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Abstract

We study the processes for the conditional mean and variance given a
speci…cation of the process for the observed time series. We derive general
results for the conditional mean of univariate and vector linear processes,
and then apply it to various models of interest. We also consider the joint
process for a subvector and its expected value conditional on the whole in-
formation set. In this respect, we derive necessary and su¢cient conditions
for one of the variables in a bivariate VAR(1) to have a white noise uni-
variate representation while its conditional mean follows an AR(1) with a
high autocorrelation coe¢cient.We also compare the persistence of shocks
to the conditional mean relative to the observed variable using measures of
total and iterim persistence of shocks for stationary processes based on the
impulse response function. We apply our results to post-war US monthly
real stock market returns and dividend yields. Our …ndings seem to con-
…rm that stock returns are very close to white noise, while expected returns
are well represented by an Ar(1) process with a …rst-order autocorrelation
of .9755. We also …nd that small unexpected variations in expected re-
turns have a large negative immediate impact on observed returns, which is
thereafter compensated by a slowly diminishing positive e¤ect on expected
returns.
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1 Introduction

The …rst and second conditional moments of economic and …nancial time series

(given past behaviour) are often identi…ed with important economic concepts.

For instance, consider the stochastic process for stock market excess returns, rt,

whose …rst two conditional moments given the information set It¡1 we denote by

¹t = E(rt j It¡1) and ¾2t = V (rt j It¡1). In this context, ¹t is usually associated

with the risk premium of the stock market as a whole, ¾2t with its volatility, and

¹t=¾
2
t with the market price of risk.

In this paper we study the time series properties of the processes for the unob-

served conditional mean and variance, ¹t; ¾
2
t , given a speci…cation of the process

for the observed time series, rt. Apart from providing useful insights into the

statistical features of time series models, the properties of a process and its con-

ditional mean often have relevant economic implications. For example, the fact

that stock market returns have negligible autocorrelations was traditionally re-

garded as evidence in favour of the present value model with constant expected

returns. More recently, though, Shiller (1984), Summers (1986), Poterba and

Summers (1988) and Fama and French (1988) showed that near white noise be-

haviour for observed returns is compatible with a smoothly time-varying expected

return whose …rst-order autocorrelation is high (see also Campbell (1991)). Ob-

viously, from the point of view of explaining movements in asset prices, there is a

substantial di¤erence between constant and time-varying expected returns.

A univariate framework, though, is too restrictive for the analysis of such

issues, as there is only one shock that drives the processes for the observed vari-

able and its conditional mean. In other words, the joint process for rt and its

conditional mean is reduced-rank, with a singular covariance matrix for the inno-

vations. This has been long realized, and two main alternative approaches have

been proposed. The …rst one speci…es directly a stochastic process for the con-

ditional moment with “its own” innovation. In this way, the stochastic volatility

literature often assumes that the (log) conditional variance follows a univariate

Ar(p) process. Similarly, Campbell (1990) assumes that the expected stock re-

turn follows a univariate Ar(p) process, and then derives the implied process

for observed returns. Here, we follow the opposite route, which is more in line

with the tradition in Rational Expectations econometrics. That is, we start from

1



an observed multivariate process for the variable of interest and other variables

that Granger-cause it, and then derive the implicit process for its expected value

conditional on past information.

In particular, we obtain a general result for the conditional mean of multivari-

ate linear processes satisfying standard regularity conditions.1 Then, we apply

this result to various models of interest used in the analysis of economic and …-

nancial time series, such as univariate (seasonal) Arima and Arfima models. We

also apply our result to conditional second moments by using the fact that con-

ditional heteroskedasticity models often have a straightforward interpretation as

linear processes for the squared innovations. We present examples for multivariate

Garch, and univariate Garch-M models.

We also look at the persistence of shocks in the conditional mean process

as compared to the persistence of shocks in the process for the observed vari-

able. However, most persistence measures put forward in the literature imply

that shocks to stationary variables have zero persistence, despite the fact that the

response of a variable to a shock varies substantially across di¤erent covariance

stationary processes. For that reason, we use a measure of persistence of shocks

for stationary processes based on the impulse response function, which captures

the importance of the deviations of a series from its unperturbed path following

a single shock.

As an empirical illustration we look at post-war US monthly real stock market

returns. Since several studies have found some predictability in returns using

lagged dividend yields, we estimate a bivariate model for these two variables.

Then, we obtain the implied joint process for actual and expected returns, as well

as their univariate representations.

The rest of the paper is organized as follows. In Section 2 we present our basic

result. A measure of persistence for stationary processes is introduced in Section 3.

In Section 4 we derive conditions under which white-noise behaviour for a variable

is compatible with a serially correlated stochastic process for its conditional mean.

The results of the empirical application are discussed in Section 5. Finally, our

conclusions are presented in Section 6.

