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C Another problematic case: An orthogonal factor

Theoretical discussion

Lemma G3 in appendix G studies the implications of E(rf) = 0 when E(r) 6= 0. In this

case, the centred SDF moment conditions (2) asymmetrically normalized in terms of � will have

a full rank Jacobian at the true value � = �1=E(f). The same applies to the centred regression

moment conditions (3) asymmetrically normalized in the same way, in which case the true value

of the price of risk will be � = �V (f) =E(f). Similarly, the asymmetric normalizations (a=b; 1)

in (1) and (c=d; 1) in (3) will also be well-behaved.

In contrast, (1) asymmetrically normalized in terms of � cannot be set to 0. In fact, the

multistep GMM criterion function does not depend on � at all, which is not surprising given that

the model is linear in this parameter and the expected Jacobian of those moment conditions is

precisely �E(rf). As a result, the distribution of the associated J test will be non-standard.

Nevertheless, we show in lemma G3 that the CU criterion converges to 0 as ��1 ! 0, which

simply re�ects the fact that a must go to 0 for the moment conditions (1) to hold.

Graphically, the di¤erential behavior of the asymmetric normalizations (1; b=a) and (1; b=c)

can be understood as follows. The point (c; b) chosen in Figure 2b is pinned down by the

intersection between the straight lines given by the pricing condition in (2) and (1; b=c), which

remains well de�ned even if the pricing factor is orthogonal to the excess returns. However,

as E(rf) ! 0 the moments (1) de�ne a �atter and �atter straight line in space (a; b), whose

intersection with (1; b=a) happens at a higher and higher b. In the limit, the �rst line becomes

a = 0, which is parallel to the normalization (see Figure 3b).

Like in the case of an uncorrelated factor, a SDF that is exactly proportional to an orthogonal

factor is not very attractive from an economic point of view. This is con�rmed by the fact that

the uncentred mimicking portfolio r+ is 0. Given that the J tests of the asset pricing conditions

that do not impose the problematic asymmetric normalization (1; b=a) will not reject their null,

we propose another simple additional test to detect this special case.

The null hypothesis E(rf) = 0 is equivalent to all valid SDFs a¢ ne in f having a 0 intercept.

In the case of the centred SDF moment conditions (2), this restriction can be assessed by means

of a DM test of the additional moment condition

E(c� bf) = 0
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expressed in such a way that it is compatible with the asymmetric or symmetric normalization

used. Intuitively, this additional moment condition de�nes the intercept of the SDF, which

we then set to 0 under the null. As expected, this DM test will also follow an asymptotic �21

distribution under the null of E(rf) = 0.

Monte Carlo

We can make the pricing factor orthogonal to the vector of excess returns by merely changing

the mean of f in the baseline design, while we leave the rest of DGP parameters as in section

6.1.

As expected from the preceding theoretical discussion, Table C1 shows high rejection rates

for the multistep implementations of the uncentred SDF moment conditions (1) asymmetrically

normalized with (1; b=a). This pattern is even stronger in Table G6 when T = 500. The rejection

rates of the multistep implementations of the asymmetric centred SDF are also high, but they

decrease for T = 500, thereby resembling their behavior in the baseline design.

(TABLE C1)

Table C1 also reports the DM tests of the null hypotheses of an uncorrelated factor and an

orthogonal one. In this design, the �rst hypothesis is false while the second one is true. We �nd

overrejection for the orthogonal factor test for T = 50, but the rejection rates get very close to

the nominal size when T = 500. In turn, the rejection rates for the test of an uncorrelated factor

are noticeably higher for both sample sizes.

The bicorne plots for the prices of risk in Figures C1 and G4 show that the biggest di¤erences

across GMM implementations correspond to the estimators of �. Once again, the sampling

distribution of the CU estimator re�ects much better than the multistep estimators the lack of

a �nite true parameter value.

(FIGURE C1)

In contrast, the three GMM implementations behave similarly for � and �. Moreover, the

CU estimator of  and � does not show the bias of iterated and two-step estimators, although

it leads to a higher dispersion in the case of � .
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D Monte Carlo Design

An unrestricted Gaussian data generating process (DGP) for (f; r) is

f � N
�
�; �2

�
;

r = �r + �r (f � �) + ur; ur � N (0;
rr) :

However, given that we use the simulated data to test that an a¢ ne function of f is orthogonal

to r, the only thing that matters is the linear span of r. As a result, we can substantially reduce

the number of parameters characterizing the conditional DGP for r by means of the following

steps:

1. a Cholesky transformation C�1r to get a residual variance equal to the identity matrix,

2. a Householder transformation Q1C�1r that makes the second to the last entries of the

vector of risk premia �r equal to zero (see Householder (1964)), and

3. another Householder transformation Q2Q1C�1r that makes the third to the last entries

of the vector of betas equal to zero.

As a result, our simpli�ed DGP for excess returns will be

_r = _�1e1 +
�
_�1e1 +

_�2e2

��
_f � _�

�
+ _ur; _ur � N (0; I) ;

where _r = Q2Q1C
�1r, _�1 =

�
�0r


�1
rr �r

�1=2, (e1; e2) are the �rst and second columns of the
identity matrix, _�1 is the �rst entry of Q1C

�1�r�, _�2 is the norm of the remaining entries of

Q1C
�1�r�, and

_f � N ( _�; 1) ; _� = �=�:

The parameter _� can be directly calibrated from data on f .

In turn, _�2 can be calibrated from a Hansen-Jagannathan (HJ) distance. Speci�cally, let

y = c+ b( _f � _�) denote a potentially invalid SDF based on _f . Given that the scale of y does not

matter for pricing excess returns and we are ruling out E(r) = 0, we can simply normalize it as

_y = _c+ ( _f � _�); _c = c=b;

and the potential pricing errors are

E ( _y _r) =
�
_c _�1 +

_�1

�
e1 + _�2e2:
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The null hypothesis of a valid SDF is equivalent to the existence of some _c such that all

pricing errors are zero. It is then easy to see that the null hypothesis is equivalent to _�2 = 0, in

which case the valid SDF satis�es _c _�1 + _�1 = 0.

