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In his paper, Fernando Restoy surveys the potential institutional changes
that may affect Spanish financial markets as a consequence of European Mone-
tary Union (EMU). In addition, he analyses from an empirical perspective the
effects that EMU could have on the portfolio allocation decisions of agents as a
result of the likely changes in expected returns and covariance structure that they
will face. This is a topic of particular interest in practice, because as the author
rightly points out, it is not clear a priori that the elimination of intra-European
exchange rate risk is necessarily beneficial for investors, given that it affects their
opportunities for diversification. Nevertheless, I honestly believe that the com-
putation of alternative measures of the effects of those changes on the aggregate
risk-return trade-off under assumptions analogous to the ones made by the author
would have increased the interest of the paper. The rest of my comment would
try to justify, from a theoretical perspective, the interest of such measures.

Consider an economy with one riskless asset, and a finite number N of risky
assets. Let Ry denote the gross return on the safe asset (that is, the total payoff
per unit invested), R = (Ry, Rs, ..., Ry)" the vector of gross returns on the N
remaining assets, and let us call v and X respectively the corresponding vector of
means and matrix of variances and covariances, which we will assume bounded.
As is well known, from these primitive assets it is possible to generate many oth-
ers, with potentially very different payoff structures. In what follows, we shall be
looking at the simplest, and most common, called portfolios, whose payoffs are
simply linear combinations of the payoffs of the original assets. In particular, we
shall denote by p = woRy+ >N, w; R; the payoffs of a portfolio of the N 41 prim-
itive assets with weights given by wy and the vector w = (wy, ws, ..., wy)’. There
are at least three characteristics of these portfolios in which investors are usu-
ally interested: their cost, the expected value of their payoffs, and their variance,

which will be given by C(p) = wy + W't, E(p) = woRy + w'v and V(p) = w'Ew



respectively, where ¢ is a vector of IV ones.

Let P be the set of the payofts from all possible portfolios of the N + 1 original
assets. Within this set, several subsets deserve special attention. For instance,
regarding cost, it is worth considering all unit cost portfolios R = {p € P : C(p) =
1}, whose payoffs can be directly understood as returns per unit invested; and also
all zero cost portfolios A = {p € P : C(p) = 0}, or arbitrage portfolios. In this
sense, the necessary and sufficient conditions for a portfolio to belong to R or A
are that wg = 1 — w't or wyg = —w'e respectively. Note that any portfolio in P
which is not in A can be transformed into a portfolio in R by simply scaling its
weights by its cost, and that the difference between any two portfolios in R will
be in A. In particular, if we define r = R— Ryt as the vector of returns on the N
primitive risky assets in excess of the riskless asset, it is clear that any portfolio
whose payoffs are a linear combination of r is an arbitrage portfolio, and also,
that the payoffs of any arbitrage portfolio are necessarily a linear combination of
r. Furthermore, it is worth noting that the payoffs of any portfolio in R can be
replicated by investing one unit in the safe asset, and simultaneously holding an
arbitrage portfolio.

On the other hand, if we look at variances, we must distinguish between riskless
portfolios, S = {p € P : V(p) = 0} and the rest. In this sense, note that if 3 is
regular, S is limited to those portfolios which take no position in any of the risky
assets, while when it is singular, it is possible to obtain riskless portfolios from
risky assets exclusively. In general, therefore, portfolios in S will be generated from
those w which belong to the nullspace of . In what follows, we shall impose
restrictions on the elements of S so that there are no arbitrage opportunities.
First, we shall assume that Ry is strictly positive, for otherwise agents could have
access to unlimited funds by selling this asset. Moreover, we shall assume that the

law of one price holds, i.e. that portfolios with the same payoffs have the same



cost, for otherwise there would be even some risk averse agents taking infinite
positions. Formally, the additional restriction is that the vector of risk premia
p=E(r) = v — LRy belongs to the columnspace of X, for which it is sufficient
(but not necessary) that this matrix has full rank.