1In this paper the terms conditional mean and linear projection are treated as equivalent
unless otherwise speci…ed.
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2 The Conditional Mean of a Vector Process

A linear stochastic process of orders k and h for the n £ 1 vector xt can be

written as

[I ¡A(L)]xt = [I ¡B(L)]²t
where ²t is a n£1 white noise process of one-period ahead prediction errors, with 0

mean and covariance matrix §, I is the identity matrix of order n, A(L) is a n£n
matrix whose typical element is a polynomial of order k in the lag (or backshift)

operator L, and B(L) is analogously de…ned, with the roots of jI ¡ A(L)j = 0

and jI ¡B(L)j = 0 on or outside the unite circle. This includes (co-)integrated

and invertible processes (whether strictly or not) but rules out explosive as well

as non-invertible processes. De…ne ¹t = Et¡1(xt) as the n £ 1 conditional mean

vector, so that xt = ¹t + ²t. Then

Proposition 1 A vector linear process of order k and h for xt, [I ¡ A(L)]xt =
[I ¡ B(L)]²t, implies that ¹t follows another vector linear process given by [I ¡
A(L)]¹t = [A(L) ¡ B(L)]²t, where the elements of A(L) ¡ B(L) are in general
polynomials of degree m¡ 1 in L; with m = max(k; h).

Notice that k and m ¡ 1 should be interpreted as maximum orders because

cancellation often occurs thorough common roots. Nevertheless, the common fac-

tors will never change the order of (co-)integration. Note also that the innovation

in the process for ¹t+1 is proportional to the innovation in xt. In the rest of this

section we shall apply the above result to several models of practical interest.

2.1 Univariate ARIMA-type Processes

An Autoregressive Integrated Moving Average Arima(p,d,q) process can be

represented as

[1¡©(L)]xt = [1¡ µ(L)]²t
where 1 ¡ ©(L) = [1 ¡ Á(L)](1 ¡ L)d and the roots of Á(L) = 1 lie outside the

unit circle. From Proposition 1, it is easy to see that the conditional mean of an

Arima model follows a process that also has the autocorrelation function (ACF)

of an Arima process. Speci…cally,
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Corollary 1 An Arima(p,d,q) process for xt implies that (1¡L)d¹t displays the
ACF of an Arma(p,m-1) process, with m = max(p + d; q), the ith ar coe¢cient
given by Ái, and the ith ma coe¢cient given by (©i ¡ µi)=(©1 ¡ µ1) if ©1 6= µ1.

As a simple example, take the Arma(1,1) model xt = Áxt¡1 + ²t ¡ µ²t¡1.
In this case, the process for the conditional mean is ¹t+1 = Á¹t+(Á¡ µ)²t; i.e. an

Ar(1). If we let Á ¡ µ go to zero, (having chosen the initial conditions from the

stationary distribution), we can make the Arma(1,1) process as close as desired

to white noise. Correspondingly, the variance of the mean goes to zero with Á¡µ,
so that it actually converges to a constant in the limit.

Proposition 1 is also readily applicable to Multiplicative seasonal Arima mod-

els. In this case, the process for the conditional mean has an expression which, in

general, will not display a multiplicative moving average part, unless the model is

purely seasonal. As an example, consider the quarterly airline model

(1¡ L)(1¡ L4)xt = (1¡ µ1L)(1¡ µ4L4)²t

This yields as conditional mean

(1¡ L)(1¡ L4)¹t+1 = (1¡ µ1)²t + (1¡ µ4)²t¡3 + (µ1µ4 ¡ 1)²t¡4

Another class of linear processes which has been increasing popular recently are

Autoregressive Fractionally Integrated Moving Average (Arfima) models. They

were introduced to represent stochastic process which do not display the typical

exponential decay in the correlogram associated with ARMA models. Following

Granger and Joyeux (1980) and Hosking (1981), the simple Arfima(0,°,0) takes

the form

(1¡ L)°xt = ²t
where ° is a real number. On the basis of Proposition 1, it is straightforward to

show that the conditional mean also follows a fractionally integrated process of

order °, but with an in…nite order moving average part. Speci…cally,

(1¡ L)°¹t+1 = [° +
1

2
°(1¡ °)L+ 1

6
°(1¡ °)(2¡ °)L2 + : : :]²t

Note that the observed process and its conditional mean are fractionally cointe-

grated, so that no reduction in the order occurs.
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2.2 Vector GARCH Processes

A vector of innovations, ²t, in a multivariate stochastic process is said to follow

a multivariate (semi-strong) Garch(p,q) process if Et¡1(²t) = 0 and Et¡1(²t²0t) =

§t, with

[I ¡ ¯(L)]vech§t = ®0 + ®(L)vech(²t²0t)

It is well known that a multivariate Garch(p,q) process with bounded fourth

moments can be represented as the following Varma(m,p) on vech(²t²0t) (with

m = max[p; q]),

[I ¡ ®(L)¡ ¯(L)]vech(²t²0t) = ®0 + [I ¡ ¯(L)]vt

where vt = vech(²t²0t ¡§t). In this case, Proposition 1 simpli…es to2

Corollary 2 A multivariate Garch(p,q) process for ²t implies that vech(§t) dis-
plays the ACF of an Varma(m,q-1) process, with m = max(p; q), the ith ar ma-
trix of coe¢cients given by ®i + ¯i, and the ith ma matrix of coe¢cients given by
®¡11 ®i provided j ®1 j6= 0.

