N

2#2i0
: (A11)

Finally, we need to �nd out the asymptotic variance of the sample average of s#it(#0;0) as

well as its asymptotic covariance with the sample averages of s#ct(�1), s#it(�1) and s�t(�1),

which coincide with contemporaneous variance and covariances of these in�uence functions be-

cause they are all martingale di¤erence sequences.

The de�nition of the coe¢ cient of multivariate excess kurtosis in (13) immediately implies

that

B�#i�#i('0) = E[s2#it(#0;0)j'0] =
N [(N + 2)�0 + 2]

4�2i0
: (A12)

Tedious algebraic manipulations also show that

B#c�#i(�1;'0) = E[s#ct(�1)s#it(#0;0)j'0] =
N

2#i0
W#c(#c0;'0)m

O
s�s(�1;'0);
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N2

4#i0#i1
mOs�s(�1;'0);

B��#i(�1;'0) = E[s�t(�1)s#it(#0;0)j'0] =
N
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mOr�s(�1;'0)
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with

mOs�s(�;') = E

��
�[&t(#);�]

&t(#)

N
� 1
�� &t

N
� 1
�����'0� ;

mOr�s(�;'0) = E
h
ert(�)

� &t
N
� 1
����'0i :

Finally, it follows from the above expressions that the condition for block-diagonality of A

and B between #c and (#i;�; �#i) is W#c(#c0;'0) = 0 regardless of the values of #i1 and �1

becauseW#ct(#c0; #i1) does not depend of those parameters in view of (A1). �

A.3 Proposition 3

We can directly work in terms of the  parameters thanks to our assumptions on the mapping

rg(:). Let us initially keep � �xed to some admissible value. It immediately follows from

reparametrisation 2 that
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Hence,
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As a result, the conditional mean and variance parameter scores will be

s ct( ;�) =

"
@��0t ( )

@ c
+
@vec0[�

�1=2
t ( c)]
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( 0im 
 IN )�

��1=20
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;
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2
D0
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�1=20
ic 
	�1=20

ic )vec
�
�[&t( );�] � "�t ( )"�0t ( )�IN

	
;

s imt( ;�) =
1

2
	
�1=20
ic �[&t( );�] � "�t ( );

(18) and (19).

Let  im1(�) and  ic1(�) = vech[	ic1(�)], with 	ic1(�) p.d., denote the solution to the

implicit system of N(N + 3)=2 equations

E[s imt( c0; im; ic;�)j'0] = 0
E[s ict( c0; im; ic;�)j'0] = 0

�
: (A13)

The time-invariance of Z imst( ) and Z iclt( ) implies that  im1(�) and  ic1(�) will also

solve the alternative system of N(N + 3)=2 moment conditions

Ef�[&t( c0; im; ic;�);�] � "�t ( c0; im; ic;�)j'0g = 0
Efvech f�[&t( c0; im; ic;�);�] � "�t ( c0; im; ic;�)"�0t ( c0; im; ic;�)�INg j'0g = 0

�
:

Given that

"�t ( ) = 	
�1=2
ic �

��1=2
t ( c)[yt � ��t ( c)��

�1=2
t ( c) im] = 	

�1=2
ic ["�t ( c)� im]; (A14)

with "�t ( c) de�ned in (15), so that

"�t ( c0) =  im0 +	
1=2
ic0 "

�
t ;

we can immediately see that the pseudo standardised residuals "�t ( c0) will be i:i:d:( im;	ic)

conditional on It�1. Moreover, instantaneous transformations of "�t ( c0) such as

"�t ( c0; im; ic) = 	
�1=2
ic ( im0 � im) +	

�1=2
ic 	

1=2
ic0 "

�
t ;

&t( c0; im; ic) = "
�0
t ( c0; im; ic)"

�
t ( c0; im; ic);

elt( c0; im; ic;�) and est( c0; im; ic;�) will also be i:i:d: As a result, the law of iterated

expectations implies that (20) holds, which con�rms that  c0,  im1(�) and  ic1(�) will indeed

be the pseudo-true values corresponding to a restricted PML estimator that keeps � �xed.

If we de�ne �1 as the value of � that satis�es the moment condition

Efs�t[ c0; im1(�); ic1(�);�]j'0g = 0;

which we assume lies in the interior of the admissible parameter space, then it is clear that
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 c0,  im1 =  im1(�1),  ic1 =  ic1(�1) and �1 will be the pseudo-true values of the

parameters corresponding to an unrestricted non-Gaussian PMLE that also estimates �. �

A.4 Proposition 4

This proposition is a special case of Proposition 13 in Supplemental Appendix E, so we omit

its proof.

A.5 Proposition 5

The consistency of the Gaussian PML derives from the fact that E[s�t(�0; 0)jIt�1;'0] = 0.

Thus, if the pseudo-true value of �, �1 say, is 0, then the Student t based pseudo-true values of

the conditional mean and variance parameters, �1 say, will coincide with their true values �0

by the law of iterated expectations. But since � is estimated subject to the inequality constraint

� � 0, the population KT conditions that de�ne �1 will be

E[s�t(�1; �1)j'0] + ��1 = 0; �1 � 0; ��1 � 0; �1 � ��1 = 0;

where ��1 is the pseudo-true value of the KT multiplier, and the expectation is taken with

respect to the true unconditional distribution of the observations (see Calzolari, Fiorentini and

Sentana (2004)). Hence, �1 = 0 if and only if E[s�t(�0; 0)j'0] � 0.

Fiorentini, Sentana and Calzolari (2003) show that in the multivariate Student t case s�t(�0; 0)

it is proportional to the second generalised Laguerre polynomial (24). Given that &t(�0) = "�0t "
�
t ,

we can write

s�t(�0; 0) =
N(N + 2)

4
� N + 2

2
&t(�0)+

1

4
&2t (�0)

=
N(N + 2)

4

�
("�0t "

�
t )
2

N(N + 2)
� 1
�
+
N + 2

2
[("�0t "

�
t )�N ]:

But since we have normalised the innovations so that E("�t"
�0
t jIt�1;'0) = IN , then

N = tr(IN ) = tr[E("�t"
�0
t jIt�1;'0)] = E[tr("�t"

�0
t )jIt�1;'0] = E("�0t "

�
t jIt�1;'0)

by the linearity of the expectation and trace operators. Therefore, it immediately follows that

��1 = minf0;�E[s�t(�0; 0)j'0]g = min
�
0;�N(N + 2)

4
�0

�
in view of the de�nition of �0 in (13). Therefore, �1 = 0 if and only if �0 � 0.

To prove the second and third parts, we can use Propositions 1 and 2 in Calzolari, Fiorentini

and Sentana (2004) if we regard the Student t based estimator �̂T as the �inequality restricted�

PML estimator of �, and the Gaussian-based estimator ~�T = (~�T ; 0) as its �equality restricted�
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counterpart, both of which share not only the pseudo-true values (�0; 0; ��1) when �0 � 0,

but also the modi�ed pseudo-score mt(�0; 0; ��1) = s�t(�0; 0) + ep+1 � ��1, where ep+1 is the

(p + 1)th column of Ip+1, as well as the expected value of the average Hessian A(�1;'0) =

�E[�h��T (�0)j'0].

Speci�cally, Proposition 1 in Calzolari, Fiorentini and Sentana (2004) implies here that

��1 �
p
T �̂T = op(1);

while their Proposition 2 implies that�
A��(�1;'0) A��(�1;'0)
A0��(�1;'0) A��(�1;'0)

�p
T

�
�̂T � �0
�̂T

�
+ep+1

p
T (�̂�T � ��1)

�
p
T �mT (�0; 0; ��1)= op(1);�

A��(�1;'0) A��(�1;'0)
A0��(�1;'0) A��(�1;'0)

�p
T

�
~�T � �0
0

�
+ep+1

p
T (~��T � ��1)

�
p
T �mT (�0; 0; ��1)= op(1);

where �̂�T and ~��T are the sample versions of the KT and Lagrange multipliers associated to

the constraint � = 0. As a consequence,�
A��(�1;'0) A��(�1;'0)
A0��(�1;'0) A��(�1;'0)

�p
T

�
�̂T � ~�T
�̂T

�
+ ep+1

p
T (�̂�T � ~��T ) = op(1):

Part 2 immediately follows from the fact that ��1 > 0 when �0 < 0. Similarly, the �rst

statement of Part 3 follows from the fact that ��1 = 0 when �0 = 0. As for the condition (23),

which derives directly from the expression for h��(�) in Fiorentini, Sentana and Calzolari (2003)

evaluated at (�0; 0), its role is to guarantee that A��(�1;'0) = 0. In this sense, it is worth

mentioning that condition (23) will be satis�ed for instance if "�t jIt�1;�0 is i:i:d: s(0; IN ;�0)

with �0 = 0 irrespective of whether or not it is Gaussian because in that case

Ef[N + 2� &t(�0)]"�t (�0)jIt�1;�0;�0] = E[(N + 2� &t)
p
&tutj�0] = 0

by the serial and mutual independence of &t and ut, and the fact that E(ut) = 0, while

Ef[N + 2� &t(�0)]"�t (�0)"�0t (�0)jIt�1;�0g = E[(N + 2� &t)&tutu0tj�0]

= N�1E[(N + 2� &t)&tj�0]IN = 0

by the de�nition of �0 and the fact that E(utu0t) = N�1IN . �
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A.6 Proposition 6

The proof essentially applies the results in the proof of Proposition 13 in Supplemental

Appendix E to model (17). Speci�cally, expressions (E29) and (E31) become

Zlt( ) =
@�t( )=@ 

 
1=2
ic ��t ( c)

=
1

 
1=2
ic ��t ( c)

24 1
2 im�

��1
t ( c)@�

�2
t ( c)=@ c

��t ( c)
0

35=
264  im 

�1=2
ic W ct( c)

 
�1=2
ic

0

375 ;
Zst( ) =

@�2t ( )=@ 

2 ic�
�2
t ( c)

=
1

2 ic�
�2
t ( c)

24  ic@�
�2
t ( c)=@ c
0

��2t ( c)

35 =
24 W ct( c;')

0
1
2 

�1
ic

35
and

elt( ;%) = �
@ ln f [�t( );�]

@"
;

est( ;%) = �
�
1 + �t( )

@ ln f [�t( );�]

@"

�
;

respectively, where

�t( ) =
��t ( c)�  im

 
1=2
ic

=
xt

 
1=2
ic ��t ( c)

�  im

 
1=2
ic

=
xt �  im��t ( c)
 
1=2
ic ��t ( c)

(A15)

and

W ct( c) =
1

2��2t ( c)

@��2t ( c)

@ c
: (A16)

Then, a direct application of (E30) yields

s t(�) = [ Zlt( ) Zst( ) ]

�
elt( ;%)
est( ;%)

�
=

�
Wt( c)r

0( i)
�( ic)

� �
elt( ;%)
est( ;%)

�
; (A17)

where

r( i) = (  im 
�1=2
ic 1 )

0

and

�( ic) =

 
 
�1=2
ic 0

0 1
2 

�1
ic

!
:

Let us now de�ne  i(%) = [ im1(%);  ic1(%)] as the values of  im and  ic that simultane-

ously solve the equations

E

�
@ ln ff�t[ c0; i1(%)];�g

@"

����'0� = 0; (A18)

E

�
1 + �t[ c0; i1(%)]

@ ln ff�t[ c0; i1(%)];�g
@"

����'0� = 0: (A19)

In what follows, we shall refer to the ratio

�1(%) =  ic1(%)= ic0 (A20)
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as the �relative scale bias�in estimating  ic0, and to

�1(%) =
 im1(%)�  im0

 
1=2
ic1(%)

(A21)

as the �relative mean bias�in estimating  im0, so that

�t[ c0;  im1(%);  ic1(%)] =
��t ( c0)

 
1=2
ic1(%)

�  im1(%)

 
1=2
ic1(%)

=

s
 ic0

 ic1(%)
"�t �

"
 im1(%)�  im0

 
1=2
ic1(%)

#
= ��1=21 (%)"�t � �1(%): (A22)

We will also make extensive use of W c( c;') = E[W ct( c)j'] and V c( c;') =

V [W ct( c)j'], which are de�ned in (30) and (26), respectively, which we will shorten to W

and V for the sake of brevity.