On the other hand, if _�2 6= 0 then all the pricing errors cannot be equal to zero. But we can

still choose some invalid SDF that minimizes pricing errors under some metric in order to select

_c. In particular, we can minimize with respect to _c the following criterion

E ( _yr)0 V ar�1 (r)E ( _yr) = E ( _y _r)0 V ar�1 (_r)E ( _y _r) ;

which we can interpret as a HJ distance. The corresponding invalid SDF satis�es _c _�1(1+ _�
2
2) =

� _�1 and the value of the HJ distance is

_�
2
2

1 + _�
2
2

for the normalization (c=b; 1). Therefore, we can calibrate _�2 from a given value of this dis-

tance. Interestingly, we get the exactly same value of _c and HJ distance if we use the criterion

E ( _y _r)0E�1
�
_r_r0
�
E ( _y _r) instead, which is closer to the original de�nition in Hansen and Jagan-

nathan (1997).

Having chosen _�2, the remaining two parameters
�
_�1;
_�1

�
can be calibrated by means of

the maximum Sharpe ratio S of r (or _r), and the R2 of regressing f onto a constant and r (or

equivalently _f onto a constant and _r), which are given by

S2 = E (_r)0 V ar�1 (_r)E (_r) =
_�21

�
1 + _�

2
2

�
1 + _�

2
1 +

_�
2
2

;

R2 = Cov(_r; _f)0V ar�1 (_r)Cov(_r; _f) =
_�
2
1 +

_�
2
2

1 + _�
2
1 +

_�
2
2

:

Given the desired
�
S2; R2

�
, the corresponding

�
_�1;
_�1

�
must satisfy

_�21 =
S2

(1�R2)
�
1 + _�

2
2

� ; _�
2
1 +

_�
2
2 =

R2

1�R2 :

Note that the signs of _�2, _�1 and _�1 do not matter for our purposes. Without loss of

generality, we choose the positive root of the equations above.

In this context, the special case of an uncorrelated factor will be given by Cov(_r; _f) = 0, or

Cov (r; f) = 0, and it is equivalent to R2 = 0. Hence the corresponding DGP satis�es _�1 = 0 and

_�2 = 0. As for the orthogonal factor in appendix C, which is equivalent to E( _f _r) = 0, we choose

the DGP so that _� _�1 + _�1 = 0 and _�2 = 0.
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E Multifactor models

In what follows we represent a set of k factors by the vector f , and their mean vector,

second moment matrix and covariance matrix by �, � and � = �� ��0, respectively. In this

multifactor context, the connection between the SDF and regression approaches is given by

E(r)a+ E(rf 0)b = E(r)(a+ b0�) + Cov(r; f)b = �(a+ b0�) +B�(a+ b0�) +B�b

= �(a+ b0�) +B (a�+ �b) = �c+Bd = 0; (E9)

where c is the mean of the SDF, d the shadow costs of f (or actual costs if it is a vector of

traded payo¤s), � the vector of regression intercepts and

B =
�
�1 � � � �k

�
the n� k matrix of regression slopes.

The existence of a unique (up to scale) a¢ ne SDF a + f 0b that correctly prices the vector

of excess returns at hand is equivalent to the n� (k + 1) matrix with columns E (r) and E(rf 0)

having rank k. Such a condition is related to the uncentred SDF approach. We can transfer

this rank k condition to a matrix constructed with E (r) and Cov(r; f), which is related to

the centred SDF approach, and another matrix built from � and B in the case of the centred

regression.

Below we de�ne several moment conditions and parameters for the SDF and regression

approaches. We focus on the case of excess returns and traded or nontraded factors. Extensions

to mixed factors and the addition of a gross return are straightforward.

Traded factors

We can evaluate the asset pricing model by means of the uncentred SDF in�uence functions

hU (r; f ; a;b) =

24 r (a+ f 0b)
f (a+ f 0b)

35 ; (E10)

the centred SDF in�uence functions

hC (r; f ; c;b;�) =

26664
r
�
c+ (f � �)0 b

�
f
�
c+ (f � �)0 b

�
f � �

37775 ; (E11)
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or the regression in�uence functions

hR (r; f ;B) =

24 r�Bf

vec ((r�Bf) f 0)

35 ; (E12)

where we have used (E9) and the fact that d = 0 when the factors are excess returns.

The SDF functions require some normalization in their implementation. A symmetrically

normalized version of the SDF approach would use the normalization a2+b0b = 1 or c2+b0b = 1,

but asymmetric normalizations are more common in empirical work. The uncentred SDF method

is usually combined with the asymmetric normalization (1;b=a) in (E10), implemented in terms

of the parameterization � = �b=a, which gives rise to the in�uence functions24 r (1� f 0�)
f (1� f 0�)

35 ;
while the in�uence functions of the centred SDF method that imposes the asymmetric normal-

ization (1;b=c) in (E11) become 26664
r
�
1� (f � �)0 �

�
f
�
1� (f � �)0 �

�
f � �

37775
with � = �b=c.

In all these methods the number of degrees of freedom of the corresponding J tests is n

regardless of the number of factors k. The Jensen�s alphas and pricing errors of excess returns

r are de�ned by E (r)�BE (f), E (r)� E
�
rf 0
�
�, and E(r)�E

�
r (f � �)0

�
� , respectively.