In most empirical applications, the simple Garch(1,1) speci…cation is adopted,

so that Corollary 2 gives

vech(§t+1) = ®0 + (®1 + ¯1)vech(§t) + ®1vt

that is, a var(1) for the conditional variance, with companion matrix equal to

®1 + ¯1 and variance of innovations ®1V (vt)®01.

2.3 Univariate GARCH-M Processes

A variable xt is said to follow a Garch in mean (Garch-M) process of orders

p and q, if

xt = ±¾
2
t + ²t

where ¾2t is the conditional variance of ²t; which in turn, follows a Garch(p,q)

process. The Garch-M model is an example in which the di¤erence between con-

ditional means and linear projections is important. Notice that the conditional

2An analogous result can be found in Fiorentini and Maravall (1996) for the univariate case.
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mean of xt is proportional to its conditional variance. Hence, according to Corol-

lary 2, ¹t follows an Arma(m,q-1) process since the constant ± only a¤ects the

variance of the innovation in the Arma process for the conditional mean, but not

its autocorrelation structure. Also, provided that E(²3t ) = 0, xt is the sum of two

components uncorrelated at all leads and lags: a white-noise component (²t) and

a constant times the conditional variance. Therefore, since m¸q, we have that:3

Lemma 1 A Garch-M(p,q) process for xt with E(²3t ) = 0 implies that xt dis-
plays the ACF of an Arma(m,m) process, with m=max(p,q), and the ith AR
coe¢cient given by ®i + ¯i.

We can derive, in fact, further results about the autocorrelation structure of

xt. The following lemma will prove useful:

Lemma 2 A Garch(p,q) process for ²t implies that the ACF of ¾2t can only take
non-negative values.

Then, Lemmas 1 and 2 imply that:

Lemma 3 If xt follows a Garch-M(p,q) process, its ACF can only take non-
negative values. In particular, for k 6= 0; Cov(xt; xt¡k) = ±2Cov(¾2t ; ¾2t¡k)

This last result may explain the poor empirical performance of Garch-M

models. It tells us that regardless of the parameter values, and in particular

regardless of the sign of ±, the autocorrelations of xt implied by the model are all

positive.

3 Persistence of Shocks in Covariance Station-
ary Time Series

The persistence of economic shocks is usually measured by looking at the long-

run e¤ect of an innovation on the level of a series (e.g. Campbell and Mankiw,

1987). As a consequence, shocks to stationary processes are usually assigned zero

persistence. At the same time, however, stationary processes are often referred

to as showing “high” or “low” persistence to shocks. For instance, a stationary

3Hong (1989) investigates the Acf of xt in the Garch-M(1,1) case.
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Ar(1) process is labelled highly persistent when the value of the autoregressive

parameter is close to 1, since such a process will take a long time to revert to its

mean following a shock. But, how persistent is an Arma(1,1) whose autoregressive

and moving average coe¢cients are both close to 1? In what follows, we introduce

a measure of “persistence” of shocks that can be applied to covariance stationary

processes.

For clarity of exposition, we shall begin with a univariate time series. Let

xt = ª(L)²t denote the Wold representation of the unperturbed process. Let’s

now de…ne the perturbed process x?t = ª(L)²?t , where ²?s = ²s (8s 6= t), and

²?t = ²t+1£¾². We want a measure of how much x?t deviates from xt. Obviously,

since the process is stationary, the net e¤ect on x?t+k of a shock to ²t is zero in the

limit. However, the route taken by x?t+k to go back to its original path xt+k may

di¤er substantially across di¤erent models. For instance, if xt follows an Ar(1)

process (xt = Áxt¡1+ ²t) with Á = :95, x?t+k will stay signi…cantly “far away” from

xt+k for a long period of time. In other words, the deviation from the original path

in response to a shock will be substantial. On the contrary, when Á = :1 the shock

will e¤ectively exhaust its impact very brie‡y and the deviation of x?t+k from xt+k

will be inappreciable. In the case of an Arma(1,1) process (xt = Áxt¡1+²t¡µ²t¡1)
with Á = :95 and µ = :9, the shock provokes little variation on x?t+k but the series

will take a long time to go back to its original level.

Although persistence refers to time, since x?t+k ¡ xt+k = Ãk¾², any “reason-

able” measure of the persistence of shocks must be based on the impulse response

function (Irf). The mean or median lags are potential candidates. However,

they are only valid for non-negative impulse response functions, when the Irf

can be interpreted as a probability distribution for time. For instance, the mean

and median lag give sensible answers for the model xt = :45xt¡1 + ²t, but not for

xt = ¡:45xt¡1+ ²t or xt = :45xt¡1+ ²t¡ :9²t¡1 or xt = ¡:45xt¡1+ ²t+ :9²t¡1, even

though their impulse response functions are all identical in magnitude. For that

reason, we propose the use of

P1(xt j ²t) =
1X

j=0

Ã2j

as a measure of the persistence of shocks. In principle,
P1

j=0 j Ãj j could play a

similar role except that not all covariance stationary processes have Wold represen-
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tations with absolute-summable coe¢cients. Besides, the algebra of our measure

is simpler, and its interpretation straightforward since

P1(xt j ²t) =
V (xt)

V (²t)

i.e. the ratio of the variance of the process to the variance of the shocks.

