
Econometric applications of

positive rank-one modifications

of the symmetric factorization

of a positive semi-definite matrix1

Enrique Sentana

(CEMFI)

Revised: August 1998

1This is an extensively revised version of Sentana (1994). The author is grateful to
Hans Dewachter, Juan J. Dolado, Prof. Golub and two anonymous referees for their
comments. Of course, the usual caveat applies. Address for correspondence: Casado
del Alisal 5, 28014 Madrid, Spain (tel.: +34 91 429 0551, fax: +34 91 429 1056, e-mail:
sentana@cemfi.es).

Abstract

We present an algorithm for updating the symmetric factorization of a positive

semi-definite matrix after a positive rank-one modification, which works even if the

matrices involved do not have full rank. Recursive least squares and factor analysis

provide two important econometric applications. An illustrative simulation shows

that it can be potentially very useful in recursive situations.

Keywords: Recursive Least Squares, Factor Analysis, Cholesky Decomposi-

tion, Multicollinearity.

1 Introduction

The symmetric factorization of a positive semi-definite n × n matrix A =

AL · AD · A0L, with AL unit lower triangular and AD diagonal, is a well known

numerical procedure with multiple applications in statistics and econometrics.

The “innovation accounting” techniques invented by Sims (1980) provide a good

example. Another useful application is as a computational shortcut that avoids

unnecessary numerical errors associated with matrix inversions (see e.g. Bauer

and Reinsch (1971)). For instance, in the heteroskedastic linear regression model:

y = Xδ + u, E(u|X) = 0, V (u|X) = diag(ω) = Ω

the weighted least squares (WLS) estimator of the n regression coefficients in δ

based on the whole sample of T observations:

δ̂(T) = (X 0Ω−1X)−1X 0Ω−1y

can be very quickly and accurately estimated in terms of the decomposition of the

n× n matrix M = X 0Ω−1X as the solution of the (unit upper) triangular system

of equations:1

M 0
L · δ̂(T) =M−1

D · q

where q is in turn the solution of the (unit lower) triangular system:

ML · q = X 0Ω−1y

Such a numerical procedure is implicitly estimating by OLS the transformed

homoskedastic regression model with orthogonal covariates

y∗ = X∗δ∗ + u∗

1If the design matrix, X, does not have full column rank n, the WLS estimator can be defined
in (infinitely) many ways. One computationally attractive possibility in this framework is to use
M 0

L·δ̂(T)=M+
D · q, where M

+
D is the Moore-Penrose inverse of MD.

1

where y∗ = Ω−
1
2y, u∗ = Ω−

1
2u, X∗ = Ω−

1
2XM 0−1

L and δ∗ =M 0
Lδ, so that q = X∗0y∗

and δ̂
∗
(T) =M−1

D · q, and then transforming back the coefficient estimates.

Another example is provided by the log-likelihood function contribution from

an observation on a n×1 Gaussian random vector xt with conditional mean μt and

conditional covariance matrix Σt, which are functions of some parameter vector

φ:

ct(xt, φ) = −
n

2
ln 2π − 1

2
ln |Σt|−

1

2
(xt − μt)

0Σ−1t (xt − μt)

where the evaluation of the determinant of the n × n covariance matrix Σt and

the quadratic form (xt−μt)
0Σ−1t (xt−μt) can be very efficiently and safely carried

out as:

c(xt;φ) = −
1

2
ln |ΣtD|−

1

2
s0tΣ

−1
tDst

with st solving:

ΣtL · st = xt − μt

In fact, such a numerical procedure is implicitly performing a cross-sectional

analogue of the prediction error decomposition, where st contains the cross-sec-

tional prediction errors, and ΣtD the corresponding variances (see Sentana (1997)).

In both examples, it is neither advisable nor necessary from a numerical point

of view to compute the inverse explicitly. And even when the inverse is required,

for instance to compute WLS standard errors, it is more appropriate to obtain it

asM−10
L ·M−1

D ·M−1
L , whereM−1

L is the solution to the special system of triangular

linear equations ML ·M−1
L = In.