Non-traded factors

Condition (E9) with a unique (up to scale) valid SDF a+ f 0b is equivalent to both � and

B belonging to the span of some n� k matrix that we can denote as

P =
�
'1 � � � 'k

�
;

which has full column rank. Assuming that the number of assets exceeds the number of factors

(n > k) to ensure that the linear factor pricing model imposes testable restrictions on asset

returns, we can impose this implicit constraint on the intercepts and slopes of the regression of

r on a constant and f as follows:

� = �Pd = � ('1d1 + :::+'kdk) ;

B =
�
�1 � � � �k

�
=
�
c'1 � � � c'k

�
= cP:
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Therefore, we can evaluate the corresponding asset pricing model by means of the uncentred

SDF in�uence functions

gS (r; f ; a;b) =
�
r
�
a+ f 0b

��
; (E13)

the centred SDF in�uence functions

gC (r; f ; c;b;�) =

24 r �c+ (f � �)0 b�
f � �

35 (E14)

or the centred regression in�uence functions

gR (r; f ;P; c;d) =

24 r�P (cf � d)

vec ((r�P (cf � d)) f 0)

35 : (E15)

The SDF functions require some normalization in their implementation. A symmetrically

normalized version of the SDF approach would use the normalization a2+b0b = 1 or c2+b0b = 1,

while the centred regression would rely on the normalization c2 + d0d = 1. On the other hand,

asymmetric normalizations are more common in empirical work. Speci�cally, the uncentred SDF

method is usually combined with the asymmetric normalization (1;b=a) implemented in terms

of the parameterization � = �b=a, which gives rise to the in�uence functions�
r
�
1� f 0�

��
:

In turn, the in�uence functions of the centred SDF method that imposes the asymmetric nor-

malization (1;b=c) in (E11) become24 r �1� (f � �)0 ��
f � �

35 ;
with � = �b=c. Finally, the usual centred regression imposes (1;d=c) and relies on the in�uence

functions 24 r�B (f + {)

vec ((r�B (f + {)) f 0)

35 ;
where the parameters are ({;B), with { = �d=c. Alternatively, we can de�ne the vector � of

factor risk premia as E (r) = B�, so that � = { + �, and add the estimation of �. This yields26664
r�B (f � �+ �)

vec ((r�B (f � �+ �)) f 0)

f � �

37775 :
In any case, the degrees of freedom of the J test will be n � k. As for Jensen�s alphas and

pricing errors, they are de�ned by E (r) � B�, E (r) � E
�
rf 0
�
�, and E(r)�E

�
r (f � �)0

�
� ,

respectively.
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F Single-step methods: Continuously Updated GMM

Let fxtgTt=1 denote a strictly stationary and ergodic stochastic process, and de�ne h(xt;�)

as a vector of known functions of xt, where � is a vector of unknown parameters. The true

parameter value, �0, which we assume belongs to the interior of the compact set � � Rdim(�),

is implicitly de�ned by the (population) moment conditions:

E[h(xt;�
0)] = 0;

where the expectation is taken with respect to the stationary distribution of xt. In our context of

asset pricing models, xt = (f 0t ; r
0
t)
0 represents data on excess returns and factors, and � represents

the parameters of the speci�c model under evaluation.

GMM estimators minimize a speci�c norm �h0T (�)�T
�hT (�) of the sample moments �hT (�) =

T�1
PT
t=1 h(xt;�) de�ned by some weighting matrix �T . In overidenti�ed cases such as ours,

Hansen (1982) showed that if the long-run covariance matrix of the moment conditions S(�0) =

avar[
p
T�hT (�

0)] has full rank, then S�1(�0) will be the �optimal�weighting matrix, in the sense

that the di¤erence between the asymptotic covariance matrix of the resulting GMM estimator

and a GMM estimator based on any other norm of the same moment conditions is positive

semide�nite. Therefore, the optimal GMM estimator of � will be

�̂T = argmin
�2�

JT (�);

where

JT (�) = �h
0
T (�)S

�1 ��0� �hT (�):
This optimal estimator is infeasible unless we know S(�0), but under additional regularity

conditions, we can de�ne an asymptotically equivalent but feasible two-step optimal GMM esti-

mator by replacing S(�0) with an estimator ST (�) evaluated at some initial consistent estimator

of �0, _�T say. There is an extensive literature on heteroskedasticity and autocorrelation consis-

tent (HAC) estimators of long-run covariance matrices (see for example DeJong and Davidson

(2000) and the references therein). In practice, we can repeat this two-step procedure many

times to obtain iterated GMM estimators, although there is no guarantee that such a procedure

will converge, and in fact it may cycle around several values instead.

An alternative way to make the optimal GMM estimator feasible is by explicitly taking into

account in the criterion function the dependence of the long-run variance on the parameter
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values, as in the single-step CU-GMM estimator of Hansen, Heaton and Yaron (1996), which is

de�ned as

~�T = argmin
�2�

~JT (�);

where

~JT (�) = �h
0
T (�)S

�1
T (�)

�hT (�):

Peñaranda and Sentana (2012) discuss how to express the CU-GMM criterion in terms of

OLS output, which facilitates its optimization. Although this estimator is often more di¢ cult

to compute than two-step and iterated estimators, particularly in linear models, an important

advantage is that it is numerically invariant to normalization, bijective reparameterizations and

parameter-dependent linear transformations of the moment conditions, which will again prove

useful in our context. In contrast, these properties do not necessarily hold for two-step or iterated

GMM.

Newey and Smith (2004) highlight other important advantages of CU- over two-step GMM by

going beyond the usual �rst-order asymptotic equivalence results. They also discuss alternative

generalized empirical likelihood (GEL) estimators, such as empirical likelihood or exponentially-

tilted methods. In fact, Antoine, Bonnal and Renault (2006) study the Euclidean empirical

likelihood estimator, which is numerically equivalent to CU-GMM as far as � is concerned. Im-

portantly, it is straightforward to show that these GEL methods share the numerical invariance

properties of CU-GMM.