Diebold and Rudebusch (1989) have forcefully argued that sometimes it is

more interesting to look at the e¤ect of a shock on a variable k periods after

its occurrence. For this purpose, we suggest to use as a measure of the interim

persistence of shocks

Pk(xt j ²t) =
kX

j=0

Ã2j =
V (xt+k ¡ x̂t+kjt¡1)

V (²t)

i.e. the ratio of the variance of the (k + 1)-period-ahead forecast error to the

variance of the shock. Obviously, for covariance stationary processes, x̂t+kjt¡1
converges to E(xt+k), and Pk(xt j ²t) to P1(xt j ²t). But unlike P1(xt j ²t),
the k-period measure Pk(xt j ²t) can be used and interpreted for non-stationary

processes as well.

Let’s consider some examples to appreciate how such measures work in prac-

tice. In Arma(1,1) models, xt = Áxt¡1 + ²t ¡ µ²t¡1, we obtain

Pk(xt j ²t) = 1 + (Á¡ µ)2 1¡ Á2k
(1¡ Á2) P1(xt j ²t) = 1 + (Á¡ µ)2 1

(1¡ Á2)

In particular, for AR(1) models, P1(xt j ²t) is a monotonic transformation

of the absolute value of Á. In this respect, therefore, it is similar to the mean

lag, Á=(1¡ Á); which, however, is only well de…ned when Á ¸ 0. Notice that our

measure of persistence for white noise (i.e. Á = µ) is 1, and this represents its

lower bound. There is no upper bound, of course, since it will be in…nite for a

non-stationary Ima(1,1) process. However, if the moving average parameter is

close to one, say µ = :98, the persistence of a shock after 400 periods (a century

of quarterly data!) is only P400(xt j ²t) = 1:16, well below the persistence of a

stationary Ar(1) with autoregressive parameter equal to .5.

We are now in a position to compare the persistence of shocks in the conditional

mean ¹t+1 vis a vis the persistence of shocks in the observed variable, xt. Since
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¹t+1 can be expressed as ¹t+1 = Ã1²t+Ã2²t¡1+ : : :, it follows that P1(¹t+1 j ²t) =
P1(xt j ²t) ¡ 1. That is, the persistence of the only shock that drives the joint

process on the observed variable is 1 plus the persistence of the same shock on

the conditional mean. Therefore, the lower bound on the persistence of shocks to

the mean process is zero, corresponding to a model with constant mean.

The Arma(1,1) model provides some intuition for the above result. As we

saw in section 2.1, if Á¡ µ is very small, it is possible to …nd examples in which

the process for the observed series is very close to white noise, while the process

for the conditional mean is an Ar(1) with a very high autoregressive parameter.

However, the e¤ect of a shock on the conditional mean is also very small, and

the deviation of the conditional mean from its original path is negligible. In the

limit, the observed series is white noise only if the conditional mean is constant.

This fact is behind the traditional misconception that white noise behaviour for

stock returns requires constant expected returns. As we shall see, this is no longer

necessarily so in a multivariate framework.

As our last example, consider a Garch(1,1) process, which corresponds to an

arma(1,1) process for ²2t . Given what we have just seen, the persistence of the

conditional variance is

P1(¾
2
t+1 j vt) = P1(²2t j vt)¡ 1 =

®21
1¡ (®1 + ¯1)2

Thus, in a Garch(1,1) process, the persistence of shocks to the conditional

variance depends not only on the value of ®1+¯1, but also on the value of ®1 (see

also Engle and Mustafa, 1992). In particular, as it happens with the conditional

mean in arma(1,1) models, the conditional variance process will display little

persistence to shocks when ®1 is small.

The same notion of persistence of shocks can be extended to multivariate

models. That is, the persistence of a given shock on a variable can be measured

by the variation of the series with respect to the original unperturbed process

provoked by that shock.

Let xt = ª(L)²t denote the Wold representation of the vector process xt,

and de…ne a matrix §? such that §?§?
0
= §. Then, the in…nite moving average

representation of xt in terms of the standardized orthogonal innovations ²?t =

§?¡1²t is xt = ª?(L)²?t , where ª?i = ªi§
? and the covariance matrix of ²?t is the

identity matrix.
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We can then de…ne the persistence of a shock to ²?i;t on the jth variable as

P1(xj;t j ²?i;t) =
1X

k=0

Ã?2ji;k

However, it is well known that the decomposition of the covariance matrix of

the one-period ahead prediction errors in the Wold representation is not unique

and, thus, that the orthogonal shocks are not identi…ed. More speci…cally, let ­

be an orthonormal basis of Rn. Then, any orthonormal transformation of §? will

provide another in…nite MA representation with orthogonal shocks. In particular,

xt = ª
??(L)²??t where ª??i = ªi§

?­.4 The persistence of the “new” ith shock on

xj;t will be

P1(xj;t j ²??i;t) =
1X

k=0

Ã??2ji;k

which in general is di¤erent from P1(xj;t j ²?i;t). Therefore, any attempt to de…ne

a single measure of persistence for a given variable irrespectively of the shock is

largely futile. For that reason, our measure of persistence is conditional on a given

speci…cation of the shocks.