A simple, yet generally incomplete method of describing the choice set of an
agent is in terms of the mean and variance of all the portfolios which she can
afford, for which obviously we need to take into account the funds that she has
available for investing. Let us consider initially the case of an agent who has
no wealth whatsoever, which means that she can only choose portfolios in A.
In this context, frontier arbitrage portfolios, in the mean-variance sense, will be
those with the smallest possible variance for a given expected return. Formally,
therefore, they will be those portfolios that solve the program min V'(p) subject to
the restrictions C'(p) = 0 and E(p) = f, with i real. Given that as we saw before,
C(p) = 0 is equivalent to p = w'r, algebraically this problem can be rewritten
as miny, w' 2w subject to w/pu =p. In this sense, it is worth mentioning that an
arbitrage portfolio which is always feasible is the null portfolio, and furthermore,
that such a portfolio is frontier for gz = 0. In general, the first order conditions

for the optimisation program will be given by the system of linear equations

X ou w 0

p 0 A I
which has a solution if and only if i can be written as a linear combination of
p, although the solution is not unique unless 3 has full rank (see Magnus and
Neudecker (1988), p. 61, theorem 24). There are, therefore, two possibilities: (i)
p = 0, in which case, since all arbitrage portfolios have zero expected returns, the
frontier can only be defined for ;i = 0, and it will be generated by any portfolio
weights which are in the nullspace of ¥; or (ii) that p # 0, in which case there is



at least one solution for each fi. In particular, the solutions will be given by
w =S ) S p 4+ qI - 27D

where q is an arbitrary vector of order N, and 3% is the Moore-Penrose inverse
of 32, and where we have used the fact that the absence of arbitrage opportunities
implies that 0 < p'X"pu < oo for g # 0. Therefore, we can span the whole frontier
from the arbitrage portfolio r, = (1’ Z*u)flu/ Y *r, obtaining in this way what
can be called one-fund spanning. Moreover, given that the variance of the frontier
portfolios with mean g will be p?(u/3* u)_l, in mean-standard deviation space,
the frontier is a straight line reflected in the origin whose efficient section has
slope /X + . Therefore, this slope fully characterises in mean-variance terms
the investment opportunity set of an investor with no wealth, as it implicitly
measures the trade-off between risk and return that the available assets allow at
the aggregate level.

Traditionally, however, the mean-variance frontier is usually obtained for port-
folios in R, and not for portfolios in A. Nevertheless, given that as we have seen
the payoffs of any portfolio in R can be replicated by means of a unit of the safe
asset and a portfolio in A, in mean-standard deviation space, the frontier for R
is simply the frontier for A shifted upwards in parallel by the amount R,. And
although now we will have two-fund spanning unlike in the previous case, for a
given safe rate, the slope /X continues to fully characterise in mean-variance
terms the investment opportunity set of an agent with positive wealth.

Given that the Sharpe ratio of any portfolio is defined as its risk premium
divided by its standard deviation, (e.g. s(r;) = p;/0j;) this slope gives us the
Sharpe ratio of r,, s(r,), which is the maximum attainable. For our purposes, it is
convenient to write the maximum Sharpe ratio as a function of the Sharpe ratios
of the N original assets, s(r), and their correlation matrix ®. In particular, if we

assume that 3 has full rank, then s2(r,) = /'S~y = s(r)' ®1s(r) (see Sentana
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(1998)). For N = 2, this expression reduces to
-4, [5(r1) + 5%(r2) — 26155(r1)s(r)|
where ¢, = cor(ry,re), which turns out to be completely analogous to the for-
mula that relates the R? of a multiple regression (with a constant included) with
the correlations of the simple regressions. This similarity is not merely coinciden-
tal. In this context, a notable property of r, is that cov(r,r,) = (,u’E_lu)_lu,
which means that the risk premium on any asset can be written as E(r;) =
cov(r;,rp)E(r,)/V (1,). Therefore, we will have that s(r;) = cor(r,,7;)s(rp), or in
other words, that the correlation coefficient between r, and r; is the ratio of the
Sharpe ratios s(r;)/s(r,). On this basis, the analogy with R? results from the fact
that the determination coefficient in the multiple regression of r, on r is 1.
Given the above discussion, in order to analyse the effects that changes in
s(r) and ® would have on the investment opportunity set of the agents, it would
suffice to analyse their effects on s(r,). The importance of such changes could be
measured globally by the differential of s(r,), and individually by means of the
gradients corresponding to each of the Sharpe ratios of the original assets, and
to each of the 3 N(N — 1) different correlation coefficients among them. From an
algebraic point of view, though, it is simpler to work with s?(r,), and later on do
the necessary adjustments on the basis of the chain rule. The differential of s*(r,)

will be given by
ds?(ry) = 2(ds(r))' @ 's(r)—s(r)' @ ' (d®)P 's(r)

while the gradients will be
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where Ly is the $N(N — 1) x N? matrix which when premultiplies vec(®) yields
vecl(®) (see Magnus (1988)).
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