Our empirical application and simulation experiments will consider two-step, iterated and

CU-GMM. Under standard regularity conditions (see Hansen (1982) and Newey and MacFadden

(1994)),
p
T (�̂T � �0) and

p
T (~�T � �0) will be asymptotically distributed up to �rst-order as

the same normal random vector with zero mean and varianceh
D0(�0)S�1

�
�0
�
D(�0)

i�1
;

where D(�0) denotes the probability limit of the Jacobian of �hT (�) evaluated at �0. In our

empirical application, we replace D(�0) by @�hT (�̂T )=@�0 in the case of two-step and iterated

GMM estimators. In contrast, for the CU-GMM estimator ~�T we compute a consistent estimator

of D(�0) that takes into account that the weighting matrix S�1T (�) is not �xed in the criterion

function. Speci�cally, we estimate the asymptotic variance of ~�T ash
D0T (~�T )S

�1
T (
~�T )DT (~�T )

i�1
;

9



where

DT (~�T ) =
@�hT (~�T )

@�0
� 1
2

h
�h0T (~�T )S

�1
T (
~�T )
 Idim(h)

i @vec�ST (~�T )�
@�0

;

whose second term is nonzero in �nite samples but asymptotically negligible.

Finally, T � JT (�̂T ) and T � ~JT (~�T ) will be asymptotically distributed as the same chi-square

with dim (h) � dim (�) degrees of freedom if E[h (x;�)] = 0 holds, so that we can use those

statistics to compute overidentifying restrictions (J) tests. One could also use the GMM criterion

to obtain alternative t-ratios by computing distance metric tests of the null hypotheses that

every single element of � is 0 at a time.

G Additional Results

Lemma G1 Assume that the asset pricing models holds for r with a traded factor f such that
V (f) > 0 and E (r) 6= 0. Then the Jacobians of all the following moment conditions have full
column rank at the true parameter values:
1) The uncentred SDF moment conditions that rely on a symmetric normalization.
2) The centred SDF moment conditions that rely on a symmetric normalization.
3) The uncentred SDF moment conditions that rely on the asymmetric normalization (1; b=a).
4) The centred SDF moment conditions that rely on the asymmetric normalization (1; b=c).
5) The regression moment conditions.

Proof.

1) When we work with (1), (5) and a symmetric normalization, we need to study the behavior

of

E [x (sin + f cos )] ;

where we have de�ned x = (f; r0)0 to simplify the expressions.

In this case, the true value of the parameter is de�ned by

�
E (x) E (xf)

�0@ sin 

cos 

1A = 0;

while the Jacobian of the moment conditions with respect to  is

�
E (x) E (xf)

�0@ cos 

� sin 

1A :

These two linear combinations are orthogonal at the same  . Therefore, the Jacobian has

full column rank at the true value.

2) When we work with (2), (7) and a symmetric normalization, we need to study

E

24 x (sin � + (f � �) cos �)
f � �

35 :
10



Here, the true values of the parameters are � = E (f) and � given by

�
E (x) Cov (x;f)

�0@ sin �

cos �

1A = 0;

which make those moments equal to zero.

The Jacobian of the moment conditions with respect to (�; �) is24 E (x) (cos � + � sin �)� E (xf) sin � �E (x) cos �

0 �1

35 :
As � = E (f) at the true values, and the linear combination that de�nes the true � is orthogonal

to the combination that de�nes the �rst entry of the Jacobian

�
E (x) Cov (x;f)

�0@ cos �

� sin �

1A ;

the Jacobian must have full column rank because its �rst column cannot be zero.

3) When we work with (1), (5) and the asymmetric normalization (1; b=a), we need to study

E [x (1� �f)] :

The Jacobian of the moment conditions with respect to � is �E (xf), which has full column

rank because E (xf) 6= 0 since its last entry is E
�
f2
�
.

4) When we work with (2), (7) and the asymmetric normalization (1; b=c), we need to study

E

24 x (1� � (f � �))
f � �

35
Note that we can make the last moment condition equal to zero with � = E (f), while

simultaneously satisfying the pricing conditions with � = � cot �, as we saw in the proof of

point 2).

The Jacobian of the moment conditions with respect to (� ; �) is0@ E (x)�� E (xf) E (x) �

0 �1

1A ;

which has full column rank if and only if

E (x)�� E (xf) 6= 0:

At the true values, this condition becomes

Cov (x; f) 6= 0;
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which must hold since its last entry is V (f).

5) When we work with (9), we need to study the behavior of

E

240@ 1

f

1A
 (r� �f)
35 :

The Jacobian with respect to � is 0@ �E (f) I

�E
�
f2
�
I

1A ;

which has full column rank. �

Lemma G2 Assume that the asset pricing model holds for r with a nontraded factor f such
that V (f) > 0 and E (r) 6= 0. Then the Jacobians of all the following moment conditions have
full column rank at the true parameter values:
1) The uncentred SDF moment conditions that rely on a symmetric normalization.
2) The centred SDF moment conditions that rely on a symmetric normalization.
3) The centred regression moment conditions that rely on a symmetric normalization.

Proof.

1) When we work with (1) and a symmetric normalization, we need to study the behavior of

E [r (sin + f cos )] :

In this case, the true value of the parameter is de�ned by

�
E (r) E (rf)

�0@ sin 

cos 

1A = 0;

while the Jacobian of the moment conditions with respect to  is

�
E (r) E (rf)

�0@ cos 

� sin 

1A :

These two linear combinations are orthogonal at the same  . Therefore, the Jacobian has full

column rank at the true value.

2) When we work with (2) and a symmetric normalization, we need to study

E

24 r (sin � + (f � �) cos �)
f � �

35 :
Thus, the true value of the parameters of the symmetrically normalized centred SDF are

de�ned by �
E (r) Cov (r;f)

�0@ sin �

cos �

1A = 0;
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and � = E (f), which make those moments equal to zero.

The Jacobian of the moment conditions with respect to (�; �) is24 E (r) (cos � + � sin �)� E (rf) sin � �E (r) cos �

0 �1

35 :
As � = E (f) at the true values, the linear combination that de�nes the true � is orthogonal to

the combination that de�nes the �rst entry of the Jacobian at the true values

�
E (r) Cov (r;f)

�0@ cos �

� sin �

1A :

Therefore, the Jacobian must have full column rank because it �rst column cannot be zero.