Given (E49), the expected Hessian is

A  (�1;'0) = Efh  t[ c0; i1(%);%]j'0g =
�
A c c(�1;'0) A c i(�1;'0)
A0 c i(�1;'0) A i i(�1;'0)

�
= E

��
W ct( c)r

0[ i1(%)]
�[ ic1(%)]

�
MH

dd(�;')
n
r[ i1(%)]W

0
 ct
( c) �[ ic1(%)]

o����'0�
=

�
D(�;')(V +WW0) Wr0[ i1(%)]MH

dd(�;')�[ ic1(%)]
�[ ic1(%)]MH

dd(�;')r[ i1(%)]W
0 �[ ic1(%)]MH

dd(�;')�[ ic1(%)]

�
; (A23)

and

D(�;') = r0[ i1(%)]MH
dd(�;')r[ i1(%)]

=

"
 2im1(%)

 ic1(%)
MH

ll (�;') +
2 im1(%)

 
1=2
ic1(%)

MH
ls (�;') +MH

ss(�;')

#
:

We can then exploit the block structure of expression (A23) together with the partitioned

inverse formula to obtain A�1  . Speci�cally, the upper left block of A�1  , A c c say, will be

given by the inverse of

D(�;')(V +WW0)�Wr0[ i1(%)]MH
dd(�;')�[ ic(%)]

�
�
�[ ic(%)]MH

dd(�;')�[ ic(%)]
	�1

�[ ic(%)]MH
dd(�;')r[ i1(%)]W

0 = D(�;')V: (A24)

Similarly, the bottom left block of A�1  will be given by

A i c = �
�
�[ ic(%)]MH

dd(�;')�[ ic(%)]
	�1

�[ ic(%)]MH
dd(�;')r[ i1(%)]W

0V�1D�1(�;')

= �D�1(�;')c[ i1(%)]W
0V�1; (A25)

where we have exploited that c( i) =�
�1( ic)r( i).
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Finally, the bottom right block of A�1  will be

A i i =
�
�[ ic(%)]MH

dd(�;')�[ ic(%)]
	�1

+
�
�[ ic(%)]MH

dd(�;')�[ ic(%)]
	�1

��[ ic(%)]MH
dd(�;')r[ i1(%)]W

0V�1D�1(�;')

�Wr0[ i1(%)]MH
dd(�;')�[ ic(%)]

�
�[ ic(%)]MH

dd(�;')�[ ic(%)]
	�1

=��1[ ic(%)]MH
dd(�;')�

�1[ ic(%)] +D
�1(�;')c[ i1(%)]c

0[ i1(%)](W
0V�1W): (A26)

In turn, (E48) implies that the variance of the scores will be

B  (�1;'0) = V fs t[ c0; i1(%);%]j'0g =
�
B c c(�1;'0) B c i(�1;'0)
B0 c i(�1;'0) B i i(�1;'0)

�
= E

��
W ct( c)r

0( i)
�( ic)

�
MO

dd(�;')
h
r( i)W

0
 ct
( c) �( ic)

i����'�
=

�
N(�;')(V +WW0) Wr0[ i1(%)]MO

dd(�;')�[ ic1(%)]
�[ ic1(%)]MO

dd(�;')r[ i1(%)]W
0 �[ ic1(%)]MO

dd(�;')�[ ic1(%)]

�
; (A27)

where

N(�;') = r0[ i1(%)]MO
dd(�;')r[ i1(%)]

=

"
 2im1(%)

 ic1(%)
MO

ll (�;') +
2 im1(%)

 
1=2
ic1(%)

MO
ls(�;') +MO

ss(�;')

#
:

Given that the expression for B  in (A27) is entirely analogous to the expression for A  
in (A23), except for the matrix MO

dd replacing the matrix MH
dd, it turns out that C  =

A�1  B  A
�1
  can be substantially simpli�ed. Speci�cally,

C c c =
�
A c c A i c0

�� B c c B0 i c
B i c B i i

��
A c c
A i c

�
= A c cB c cA

 c c +A i c0B i cA
 c c +A c cB0 i cA

 i c +A i c0B i iA
 i c :

Given the expressions for B c c in (A27) and the inverse of A
 c c in (A24), the �rst term,

i.e. A c cB c cA
 c c , will be

S(%;�0)V
�1(V +WW0)V�1:

In turn, the second and third terms, A i c0B i cA
 c c and A c cB0 i cA

 i c , respectively,

will be given by

�D�1(�;')V�1Wc0[ i1(%)]�[ ic1(%)]MO
dd(�;')r[ i1(%)]W

0V�1D�1(�;')

= �S(�;')V�1WW0V�1:
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Finally, the fourth term, i.e. A i c0B i iA
 i c , will be

D�1(�;')V�1Wc0[ i1(%)]�[ ic1(%)]MO
dd(�;')�[ ic(%)]c[ i1(%)]W

0V�1D�1(�;')

= S(�;')V�1WW0V�1:

If we add up all these four terms together, we end up with the expression in the �rst part of

the proposition.

Let us now move to the second part, which deals with the asymptotic covariance matrix of

our consistent, closed-form estimators (21) and (22). Proposition 13 in Supplemental Appendix

E implies that the only additional non-zero elements of the expected Jacobian of the moment

conditions augmented with � i are

A� i c
= ��( ic0)MH

dd( ;0;')r( i0)W
0; A� i

� i
= ��( ic0)MH

dd(#;0;')�( ic0); (A28)

where vecd[MH
dd(#;0;')] = (1; 2)

0. Thus, if we make use of the partitioned inverse formula once

again, we get that the last diagonal element of the inverse of the expected Jacobian will be

A� i
� i =

"
A� i

� i
�
�
A� i c

0
�� A c c A c i

A0 c i A i i

��1�
0
0

�#�1
= A�1� i� i =�

�1( i0):

As for the   block, it will trivially coincide with A�1  , while the  � i block will be 0.

Finally, the � i block will be given by

A� i = �A�1� i� iA� i 
A�1  = �A

�1
� i
� i

�
A� i c

0
�� A c c A0 i c

A i c A i i

��1
= �

�
A�1� i� iA� i c

A c c A�1� i� iA� i c
A i c0

�
= �A�1� i� iA� i c

�
A c c A i c0

�
:

As for the asymptotic covariances of the sample averages of the non-Gaussian scores for

 , s t( c0; i1(%);%), and the Gaussian scores for � i, s� it( c0; i0;0), the same proposition

implies that

B� i� i = �( ic0)MO
�d �d(�;')�( ic0); (A29)

B� i c = �( ic0)MO
d �d(�;')r[ i1(%)]W

0 (A30)

and

B� i i =�( ic0)M
O
d �d(�;')�[ ic1(%)]: (A31)

where the elements of MO
d �d
(�;') are de�ned in the proof of Proposition 13 in Supplemental

Appendix E and vec[MO
�d �d
(�;')] = vec[MO

dd( ;0;')] = (1; �; �� 1)0.
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Therefore, the asymptotic variance of  i( ̂cT ) will be given by

A�1� i� i
�
�A� i c

A c c �A� i c
A i c0 I

�0B@ B c c B0 i c B0� i c
B i c B i i B0� i i
B� i c B� i i B� i� i

1CA
0B@ �A c cA0� i c
�A i cA0� i c

I

1CAA�1� i� i
= A�1� i� i

�
A� i c

�
A c c A i c0

�� B c c B0 i c
B i c B i i

��
A c c
A i c

�
A0� i c

�
A�1� i� i

�A�1� i� i

"
A� i c

�
A c c A i c0

� B0� i c
B0� i i

!#
A�1� i� i

�A�1� i� i

�
A� i c

�
B� i c B� i i

�� A c c
A i c

�
A0� i c

�
A�1� i� i +A

�1
� i
� i
B� i� iA

�1
� i
� i
:

Let us look at each of these terms in turn. The �rst term will be given by

A�1� i� iA� i c
C c cA

0
� i c

A�1� i� i
= [�( ic0)MH

dd( ;0;')�( ic0)]
�1�( ic0)MH

dd( ;0;')r( i0)W
0V�1S(%;%)

�Wr0( i0)MH
dd( ;0;')�( ic0)[�( ic0)MH

dd( ;0;')�( ic0)]
�1

= S(%;%) � c( i0)c0( i0)(W0V�1W):

To obtain the second term, as well as the transpose of the third one, we need

A c cB0� i c +A
 i c0B0� i i = D�1(%;%)V�1Wr0[ i1(%)]MO0

d �d(�;')�( ic0)

�D�1(%;�0)V
�1Wc0[ i1(%)]�[ ic1(%)]MO0

d �d(�;')�( ic0) = 0:

Finally,

A�1� i� iB� i� iA
�1
� i
� i
= [�( ic0)MH

dd( ;0;')�( ic0)]
�1�( ic0)MO

�d �d(�;')

��( ic0)[�( ic0)MH
dd( ;0;')�( ic0)]

�1 =

"
 ic0 � 

3=2
ic0

� 
3=2
ic0 ({ � 1) 2ic0

#
:

The sum of the four terms con�rms the second part of the proposition.

Let us now move to the last part of the proposition, in which % is jointly estimated. Assuming

no inequality constraints are binding, we can de�ne its pseudo-true value %1 from the equation

Efs%t[ c0; i1(%);%1]j'0g = E

�
@ ln ff�t[ c0;  im1(%1);  ic1(%1)];�1g

@%

����'0� = 0: (A32)
A direct application of Proposition 13 in Supplemental Appendix E implies that

A % = �
�
Wr0[ i1(%)]
�( ic)

�
MH

dr(�;'); (A33)
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and

B % = �
�
W ct( c)r

0[ i1(%)]
�( ic)

�
MO

dr(%;�);

with the elements ofMH
dr(�;') andMO

dr(�;') de�ned in the proof of that proposition.

Now, to invert A��, we need to compute

A%% �A0 %A�1  A % = A%% �
�
A0 c% A0 i%

�� A c c A i c0
A i c A i i

��
A c%
A i%

�
= A%% � (A0 c%A

 c cA c% +A
0
 i%
A i cA c% +A

0
 c%
A i c0A i% +A

0
 i%
A i iA i%)

But

A0 c%A
 c cA c% = D�1(%;%)(W0V�1W)MH0

dr (�;')r[ i1(%)]r
0[ i1(%)]MH

dr(�;');

A0 i%A
 i cA c% = �D

�1(%;%)(W0V�1W)MH0
dr (�;')r[ i1(%)]r

0[ i1(%)]MH
dr(�;')

= A0 c%A
 i c0A i%

and �nally

A0 i%A
 i iA i% =M

H0
dr (�;')�( ic)f��1[ ic(%)][MH

dd(�;')]
�1��1[ ic(%)]

+D�1(%;�0)c[ i1(%)]c
0[ i1(%)](W

0V�1W)g�( ic)MH
dr(�;')

=MH0
dr (�;')[MH

dd(�;')]
�1MH

dr(�;')

+D�1(%;%)(W0V�1W)MH0
dr (�;')r[ i1(%)]r

0[ i1(%)]MH
dr(�;');

where we have exploited the expressions for A % in (A33), A c c in (A24), A i c in (A25) and

A i i in (A26).

Hence

~A%% = (A%% �A0 %A�1  A %)
�1 = fMH

rr(�;')�MH0
dr (�;')[MH

dd(�;')]
�1MH

dr(�;')g�1

= [MH(�;')]rr;

which does not depend at all on the dynamic speci�cation of the model.

Similarly, the  % block will be given by the matrix

~A% 0 = �A�1  A %(A%% �A
0
 %A�1  A %)

�1 = �
�
A c c A i c0
A i c A i i

��
A c%
A i%

�
[MH(�;')]rr

=

�
A c cA c% +A

 i c0A i%
A i cA c% +A

 i iA i%

�
[MH(�;')]rr

=

�
0

��1[ ic1(%)][MH
dd(�;')]

�1MH
dr(�;')[MH(�;')]rr

�
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because

A c cA c% +A
 i c0A i% = D�1(%;%)V�1Wr0[ i1(%)]MH

dr(�;')

�D�1(%;%)V�1Wr0[ i1(%)]MH
dr(�;') = 0

and

A i cA c% +A
 i iA i% = �D

�1(%;%)c[ i1(%)]W
0V�1Wr0[ i1(%)]MH

dr(�;')

+
�
��1( ic1)[MH

dd(�;')]
�1��1( ic1) + c[ i1(%)]c

0[ i1(%)](W
0V�1W)D�1(%;%)

	
��( ic)MH

dr(�;') =�
�1( ic1)[MH

dd(�;')]
�1MH

dr(�;'):

Finally, the   block will be given by the matrix

~A  = A�1  +A
�1
  A %M

Hrr(�;')A0 %A�1  =
�
A c c A i c0
A i c A i i

�
+

�
0

��1( ic1)[MH
dd(�;')]

�1MH
dr(�;')[MH(�;')]rr

�
�
�
0 MH0

dr (�;')[MH
dd(�;')]

�1��1( ic1)
	
:

As a result, the �rst row/column of the inverse of this augmented expected Hessian matrix

A��, ~A�� say, will be equal to�
~A c c ~A i c0 ~A % c0

�
=
�
A c c A i c0 0

�
;

which coincides with the inverse of A  plus some 0�s. But since the asymptotic variance of

the pseudo ML estimators is given by C�� = A�1��B��A
�1
�� and the B  block is unchanged,

the expression for the asymptotic variance of the pseudo ML estimator of  c in (C41) remains

valid, except that it will be evaluated at %1.