4 Time Series Processes for a Variable and its
Conditional Mean in a Multivariate Model

In this section, we shall obtain the joint process for an element of xt and its

conditional mean in a multivariate setting. Importantly, the mean is conditional

on the full information set It; which means that the innovations to the joint

process are not linearly dependent in general, since they are a full rank linear

transformation of the innovations in all the observed variables.

As a simple example, let’s consider a bivariate VAR(1) model for some variable,

rt say, and some predictor variable, ±t say, which helps explain ¹r;t+1.
5 In this case,

4In fact, there are many more MA representations of a covariance stationary process in terms
of “non-fundamental” orthogonal shocks

5Notice that the temporal phase-shift between the two variables is only apparent as both rt

and ¹r;t+1 belong to the information set It.
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the joint process is simply

0
BBB@

rt

¹r;t+1
±t

¹±;t+1

1
CCCA =

0
BBB@

0 1 0 0

0 a11 0 a12

0 0 0 1

0 a21 0 a22

1
CCCA

0
BBB@

rt¡1
¹r;t
±t¡1
¹±;t

1
CCCA+

0
BBB@

1 0

a11 a12

0 1

a21 a22

1
CCCA

Ã
ut

vt

!

which, for this particular model, coincides with the (re-arranged) Akaike (1974)

state space representation.

Marginalizing with respect to rt and its conditional mean yields
Ã
rt

¹r;t+1

!
=

Ã
0 1

0 tr(A)

! Ã
rt¡1
¹r;t

!
+

Ã
0 0

0 ¡ jAj

!Ã
rt¡2
¹r;t¡1

!
+

Ã
ut

wt

!
+

Ã
0 0

¡ jAj 0

! Ã
ut¡1
wt¡1

!

where tr(A) and jAj denote the trace and the determinant of the matrix A, and

wt = a11ut + a12vt. Thus, we obtain a (reduced rank) Varma(2,1) model with a

full rank covariance matrix for the innovations ut and wt, whose correlation is

½uw =
a11¾

2
u + a12¾uv

¾u
p
a211¾

2
u + a

2
12¾

2
v + 2a11a12¾uv

Therefore, its Wold decomposition will be given by
Ã
ut

wt

!
+

Ã
0 1

¡ jAj tr(A)

!Ã
ut¡1
wt¡1

!
+

1X

j=2

Ã
¡ jAj gj¡2 gj¡1
¡ jAj gj¡1 gj

! Ã
ut¡j
wt¡j

!

where gj = tr(A)gj¡1 ¡ jAj gj¡2 with g0 = 1; g1 = tr(A).

Note that as expected, the e¤ect of ut¡j and wt¡j on rt for j > 0 is exactly

the same as their e¤ect on ¹r;t. As a consequence, whatever the orthogonalization

of the shocks, the persistence of a given shock on the observed process is at least

as large as its persistence on the conditional mean. Unlike in the univariate case,

though, it is possible for both e¤ects to be equal in size if a shock does not have

any contemporaneous impact on rt.

In this general case the marginal processes for rt and its conditional mean are

(1¡ tr(A)L+ jAjL2)¹r;t+1 = a11ut ¡ jAjut¡1 + a12vt = (1¡ ¼L)´t
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and

(1¡ tr(A)L+ jAjL2)rt = ut ¡ a22ut¡1 + a12vt¡1 = (1¡ µL)»t
where the values of ¼, µ, ¾´ and ¾» can be easily obtained by solving a simple

quadratic equation.

Our next exercise is to investigate in a multivariate setup the response to

shocks of rt and its conditional mean. To keep the algebra as simple as possible,

we only consider in detail those special cases that lead to an Ar(1) process for

¹r;t+1.

4.1 Case A: a12 = 0

When a12 = 0 the joint process for rt and its conditional mean is a reduced-

rank Var(1) with a singular covariance matrix for the innovations. Therefore, the

marginal processes are

(1¡ a11L)¹r;t+1 = a11ut
and

(1¡ a11L)rt = ut
The reason is obvious. When a12 = 0, ±t does not Granger-cause rt, so that

we are in e¤ect back to the univariate case. It is then impossible to achieve a

white noise representation for a series with time-varying conditional mean in the

context of linear models (see Granger, 1983).

4.2 Case B: rt white-noise

Given that the marginal process for rt is Arma(2,1), rt cannot be exactly

white-noise unless one of the roots of (1¡ tr(A)L+ jAjL2) = 0 is zero. But this

requires jAj = 0, so that the Var(1) for the observed variables rt and ±t has to

be of reduced rank.6

In this case we can distinguish several di¤erent possibilities, namely

B1) a11 = 0 and a12 = 0

B2) a11 = 0 and a21 = 0

B3) a22 = 0 and a12 = 0

B4) a22 = 0 and a21 = 0

6Note that if rt is white noise, so is any temporal aggregate such as rt + rt¡1.
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B5) a11a22 = a12a21
First notice that B1 is nested into case A. In particular, in case B1 rt is white

noise and the conditional mean is constant. Similarly, case B3 is in e¤ect the same

as case A. In case B4, the variable ±t in the original Var(1) is white noise. This

makes this case empirically uninteresting. Case B2 was …rst analyzed by Camp-

bell (1991). Note that here the conditional mean is exactly proportional to the

observed process ±t, so that wt = a12vt. This simpli…es the analysis considerably.