3) When we work with (3) and a symmetric normalization, we need to study the behavior of

E

240@ 1

f

1A
 (r+' (cos#� sin#f))
35 :

The Jacobian of the moment conditions with respect to ('; #) is0@ (cos#� sin#E (f)) I �' (sin#+ cos#E (f))�
cos#E (f)� sin#E

�
f2
��
I �'

�
sin#E (f) + cos#E

�
f2
��
1A ;

which has full column rank because ' 6= 0 and������
0@ cos#� sin#E (f) sin#+ cos#E (f)

cos#E (f)� sin#E
�
f2
�
sin#E (f) + cos#E

�
f2
�
1A������ = V (f) > 0:

�

Lemma G3 Assume that the asset pricing models holds for r with a nontraded factor f such
that V (f) > 0 and E (r) 6= 0. Then
1) The Jacobians of the uncentred and centred SDF moment conditions that rely on the asymmet-
ric normalizations (a=b; 1) and (c=b; 1), respectively, have full column rank at the true parameter
values.
2) The Jacobian of the uncentred SDF moment conditions that rely on the asymmetric normal-
ization (1; b=a) has full column rank at the true parameter values if and only if the factor is not
orthogonal to the vector of excess returns. When E(rf) = 0, the iterated GMM criterion func-
tion fails to identify � in the population, while the CU criterion function goes to 0 as ��1 ! 0.
3) The Jacobian of the centred SDF moment conditions that rely on the asymmetric normaliza-
tion (1; b=c) has full column rank at the true parameter values if and only if the factor is not
uncorrelated with the vector of excess returns. When Cov(r;f) = 0, both the CU and iterated
GMM criterion functions converge to 0 in the population as �! E(f) and � (E (f)� �)! 1.
4) The Jacobian of the centred regression moment conditions that rely on the asymmetric nor-
malization (1; d=c) has full column rank at the true parameter values if and only if the factor is
not uncorrelated with the vector of excess returns. When Cov(r;f) = 0, both the CU and iterated
GMM criterion functions converge to 0 in the population as � ! 0 and �{ ! E (r).
5) The Jacobian of the centred regression moment conditions that rely on the asymmetric
normalization (c=d; 1) has full column rank at the true parameter values if and only if the
least squares projection of r onto the span of (1; f) is not proportional to f . When E (r) �
Cov (r;f)E (f) =V (f) = 0, both the CU and iterated GMM criterion functions converge to 0 in
the population as �! 0 and �� ! Cov (r;f) =V (f).
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Proof.

1) When we work (1) and the asymmetric normalization (a=b; 1), we need to study the

behavior of

E [r (a+ f)] :

The Jacobian of the moment conditions with respect to a is E (r), which is nonzero by assump-

tion.

For the centred SDF (2) and the asymmetric normalization (c=b; 1), the relevant moments

are

E

24 r (c+ (f � �))
f � �

35 :
The Jacobian of these moment conditions with respect to (c; �) is0@ E (r) �E (r)

0 �1

1A ;

which has full column rank because E (r) 6= 0 by assumption.

2) When we work with (1) and the asymmetric normalization (1; b=a), we need to study the

behavior of

E [r (1� �f)] :

The true value of � is �b=a from (1) whenever the true a is not zero. In this regard, a = 0

if and only if E (rf) = 0. In that case, the standard GMM criterion becomes

E (r)0WE (r)

in the population for any positive de�nite weighting matrixW. Since this expression does not

depend on �, it cannot be zero. In contrast, assuming i:i:d: data for simplicity, the CU criterion

becomes

E (r)0 [V [r (1� �f)]]�1E (r) = 1

�2
E (r)0

�
V

�
r

�
1

�
� f

����1
E (r) ;

which converges to zero as ��1 ! 0.

Finally, the Jacobian of the moment conditions with respect to � is �E (rf), which has full

column rank if and only if E (rf) 6= 0.

3) When we work with (2) and the asymmetric normalization (1; b=c), we need to study the

behavior of

E

24 r (1� � (f � �))
f � �

35 :
14



We can make the last moment condition equal to zero with � = E (f), and simultaneously

satisfy the pricing conditions with ���1 = a=b+ E (f) whenever a=b+ E (f) 6= 0.

Let us now study the case of a=b+ E (f) = 0, which is equivalent to Cov (r;f) = 0. In this

case, the moments become 24 E (r) (1� � (E (f)� �))

E (f)� �

35 ;
which can be made arbitrarily close to zero by choosing

�! E (f) ; � (E (f)� �)! 1:

This would make the standard GMM criterion close to zero in the population for any posi-

tive de�nite weighting matrix. Nevertheless, note the discontinuity of the criterion function,

which becomes strictly positive at � = E(f) because the moments evaluated at that value are�
E (r)0 ; 0

�0
.

Assuming i:i:d:data for simplicity, the CU criterion can expressed as0@ E (rm)

E (u)

1A0 24 V (rm) Cov (rm;u)

Cov (u; rm) V (u)

35�10@ E (rm)

E (u)

1A ;

with u = f � �, or equivalently as

E (rm)0 [V (rm)]�1E (rm) +

h
E (u)� Cov (u; rm) [V (rm)]�1E (rm)

i2
V (u)� Cov (u; rm) [V (rm)]�1Cov (rm;u)

:

If we write m = �m with m = (1=�)� (f � �), we can express the CU criterion as

E (rm)0 [V (rm)]�1E (rm) +

h
E (u)� Cov (u; rm) [V (rm)]�1E (rm)

i2
V (u)� Cov (u; rm) [V (rm)]�1Cov (rm; u)

:

If we take the limits �E [u]! 1 and �! E (f) then the above expressions are well de�ned, and

the criterion converges to zero because E (rm) = E (r)E (m)! 0 and E (u)! 0.