As for our consistent estimators, Proposition 13 in Supplemental Appendix E implies that

the additional terms of the expected Jacobian are 0 while

B%� i =�
�1( ic0)MO

r �d(�;'): (A34)

If we follow the same steps as before we get that�
A�� 0
A� i�

A� i
� i

��1
=

 
A�1�� 0

A� i� A�1� i� i

!
;

where the di¤erent components of A�1�� can be found above. Similarly, the � i� block will be
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given by

A� i� = �A�1� i� i
�
A� i c

0 0
�
A�1�� = �A

�1
� i
� i

�
A� i c

0 0
�0@ A c c A i c0 0

A i c A i i A% i0
0 A% i A%%

1A
= �A�1� i� i

�
A� i c

A c c A� i c
A i c0 0

�
:

because ~A % c0 is 0. Thus, the asymptotic covariance matrix of  ̂c and � i( ̂cT ) will be the

same whether or not we estimate %. �
When the true distribution is symmetric and the researcher imposes this restriction in esti-

mation, the non-Gaussian PMLE of  im will also be consistent, in which case we only propose

to replace  ic. At the same time,  im e¤ectively becomes part of the consistent parameter set.

As a result, the Jacobian of the Gaussian score for  ic with respect to  im will no longer be

0. In fact, it will coincide with the Jacobian of this score with respect to � im. However, the

expected Jacobian continues to be 0, which means that the asymptotic variance of  icT ( ̂cT )

which appears in the (2,2) element of (29) remains valid. In this context, we can also show that

the asymptotic variance of the non-Gaussian PMLE of  im will be given by

 ic1(%)
MO

ll (�;')

[MH
ll (�;')]

2
+  2im0S(�;')(W

0
 c
( c0;'0)V

�1
 c
( c0;'0)W c( c0;'0);

where we have exploited the fact that MO
ls(�;') = MH

ls (�;') = � = 0 under symmetry.

Further, this asymptotic variance will continue to be valid when we simultaneously estimate %

becauseMO
lr(�;') =MH

lr (�;') = 0 too.

A.7 Proposition 7

We are going to exploit the results in Proposition 2 together with the fact that the parametri-

sations in Appendix B guarantee that j
�($)j = 1 and consequently, that W#c(#c0;'0) = 0.

The only new elements we need are the Jacobian matrices:

@�t(#c)

@(a0;b0;$0
L;$

0
D)

= ( IN INrMt 0 0 );

@vec[��t (#c0)]

@(a0;b0;$0
L;$

0
D)

=
h
0 0 (IN +KNN )(


�
L


�
D 
 IN )S0N (
�L 

�L)E0N

@vecd(
�D)
@$0

D

i
;

with @vecd(
�D)=@$
0
D in (B37).

Given the block diagonality of the Jacobian between the conditional mean parameters  =

(a0;b0)0 and the conditional variance parameters $, it is clear that both A#c#c(�1;'0) and

B#c#c(�1;'0) will also be block-diagonal, with

A(�1;'0) =
mHll (�1;'0)

#i1

�
1 �M
�M �2M + �2M

�


��1
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and

B(�1;'0) =
mOll (�1;'0)

#i1

�
1 �M
�M �2M + �2M

�


��1;

where �M = E(rMt) and �2M = V (rMt), so that

C(�1;'0) =
#i1mOll (�1;'0)
[mHll (�1;'0)]

2

� �
1 + �2M=�

2
M

�
��M=�2M

��M=�2M 1=�2M

�


�:

Since this expression applies to the Gaussian PMLE estimator too, we have that the e¢ ciency

ratio for the conditional mean parameters is given by

mOll (�1;'0)�
mHll (�1;'0)

�2 � #i1#i0
which agrees with expression (16) in Amengual and Sentana (2010).

Let us now look at the conditional variance parameters. It follows from (A9) and (A10) that

both B$$(�1;'0) and A$$(�1;'0) require the computation of the following two terms:"
SN (


�
D


0
L 
 IN )(IN +KNN )

@vecd0(
D)
@$D

EN (

0
L 

0L)

#
(
��1 

��1)

�
h
(IN +KNN )(
L


�
D 
 IN )S0N (
L 

L)E

0
N
@vecd(
D)
@$0

D

i
(A35)

and "
SN (


�
D


0
L 
 IN )(IN +KNN )

@vecd0(
D)
@$D

EN (

0
L 

0L)

#
vec(
��1)vec0(
��1)

�
h
(IN +KNN )(
L
D 
 IN )S0N (
L 

L)E

0
N
@vecd(
D)
@$0

D

i
: (A36)

However, the rank-1 matrix (A36) is identically zero. Speci�cally, 
��1 = 
�10L 
��1D 
�1L , so

vec0(
�10L 
��1D 
�1L )(IN +KNN )(
L

�
D 
 IN )S0N

= vec0(
�10L 
��1D 
�1L )[(
L

�
D 
 IN ) + (IN 

L


�
D)KNN ]S

0
N

= [vec0(
�10L ) + vec0(
�1L )KNN ]S
0
N = 2vec

0(
�10L )S0N = 2vecl
0(
�10L )

by virtue of theorem 6.7 of Magnus (1988). But 
�10L is unit upper triangular so vecl(
�10L ) = 0.

Similarly, we have

vec0(
�10L 
��1D 
�1L )(
L

L)E
0
N

@vecd(
D)

@$0
D

=vec0(
��1D )E0N
@vecd(
D)

@$0
D

=vecd0(
��1D )
@vecd(
D)

@$0
D
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by virtue of theorem 7.3 in Magnus (1988). But

vecd0(
��1D )
@vecd(
D)

@$0
D

= vecd0([exp(�$D1); : : : ; exp(�$DN�1); exp
�PN�1

j=1 $j

�
]

�
"
diag[exp($D1); : : : ; exp($DN�1)]

� exp
�
�
PN�1

j=1 $j

�
`0N�1

#
= 0:

Therefore, the asymptotic covariance matrix of the pseudo ML estimators of$ will be given

by (A35) times (33).

In turn, the $L$L block of (A35) will be proportional to

SN (

�
D


0
L 
 IN )(IN +KNN )(


�10
L 
��1D 
�1L 

�10L 
��1D 
�1L )(IN +KNN )(
L


�
D 
 IN )S0N

= SN [(

�
D


0
L 
 IN ) +KNN (IN 

�D
0L)](
�10L 
��1D 
�1L 

�10L 
��1D 
�1L )

�[(
L

�
D 
 IN ) + (IN 

L


�
D)KNN ]S

0
N

= SN (

�
D


0
L 
 IN )(
�10L 
��1D 
�1L 

�10L 
��1D 
�1L )(
L


�
D 
 IN )S0N

+SN (

�
D


0
L 
 IN )(
�10L 
��1D 
�1L 

�10L 
��1D 
�1L )(IN 

L


�
D)KNNS

0
N

+SNKNN (IN 

�D
0L)(
�10L 
��1D 
�1L 

�10L 
��1D 
�1L )(
L

�
D 
 IN )S0N

+SNKNN (IN 

�D
0L)(
�10L 
��1D 
�1L 

�10L 
��1D 
�1L )(IN 

L

�
D)KNNS

0
N

= SN (

�
D 

�10L 
��1D 
�1L )S

0
N + SN (


�1
L 

�10L )KNNS

0
N

+SNKNN (

�10
L 

�1L )S

0
N + SNKNN (


�10
L 
��1D 
�1L 

�D)KNNS

0
N

= 2SNf(
�D 

�10L 
��1D 
�1L ) + (

�1
L 

�10L )KNNgS0N

by virtue of theorems 3.1 and 3.5 in Magnus (1988). Note that premultiplying by SN e¤ectively

selects the rows corresponding to the elements in the strict lower triangle of 
L while postmulti-

plying by S0N does the same for the columns. But since 

�
D 



�10
L 
��1D 
�1L is a block diagonal

matrix with blocks !�jj

��1 and (
�1L 

�10L )KNN is symmetric, we can tediously prove that

the matrix above is block diagonal with respect to $L1;$L2 : : : ;$LN�1, which implies that

the estimators of the elements in di¤erent columns of 
L are asymptotically independent.

Similarly, the $D$D block will be proportional to

@vecd0(
D)

@$D
EN (


0
L 

0L)(
�10L 
��1D 
�1L 

�10L 
��1D 
�1L )(
L 

L)E

0
N

@vecd(
D)

@$0
D

=
@vecd0(
D)

@$D
EN (


��1
D 

��1D )E0N

@vecd(
D)

@$0
D

=
@vecd0(
D)

@$D
(
��1D �
��1D )

@vecd(
D)

@$0
D

by virtue of theorem 7.7 of Magnus (1988)), where � denotes the element by element Hadamard
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product. But since 
�D is diagonal, 

��1
D �
��1D = 
��1D 
��1D , so

@vecd0(
D)

@$D
(
��1D �
��1D )

@vecd(
D)

@$0
D

=
�
IN�1 �`N�1

�� IN�1
�`0N�1

�
=
�
IN�1 + `N�1`

0
N�1

�
because

diag[exp(�$D1); : : : ; exp(�$DN�1); exp
�PN�1

j=1 $j

�
]

"
diag[exp($D1); : : : ; exp($DN�1)]

� exp
�
�
PN�1

j=1 $j

�
`0N�1

#

=

�
IN�1
�`0N�1

�
:

Finally, the $L$D block will be proportional to

SN (

�
D


0
L 
 IN )(IN +KNN )(


��1 

��1)(
L 

L)E
0
N

@vecd(
D)

@$0
D

SN [(

�
D


0
L 
 IN ) +KNN (IN 

�D
0L)](
�10L 
��1D 
�1L 

�10L 
��1D 
�1L )

�(
L 

L)E
0
N

@vecd(
D)

@$0
D

= SN (IN 

�10L 
��1D )E0N
@vecd(
D)

@$0
D

+ SNKNN (

�10
L 
��1D 
 IN )E0N

@vecd(
D)

@$0
D

= 2SN (IN 

�10L 
��1D )E0N
@vecd(
D)

@$0
D

by virtue of theorem 7.4 in Magnus (1988). Once again, premultiplying by SN selects the rows

corresponding to the elements in the strict lower triangle of 
L while postmultiplying by E0N

does the same for the columns corresponding to its diagonal elements. But since 
�10L is upper

triangular and 
��1D diagonal, which in turn implies that (IN 

�10L 
��1D ) is a block diagonal

matrix with identical upper triangular diagonal blocks, it is possible to tediously prove that

SN (IN 

�10L 
��1D )E0N will be identically 0. As a result, the estimators of $L and $D will be

asymptotically orthogonal too.

Given the diagonality of the Jacobian matrices, the asymptotic variance of our consistent

estimator of #i will coincide with the asymptotic variance of its Gaussian version, which is given

by expression (34) because of (A11) and (A12) coupled with A#c�#i(#0;0;'0) = B#c�#i(�1;'0) =

0.

Finally, the estimation of � is irrelevant because both theA and B matrices are block diagonal

between #c = (a0;b0;$0
L;$

0
D)
0 and (#i;�0)0 sinceW#c(#c0;'0) = 0 in this case. �

B Explicit parametrisation of the residual covariance matrix

Let us start with the simplest possible example in which 
 is assumed diagonal. In that

case, we can easily achieve j
�D($)j = 1 by writing !jj = #i exp($Dj) for j = 1; : : : ; N � 1 and
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!NN = #i exp
�
�
PN�1

j=1 $Dj

�
. Thus, the Jacobian of vecd(
) with respect to #i will be

vecd(
�D) = [exp($D1); : : : ; exp($DN�1); exp
�
�
PN�1

j=1 $Dj

�
]0

while the one with respect to $D = ($1; : : : ; $N�1)
0 will be #i times

@vecd(
�D)

@$0
D

=

"
diag[exp($D1); : : : ; exp($DN�1)]

� exp
�
�
PN�1

j=1 $Dj

�
`0N�1

#
; (B37)

where `N�1 denotes a vector of N � 1 ones and diag($D) a square diagonal matrix with the

elements of the vector $D along the main diagonal. Obviously, in the special case of 
 scalar,

then 
�D = IN and $D drops out.

Let us now move to the case in which, other than being positive (semi)de�nite, 
 is com-

pletely unrestricted. Let 
 = 
L
D

0
L denote the Cholesky factorisation of the matrix 
, with


D diagonal and 
L unit lower triangular. Given that j
Lj = 1, we will have that j
j = j
Dj

so we can ensure j
�($)j = 1 by parametrising 
D as in the diagonal case above.

Using the product rule for di¤erentials, we get that

d
 = d
L �
D

0
L +
L � d
D �
0L +
L
D � d
0L;

whence

dvec(
) = (
L
D 
 IN )dvec(
L) + (
L 

L)dvec(
D) + (IN 

L
D)dvec(

0
L)

= [(
L
D 
 IN ) + (IN 

L
D)KNN ]dvec(
L) + (
L 

L)dvec(
D)

= (IN +KNN )(
L
D 
 IN )dvec(
L) + (
L 

L)dvec(
D):

Let SN the unique 1
2N(N � 1) �N2 matrix which transforms vecl(
L) into vec(
L � IN )

as vec(
L � IN ) = S0Nvecl(
L), where vecl(
L) is the 1
2N(N � 1)� 1 vector that contains the

elements in the strict lower triangle of 
L stacked by columns (see Magnus (1988)). Given that

dvec(
L) = dvec(
L � IN ) = S0Ndvecl(
L), we can �nally write

dvec(
) = (IN +KNN )(
L
D 
 IN )S0Ndvecl(
L) + (
L 

L)E
0
Ndvecd(
D);

where EN is the unique diagonalisation matrix which transforms vecd(
D) into vec(
D) as

vec(
D) = E0Nvecd(
D) (see again Magnus (1988)). Using this expression we can trivially

prove that

@vec(
)

@vecl0(
L)
= (IN +KNN )(
L
D 
 IN )S0N ; (B38)

@vec(
)

@vecd0(
D)
= (
L 

L)E

0
N : (B39)
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Then, we can obtain the Jacobian of vec(
) with respect to #i and $D from the expressions

for the Jacobian of vecd(
�D) in the diagonal case.