Case B5 nests all the previous ones. Apart from jAj = 0, we require jtr(A)j < 1
for the stability of the VAR. The joint process is now

Ã
rt

¹r;t+1

!
=

Ã
0 1

0 a11 + a22

! Ã
rt¡1
¹r;t

!
+

Ã
1 0

a11 a12

! Ã
ut

vt

!

and the marginal processes

(1¡ [a11 + a22]L)¹r;t+1 = a11ut + a12vt = ´t

and

(1¡ [a11 + a22]L)rt = (1¡ a22L)ut + a12Lvt = (1¡ µL)»t
The quadratic equation for µ becomes

¡µ
1 + µ2

=
¡a22¾2u + a12¾uv

(1 + a222)¾
2
u + a

2
12¾

2
v ¡ 2a22a12¾uv

which if we set the scale parameter a12 to 1 without loss of generality, and impose

a11 + a22 = µ to achieve white noise behaviour for rt yields

¡(a11 + a22)
1 + (a11 + a22)2

=
¡a22°uv + ½uv

(1 + a222)°uv + 1=°uv ¡ 2a22½uv
where °uv = ¾u=¾v and ½uv = ¾uv=(¾u¾v). It is more interesting, though, to look

at the implications of µ = a11+a22 for the relationship between the R2 of the …rst

equation, i.e. the proportion of variance of rt explained by its conditional mean

(var(¹r;t)=var(rt)), and the correlation between the innovations. The relationship

between R2 and °uv is given by

R2 =
1 + °2uva

2
11

1 + °2uv(1¡ a222 ¡ 2a11a22)
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For particular values of a11 and a22 we can get the mapping between R2 and

½uv consistent with white noise behaviour for rt. Figure 1 shows such a mapping

for several parameter con…gurations. For instance, in the …rst plot a11 = 0 while

a22 ranges from .98 to -.98. As shown by Campbell (1991), in this case exact

white noise behaviour for rt can be obtained with a22 positive as long as shocks

to rt and shocks to its “expected value” ±t are negatively correlated. Notice that

the closer a22 is to 1, the larger the correlation must be in absolute value. As the

other plots show, though, in general we can get univariate white noise behaviour

for rt and Ar(1) behaviour for ¹r;t with zero or even positive correlation between

the innovations to rt and ±t.

To gain some intuition on this result, it is convenient to look at the impulse

response functions of the variables with respect to the di¤erent shocks. Let’s

consider two kinds of shocks: those that a¤ect rt directly through ut, and those

that a¤ect ¹r;t+1 directly through wt. To study the response to a shock in ut we

use the Cholesky decomposition of V (ut; wt), i.e.

§? = ¾w

Ã
°uw 0

½uw
p
1¡ ½2uw

!
= ¾w

Ã
k=½uw 0

½uw
p
1¡ ½2uw

!

where °uw = ¾u=¾w and k = ¡tr(A)=(1¡ tr2(A)).
The corresponding impulse response functions are

Irf0(rt) = 1; Irfj(rt) = (½uw=°uw)tr
j¡1(A), for j > 0.

Irfj(¹r;t+1) = (½uw=°uw)tr
j(A), j = 0; : : : ;1.

Note that since rt is white noise, the initial positive e¤ect of a shock to ut is

slowly compensated by the negative impact on ¹r;t+1.

We can also compute the persistence of a shock to ut on rt and its conditional

mean.

P1(rt j ut) = 1+
1

°2uw

µ
½2uw

1¡ tr2(A)

¶
P1(¹r;t+1 j ut) =

1

°2uw

µ
½2uw

1¡ tr2(A)

¶

Perhaps more interesting in the study of the e¤ects of a shock to the conditional

mean, wt. To do so, we use the Cholesky decomposition of V (wt; ut)

§?? = ¾w

Ã
°uw

p
1¡ ½2uw ½uw°uw
0 1

!
= ¾w

Ã
k(

p
1¡ ½2uw=½uw) k

0 1

!

Now we get
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Irf0(rt) = k; Irfj(rt) = trj¡1(A), for j > 0.

Irfj(¹r;t+1) = tr
j(A), j = 0; : : : ;1.

Note that for tr(A) close to 1, k will be very large and negative. Therefore,

a positive shock to wt has a very negative immediate impact on rt, which is then

slowly reversed by the positive and slowly decaying e¤ect on its conditional mean.

Such a pattern is a direct consequence of the restrictions that guarantee a white

noise marginal process for rt.