It is often the case that the original matrix A, whose symmetric decomposition

is already available, is modified by a symmetric matrix of rank one to:

Ā = A+ α · zz0 (1)

with α a scalar and z a n×1 vector. This situation commonly arises in numerical

optimization procedures (see e.g. Gill et al. (1981)), but as we shall see in section

2

2, there are important econometric examples, such as recursive least squares and

factor analysis, when it is also relevant. Given that each symmetric decomposition

involves about 1
6
n3 multiplications and additions, it would be desirable to exploit

the existing AL ·AD ·AL factorization of A to obtain the ĀL · ĀD · Ā0L factorization

of Ā in an efficient manner.

There are several algorithms for obtaining the matrix factorization of Ā from

that of A in only O(n2) multiplications and additions. The best-known ones,

though, explicitly or implicitly make the assumption that both A and Ā are pos-

itive definite (see e.g. Fletcher and Powell (1974), Gill et al. (1974), Gill et al.

(1975), or Pan and Plemmons (1989)). Unfortunately, in some common econo-

metric examples discussed in section 2, such an assumption cannot be made. For

instance, in some recursive least squares applications, the design matrix is singular

over the first part of the sample.

The main purpose of this paper is to make econometricians aware of the fact

that there are variations of these algorithms which do not require such an as-

sumption. In this respect, we present a slight modification of method C1 in Gill

et al. (1974) for the case of α > 0 which remains numerically stable when A (and

possibly Ā) are positive semi-definite (see the appendix for its algebraic justifi-

cation, implementation details, and a fully worked out numerical example). This

modified algorithm turns out to be equivalent to an extension of the t-method

discussed in section 4 of Fletcher and Powell (1974). We successfully apply it to

an illustrative econometric example in section 3.

2 Econometric Motivation

Recursive (weighted) least squares provides an obvious and increasingly im-

portant econometric example of rank-one modifications of positive (semi-) definite

matrices. Its recursive nature is derived from the fact that the estimator based

3

on the first t− 1 observations:

δ̂(t− 1) = (
t−1X
s=1

ω−1s xsx
0
s)
−1(

t−1X
s=1

ω−1s xsys)

is updated as each subsequent observation is added to the data set. In this context,

the n×n matrix (X 0Ω−1X) =
PT

s=1 ω
−1
s xsx

0
s can be obtained by using expression

(1) recursively, with A(t) =
Pt−1

s=1 ω
−1
s xsx

0
s, z = xt and α = ω−1t .

Standard presentations of recursive least squares (see e.g. Harvey (1981a)),

though, are often based on the Sherman-Morrison matrix inversion formula

Ā−1 = A−1 − A−1zz0A−1

α−1 + z0A−1z
(2)

which in this case yields

(
tX

s=1

ω−1s xsx
0
s)
−1 = (

t−1X
s=1

ω−1s xsx
0
s)
−1− (

Pt−1
s=1 ω

−1
s xsx

0
s)
−1xtx

0
t(
Pt−1

s=1 ω
−1
s xsx

0
s)
−1

ωt + x0t(
Pt−1

s=1 ω
−1
s xsx0s)

−1xt
(3)

and

δ̂(t) = δ̂(t− 1) + (
Pt−1

s=1 ω
−1
s xsx

0
s)
−1xt

ωt + x0t(
Pt−1

s=1 ω
−1
s xsx0s)

−1xt
· [yt − x0tδ̂(t− 1)]

where yt − x0tδ̂(t− 1) is the one-step ahead prediction error, or recursive residual,

and the n×1 vector in front is known as the “Kalman gain”. Although the direct

evaluation of (3) is not recommended due to the accumulation of rounding errors,

the Kalman gain can also be obtained as a by-product of the factorization update

(see Pan and Plemmons (1989) for details).

Another example is given by a conditionally heteroskedastic, orthogonal, exact

k-factor model (see e.g. Sentana (1997)), which assumes that the conditional

covariance matrix of the n× 1 random vector xt takes the form:

Σt = CΛtC
0 + Γ

where C is a n × k full rank matrix of factor loadings, with n ≥ k, Λt a k × k

diagonal matrix of time-varying factor variances, and Γ a n×n diagonal matrix of

4

idiosyncratic variances. Here, the n×n matrix Σt can also be obtained iteratively

on the basis of expression (1), with A(j) = Γ +
Pj−1

l=1 λltclc
0
l, z = cj and α = λjt,

where cj is the jth column of C.2 ,3

Since only n2 +O(n) multiplications and additions are involved in each rank-

one factorization update based on our proposed algorithm, as opposed to 1
6
n6 in

the direct factorization, it is clear that the updating procedure results in signif-

icant computational savings in a regression context, except when the number of

regressors is very small, and the same is true in the factor model, except when k

is large relative to n.