Finally, let us study the fairly common situation in which 
 is estimated subject to the exact

single factor structure cc0 +�, where c is an N � 1 vector and � a diagonal matrix. Assuming

that � is positive de�nite, we can always parametrise 
 as

�1=2(c�c�0 + IN )�
1=2; (B40)

where c� = ��1=2c. Given that the eigenvalues of c�c�0 + IN are 1 + c�0c� (once) and 1 (N � 1

times), then j
j = j�j � (1+c�0c�). As a result, if we write �jj = #i(1+c
�0c�)�1=N exp($Dj) for

j = 1; : : : ; N�1 and �NN = #i(1+c
�0c�)�1=N exp

�
�
PN�1

j=1 $Dj

�
, we will ensure that j
j = #Ni

as required.

As for the Jacobian matrices, it follows from (B40) that

d
=d�1=2(c�c�0+IN )�
1=2+�1=2 �dc� �c�0�1=2+�1=2c� �dc�0 ��1=2+�1=2(c�c�0+IN )�d�1=2;

whence

dvec(
) = [�1=2(c�c�0 + IN )
 IN ]dvec(�1=2) + (�1=2c� 
�1=2)dc�

+(�1=2 
�1=2c�)dc� + [IN 
�1=2(c�c�0 + IN )]dvec(�
1=2)

= [(�1=2c� 
�1=2) + (�1=2 
�1=2c�)]dc�

+
1

2
f[�1=2(c�c�0 + IN )
 IN ] + [IN 
�1=2(c�c�0 + IN )]gE0N��1=2dvecd(�);

where we have exploited the fact that

dvec(�1=2) = E0Ndvecd(�
1=2) = E0N�

�1=2dvecd(�):

The derivatives of jj with respect to to #i and $Dk are simply (1 + c�0c�)�1=N times the

corresponding derivatives in the diagonal case we discussed above. Thus, the only remaining

derivatives will be
@�jj
@c�k

=
2#i�jj

N(1 + c�0c�)(N+1)=N
c�k:

C Relationship to Fan, Qi and Xiu (2014)

Fan, Qi and Xiu (2014) considered a special case of model (2) in which � is set to its true

value of 0. This means that there is one parameter less to estimate. We can exploit many of

the results in the proof of Proposition 6 to study this model. Somewhat surprisingly, tedious

algebraic manipulations show that the �rst part of this proposition remains valid provided that
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we set  im1(%) = 0. In other words, the asymptotic covariance matrix of the pseudo ML

estimator of  c for �xed value of % will be given by

MO
ss(%;'0)

[MH
ss(%;'0)]

2
�V�1: (C41)

As for our proposed consistent closed-form estimator, we can also show that the asymptotic

variance of  ic( ̂cT ) will be given by

({ � 1) 2ic0 + 4 2ic0
MO

ss(%;'0)

[MH
ss(%;'0)]

2
W0V�1W; (C42)

which coincides with the (2,2) element of expression (29) with  im1(%) = 0.

Obviously, the same relationship applies to the Gaussian PMLEs, so our estimator of  ic

will be more e¢ cient than its Gaussian PMLE counterpart when the Pseudo ML estimator of

 c will be more e¢ cient than its Gaussian PMLE counterpart.

Finally, we can also prove that the third part of Proposition 6 also holds, so that the only

change that simultaneously estimating the shape parameters % implies is that all the expressions

must be evaluated at %1.

Let us now compare the asymptotic distributions previously obtained for the case of %

�xed with the asymptotic distribution reported by Fan, Qi and Xiu (2014) for their estimation

method, bearing in mind that the mapping between our notation and theirs is as follows:  c = ,

 ic = �2, �1(��) = �2f , �
�2
t = vt and "�t = "t.

A crucial ingredient of their results is the vector

k( ) =

 
���1t ( c0)@�

�
t ( c0)=@ c

 
�1=2
ic

!
=

 
:5���2t ( c0)@�

�2
t ( c0)=@ c

 
�1=2
ic

!

and the matrix

E[k( )k0( )j'] =
 
V +WW0  

�1=2
ic W

 
�1=2
ic W0  �1ic

!
;

whose inverse is  
V�1 � 1=2ic V

�1W

� 1=2ic W
0V�1  ic(1 +W

0V�1W)

!
:

The di¤erence between this matrix and the corresponding matrix in the proof of Proposition

6 is due to the fact that Fan, Qi and Xiu (2014) are interested in the asymptotic distribution of

the estimator of  1=2ic , which the delta method implies is related to the asymptotic distribution

of the estimator of  ic through the quantity �:5 
�1=2
ic .

Theorem 2 in Fan, Qi and Xiu (2014) states that the asymptotic distribution of their three
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step estimator of  c is given by V
�1 times the following scalar

E[fhc["�t ; �
1=2
1 (%)]g2j'0]

�1(%)[Efhic["�t ; �
1=2
1 (%)]j'0g]2

;

where

h(x; s) = ln

�
1

s
f
�x
s

��
= ln f

�x
s

�
� ln s

h1(x; s) =
@h(x; s)

@s
= �1

s

�
1 +

x

s

@ ln f(x=s)

@"

�
h2(x; s) =

@2h(x; s)

@s@s
=
@hc(x; s)

@s
=
1

s2

�
2

�
x

s

@ ln f(x=s)

@"
+ 1

�
+
x2

s2
@2 ln f(x=s)

@"@"
� 1
�
:

It is then easy to see that

E[fhc["�t ; �1=21 (%)]g2j'0] = ��11 (%)MO
ss(%;'0)

and

Efh2["�t ; �1=21 (%)]j'0g = ��11 (%)MH
ss(%;'0)

so that the asymptotic variance of their estimator of  c will be

MO
ss(%;'0)

[MH
ss(%;'0)]

2
�V�1;

which coincides with (C41).

Similarly, if we re-write (C42) as

4 2ic0

�
MO

ss(�;'0)

[MH
ss(�;'0)]

2
(1 +W0V�1W) +

�
{ � 1
4

� MO
ss(�;'0)

[MH
ss(�;'0)]

2

��
;

it is clear that the Fan, Qi and Xiu (2014) estimator of  ic also has the same asymptotic variance

as our counterpart.
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TABLE 1: Monte Carlo simulation results of univariate Garch-m model.

Parameter �  �;  im #i;  ic � �
True value 0.85 0.1 0.05 1.0 0.1 0.05

G-PML 0.8424 0.0909 0.0518 1.0953 0.0998 0.0508
(0.0538) (0.0463) (0.0473) (0.6003) (0.0332) (0.0433)

t-PML 0.8424 0.0909 0.0519 1.0951 0.0998 0.0508
(0.0538) (0.0465) (0.0474) (0.6034) (0.0333) (0.0433)

FS Asy. 0.8424 0.0909 0.0518 1.0950 0.0998 0.0507
Normal (0.0538) (0.0465) (0.0473) (0.6034) (0.0332) (0.0433)

FS Sym. 0.8424 0.0909 0.0519 1.0950 0.0998 0.0508
(0.0538) (0.0465) (0.0474) (0.6034) (0.0332) (0.0433)

SP 0.8431 0.0903 0.0514 1.0851 0.0979 0.0508
(0.0569) (0.0486) (0.0473) (0.6452) (0.0357) (0.0435)

SSP 0.8427 0.0907 0.0517 1.0922 0.0998 0.0509
(0.0555) (0.0476) (0.0480) (0.6284) (0.0347) (0.0438)

G-PML 0.8418 0.0911 0.0513 1.0938 0.1002 0.0500
(0.0593) (0.0516) (0.0477) (0.6699) (0.0382) (0.0429)

t-PML 0.8426 0.0913 0.0513 1.0892 0.1000 0.0505
(0.0557) (0.0480) (0.0458) (0.6152) (0.0361) (0.0417)

FS Asy. 0.8426 0.0913 0.0512 1.0888 0.0999 0.0500
Student t10 (0.0557) (0.0480) (0.0471) (0.6163) (0.0361) (0.0427)

FS Sym. 0.8426 0.0913 0.0513 1.0889 0.0999 0.0504
(0.0557) (0.0480) (0.0458) (0.6163) (0.0361) (0.0417)

SP 0.8446 0.0882 0.0510 1.0582 0.0941 0.0505
(0.0608) (0.0515) (0.0471) (0.6686) (0.0402) (0.0435)

SSP 0.8441 0.0890 0.0511 1.0689 0.0951 0.0506
(0.0590) (0.0504) (0.0469) (0.6483) (0.0383) (0.0428)

G-PML 0.8414 0.0908 0.0520 1.0941 0.1000 0.0509
(0.0615) (0.0515) (0.0473) (0.6573) (0.0406) (0.0432)

t-PML 0.8431 0.0923 0.0514 1.1605 0.1072 0.0488
(0.0574) (0.0481) (0.0411) (0.6585) (0.0426) (0.0367)

FS Asy. 0.8431 0.0923 0.0513 1.0766 0.0995 0.0508
GC(0,2) (0.0574) (0.0481) (0.0467) (0.6058) (0.0386) (0.0433)

FS Sym. 0.8431 0.0923 0.0514 1.0768 0.0995 0.0506
(0.0574) (0.0481) (0.0411) (0.6061) (0.0386) (0.0378)

SP 0.8471 0.0881 0.0507 1.0337 0.0910 0.0517
(0.0574) (0.0469) (0.0466) (0.6010) (0.0394) (0.0434)

SSP 0.8475 0.0883 0.0508 1.0379 0.0920 0.0514
(0.0548) (0.0448) (0.0409) (0.5759) (0.0378) (0.0383)

G-PML 0.8415 0.0912 0.0527 1.0986 0.1002 0.0518
(0.0623) (0.0510) (0.0476) (0.6653) (0.0411) (0.0436)

t-PML 0.8433 0.0925 0.1290 1.1876 0.1101 0.1198
(0.0568) (0.0480) (0.0534) (0.6924) (0.0431) (0.0368)

FS Asy. 0.8433 0.0925 0.0520 1.0758 0.0995 0.0514
GC(-.6,2) (0.0568) (0.0480) (0.0467) (0.6111) (0.0380) (0.0437)

FS Sym. 0.8433 0.0925 0.1290 1.0821 0.1001 0.1258
(0.0568) (0.0480) (0.0534) (0.6169) (0.0383) (0.0386)

SP 0.8484 0.0875 0.0510 1.0315 0.0904 0.0520
(0.0526) (0.0440) (0.0462) (0.5570) (0.0380) (0.0439)

SSP 0.8462 0.0887 0.1471 1.0190 0.0900 0.1472
(0.0560) (0.0469) (0.0569) (0.5920) (0.0385) (0.0458)

Monte Carlo medians and (interquartile ranges) of Gaussian PMLE (G-PML), Student t-based PMLE
(t-PML), our consistent estimator of mean and scale parameters (FS Asy.), our consistent estimator of
the overall scale parameter (FS Sym.), semiparametric estimator (SP) and ellptically symmetric semi-
parametric estimator (SSP). Bold �gures refer to inconsistent estimators. Random draws of innovations
are standard normal (Normal), standardised Student t with � degrees of freedom (Student t�), and stan-
dardised fourth-order Gram-Charlier expansion with skewness equal to c3 and excess kurtosis equal to c4
(GC(c3,c4)). Sample length=1000. Replications=10,000.
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TABLE 2: Monte Carlo simulation results of multivariate market model.