Finally, the Jacobian of the moment conditions with respect to (� ; �) is0@ E (r)�� E (rf) E (r) �

0 �1

1A ;

which has full column rank if and only if

E (r)�� E (rf) 6= 0:

In the special case Cov (r;f) = 0, the �rst column of the Jacobian would converge to zero, and

the second one would have unbounded entries.
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4) When we work with (3) and the asymmetric normalization (1; d=c), we need to study the

behavior of

E

240@ 1

f

1A
 (r� � (f + {))
35 :

The true parameters must satisfy

E (r) = � ({ + E (f)) ;

E (rf) = �
�
{E (f) + E

�
f2
��
;

which means that { = �
�
E (f) a=b+ E

�
f2
��
= (a=b+ E (f)) and � 6= 0 whenever a=b+E (f) 6=

0.

Now let us study the case of a=b+ E (f) = 0, which is equivalent to Cov (r;f) = 0. In that

case, the moments

E (r)� � ({ + E (f)) ;

E (r)E (f)� �
�
{E (f) + E

�
f2
��

can be made arbitrarily close to zero by choosing

� ! 0; �{ ! E (r) :

This would make the standard GMM criterion close to zero in the population for any positive

de�nite weighting matrix. Again, note the discontinuity of the criterion function, which becomes

strictly positive at � = 0 because the moments evaluated at that value are
�
E (r)0 ; E (r)0E (f)

�0
.

Assuming i:i:d: data for simplicity, the CU criterion converges to

E

240@ 1

f

1A
 "
350 24V

240@ 1

f

1A
 "
3535�1E

240@ 1

f

1A
 "
35 :

where " = r�E (r). This is a quadratic form in a zero vector with a de�nite positive weighting

matrix, which implies that the CU criterion also converges to zero.

The Jacobian of the moment conditions with respect to (�;{) is0@ � ({ + E (f)) I ��

�
�
{E (f) + E

�
f2
��
I ��E (f)

1A ;

which, given that ������
0@ { + E (f) 1

{E (f) + E
�
f2
�

E (f)

1A������ = �V (f) ;
16



has full column rank if and only if � 6= 0. Therefore, the Jacobian is ill-behaved when

Cov (r;f) = 0.

5) When we work with (3) and the asymmetric normalization (c=d; 1), we need to study the

behavior of

E

240@ 1

f

1A
 (r� � (1 + �f))
35 ;

where � = �c=d. The true parameters must satisfy

E (r) = � (1 + �E (f)) ;

E (rf) = �
�
E (f) + �E

�
f2
��
;

which means that � = � (a=b+ E (f)) =
�
E (f) a=b+ E

�
f2
��
and � 6= 0 whenever E (f) a=b +

E
�
f2
�
6= 0.

Let us study now the case of E (f) a=b+ E
�
f2
�
= 0. The pricing condition (1) becomes

E (r) = E (rf)
E (f)

E (f2)
= Cov (r;f)

E (f)

V (f)
;

which means that the nontraded factor satis�es the same pricing condition as a traded factor.

In this special case, the moments

E (r)� � (1 + �E (f)) ;

E (rf)� �
�
E (f) + �E

�
f2
��
;

can be made arbitrarily close to zero by choosing

�! 0; �� ! Cov (r;f) =V (f) :

This would make the standard GMM criterion close to zero in the population for any positive

de�nite weighting matrix. Assuming i:i:d: data for simplicity, the CU criterion converges to

E

240@ 1

f

1A
 �
350 24V

240@ 1

f

1A
 �
3535�1E

240@ 1

f

1A
 �
35 ;

where � = r�fCov (r;f) =V (f). This is a quadratic form in a zero vector with a de�nite positive

weighting matrix, which means that the CU criterion also converges to zero.

The Jacobian with respect to (�; �) is0@ � (1 + �E (f)) I ��E (f)

�
�
E (f) + �E

�
f2
��
I ��E

�
f2
�
1A ;
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which has full column rank if and only if � 6= 0 in view of the fact that������
0@ 1 + �E (f) E (f)

E (f) + �E
�
f2
�

E
�
f2
�
1A������ = V (f) :

Therefore, the Jacobian is ill-behaved when E (r) = E (rf)E (f) =E
�
f2
�
. �

Lemma G4 Assume that the asset pricing model holds for r with a traded factor f1 and a
nontraded factor f2 such that the linear span of (1; f1; f2) is of dimension 3, E (r) 6= 0 and
E (r) 6= E (rf1)E (f1) =E

�
f21
�
. Then the Jacobians of all the following moment conditions have

full column rank at the true parameter values:
1) The uncentred SDF moment conditions that rely on a symmetric normalization.
2) The centred SDF moment conditions that rely on a symmetric normalization.
3) The centred regression moment conditions that rely on a symmetric normalization.

Proof.

1) When we work with (A1) and a symmetric normalization, the true parameters are de�ned

by the linear combination

M

0BBB@
sin 1

cos 1 sin 2

cos 1 cos 2

1CCCA = 0;

where

M =

0@ E (r) E (rf1) E (rf2)

E (f1) E
�
f21
�

E (f1f2)

1A :

The matrixM has rank 2 under the assumptions of the lemma, and hence the moment conditions

above identify a unique ( 1;  2).

The Jacobian is given by two di¤erent linear combinations

M

0BBB@
cos 1 0

� sin 1 sin 2 cos 1 cos 2

� sin 1 cos 2 � cos 1 sin 2

1CCCA :

Since these linear combinations are orthogonal to the ones that de�ne the true parameters, the

Jacobian will have rank 2 at those values.

2) Let us de�ne the matrix

N (�) =

0@ E (r) E (ru1) E (ru2)

E (f1) E (f1u1) E (f1u2)

1A ;

18



where ui = fi � �i for i = 1; 2. When we work with (A2) and a symmetric normalization, the

true parameters are de�ned by � = E (f) and the linear combination

N [E (f)]

0BBB@
sin �1

cos �1 sin �2

cos �1 cos �2

1CCCA = 0:

The true values are unique because N [E (f)] has rank 2 under the assumptions of the lemma.