The assumption of positive definiteness, though, cannot always be maintained.

For instance, in recursive (weighted) least squares, the current design matrix, X,

may not have full column rank. Such a situation trivially arises if we want to start

the recursions from the very first observation, since A = 0 then. Harvey (1981b)

suggests starting the recursions with A = κ−1I, where κ is a large number, on

the presumption that the effect of the “ridge” parameter κ−1 on estimates should

generally be negligible after n iterations, where n is the number of regressors.

However, if the regressors are highly collinear, such a fast convergence may be

unwarranted, and the resulting estimator may be closer to a recursive version of

the ridge estimator than to the recursive (weighted) least squares one for a quite

a few observations.4

More importantly in practice, such a situation also arises if the regressors

include variables which are perfectly collinear during the initial part of the sample.

One such example is a linear regression/time series model with dummy variables

2In static factor models, λjt = λj is usually set to 1 for scaling purposes, in which case α = 1.
Similarly, in recursive ordinary least squares, Ω = I, so that α is again 1.

3A generalization of expression (2) can also be exploited to compute the log-likelihood func-
tion (see Sentana (1997) for details). In fact, such a procedure is more efficient than the factor-
ization updates when k is small relative to n.

4But see Koopman (1997) for exact algebraic expressions when κ→∞, and Sentana (1997)
for a modification of (2) when Ā is regular but A singular.

5

for infrequently occurring events. A related example from the structural breaks

literature is given by the linear model:

yt = α+ βdt + ut, ut ∼ i.i.d.(0, σ2) (4)

where dt is a dummy variable equal to 0 for the first T1 observations, and to 1

afterwards (e.g. a German reunification dummy). The recursive OLS estimates

of this model computed with T1 + t2 observations (t2 = 1, . . . , T − T1) will be:

α̂(T1 + t2) =
1

T1

T1X
s=1

ys

β̂(T1 + t2) =
1

t2

T1+t2X
s=T1+1

ys −
1

T1

T1X
s=1

ys

so that α̂(T1+t2) corresponds to the sample mean of the first regime and β̂(T1+t2)

to the difference in means across regimes. Similarly, recursive residuals can be

computed as:

ũT1+t2 = yT1+t2 − α̂(T1 + t2 − 1)− β̂(T1 + t2 − 1)dT1+t2

from which CUSUM-type tests can be obtained to check if further structural

breaks are present (see Harvey (1981a)).

But even though the design matrix is singular for t1 = 1, 2, . . . , T1, we can still

compute recursive residuals for these observations as:

ũt1 = yt1 − α̂(t1 − 1)− β̂(t1 − 1)dt1

where

α̂(t1) =
1

t1

t1X
s=1

ys

and β̂(t1) = 0 (say). To the best of our knowledge, though, standard econometric

packages do not start the recursions until observation T1+1, which is particularly

disappointing when T1/T is close to 1. The only possibility is to estimate the

6

restricted model yt = α+ ut recursively for t = 1, . . . , T1 first, and then switch to

(4). This is clearly impractical in more realistic situations.

Another common situation in practice where the initial matrix A does not have

full rank occurs in the evaluation of the likelihood function of an orthogonal exact

factor model at a set of parameter values which includes some zero idiosyncratic

variances (i.e. Heywood cases), so that rank(Γ) = N1 < N (see Sentana (1997)).

3 An Illustrative Application

We have used the updating method in the appendix to compute recursive least

squares estimates of the model in equation (4) from a simulated sample generated

as:
yt = γ0 + εt for t = 1, . . . , T0

yt = γ1 + εt for t = T0 + 1, . . . , T1

yt = γ2 + εt for t = T1 + 1, , . . . , T

with εt ∼ i.i.d. N(0, 1);T0 = 100, T1 = 200, T = 300; γ0 = γ2 = 0 and γ1 = 1.Note

that there are two structural breaks in the data generating process (at observations

101 and 201), but the econometrician is only aware of the second.