Parameter a b #i !�ii !�ij !ii !ij
True value 0.0 1.0 2.7602 1.1362 0.3408 3.136 0.9408

G-PML 0.0011 0.9993 2.7328 1.1412 0.3424 3.1199 0.9360
(0.1504) (0.1077) (0.1045) (0.0880) (0.0702) (0.2681) (0.1954)

t-PML(t) 0.0011 0.9993 2.7329 1.1412 0.3424 3.1200 0.9360
(0.1506) (0.1077) (0.1046) (0.0881) (0.0702) (0.2682) (0.1956)

FS Asy. 0.0010 0.9993 2.7328 1.1412 0.3424 3.1199 0.9360
Normal (0.1505) (0.1077) (0.1045) (0.0880) (0.0702) (0.2681) (0.1954)

FS Sym. 0.0011 0.9993 2.7328 0.1412 0.3424 3.1199 0.9360
(0.1506) (0.1077) (0.1046) (0.0881) (0.0702) (0.2682) (0.1956)

SP 0.0014 0.9993 2.7338 1.1412 0.3424 3.1207 0.9362
(0.1522) (0.1104) (0.1042) (0.0881) (0.0701) (0.2678) (0.1955)

SSP 0.0013 0.9994 2.7396 1.1413 0.3424 3.1278 0.9382
(0.1528) (0.1093) (0.1055) (0.0889) (0.0708) (0.2699) (0.1980)

G-PML 0.0011 0.9987 2.7234 1.1422 0.3423 3.1126 0.9320
(0.1496) (0.1071) (0.1732) (0.1071) (0.0858) (0.3496) (0.2404)

t-PML 0.0013 0.9991 2.7313 1.1413 0.3422 3.1195 0.9348
(0.1398) (0.0999) (0.1731) (0.0953) (0.0759) (0.3228) (0.2149)

FS Asy. 0.0014 0.9991 2.7241 1.1422 0.3424 3.1136 0.9322
Student t8 (0.1451) (0.0999) (0.1734) (0.1070) (0.0858) (0.3500) (0.2405)

FS Sym. 0.0013 0.9991 2.7300 1.1413 0.3422 3.1173 0.9344
(0.1398) (0.0999) (0.1751) (0.0953) (0.0759) (0.3254) (0.2150)

SP 0.0018 0.9993 2.7270 1.1421 0.3423 3.1162 0.9329
(0.1567) (0.1153) (0.1736) (0.1071) (0.0859) (0.3503) (0.2410)

SSP 0.0020 0.9993 2.7734 1.1418 0.3423 3.1676 0.9496
(0.1434) (0.1024) (0.1816) (0.0973) (0.0777) (0.3382) (0.2241)

G-PML 0.0012 0.9988 2.7059 1.1489 0.3443 3.1086 0.9308
(0.1494) (0.1075) (0.2691) (0.1423) (0.1160) (0.4939) (0.3266)

t-PML 0.0011 0.9997 3.1799 1.1422 0.3428 3.6308 1.0903
(0.1071) (0.0764) (0.6342) (0.0977) (0.0779) (0.7930) (0.3304)

FS Asy. 0.0009 0.9997 2.7090 1.1489 0.3443 3.1120 0.9319
DSMN(0.2,0.1) (0.1307) (0.0764) (0.2696) (0.1422) (0.1161) (0.4946) (0.3268)

FS Sym. 0.0011 0.9997 2.7352 1.1422 0.3428 3.1221 0.9350
(0.1071) (0.0764) (0.2716) (0.0977) (0.0779) (0.4096) (0.2332)

SP 0.0001 0.9996 2.7240 1.1493 0.3444 3.1284 0.9369
(0.2077) (0.1774) (0.2722) (0.1428) (0.1166) (0.5012) (0.3298)

SSP 0.0012 0.9994 2.8693 1.1427 0.3428 3.2748 0.9803
(0.1136) (0.0816) (0.2946) (0.1000) (0.0801) (0.4447) (0.2513)

G-PML 0.0019 1.0002 2.6750 1.1315 0.3151 3.0230 0.8390
(0.1508) (0.1061) (0.2728) (0.1566) (0.1489) (0.5911) (0.4539)

t-PML 0.2799 1.0000 2.6757 1.0381 0.1393 2.7895 0.3733
(0.1438) (0.0857) (0.2536) (0.1697) (0.1124) (0.5142) (0.3063)

FS Asy. 0.0007 1.0000 2.6762 1.1316 0.3153 3.0251 0.8403
Asymmetric (0.1368) (0.0857) (0.2734) (0.1568) (0.1490) (0.5924) (0.4547)
Student t8;�1000 FS Sym. 0.2799 1.0000 2.8365 1.0381 0.1393 2.9764 0.3994

(0.1438) (0.0857) (0.3857) (0.1697) (0.1124) (0.6218) (0.3310)
SP 0.0051 1.0010 2.6817 1.1322 0.3161 3.0323 0.8441

(0.2224) (0.1914) (0.2740) (0.1570) (0.1493) (0.5918) (0.4558)
SSP 0.4103 1.0000 3.3425 1.0527 0.1586 3.5194 0.5280

(0.2098) (0.1145) (0.4572) (0.1749) (0.1264) (0.7604) (0.4342)

Monte Carlo medians and (interquartile ranges) of Gaussian PMLE (G-PML), Student t-based PMLE
(t-PML), our consistent estimator of mean and scale parameters (FS Asy.), our consistent estimator of
the global scale parameter (FS Sym.), semiparametric estimator (SP) and ellptically symmetric semi-
parametric estimator (SSP). Bold �gures refer to inconsistent estimators. Random draws of innovations
are multivariate standard normal (Normal), multivariate standardised Student t with � degrees of free-
dom (Student t�), standardised symmetric discrete scale mixture of two multivariate normals with mixing
probability r and variance ratio equal to s (DSMN(r,s)) and standardised asymmetric Student t with � de-
grees of freedom and asymmetry parameters equal to �`5 (Asymmetric Student t�;�). Sample length=500.
Replications=10,000.
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D Auxiliary results

D.1 Some useful distribution results

A spherically symmetric random vector of dimension N , "�t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as "�t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of "�t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2t ) <1,
we can standardise "�t by setting E(e

2
t ) = N , so that E("�t ) = 0, V ("

�
t ) = IN . Speci�cally, if "

�
t

is distributed as a standardised multivariate Student t random vector of dimension N with �0

degrees of freedom, then et =
p
(�0 � 2)�t=�t, where �t is a chi-square random variable with N

degrees of freedom, and �t is an independent Gamma variate with mean �0 > 2 and variance

2�0. If we further assume that E(e4t ) < 1, then the coe¢ cient of multivariate excess kurtosis
�0, which is given by E(e4t )=[N(N +2)]� 1, will also be bounded. For instance, �0 = 2=(�0� 4)
in the Student t case with �0 > 4, and �0 = 0 under normality. In this respect, note that since

E(e4t ) � E2(e2t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
p
N

so that "�t is proportional to ut, then �0 � �2=(N + 2), the minimum value being achieved in

the uniformly distributed case.

Then, it is easy to combine the representation of spherical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V ("�t ) = IN are given by

E("�t"
�
t
0 
 "�t ) = 0; (D1)

E("�t"
�
t
0
"�t"�t 0)=E[vec("�t"�t 0)vec0("�t"�t )]= (�0+1)[(IN2+KNN )+vec (IN ) vec

0 (IN )]; (D2)

where Kmn is the commutation matrix of orders m and n (see e.g. Magnus and Neudecker

(1987)).

D.2 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(�) + g(&t;�)] denote the assumed conditional density of "�t given It�1 and the

shape parameters, where c(�) corresponds to the constant of integration, g(&t;�) to its kernel

and &t = "�0t "
�
t . Ignoring initial conditions, the log-likelihood function of a sample of size T for

those values of � for which �t(�) has full rank will take the form LT (�) =
PT

t=1 lt(�), where

lt(�) = dt(�)+ c(�)+ g [&t(�);�], dt(�) = ln j��1=2t (�)j is the Jacobian and &t(�) = "�0t (�)"�t (�).
Let st(�) denote the score function @lt(�)=@�, and partition it into two blocks, s�t(�) and

s�t(�), whose dimensions conform to those of � and �, respectively. If �t(�), �t(�), c(�) and

g [&t(�);�] are di¤erentiable, then

s�t(�) = @c(�)=@� + @g [&t(�);�] =@� = ert(�); (D3)
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while

s�t(�) =
@dt(�)

@�
+
@g [&t(�);�]

@&

@&t(�)

@�
= [Zlt(�);Zst(�)]

�
elt(�)
est(�)

�
= Zdt(�)edt(�); (D4)

where

@dt(�)=@� = �Zst(�)vec(IN );

@&t(�)=@� = �2fZlt(�)"�t (�) + Zst(�)vec
�
"�t (�)"

�0
t (�)

�
g; (D5)

Zlt(�) = @�0t(�)=@� ��
�1=20
t (�);

Zst(�) =
1

2
@vec0 [�t(�)] =@��[��1=20t (�)
��1=20t (�)];

elt(�;�) = �[&t(�);�] � "�t (�); (D6)

est(�;�) = vec
�
�[&t(�);�] � "�t (�)"�0t (�)�IN

	
; (D7)

and

�[&t(�);�] = �2@g[&t(�);�]=@& (D8)

is a damping factor that re�ects the tail-thickness of the distribution assumed for estimation

purposes. Importantly, while both Zdt(�) and edt(�) depend on the speci�c choice of square

root matrix �1=2t (�), s�t(�) does not, a property that inherits from lt(�). As we shall see in

Supplemental Appendix E, this result is not generally true for non-spherical distributions.

Obviously, s�t(�;0) reduces to the multivariate normal expression in Bollerslev andWooldridge

(1992), in which case:

edt(�;0) =

�
elt(�;0)
est(�;0)

�
=

�
"�t (�)

vec ["�t (�)"
�0
t (�)�IN ]

�
:

Assuming further twice di¤erentiability of the di¤erent functions involved, we will have that

the Hessian function ht(�) = @st(�)=@�
0 = @2lt(�)=@�@�

0 will be

h��t(�) =
@2dt(�)

@�@�0
+
@2g [&t(�); �]

(@&)2
@&t(�)

@�

@&t(�)

@�0
+
@g [&t(�); �]

@&

@2&t(�)

@�@�0
; (D9)

h��t(�) = @&t(�)=@� � @2g [&t(�);�] =@&@�0; (D10)

h��t(�) = @2c(�)=@�@�0 + @2g [&t(�);�] =@�@�
0;

where

@2dt(�)=@�@�
0=2Zst(�)Z0st(�)-

1

2

�
vec0

�
��1t (�)

�

 Ip

	
@vec

�
@vec0 [�t(�)] =@�

	
=@�0; (D11)

@2&t(�)=@�@�
0 = 2Zlt(�)Z

0
lt(�) + 8Zst(�)[IN 
 "�t (�)"�0t (�)]Z0st(�) + 4Zlt(�)["�0t (�)
 IN ]Z0st(�)

+4Zst(�)["
�
t (�)
 IN ]Z0lt(�)� 2["�0t (�)�

�1=20
t (�)
Ip]@vec[@�0t(�)=@�]@�0

�fvec0[��1=2t (�)"�t (�)"
�0
t (�)�

�1=20
t (�)]
 Ipg@vecf@vec0[�t(�)]=@�g=@�0:

Note that @&t(�)=@�, @2dt(�)=@�@�0 and @2&t(�)=@�@�0 depend on the dynamic model speci�ca-
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tion, while @2g(&; �)=(@&)2, @2g(&; �)=@&@�0 and @g(&; �)=@�@�0 depend on the speci�c spherical

distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for

expressions for �(&t;�), c(�), g(&t;�) and its derivatives in the multivariate Student t case,

Amengual and Sentana (2010) for the Kotz distribution (see Kotz (1975)) and discrete scale

mixture of normals, and Amengual, Fiorentini and Sentana (2013) for polynomial expansions).

D.3 Asymptotic distribution under correct speci�cation

Given correct speci�cation, the results in Crowder (1976) imply that et(�) = [e0dt(�); ert(�)]
0

evaluated at �0 follows a vector martingale di¤erence, and therefore, the same is true of the score

vector st(�). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the joint ML estimator will be
p
T (�̂T � �0)! N

�
0; I�1(�0)

�
, where I(�0) =

E[It(�0)j�0],

It(�) = V [st(�)jIt�1;�] = Zt(�)M(�)Z0t(�) = �E [ht(�)jIt�1;�] ;

Zt(�) =

�
Zdt(�) 0
0 Iq

�
=

�
Zlt(�) Zst(�) 0
0 0 Iq

�
; (D12)

andM(�) = V [et(�)j�]. In particular, Crowder (1976) requires: (i) �0 is locally identi�ed and
belongs to the interior of the admissible parameter space, which is a compact subset of Rp+q; (ii)
the Hessian matrix is non-singular and continuous throughout some neighbourhood of �0; (iii)

there is uniform convergence to the integrals involved in the computation of the mean vector

and covariance matrix of st(�); and (iv) �E�1
�
�T�1

P
t ht(�)

�
T�1

P
t ht(�)

p! Ip+q, where

E�1
�
�T�1

P
t ht(�)

�
is positive de�nite on a neighbourhood of �0.

As for ~�T (��), assuming that �� coincides with the true value of this parameter vector, the

same arguments imply that
p
T [~�T (��) � �0] ! N

�
0; I�1�� (�0)

�
, where I��(�0) is the relevant

block of the information matrix.