The Jacobian is given by0@ N [E (f)]A (�1; �2) N [E (f)]B (�1; �2)

0 �I

1A ;

where

A (�1; �2) =

0BBB@
cos �1 0

� sin �1 sin �2 cos �1 cos �2

� sin �1 cos �2 � cos �1 sin �2

1CCCA ;

B (�1; �2) =

0BBB@
� cos �1 sin �2 � cos �1 cos �2

0 0

0 0

1CCCA :

The Jacobian has rank 4 if and only if N [E (f)]A (�1; �2) has in turn rank 2. But since this

matrix is given by two linear combinations of N [E (f)] that are orthogonal to each other, and

orthogonal to the linear combination that de�nes the true parameters, it has indeed has rank 2.

3) When we work with (A3) and the symmetric normalization

(c; d;';�1) = (sin#; cos#;';�1) ;

the true values must satisfy

E (r)� �1E (f1) +' [cos#� E (f2) sin#] = 0;

E (rf1)� �1E
�
f21
�
+' [E (f1) cos#� E (f1f2) sin#] = 0;

E (rf2)� �1E (f1f2) +'
�
E (f2) cos#� E

�
f22
�
sin#

�
= 0:

The Jacobian of the moments with respect to (�1;'; #) is0BBB@
�E (f1) I (cos#� E (f2) sin#) I � (sin#+ E (f2) cos#)'

�E
�
f21
�
I (E (f1) cos#� E (f1f2) sin#) I � (E (f1) sin#+ E (f1f2) cos#)'

�E (f1f2) I
�
E (f2) cos#� E

�
f22
�
sin#

�
I �

�
E (f2) sin#+ E

�
f22
�
cos#

�
'

1CCCA ;
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which has full column rank under the assumptions of the lemma because ' 6= 0 and���������

0BBB@
�E (f1) cos#� E (f2) sin# � (sin#+ E (f2) cos#)

�E
�
f21
�

E (f1) cos#� E (f1f2) sin# � (E (f1) sin#+ E (f1f2) cos#)

�E (f1f2) E (f2) cos#� E
�
f22
�
sin# �

�
E (f2) sin#+ E

�
f22
�
cos#

�
1CCCA
���������

=
�
E2 (f1f2)� E

�
f21
�
E
�
f22
��
+
�
E
�
f22
�
E2 (f1) + E

�
f21
�
E2 (f2)� 2E (f1f2)E (f1)E (f2)

�
= �

��E �yy0��� ; y = (1; f1; f2) :

�

Lemma G5 Assume that the asset pricing model holds for r with a traded factor f1 and a
nontraded factor f2 such that the linear span of (1; f1; f2) is of dimension 3, E (r) 6= 0 and
E (r) 6= E (rf1)E (f1) =E

�
f21
�
. Then

1) The Jacobian of the uncentred SDF moment conditions that rely on the asymmetric nor-
malization (1; b1=a; b2=a) has full column rank at the true parameter values if and only if the
residual of the uncentred regression of f2 onto f1 is not orthogonal to the vector of excess re-
turns. When E (rf2) = E (rf1)E (f1f2) =E

�
f21
�
, the iterated GMM criterion function fails to

identify (�1; �2) in the population, while the CU criterion function goes to 0 as ��12 ! 0 and
�1=�2 ! �E (f1f2) =E

�
f21
�
.

2) The Jacobian of the centred SDF moment conditions that rely on the asymmetric normal-
ization (1; b1=c; b2=c) has full column rank at the true parameter values if and only if the resid-
ual of the centred regression of f2 onto f1 is not uncorrelated with the vector of excess re-
turns. When Cov (r;f2) = Cov (r;f1)Cov (f1; f2) =V (f1), both the CU and iterated GMM cri-
terion functions converge to 0 in the population as � ! E (f), while � 0 (E (f)� �) ! 1 and
�1=�2 ! �Cov (f1; f2) =V (f1).
3) The Jacobian of the centred regression moment conditions that rely on the asymmetric nor-
malization (1; d=c) has full column rank at the true parameter values if and only if the residual
of the centred regression of f2 onto f1 is not uncorrelated with the vector of excess returns.
When Cov (r;f2) = Cov (r;f1)Cov (f1; f2) =V (f1), both the CU and iterated GMM criterion
functions converge to 0 in the population as �2 ! 0 and �2{ ! E (r) � �1E (f1), jointly with
�1 ! Cov (r;f1) =V (f1).

Proof.

1) When we work with (A1) and the asymmetric normalization (1; b1=a; b2=a), we need to

study the behavior of 0@ E (r) E (rf1) E (rf2)

E (f1) E
�
f21
�

E (f1f2)

1A
0BBB@

1

��1
��2

1CCCA :

The Jacobian of these moments with respect to (�1; �2) is equal to

�

0@ E (rf1) E (rf2)

E
�
f21
�

E (f1f2)

1A ;
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which does not necessarily have rank 2 under the assumptions of the lemma. The necessary and

su¢ cient condition for rank 2 is

E (rf2) 6= E (rf1)
E (f1f2)

E
�
f21
� :

When E (rf2) = E (rf1)E (f1f2) =E
�
f21
�
, the moment conditions (A1) collapse to

E (r) a+ E (rf1)

 
b1 +

E (f1f2)

E
�
f21
� b2! = 0;

E (f1) a+ E
�
f21
� 

b1 +
E (f1f2)

E
�
f21
� b2! = 0;

which cannot be zero at any nonzero vector
�
a; b1 + b2E (f1f2) =E

�
f21
��
due to the assumptions

of the lemma. Hence the true parameter values must satisfy

a = 0; b1 +
E (f1f2)

E
�
f21
� b2 = 0:

In contrast, if we turn to the asymmetric normalization, the moments collapse to2664 E (r)� E (rf1)
�
�1 +

E(f1f2)

E(f21 )
�2

�
E (f1)� E

�
f21
��

�1 +
E(f1f2)

E(f21 )
�2

�
3775

and hence a standard GMM criterion with a �xed weighting matrix cannot be zero in the popula-

tion. Moreover, any values for the pair (�1; �2) which give rise to the same �1+�2E (f1f2) =E
�
f21
�

yield the same value of the criterion.