Figures 1 and 2 show the recursive OLS estimates of the parameters α and β.

The behaviour of α̂(t) from t = 100 onwards clearly shows the presence of a struc-

tural break “unnoticed” by the econometrician. More formally, the cumulative

sum of recursive residuals test in Figure 3 confirms it at the 5% level. Please note

that standard regression packages cannot start the recursions until observation

201, and hence have no chance of detecting the first structural break.

4 Conclusions

Here we present an algorithm for updating the symmetric factorization of a

positive semi-definite matrix after a positive rank-one modification. Recursive

7

least squares and factor analysis provide two potential econometric applications.

Importantly, the algorithm works even if the matrices involved do not have full

rank.

A numerical experiment shows that it is stable for singular as well as rather ill-

conditioned matrices. An illustrative simulation shows that it can be potentially

very useful in recursive situations.

Finally, the algorithm presented here could be easily modified to update the

Cholesky decomposition of A = ACA
0
C , with AC lower triangular, since AC can

be obtained from the AL, AD factors as AC = AL ·A1/2D .

8

References

Bauer, F.L. and Reinsch, C. (1971): “Inversion of positive definite matrices by

the Gauss-Jordan method”, in Wilkinson, J.H. and Reinsch, C. eds. Handbook

for Automatic Computation II: Linear Algebra, Springer-Verlag, Berlin.

Fletcher, R. and Powell, M.J.D. (1974): “On the modification of LDLT fac-

torizations”, Mathematics of Computation, 28, 1067-1087.

Gill, P.E., Golub, G.H., Murray, W. and Saunders, M.A. (1974): “Methods

for modifying matrix factorizations”, Mathematics of Computation, 28, 505-535.

Gill, P.E., Murray, W. and Saunders, M.A. (1975): “Methods for computing

and modifying the LDV factors of a matrix”, Mathematics of Computation, 29,

1051-1077.

Gill, P.E., Murray, W. and Wright, M.H. (1981): Practical Optimization, Aca-

demic Press, New York.

Harvey, A.C. (1981a): The Econometric Analysis of Time Series, Philip Allan,

Oxford.

Harvey, A.C. (1981b): Time Series Models, Philip Allan, Oxford.

Koopman S.J. (1997): “Exact initial Kalman filtering and smoothing for non-

stationary time series models”, Journal of the American Statistical Association,

forthcoming.

Martin, R.S.; Peters, G. and Wilkinson, J.H. (1971): “Symmetric decomposi-

tion of a positive definite matrix”, in Wilkinson, J.H. and Reinsch, C. eds. Hand-

book for Automatic Computation II: Linear Algebra, Springer-Verlag, Berlin.

Pan, C.-T. and Plemmons, R.J. (1989): “Least squares modifications with in-

verse factorizations: parallel implications”, Journal of Computational and Applied

Mathematics, 27, 109-127.

Sentana (1994): “A positive rank-one modification of the symmetric factoriza-

tion of a positive semi-definite matrix”, CEMFI Working Paper 9421.

9

Sentana (1997): “The likelihood function of a conditionally heteroskedastic

factor model”, mimeo, CEMFI.

Sims, C.A. (1980): “Macroeconomics and reality”, Econometrica 48, 540-552.

10

Appendix

Algebraic Justification of the Algorithm

It is well known that given a positive semi-definite symmetric matrix A of

dimension n, rank n1, and nullity n2 = n−n1, it is possible to find a permutation

matrix P such that A∗ = PAP 0 can be written in the form:

A∗L ·A∗D ·A∗0L =

⎛⎜⎝ A∗L11 0

A∗L21 A∗L22

⎞⎟⎠ ·
⎛⎜⎝ A∗D1 0

0 0

⎞⎟⎠ ·
⎛⎜⎝ A∗0L11 A∗0L21

0 A∗0L22

⎞⎟⎠
where A∗L11 and A∗L22 are unit lower triangular matrices of dimensions n1 and

n2 respectively, and A∗D1 is a positive diagonal matrix of dimension n1, with A
∗
L22

usually set to In2 for convenience, but without loss of generality. In fact, P is such

that AL = P 0A∗LP is unit lower triangular (and trivially AD = P 0A∗DP diagonal),

so that A = AL ·AD ·A0L. Furthermore, if A is positive definite, then P = I, and

D is strictly positive.