Proposition 1 in Fiorentini and Sentana (2007), which generalises Propositions 3 in Lange,

Little and Taylor (1989), 1 in Fiorentini, Sentana and Calzolari (2003) and 5.2 in Hafner and

Rombouts (2007), provides detailed expressions forM(�). We reproduce it here to facilitate its

comparison to Proposition 2:
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Proposition 8 If "�t jIt�1;� is i:i:d: s(0; IN ;�) with density exp[c(�) + g(&t;�)], then

M(�) =

0@ Mll(�) 0 0
0 Mss(�) Msr(�)
0 M0

sr(�) Mrr(�)

1A ; (D13)

Mll(�) = mll(�)IN ; (D14)

Mss(�) = mss(�) (IN2 +KNN ) + [mss(�)� 1]vec(IN )vec0(IN ); (D15)

Msr(�) = vec(IN )msr(�); (D16)

mll(�) = E
h
�2(&t;�)

&t
N

����i = E

�
2@�(&t;�)

@&

&t
N
+ �(&t;�)

������ ;
mss(�) =

N

N + 2

n
1 + V

h
�(&t;�)

&t
N

����io = N

N + 2
E

�
2@�(&t;�)

@&

� &t
N

�2������+ 1;
msr(�) = E

nh
�(&t;�)

&t
N
� 1
i
e0rt(�)

����o = �E � &t
N

@�(&t;�)

@�0

������ :
Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate

standardised Student t; while the expressions for the Kotz distribution and the DSMN are

given in Amengual and Sentana (2010) (The expression for mss(�) for the Kotz distribution in

Amengual and Sentana (2010) contains a typo. The correct value is (N�+ 2)=[(N + 2)�+ 2]).

D.4 Gaussian pseudo maximum likelihood estimators

Let ~�T = argmax� LT (�;0) denote the Gaussian PML estimator of �. As we mentioned

in the introduction, ~�T remains root-T consistent for �0 under correct speci�cation of �t(�)

and �t(�) even though the true conditional distribution of "�t jIt�1;�0 is neither Gaussian nor
spherical, provided that it has bounded fourth moments. The proof is based on the fact that

in those circumstances, the pseudo log-likelihood score, s�t(�;0), is also a vector martingale

di¤erence sequence when evaluated at �0, a property that inherits from edt(�;0). This property

is preserved even when the standardised innovations, "�t , are not stochastically independent

of It�1. The asymptotic distribution of the PML estimator of � is stated in the following

result, which specialises Proposition 1 in Bollerslev and Wooldridge (1992) to models with i:i:d:

innovations with shape parameters �:

Proposition 9 Assume that the regularity conditions A.1 in Bollerslev and Wooldridge (1992)
are satis�ed.

1. If "�t jIt�1;' is i:i:d:D(0; IN ;�) with tr[K(�)]<1, where ' = (�0;�0)0, then
p
T (~�T��0)!

N [0; C��(�0;0;'0)] with

C��(�;0;') = A�1�� (�;0;')B��(�;0;')A
�1
�� (�;0;');

A��(�;0;') = �E [h��t(�;0)j'] = E [A��t(�;0;')j'] ;
A��t(�;0;') = �E[h��t(�;0)j It�1;'] = Zdt(�)K(0)Z0dt(�);

B��(�;0;') = V [s�t(�;0)j'] = E [B��t(�;0;')j'] ;
B��t(�;0;') = V [s�t(�;0)j It�1;'] = Zdt(�)K(�)Z0dt(�);
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and

K(�)=V [edt(�;0)j It�1;']=
�

IN �(�)
�0(�) �(�)

�
; (D17)

where
�(�) = E["�t vec

0("�t"
�0
t )j']

�(�) = E[vec("�t"
�0
t � IN )vec0("�t"�0t � IN )j']

depend on the multivariate third and fourth order cumulants of "�t , so that �(0) = 0 and
�(0) = (IN2 +KNN ) if we use � = 0 to denote normality.

2. If "�t jIt�1;�0 is i:i:d: s(0; IN ;�0) with �0 <1, then (D17) reduces to

K (�) =
�
IN 0
0 (�+1) (IN2+KNN )+�vec(IN )vec

0(IN )

�
; (D18)

which only depends on the true distribution through the population coe¢ cient of multivari-
ate excess kurtosis �0.

D.5 Spherically symmetric semiparametric estimators

As is well known, a single scoring iteration without line searches that started from ~�T and

some root-T consistent estimator of �, say ~�T , would su¢ ce to yield an estimator of � that

would be asymptotically equivalent to the full-information ML estimator �̂T , at least up to

terms of order Op(T�1=2). Speci�cally,�
��T � ~�T
��T � ~�T

�
=

�
I��(�0) I��(�0)
I 0��(�0) I��(�0)

��1
1

T

TX
t=1

�
s�t(~�T ; ~�T )

s�t(~�T ; ~�T )

�
:

If we use the partitioned inverse formula, then it is easy to see that

��T � ~�T =
�
I��(�0)� I��(�0)I�1�� (�0)I 0��(�0)

��1
� 1
T

TX
t=1

h
s�t(~�T ; ~�T )� I��(�0)I�1�� (�0)s�t(~�T ; ~�T )

i
= I��(�0)

1

T

TX
t=1

s�j�t(~�T ; ~�T );

where

I��(�0) = [I��(�0)� I��(�0)I�1�� (�0)I 0��(�0)]�1

and

s�j�t(�0;�0) = s�t(�0;�0)� I��(�0)I�1�� (�0)s�t(�0;�0) (D19)

is the residual from the unconditional theoretical regression of the score corresponding to �,

s�t(�0), on the score corresponding to �, s�t(�0). This residual score is sometimes called the

unrestricted parametric e¢ cient score of �, and its covariance matrix, P(�0) = [I��(�0)]�1, the
marginal information matrix of �, or the unrestricted parametric e¢ ciency bound.

In the spherically symmetric case, we can easily prove that (D19) and its covariance matrix

reduce to

s�j�t(�0) = Zdt(�0)edt(�0)�Ws(�0) �
�
msr(�0)M�1

rr (�0)ert(�0)
�

(D20)
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and

P(�0) = I��(�0)�Ws(�0)W
0
s(�0) �

�
msr(�0)M�1

rr (�0)m
0
sr(�0)

�
; (D21)

respectively, where

Ws(�0) = Zd(�0)[0
0; vec0(IN )]

0 = E[Zdt(�0)j�0][00; vec0(IN )]0

= E

�
1

2

@vec0 [�t(�0)]

@�
vec[��1t (�0)]

�����0� = E[Wst(�0)j�0] = �E
�
@dt(�0)

@�

�����0� ; (D22)

It is worth noting that the last summand of (D19) coincides with Zd(�0) times the theoret-

ical least squares projection of edt(�0) on (the linear span of) ert(�0), which is conditionally

orthogonal to edt(�0;0) from Proposition 3 of Fiorentini and Sentana (2007). Such an interpre-

tation immediately suggests alternative estimators of � that replace a parametric assumption on

the shape of the distribution of the standardised innovations "�t by a more �exible alternative.

Speci�cally, Hodgson and Vorkink (2003), Hafner and Rombouts (2007) and other authors have

suggested spherically symmetric semiparametric estimators which allow for any member of the

class of spherically symmetric distribution. To derive such estimators, these authors replace the

linear span of ert(�0) by the so-called spherically symmetric tangent set, which is the Hilbert

space generated by all time-invariant functions of &t(�0) with bounded second moments that

have zero conditional means and are conditionally orthogonal to edt(�0;0). The next proposi-

tion, which originally appeared as Proposition 7 in Fiorentini and Sentana (2007), provides the

resulting spherically symmetric semiparametric e¢ cient score and the corresponding e¢ ciency

bound:

Proposition 10 When "�t jIt�1;� is i:i:d: s(0; IN ;�) with �2=(N+2) < �0 <1, the spherically
symmetric semiparametric e¢ cient score is given by:

�s�t(�0)= s�t(�0)�Ws(�0)

��
�[&t(�0);�0]

&t(�0)

N
�1
�
� 2

(N+2)�0+2

�
&t(�0)

N
�1
��
; (D23)

while the spherically symmetric semiparametric e¢ ciency bound is

�S(�0) = I��(�0)�Ws(�0)W
0
s(�0) �

��
N + 2

N
mss(�0)� 1

�
� 4

N [(N + 2)�0 + 2]

�
: (D24)

In the case of the univariate Garch-m model (2), we estimate the model parameters using

parametrisation (17), with the expressions for the score that appear in the proof of Proposition

6. On the other hand, we use the natural parametrisation of the multivariate market model in

(3), so that �0 = (a0;b0;!0), where ! = vech(
). Given the Jacobian matrices:

@�t(�)

@(a0;b0;!0)
= ( IN INrMt 0 ); (D25)

@vec[�t(�)]

@(a0;b0;!0)
= ( 0 0 DN ); (D26)

because
@vec(
)

@vech0(
)
= DN ;

6



the results in Supplemental Appendix D.2 immediately imply that

sat(�) = 
�1�t"t(�);

sbt(�) = 
�1rmt�t"t(�);

s!t(�) =
1

2
D0
N (


�1 

�1)vec[�t"t(�)"0t(�)�
];

where "t(�) = rt � a� brmt.
The last ingredient we need is

Ws(�0) = [0;0;
1

2
vec0(
�1)DN ]

0

because

D0
N (


� 1
2
0 

�

1
2
0)vec(IN ) = D

0
Nvec(


�1):

In practice, edt(�) has to be replaced by a semiparametric estimate obtained from the joint

density of "�t . However, the spherical symmetry assumption allows us to obtain such an estimate

from a nonparametric estimate of the univariate density of &t, h (&t;�), avoiding in this way the

curse of dimensionality. Speci�cally, if we use expression (2.21) in Fang, Kotz and Ng (1990) to

write the density function of &t as

h(&t;�) =
�N=2

�(N=2)
&
N=2�1
t exp[c(�) + g(&t;�)]; (D27)

then we can estimate �[&t(�);�] non-parametrically by exploiting that

�2@g[&t(�);�]
@&

= �2@ lnh[&t(�);�]
@&

+
N � 2
2

1

&t(�)
:

We can compute h[&t(�);�] either directly by using a kernel for positive random variables

(see Chen (2000)), or indirectly by using a faster standard Gaussian kernel after exploiting the

Box-Cox-type transformation v = &k (see Hodgson, Linton and Vorkink (2002)). In the second

case, the usual change of variable formula yields

p(v;�) =
�N=2

k�(N=2)
v�1+N=2k exp[c(�) + g(v1=k;�)];

whence

g(v1=k;�) = ln p(v;�) +

�
1� N

2k

�
ln v � N

2
ln 2� + ln k � ln �(N=2)� c(�)

and
@g(v1=k;�)

@v1=k
= k

@ ln f(v;�)

@v
v1�1=k +

k �N=2
v1=k

:

We use the second procedure in our Monte Carlo simulations because the distribution of

&t(�) becomes more normal-like as N increases, which reduces the advantages of using kernels for

positive variables. Speci�cally, we use a cubic root transformation to improve the approximation,

7



with a common bandwidth parameter for both the density and its �rst derivative. Given that

a proper cross-validation procedure is extremely costly to implement in a Monte Carlo exercise

with N = 5, we have done some experimentation to choose the optimal bandwidth by scaling

up and down the automatic choices given in Silverman (1986).

In the univariate case, there is a conceptually simpler alternative that does not require

working with &t = "�2t . In particular, we can exploit the fact that the density of "
�
t is the same

as the density of �"�t by assigning to �"�t the equally weighted average of the non-parametric
density estimates at "�t and �"�t . Likewise, we can compute the equally weighted average of the
absolute value of its derivatives and assign its � value to "�t and �"�t , respectively.

E The general case of non-spherical pseudo likelihoods

E.1 Likelihood, score and Hessian for non-spherical distributions

Let f("�;%) denote the assumed conditional density of "�t given It�1 and some shape para-

meters %. Let also � = (�0;%)0 denote the p + q parameters of interest, which once again we

assume variation free. Ignoring initial conditions, the log-likelihood function of a sample of size

T for those values of � for which �t(�) has full rank will take the form LT (�) =
PT

t=1 lt(�),

where lt(�) = dt(�) + ln f ["
�
t (�);%], dt(�) = ln j�

�1=2
t (�)j, "�t (�) = �

�1=2
t (�)"t(�), and "t(�) =

yt � �t(�).
The most common choices of square root matrices are the Cholesky decomposition, which

leads to a lower triangular matrix for a given ordering of yt, or the spectral decomposition, which

yields a symmetric matrix. The choice of square root matrix is non-trivial because�1=2t (�) a¤ects

the value of the log-likelihood function and its score in multivariate non-spherical contexts. In

what follows, we rely mostly on the Cholesky decomposition because it is much faster to compute

than the spectral one, especially when �t(�) is time-varying. Nevertheless, we also discuss some

modi�cations required for the spectral decomposition later on.