Again, it is easy to compute the persistence of a shock to wt on rt and its

conditional mean

P1(rt j vt) = k2 +
1

1¡ tr2(A) P1(¹r;t+1 j vt) =
1

1¡ tr2(A)

5 Empirical Application to US Stock Returns

As we mentioned in the introduction, the fact that stock market returns have

almost negligible autocorrelations was traditionally regarded as evidence in favour

of the present value model with constant expected returns. More recently, though,

several authors showed that near white noise behaviour for observed returns is

compatible with a smoothly time-varying expected return whose …rst-order auto-

correlation is high (see Campbell (1991) and the references therein). Obviously,

from the point of view of explaining movements in asset prices, there is a substan-

tial di¤erence between constant and time-varying expected returns.

In order to throw some light on this issue, we apply the results of the previous

section to post-war US monthly stock market returns. Since several studies have

found some predictability in returns using lagged dividend yields, we estimate a

bivariate Var(1) for rt and ±t; where rt is the (continuously compounded) real

stock market return, and ±t is the corresponding dividend-yield (see chapter 7

of Campbell, Lo and MacKinlay (1997) for data de…nitions and sources). The

sample covers 516 monthly observations from January 1952 to December 1994.

Parameter estimates and heteroskedasticity-robust standard errors are pre-

sented in the …rst column of Table 1. As expected, the predictability of rt is very

small (R2 = .0226). In contrast, dividend yields are highly predictable, especially

on the basis of its own lagged values (R2 = 0.9961).

These estimates imply that tr(A) is 1.0695 and jAj = 0.0952, so that the
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roots of the characteristic equation associated with the second order autoregressive

polynomial (1¡ tr(A)L+ jAjL2) are (.9714,.0980). We also have that the moving

average parameter for observed returns is .9916, while the standard deviation of

» is .042. As a result, the implied theoretical …rst order autocorrelation equals

0.0837, which is very close to the sample value of 0.0859.

As we saw in Section 4, it is impossible for the univariate representation of

rt to be exactly white-noise in a Var(1) unless the companion matrix has re-

duced rank. For that reason, we also estimate by maximum likelihood a restricted

Var(1) model in which a21 = a11a22=a12, or equivalently, jAj = 0. The results

are presented in the second column of Table 1. Notice that the reduced rank

restriction can only be rejected at the 5.92% level, despite the large number of

observations.

Using the results in Section 4, it is then straightforward to obtain the joint

process for actual and expected stock returns implied by the restricted parameter

estimates, as well as their univariate representations. First of all, note that the

correlation between innovations to returns and dividend yields (½uv) is .0713. In

contrast, the implied correlation between the bivariate innovations to observed

and expected returns, ½uw, is -.9466. Therefore, it is not surprising that the

implicit univariate representation of rt obtained on the basis of the restricted

parameter estimates is essentially white noise, with a negligible theoretical …rst

autocorrelation (-.011). On the other hand, we …nd that the implicit univariate

representation of expected returns is given by an Ar(1) with coe¢cient .9755.

However, the standard deviation of the univariate innovations to expected returns

is 0.0010, which is 42 times smaller than the corresponding standard deviation for

observed returns. Notice though, that the standard deviation of expected returns

is only nine times smaller than the standard deviation of actual returns, because

their autocorrelation coe¢cients are widely di¤erent.

The univariate representations, though, only give a partial picture, which is

clearly insu¢cient for gauging the e¤ect on rt and its conditional mean of shocks

to the bivariate process. In particular, we are interested in analyzing those shocks

that a¤ect rt directly through ut, and those that a¤ect it indirectly through the

innovation in ¹r;t+1, wt.

The impulse response functions are presented in Figure 2. Note that as in

Section 4.2, the initial positive e¤ect on returns of a shock to ut is later reversed
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by the very slowly decaying negative e¤ect on expected returns. Similarly, a shock

to expected returns has a large negative immediate impact on returns, and then

it is compensated by the slowly diminishing positive e¤ect on expected returns.

However, the e¤ects of shocks on expected returns are very small compared to the

e¤ect on actual returns. This is con…rmed by our persistence measure. For the

estimated parameter values, P1(rt j ut) = 1:0105, while P1(¹r;t+1 j ut) = 0:0105.
Similarly, P1(rt j wt) = 1600:00, while P1(¹r;t+1 j wt) = 20:64. These results are

in line with the argument in Campbell (1991) that a small unexpected variation

in expected returns can have dramatic consequences on observed returns when

the covariance between the innovations to actual and expected returns is large in

absolute value but negative. Campbell (1991) provides an economic intuition for

such a high negative correlation.

6 Conclusions

In this paper we study the time series properties of the processes for the (unob-

served) conditional mean and variance, given a speci…cation of the process for the

observed time series. We …rst derive a general result for the conditional mean of a

multivariate linear processes, and then apply it to various models of interest used

in the analysis of economic and …nancial time series, such as (seasonal) Arima and

Arfima models, multivariate Garch and univariate Garch-M models. Propo-

sition 1 can also be applied to other Arch models in the literature, such as the

Generalized Quadratic Arch (Gqarch) model of Sentana (1995) (see Fiorentini

and Sentana (1996) for details).