Let aLj = (aL1j, . . . , aLnj)0 denote the jth column of AL, with aLij = 0 for i < j

and aLjj = 1, and let aDj denote the jth diagonal element of AD, so that we can

write

A =
nX

j=1

aDjaLja
0
Lj

Let’s introduce the notation w(1) = z and α(1) = α. The first step of the

algorithm consists in obtaining a nonnegative scalar α(2) and a vector w(2), with

w
(2)
1 = 0, such that

Ā =
nX

j=1

aDjaLja
0
Lj + α(1)w(1)w(1)0 = āD1āL1ā

0
L1 +

nX
j=2

aDjaLja
0
Lj + α(2)w(2)w(2)0

or equivalently

aD1aL1a
0
L1 + α(1)w(1)w(1)0 = āD1āL1ā

0
L1 + α(2)w(2)w(2)0 (A1)

11

Equating the first columns of the left and right hand sides yields

aD1aL1 + α(1)w
(1)
1 w(1) = āD1āL1

so that

āD1 = aD1 + α(1)w
(1)
1 w

(1)
1

and

āL1 =
aD1
āD1

aL1 +
α(1)w

(1)
1

āD1
w(1)

if āD1 6= 0, and āL1 = (1, ∗, . . . , ∗)0 otherwise, where ∗ means indeterminate,

although usually set to 0. In this respect, note that since α(1) ≥ 0, āD1 = 0

requires both aD1 = 0 and α(1)w
(1)
1 w

(1)
1 = 0, which in turn requires α(1) = 0

and/or w(1)1 = 0.

Assuming that āD1 6= 0, then it is straightforward to prove that (A1) will be

satisfied for

α(2) = α(1) · aD1
āD1
≥ 0

and

w(2) = w(1) − w
(1)
1 aL1

Following Gil et al. (1974), though, we compute āL1 as

āL1 = aL1 + β1w
(2)

where

β1 =
α(1)w

(1)
1

āD1

In any case, since the first row and column of the remainder matrix

nX
j=2

aDjaLja
0
Lj + α(2)w(2)w(2)0

are zero, the problem has been reduced to a similar one of dimension n−1, which

can be solved iteratively in the same manner.

12

Apart from the trivial case in which α(1) = 0, when no action needs to be

taken, the algorithm simplifies considerably if w(1)1 = 0, in which case āD1 = aD1,

āL1 = aL1, α(2) = α(1) and w(2) = w(1) irrespectively of the value of aD1. Hence,

we can easily handle those situations in which āD1 = 0. Our other proposed

modification stems from the fact that if aD1 = 0 but w(1)1 6= 0, then the above

expressions reduce to

āD1 = α(1)w
(1)
1 w

(1)
1

āL1 =
1

w
(1)
1

w(1)

and α(2) = 0, so that no further modifications are required.

Finally, it can be shown that the vector p = (p1, . . . , pn)0, where pj = w
(j)
j , is

the solution to the (unit lower) triangular system of linear equations AL · p = z,

and moreover, that the symmetric factorization of the matrix Ã = AD + α · pp0

can be obtained with ÃD = ĀD, and the subdiagonal elements of the jth column

of ÃL being ãLrj = βjpr, where βj = 0 for āDj = 0 (see Gill et al. (1974), Fletcher

and Powell (1974) and Pan and Plemmons (1989)).