Let st(�) denote the score function @lt(�)=@�, and partition it into two blocks, s�t(�) and

s%t(�), whose dimensions conform to those of � and %, respectively. Assuming that �t(�),

�
1=2
t (�) and ln f("�;%) are di¤erentiable, it trivially follows that

s�t(�;%) =
@dt(�)

@�
+
@"0�t (�)

@�

@ ln f ["�t (�) ;%]

@"�
:

But since

@dt(�)=@� = �
@vec0[�

1=2
t (�)]

@�
vec[�

�1=20
t (�)] = �Zst(�)vec(IN )

and

@"�t (�)

@�0
= ���1=2t (�)

@�t(�)

@�0
� ["�0t (�)
�

�1=2
t (�)]

@vec[�
1=2
t (�)]

@�0

= �fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g; (E28)
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where
Zlt(�) = @�0t(�)=@� ��

�1=20
t (�)

Zst(�) = @vec0[�
1=2
t (�)]=@� � [IN 
��1=20t (�)]

)
; (E29)

it follows that

s�t(�) = [Zlt(�);Zst(�)]

�
elt(�)
est(�)

�
= Zdt(�)edt(�); (E30)

s%t(�) = @ ln f ["�t (�) ;%]=@% = ert(�);

with

edt(�) =

�
elt(�)
est(�)

�
=

�
�@ ln f ["�t (�);%]=@"�;
�vec fIN + @ ln f ["�t (�);%]=@"� � "�0t (�)g

�
: (E31)

Similarly, let ht(�) denote the Hessian function @st(�)=@�0 = @2lt(�)=@�@�
0. Assuming

twice di¤erentiability of the di¤erent functions involved, expression (E28) implies that

@elt(�;%)

@�0
= �@

2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
=
@2 ln f ["�t (�);%]

@"�@"�0
fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g (E32)

because

delt(�;%) = �df@ ln f ["�t (�);%]=@"�g: (E33)

In turn,

dest(�;%) = �dvec
�
@ ln f ["�t (�);%]

@"�
� "�0t (�)

�
= �["�t (�)
 IN ]d

�
@ ln f ["�t (�);%]

@"�

�
�
�
IN 


@ ln f ["�t (�);%]

@"�

�
d"�t (�) (E34)

implies that

@est(�)

@�0
=
@est(�;%)

@�0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
�
�
IN 


@ ln f ["�t (�);%]

@"�

�
@"�t (�)

@�0�
["�t (�)
IN ]

@2 ln f ["�t (�);%]

@"�@"�0
+

�
IN


@ ln f ["�t (�);%]

@"�

��
fZ0lt(�)+["0�t (�)
IN ]Z0st(�)g: (E35)

Finally, (E33) and (E34) trivially imply that

@2elt(�;%)

@�@%0
= �@

2 ln f ["�t (�);%]

@"�@%0
;

@2est(�;%)

@�@%0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@%0
:

Using these results, we can easily obtained the required expressions for

h��t(�) = Zlt(�)
@elt(�)

@�0
+ Zst(�)

@est(�)

@�0

+
�
e0lt(�)
 Ip

� @vec[Zlt(�)]
@�0

+
�
e0st(�)
 Ip

� @vec[Zst(�)]
@�0

; (E36)

h�%t(�) = Zlt(�)@elt(�)=@%
0 + Zst(�)@est(�)=@%

0; (E37)

h%%t(�) = @2 ln f ["�t (�) ;%]=@%@%
0:
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Importantly, while Zlt(�), Zst(�), @vec[Zlt(�)]=@�0 and @vec[Zst(�)]=@�
0 depend on the dy-

namic model speci�cation, the �rst and second derivatives of ln f("�;%) depend on the speci�c

distribution assumed for estimation purposes.

For the standard (i.e. lower triangular) Cholesky decomposition of �t(�), we will have that

dvec(�t) = [(�
1=2
t 
 IN ) + (IN 
�1=2t )KNN ]dvec(�

1=2
t ):

Unfortunately, this transformation is singular, which means that we must �nd an analogous

transformation between the corresponding dvech0s. In this sense, we can write the previous

expression as

dvech(�t) = [LN (�
1=2
t 
 IN )L0N + LN (IN 
�

1=2
t )KNNL

0
N ]dvech(�

1=2
t ); (E38)

where LN is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long

as �1=2t has full rank, which means that we can readily obtain the Jacobian matrix of vech(�1=2t )

from the Jacobian matrix of vech(�t).

In the case of the symmetric square root matrix, the analogous transformation would be

dvech(�t) = [D
+
N (�

1=2
t 
 IN )DN +D

+
N (IN 
�

1=2
t )DN ]dvech(�

1=2
t );

whereD+
N = (D

0
NDN )

�1D0
N is the Moore-Penrose inverse of the duplication matrix (see Magnus

and Neudecker, 1988).

From a numerical point of view, the calculation of both LN (�
1=2
t 
 IN )L0N and LN (IN 


�
1=2
t )KNNL

0
N is straightforward. Speci�cally, given that LNvec(A) = vech(A) for any square

matrixA, the e¤ect of premultiplying by the 12N(N+1)�N
2 matrix LN is to eliminate rows N+1,

2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LNKNNvec(A) = vech(A0),

the e¤ect of postmultiplying by KNNL
0
N is to delete all columns but those in positions 1, N+1,

2N+1,. . . ,N+2, 2N+2,. . . , N+3, 2N+3,. . . , N2.

Let Ft denote the transpose of the inverse of LN (�
1=2
t 
 IN )L0N + LN (IN 
�

1=2
t )KNNL

0
N ,

which will be upper triangular. The fastest way to compute

@vec0[�
1=2
t (�)]

@�
[IN 
��1=2t (�)] =

1

2

@vech0 [�t(�)]

@�
FtLN (IN 
��1=2t ) (E39)

is as follows:

1. From the expression for @vec0 [�t(�)] =@� we can readily obtain @vech0 [�t(�)] =@� by

simply avoiding the computation of the duplicated columns

2. Then we postmultiply the resulting matrix by Ft
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3. Next, we construct the matrix

LN (IN 
�1=2t ) = LN

0BBBB@
�
�1=2
t 0 � � � 0

0 �
�1=2
t � � � 0

...
...

. . .
...

0 0 � � � �
�1=2
t

1CCCCA
by eliminating the �rst row from the second block, the �rst two rows from the third block,

. . . , and all the rows but the last one from the last block

4. Finally, we premultiply the resulting matrix by @vech0 [�t(�)] =@� � Ft.

E.2 Asymptotic distribution

E.2.1 Under correct speci�cation

Proposition 11 If "�t j;� is i:i:d: D(0; IN ;%) with density f("�;%), then

It(�) = Zt(�)M(%)Z0t(�);

Zt(�) =

�
Zdt(�) 0
0 Iq

�
=

�
Zlt(�) Zst(�) 0
0 0 Iq

�
;

and

M(%) =

�
Mdd(%) Mdr(%)
M0

dr(%) Mrr(%)

�
=

24 Mll(%) Mls(%) Mlr(%)
M0

ls(%) Mss(%) Msr(%)
M0

lr(%) M0
sr(%) Mrr(%)

35 ;
with

Mll(%) = V [elt(�)j�] = E
�
@2 ln f("�t ;%)=@"

�@"�0
��%� ;

Mls(%) = E[elt(�)est(�)
0j�] = E

�
@2 ln f("�t ;%)=@"

�@"�0 � ("0�t 
 IN )
��%� ;

Mss(%) = V [est(�)j�] = E
�
("�t 
 IN ) � @2 ln f("�t ;%)=@"�@"�0 � ("�0t 
 IN )j%

�
�KNN ;

Mlr(%) = E[elt(�)e
0
rt(�)j�] = �E

�
@2 ln f("�t ;%)=@"

�@%0j%
�
;

Msr(%) = E[est(�)e
0
rt(�)j�] = �E

�
("�t 
 IN )@2 ln f("�t ;%)=@"�@%0j%

�
;

and
Mrr(%) = V [ert(�)j�] = �E

�
@2 ln f("�t ;%)=@%@%

0j�
�
:

E.2.2 Under misspeci�cation

Proposition 12 If (14) holds, and "�t jIt�1;'0 is i:i:d: (0; IN ), where ' includes  and the true
shape parameters �, but the distribution assumed for estimation purposes does not necessarily
nest the true density, then the pseudo-true value of the feasible parametric ML estimator of
� = ( 0c; 

0
im; 

0
ic;%)

0, �1, is such that  c1 is equal to the true value  c0.

Proof. We can directly work in terms of the  parameters thanks to our assumptions on

the mapping rg(:). Let us initially keep % �xed to some admissible value. The parametric

score vector for the remaining parameters will then be given by (E30), with Z iclt( ) = 0 and

Z imst( ) = 0.
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Since we are systematically working with lower triangular square root decompositions, we

can write

Z cst( ) = @vech0[�
�1=2
t ( c)]=@ c � LN [	

1=2
ic 
���1=20t ( c)	

�1=20
ic ];

Z ics( ) = @vech0(	
1=2
ic )=@ ic � LN [IN 
	

�1=20
ic ]:

Given that	1=20
ic is upper triangular,	�1=2

ic �
��1=2
t ( c) is lower triangular and IN is diagonal,

Theorem 5.7.i in Magnus (1988) implies that

[	
1=20
ic 
	�1=2

ic �
��1=2
t ( c)]L

0
N = L0NLN [	

1=20
ic 
	�1=2

ic �
��1=2
t ( c)]L

0
N ;

(IN 
	�1=2
ic )L0N = L0NLN (IN 
	

�1=2
ic )L0N ;

whence

Z cst( ) =
@vech0[�

�1=2
t ( c)]

@ c
LN [	

1=2
ic 
���1=20t ( c)	

�1=20
ic ]L0NLN ;

Z ics( ) =
@vech0(	

1=2
ic )

@ ic
LN (IN 
	�1=20

ic )L0NLN :

As a result,

s ict( ;%) = �@vech
0(	

1=2
ic )

@ ic
LN (IN 
	�1=20

ic )L0Nvech

�
IN +

@ ln f ["�t ( );%]

@"�
"�0t ( )

�
s imt( ;%) = �	�1=20

ic

@ ln f ["�t ( );%]

@"�

and

s ct( ;%) =

(
@��0t ( c)

@ c
+
@vec0[�

�1=2
t ( c)]

@ c
( im 
 IN )

)
�
��1=20
t ( c)s imt( ;%)

�@vec
0[�

�1=2
t ( c)]

@ c
� LN [	1=2

ic 
���1=20t ( c)	
�1=20
ic ]L0Nvech

�
IN +

@ ln f ["�t ( );%]

@"�
"�0t ( )

�
since vech(A) = LNvec(A) for any N �N square matrix A regardless of its structure.

Let  im1(%) and  ic1(%) denote the solution to the implicit system of N + N(N + 1)=2

equations (A13), which we assume is such that 	ic1(%) is p.d. Given the expression for

"�t ( ) in (A14), we can immediately see that "
�
t ( c0; im; ic) will be i:i:d:[	

�1=2
ic ( im0 �

 im);	
�1=2
ic 	ic0	

�1=20
ic ] conditional on It�1. This, together with the full rank of 	

�1=20
ic im-

plies that

E

�
@ ln f ["�t [ c0; im1(%); ic1(%)];%]

@"�

���� It�1;'0� = 0:
In addition, we know from Theorem 5.6 in Magnus (1988) that the matrix

LN (IN 
	�1=20
ic )L0N

will be upper triangular of full rank. Similarly, given that we have de�ned  ic = vech(	ic),

12



the matrix @vech0(	1=2
ic )=@ ic would also be of full rank in view of the discussion that follows

expression (E38).

As a result, we will also have that

vech

�
E

�
IN +

@ ln f ["�t [ c0; im1(%); ic1(%)];%]

@"�
"�0t [ c0; im1(%); ic1(%)]

���� It�1;'0�� = 0:
Consequently,

Efs t[ c0; im1(%); ic1(%);%]jIt�1;'0g = 0; (E40)

which con�rms that  c0,  im1(%) and  ic1(%) will be the pseudo-true values corresponding

to a restricted PML estimator that keeps % �xed.

If we de�ne %1 as the solution to the q equations

Efs%t[ c0; im1(%); ic1(%);%]j'0g = 0;

which we assume lies in the interior of the admissible parameter space, then it is clear that  c0,

 im1 =  im1(%1),  ic1 =  ic1(%1) and %1 will be the pseudo-true values of the parameters

corresponding to an unrestricted PMLE that also estimates %. �
If we further assume that the true conditional mean of yt is 0, and this restriction is imposed

in estimation, then  im becomes unnecessary, thereby generalising the second part of Theorem

1 in Newey and Steigerwald (1997).

The next result, which extends propositions 2 and 4, contains the ingredients necessary

to compute the joint asymptotic covariance matrix of the consistent estimators  im( ̂cT ) and

 ic( ̂cT ) de�ned in (21) and (22), respectively, and �̂T :

Proposition 13 If (14) holds, and "�t jIt�1;'0 is i:i:d: (0; IN ), where ' includes  and the true
shape parameters, but the distribution assumed for estimation purposes does not necessarily nest
the true density, then:

1.