We also look at the persistence of shocks to the conditional mean process, and

compare it to the persistence of shocks to the observed variable. To do so, we

use a measure of persistence of shocks for stationary processes which captures the

importance of the deviations of a series from its unperturbed path following a

single shock. Our measure is based on the impulse response function, and can be

interpreted as the ratio of the variance of the series to the variance of the shock.

We also propose a way of gauging the interim persistence of shocks that can be

applied to non-stationary series as well.

We …nally consider the joint process for a single variable and its expected value

conditional on the whole information set. In this respect, we derive necessary and
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su¢cient conditions for one of the variables in a bivariate VAR(1) to have a white

noise univariate representation while its conditional mean follows an AR(1) with

a high autocorrelation coe¢cient.

We apply our results to US monthly real stock market returns and dividend

yields over the period 1952-1994 to throw some light on the issue of whether white

noise behaviour for returns is compatible with smooth, highly correlated time-

varying expected returns. Our …ndings seem to con…rm that stock returns are

very close to white noise, while expected returns are well represented by an Ar(1)

process with a …rst-order autocorrelation of .9755. Furthermore, the standard

deviation of the univariate innovations in the expected return series is over 42 times

smaller than the corresponding standard deviation for the observed variables.

Our results also indicate that innovations to observed and expected returns are

negatively correlated, with a correlation coe¢cient of -.9466. As a result, a shock

to expected returns has a large negative immediate impact on returns, which is

thereafter compensated by a slowly diminishing positive e¤ect on expected returns.

However, the e¤ects of shocks on expected returns are very small compared to

their e¤ect on actual returns. In this respect, our results con…rm that a small

unanticipated variation in expected returns can have dramatic consequences on

observed returns.

From a risk management perspective, it would be useful to extend our results

to cover the dynamics of conditional quantiles. Given that monotonic transfor-

mations of the observed series produce monotonic transformations of the order

statistics, some progress can be made if we restrict ourselves to the Box-Cox

quantile regression framework (see Buchinsky, 1995). If the conditional quantiles

of a Box-Cox transformation of the observed series are linear, their autocorrelation

structure can be derived from the autocorrelation structure of the transformed se-

ries, which in turn can be obtained from Granger and Newbold’s (1976) results

on instantaneous data transformations. The derivation of a more general result

constitutes an interesting avenue for future research.
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Appendix

A Proofs of Results

A.1 Proposition 1

Let’s write ¹t = A(L)xt ¡ B(L)²t: Premultiplying both sides by [I ¡ A(L)]

yields [I ¡ A(L)]¹t = [I ¡ A(L)]A(L)xt ¡ [I ¡ A(L)]B(L)²t. Then, since [I ¡
A(L)]A(L) = A(L)[I ¡A(L)], it follows that [I ¡ A(L)]¹t = A(L)[I ¡B(L)]²t ¡
[I ¡ A(L)]B(L)²t = [A(L)¡B(L)]²t 2

A.2 Lemma 2

First notice that any covariance stationary Garch(p,q) can be written in an

Arch(1) form as ¾2t = ®?0 + ®
?(L)²2t , where ®?0 = ®0[1 ¡ ¯(1)]¡1 and ®?(L) =

®(L)[1 ¡ ¯(L)]¡1with ®?i ¸ 0 8i, P1
i=1 ®

?
i < 1: This implies that we can write a

stationary Ar(1) for ²2t , [1¡ ®?(L)]²2t = ®?0 + vt
Since the in…nite moving average representation of ²2t is ²2t = ®

??
0 +Ã(L)vt with

Ã0 = 1 and Ãj =
Pj

i=1 ®
?
iÃj¡i, it is easy to verify that Ãj ¸ 0 for j = 0; 1; : : : ;1,

so that all the autocovariances of ²2t will be non-negative.

Then, using the fact that ¾2t is a linear combination of the ²2t with positive

coe¢cients, we have that Cov(¾2t¾
2
t¡k) =

P1
i=1

P1
j=1 ®

?
i®

?
jCov(²

2
t ²
2
t¡k+i¡j), which

is non-negative for every k. 2
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Table 1: Var(1) Estimation Results

US real stock returns and dividend yields

1952:1-1994:12

Par Unrestricted Restricted
(White std. errors) (jAj 6= 0) (jAj = 0)

c1 -.0188 -.0169

(.0086) (.0086)

a11 .0708 -.0231

(.0438) (.0086)

a12 .6455 .6074

(.2281) (.2285)

c2 2.12e-4 2.14e-4

(1.09e-4) (1.09e-4)

a21 -.0379 -.0379

(5.58e-4)

a22 .9986 .9985

(.0029) (.0029)

¾u .0419 .0421

¾v 5.34e-4 5.34e-4

½uv .0717 .0719

Wald test

H0:jAj = 0 Â21 =3.558

p-value .0592

Note: Estimated model:
Ã
rt

±t

!
=

Ã
c1

c2

!
+

Ã
a11 a12

a21 a22

! Ã
rt¡1

±t¡1

!
+

Ã
ut

vt

!

Ã
ut

vt

!
»

"Ã
0

0

!
;

Ã
¾2u ¾u¾v½uv

¾u¾v½uv ¾2v

!#
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Figure 1: Case B
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Figure 2: IRF for returns and expected returns
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