Implementation Details

1. Define α(1) = α,w(1) = z, j = 0.

2. j = j + 1

3. If w(j)j 6= 0:

a) If aDj 6= 0 compute

pj = w
(j)
j

āDj = aDj + α(j)p2j

βj = pjα
(j)/āDj

α(j+1) = aDjα
(j)/āDj

13

w(j+1)r = w(j)r − pjaLrj

āLrj = aLrj + βjw
(j+1)
r

⎫⎪⎬⎪⎭ r = j + 1, . . . , n

and if j < n go to 2, otherwise stop

b) If aDj = 0 compute

pj = w
(j)
j

āDj = α(j)p2j

βj = 1/pj

āLrj = βjw
(j)
r

r = j + 1, . . . , n

āDi = aDi i = j + 1, . . . , n

āLri = aLri i = j + 1, . . . , n; r = i+ 1, . . . , n

and stop

4. Else (i.e. if w(j)j = 0) set

āDj = aDj

α(j+1) = α(j)

w(j+1)r = w(j)r

āLrj = aLrj

⎫⎪⎬⎪⎭ r = j + 1, . . . , n

and if j < n go to 2, otherwise stop.

If aDj > 0 ∀j this procedure is identical to Gill et al. (1974) method C1, and

therefore entails the same number of operations (i.e. n2 + O(n) multiplications

and additions). On the other hand, if at least one diagonal element of AD is 0,

the computational burden is generally reduced (e.g. if aD1 = 0 but z1 6= 0 the

number of operations is O(n) only; see also Fletcher and Powell (1974)). Strictly

speaking, method C1 could cope with a single aDj = 0 provided that w
(j)
j 6= 0,

but it would involve unnecessary computations.

14

A Numerical Example

All existing updating methods are numerically stable when A (and hence Ā)

are well-conditioned positive definite matrices. Similarly, the method presented

above works by hand for very simple examples of singular matrices. The crucial

question is what its actual performance and numerical stability are when the

matrices involved are ill-conditioned. Since the above method is equivalent to

the method presented by Fletcher and Powell (1974), their general rounding-

error analysis applies here as well. We complement their results by means of the

following illustrative example. Starting from A(0) = γI, with γ ≥ 0 but small,

we generated the recursive sequence of matrices A(k) = A(k−1) + 10k−1cc0, with

c a n × 1 vector of ones. The resulting matrices take the simple form A(k) =

γI + δkcc
0, where δk = 111 . . . 111 (k ones), with eigenvalues γ (n − 1 times)

and γ + δk(c
0c) (once). Therefore, although A(k) remains positive definite for

any γ strictly positive (however small), it becomes ever more ill-conditioned as k

increases.

The factorization of A(0) is trivially A
(0)
L = I, A

(0)
D = γI. The factorization of

A(k) for any γ > 0 can also be found after simple but tedious algebraic manipula-

tions. For the case of n = 4, we have:

A
(k)
L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

θk 1 0 0

θk θk/(1 + θk) 1 0

θk θk/(1 + θk) θk/(1 + θk + θ2k) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A
(k)
D = diag

Ã
δk + γ, γ(1 + θk), γ

1 + θk + θ2k
1 + θk

, γ
1 + 2(1 + θk + θ2k) + θ4k
(1 + θk + θ2k)(1 + θk)

!

15

with θk = δk/(δk + γ). As k →∞, θk → 1, and the above matrices converge to:

A
(∞)
L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

1 1/2 1 0

1 1/2 1/3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
A
(∞)
D = diag(∞, 2γ,

3

2
γ,
4

3
γ)

We applied a Fortran 77 version of the above algorithm to this problem for

several very small values of γ (10−25, 10−50, 10−75, and 10−100) with k up to 100

(the source code is available from the author on request).

Reassuringly enough, it provided the right answer in all cases. It is worth

mentioning that A(k) is so ill-conditioned that a standard factorization algorithm

such as Martin, Peters and Wilkinson (1971) found A(1) numerically singular, and

thus was not able to find the desired factorization.

In the extreme case of γ = 0, then A(k) has rank 1 for all k > 0, with factor-

ization:

A
(k)
L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

1 ∗ 1 0

1 ∗ ∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
A
(k)
D = diag(δk, 0, 0, 0)

Again, the algorithm worked perfectly fine.

16

-0.5

-0.25

0

0.25

0.5

0.75

1

al
ph

a

0 50 100 150 200 250 300

t

Recursive LS estimate of alpha

Figure 1:

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

be
ta

0 50 100 150 200 250 300

t

Recursive LS estimate of beta

Figure 2:

17

-50

-25

0

25

50

75

C
U

S
U

M

0 50 100 150 200 250 300

t

Cumulative sum of recursive residuals

Figure 3:

18