A=
�
A�� 0
A� i�

A� i
� i

�
=

0BBBBBBB@

A c c A c im A c ic A c% 0 0
A0 c im A im im A im ic A ic% 0 0

A0 c ic A0 im ic A ic ic A im% 0 0

A0 c% A0 im% A0 ic% A%% 0 0

A� im c
0 0 0 A� im

� im
0

A� ic c
0 0 0 0 A� ic

� ic

1CCCCCCCA
;

B=
 
B�� B�� i
B0
�� i

B� i� i

!
=

0BBBBBBBB@

B c c B c im B c ic B c� B c� im B c� ic
B0 c im B im im B im ic B im� B im� im B im� ic
B0 c ic B0 im ic B ic ic B ic� B ic� im B ic� ic
B0 c� B0 im� B0 ic� B�� B�� im B�� ic
B0
 c
� im

B0
 im

� im
B0
 ic

� im
B0
�� im

B� im� im B� im� ic
B0
 c
� ic

B0
 ic

� im
B0
 ic

� ic
B0
�� ic

B0� im� ic B� ic� ic

1CCCCCCCCA
;

with detailed expressions for all the elements in the proof.
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2. If in addition (16) holds, then both A and B become block diagonal between  c and
( im; ic;%; � im; � ic).

Proof. To obtain the asymptotic distribution of the unrestricted pseudo ML estimators  ̂T and

%̂T , we need the asymptotic covariance matrix of the average scores as well as the expected value

of the average Hessian matrix evaluated at the pseudo true values �01 = ( 0c0; 
0
im1; 

0
ic1;%

0
1).

Given that s%t(�1) only depends on "
�
t ( c0; im1; ix1), which is i:i:d: over time, it follows

that

E[s%t(�1)jIt�1;'0] = 0; (E41)

which in conjunction with (9) proves the martingale di¤erence nature of the spherical score

evaluated at the pseudo-true values. As a result, we only need the contemporaneous covariance

matrix of the component of the score corresponding to the tth observation, which in turn depends

on the contemporaneous covariance matrix of edt(�1) and ert(�1). Given the expression for

edt(�1) in (E31), it immediately follows that

E[elt(�1)e
0
lt(�1)j'0]=E

�
@ ln f ["�t ( 1);%1]

@"�
@ ln f ["�t ( 1);%1]

@"�0

����'0�=MO
ll (�1;'0); (E42)

E[elt(�1)e
0
st(�1)] = E

�
@ ln f ["�t ( 1);%1]

@"�

�vec0
�
IN +

@ ln f ["�t ( 1);%1]

@"�
"�0t ( 1)

�����'0� =MO
ls(�1;'0); (E43)

E[est(�1)e
0
st(�1)] = E

�
vec

�
IN +

@ ln f ["�t ( 1);%1]

@"�
"�0t ( 1)

�
�vec0

�
IN +

@ ln f ["�t ( 1);%1]

@"�
"�0t ( )

�����'0� =MO
ss(�1;'0): (E44)

Similarly,

E[elt(�1)e
0
rt(�1)j'0]=E

�
�@ ln f ["

�
t ( 1);%1]

@"�
@ ln f ["�t ( 1) ;%1]

@%0

����'0�=MO
lr(�1;'0)

(E45)

E[est(�1)e
0
rt(�1)] = E

�
�vec

�
IN +

@ ln f ["�t ( 1);%1]

@"�
� @ ln f ["

�
t ( 1) ;%1]

@%0

�
�["�0t ( 1)
 IN ])

��'0	 =MO
sr(�1;'0) (E46)

and

E[ert(�1)e
0
rt(�1)] = E

�
@ ln f ["�t ( 1) ;%1]

@%

@ ln f ["�t ( 1) ;%1]

@%0
j'0
�
=MO

rr(�1;'0):

(E47)

Hence, we will have that B�� = E[B��t(�1;'0)], where

B��t(�1;'0) = V [st(�1)jIt�1;'0] = Zt( 1)MO(�1;'0)Zt( 1); (E48)

andMO(�;') = V [et(�)j'].
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Tedious algebra shows that A�� = E[At(�1;'0)], where

At(�1;'0) = �E[ht(�1)jIt�1;'0] = Zt( 1)MH(�1;'0)Zt( 1); (E49)

andMH(�1;'0) contains the following elements

MH
ll (�1;'0) = E

�
@2 ln f ["�t ( 1);%1]=@"

�@"�0
��'0	 ; (E50)

MH
ls (�;') = E

�
@2 ln f ["�t ( );%]=@"

�@"�0 � ["�0t ( )
 IN ])
��'	 ; (E51)

MH
ss(�;') = E

�
["�t ( )
 IN ] � @2 ln f ["�t ( );%]=@"�@"�0 � ["�0t ( )
 IN ]j'

	
�KNN (E52)

MH
lr (�;') = �E

�
@2 ln f ["�t ( );%]=@"

�@%0j'
�
; (E53)

MH
sr(�;') = �E

�
["�t ( )
 IN ]@2 ln f ["�t ( );%]=@"�@%0j'

	
; (E54)

and

MH
rr(�;') = �E

�
@2 ln f ["�t ( );%]=@%@%

0j'
	
: (E55)

Let us now turn to our consistent estimators of  ic and  im. The fact that the Gaussian

pseudo score for these parameters are in�uence functions that only depend on  c and � i trivially

implies that
@s it( c;

� i;0)

@ 0i
= 0 and

@s it( c;
� i;0)

@%0
= 0:

For analogous reasons,

@s ct( c; i;%)

@� 
0
i

= 0;
@s it( c; i;%)

@� 
0
i

= 0;
@s%t( c; i;%)

@� 
0
i

= 0;

We will also have that
@s0 it( c;

� i;0)

@ c
= h0 c it( ;0)

and
@s0 it( c;

� i;0)

@� i
= h0 i it( ;0):

But since we are evaluating these expressions at consistent estimators of  , we will have that

"�t ( 0) = "
�
t , whence we can obtain the remaining elements of A. In particular, given that (A14)

implies that for a �xed value of  c we could understand the Gaussian log-likelihood function

of yt as a Gaussian log-likelihood for the pseudo-standardised residuals "�t ( c) with mean  im
and covariance matrix 	ic, it immediately follows that A� im

� ic
= 0.

Next, we need to �nd out the asymptotic covariance matrix of the sample averages of

s ict( 0;0) and s imt( 0;0), as well as their asymptotic covariances with the sample aver-

ages of s t(�1) and s%t(�1), which coincide with contemporaneous variance and covariances of

these in�uence functions because they are martingale di¤erence sequences. In turn, they depend

on the covariance matrix of edt( 0;0), which is given by (D17), as well as on the covariances of
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this vector with edt(�1) and ert(�1). Speci�cally, the required additional elements are

E[elt(�1)e
0
lt( 0;0)] = E

�
@ ln f ["�t ( 1);%1]

@"�
"�0t ( 0)

����'0� =MO
l�l (�1;'0); (E56)

E[est(�1)e
0
lt( 0;0)] = E

�
vec

�
IN +

@ ln f ["�t ( 1);%1]

@"�
"�0t ( 1)

�
"�0t ( 0)

����'0�
=MO

s�l(�1;'0); (E57)

E[ert(�1)e
0
lt( 0;0)] = E

�
@ ln f ["�t ( 1) ;%1]

@%0
"�0t ( 0)j'0

�
=MO

r�l(�1;'0); (E58)

and

E[elt(�1)e
0
st( 0;0)] = E

�
@ ln f ["�t ( 1);%1]

@"�
vec0

�
"�t ( 0)"

�0
t ( 0)� IN

�����'0� =MO
l�s(�1;'0);

(E59)

E[est(�1)e
0
st( 0;0)] = E

�
vec

�
IN +

@ ln f ["�t ( 1);%1]

@"�
"�0t ( 1)

�
�vec0

�
"�t ( 0)"

�0
t ( 0)� IN

���'	 =MO
s�s(�;'); (E60)

E[ert(�1)e
0
ct( 0;0)] = E

�
@ ln f ["�t ( 1) ;%1]

@%0
vec0

�
"�t ( 0)"

�0
t ( 0)� IN

�����'� =MO
r�s(�;'):

(E61)

Finally, we can tediously show that the conditions for block-diagonality of the expected

value of the Hessian and the covariance matrix of the score are that E[Z clt( 1)j'0] and
E[Z cst( 1)j'0] are both 0. But given that

Z clt( c0; im; ic) =
h
@��0t ( c0)=@ c ��

��1=20
t ( c0)

i
	
�1=20
ic

+
n
@vec0[�

�1=2
t ( c0)]=@ c � [IN 
�

��1=20
t ( c0)]

o
( im 
	

�1=20
ic );

Z cst( c0; im; ic) =
n
@vec0[�

�1=2
t ( c0)]=@ c � [IN 
�

��1=20
t ( c0)]

o
(	

1=2
ic 
	�1=20

ic );

those conditions will be satis�ed if (16) holds in view of the full rank of 	ic. �

E.3 Semiparametric estimators

In Supplemental Appendix D.5 we interpreted the last summand of (D19) as Zd(�0) times

the theoretical least squares projection of edt(�0) on (the linear span of) ert(�0), which is con-

ditionally orthogonal to edt(�0;0) from Proposition 3 in Fiorentini and Sentana (2007). Such

an interpretation allowed Gonzalez-Rivera and Drost (1999) to replace a parametric assumption

on the shape of the distribution of the standardised innovations "�t by a fully non-parametric

alternative. Speci�cally, in a univariate context they replaced the linear span of ert(�0) by the

so-called unrestricted tangent set, which is the Hilbert space generated by all the time-invariant

functions of "�t with bounded second moments that have zero conditional means and are condi-

tionally orthogonal to edt(�0;0). The next proposition, which originally appeared as Proposition

6 in Fiorentini and Sentana (2007), describes the resulting semiparametric e¢ cient score and
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the corresponding e¢ ciency bound for multivariate conditionally heteroskedastic models whose

conditionally mean is not identically zero:

Proposition 14 If "�t jIt�1;�;� is i:i:d: D(0; IN ;�) with density function f("�t ;�), where �
denotes the possibly in�nite dimensional vector of shape parameters and � = 0 normality, and
both its Fisher information matrix for location and scale,

Mdd (�;�) = V [edt(�;%)jIt�1;�;�]

= V

��
elt(�;�)
est(�;�)

������;�� = V

��
�@ ln f ["�t (�);�]=@"�

�vec fIN + @ ln f ["�t (�);�]=@"� � "�0t (�)g

������;��
and the matrix of third and fourth order central moments K (�) in (D17) are bounded, then the
semiparametric e¢ cient score will be given by:

�s�t(�) = s�t(�)� Zd(�;�)
�
edt(�;�)�K (0)K+(�)edt(�;0)

�
; (E62)

while the semiparametric e¢ ciency bound is

�S(�) = I��(�;�)� Zd(�;�)
�
Mdd(�;�)�K (0)K+(�)K (0)

�
Z0d(�;�); (E63)

where + denotes Moore-Penrose inverses and I��(�;�) = E [Zdt(�)Mdd(�;�)Z
0
dt(�)j�;�].

In the case of the univariate Garch-m model (2), we estimate the model parameters using

parametrisation (17), with the expressions for the score that appear in the proof of Proposition

6. On the other hand, we use again the natural parametrisation of the multivariate market

model in (3). As a result, the Jacobian matrix (D25) remains relevant, so that

sat(�) = �
�1=2@ ln f ["�t (�);�]=@"�;

sbt(�) = �
�1=2rmt@ ln f ["�t (�);�]=@"�;

where 
1=2 is a matrix square root of 
.

If we choose the Cholesky decomposition, we can use expression (E39) in Supplemental

Appendix E.1 to obtain

s!t(�) = �
1

2
D0
NFLN (IN 

�

1
2 )vec

�
IN + @ ln f ["

�
t (�);�]=@"

� � "�0t (�)
	
;

where F denotes the transpose of the inverse of LN (
1=2 
 IN )L0N + LN (IN 

1=2)KNNL
0
N .

Finally, it is worth noting that it is possible to avoid the use of explicit Moore-Penrose

generalised inverses in the computation of the correction by exploiting the fact that

K(�)=
�
IN 0
0 DN

��
IN E["�t vech

0("�t"
�0
t )j']

E[vech("�t"
�0
t )"

0�
t j'] E[vech("�t"

�0
t )vech

0("�t"
�0
t )� IN j']

��
IN 0
0 D0

N

�
and

K(0) =
�
IN 0
0 IN2 +KNN

�
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imply that

K (0)K+(�)edt(�;0) =
�
I 0
0 2D+0

�
�
�

IN E["�t vech
0("�t"

�0
t )j']

E[vech("�t"
�0
t )"

0�
t j'] E[vech("�t"

�0
t )vech

0("�t"
�0
t )� IN j']

��1 �
"�t

vech("�t"
�0
t � I)

�
:

Nevertheless, f("�t ;�) has to be replaced by a nonparametric estimator, which increasingly

su¤ers from the curse of dimensionality as the cross-sectional dimension N increases. In line with

the usual practice, we employ a standard multivariate Gaussian kernel. Once again, we have

done some experimentation to choose optimal bandwidths by scaling up and down the automatic

choices given in Silverman (1986) because a proper cross-validation procedure is extremely costly

to implement in a Monte Carlo exercise when N = 5.
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