Assuming i:i:d: data for simplicity, the CU criterion has a weighting matrix equal to the

inverse of

V

240@ r

f1

1A (1� �1f1 � �2f2)
35 = �22V

240@ r

f1

1A� 1
�2
� �1
�2
f1 � f2

�35 :
Similarly we can express the moments as

�2

2664 E (r) 1�2 � E (rf1)
�
�1
�2
+ E(f1f2)

E(f21 )

�
E (f1)

1
�2
� E

�
f21
��

�1
�2
+ E(f1f2)

E(f21 )

�
3775 :

Therefore, the CU criterion will converge to zero if we take the limits

1

�2
! 0;

�1
�2
! �E (f1f2)

E
�
f21
� :
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2) When we work with (A2) and the asymmetric normalization (1; b1=c; b2=c), we need to

study 0BBBBBB@
0@ E (r) E (ru1) E (ru2)

E (f1) E (f1u1) E (f1u2)

1A
0BBB@

1

��1
��2

1CCCA
E (f)� �

1CCCCCCA ;

where ui = fi � �i for i = 1; 2.

There is a well-behaved mapping from these asymmetrically normalized parameters to the

ones in (A2) with a symmetric normalization whenever Cov (r;f2) 6= Cov (r;f1)Cov (f1; f2) =V (f1).

Let us now study the problematic case of Cov (r;f2) = Cov (r;f1)Cov (f1; f2) =V (f1). If we

evaluate the moments (A2) at � = E (f), then we can make the last two moments equal to zero,

so that we can focus on the pricing conditions, which collapse to

E (r) c+ Cov (r;f1)

�
b1 +

Cov (f1; f2)

V (f1)
b2

�
= 0;

E (f1) c+ V (f1)

�
b1 +

Cov (f1; f2)

V (f1)
b2

�
= 0:

These conditions cannot be zero at any nonzero vector (c; b1 + b2Cov (f1; f2) =V (f1)) due to the

assumptions of the lemma. Hence the true parameter values must satisfy

c = 0; b1 +
Cov (f1; f2)

V (f1)
b2 = 0:

However, if we turn to the asymmetric normalization, its moments collapse to26666664
E (r) [1� �1 (E (f1)� �1)� �2 (E (f2)� �2)]� Cov (r;f1)

h
�1 +

Cov(f1;f2)
V (f1)

�2

i
E (f1) [1� �1 (E (f1)� �1)� �2 (E (f2)� �2)]� V (f1)

h
�1 +

Cov(f1;f2)
V (f1)

�2

i
E (f1)� �1
E (f2)� �2

37777775
in this special case. These moments can be made arbitrarily close to zero by choosing

�! E (f) ; � 0 (E (f)� �)! 1;
�1
�2
! �Cov (f1; f2)

V (f1)
:

This would make the standard GMM criterion close to zero in the population for any positive

de�nite weighting matrix. Once again, note the discontinuity of the criterion at � = E (f)

because the pricing conditions cannot be zero at that value of �, which renders the criterion

strictly positive.
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Assuming i:i:d: data for simplicity, the CU criterion can expressed as0@ E (xm)

E (u)

1A0 24 V (xm) Cov (xm;u)

Cov (u;xm) V (u)

35�10@ E (xm)

E (u)

1A ;

where x = (f1; r0)
0 and u = E (f)� �, or equivalently as

E (xm)0 [V (xm)]�1E (xm)

+
h
E (u)� Cov (u;xm) [V (xm)]�1E (xm)

i0
�
h
V (u)� Cov (u;xm) [V (xm)]�1Cov (xm;u)

i�1 h
E (u)� Cov (u;xm) [V (xm)]�1E (xm)

i
:

If we write m = �2m with m = (1=�2) � (�1=�2) (f1 � �1) � (f2 � �2), we can express the

CU criterion as

E (xm)0 [V (xm)]�1E (xm)

+
h
E (u)� Cov (u;xm) [V (xm)]�1E (xm)

i0
�
h
V (u)� Cov (u;xm) [V (xm)]�1Cov (xm;u)

i�1 h
E (u)� Cov (u;xm) [V (xm)]�1E (xm)

i
:

Now, if we take again the limits

�! E (f) ; � 0 (E (f)� �)! 1;
�1
�2
! �Cov (f1; f2)

V (f1)
:

then the above expressions are well de�ned and the CU criterion converges to zero as E (xm)! 0

and E (u)! 0.

Finally, the Jacobian of the moments with respect to (�1; �2; �1; �2) is0BBB@ �

0@ E (ru1) E (ru2)

E (f1u1) E (f1u2)

1A 0@ �1E (r) �2E (r)

�1E (f1) �2E (f1)

1A
0 �I

1CCCA :

This matrix is ill-behaved in the previous limit because there is a rank failure in the �rst two

columns, while the last two columns would have unbounded entries.

3) When we work with (A3) and the asymmetric normalization

(1; d=c;';�1) = (1;�{;�2;�1) ;

the true parameters must satisfy

E (r) = �1E (f1) + �2 ({ + E (f2)) ;

E (rf1) = �1E
�
f21
�
+ �2 ({E (f1) + E (f2f1)) ;

E (rf2) = �1E (f2f1) + �2
�
{E (f2) + E

�
f22
��
:
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These true parameters are related to (A1) by

{ = �
�
aE (f2) + b1E (f2f1) + b2E

�
f22
��
= (a+ b1E (f1) + b2E (f2))

whenever a+ b1E (f1) + b2E (f2) 6= 0. We will also have �2 6= 0 in those circumstances.

Let us now study the problematic case a + b1E (f1) + b2E (f2) = 0, which we know is

equivalent to Cov (r;f2) = Cov (r;f1)Cov (f1; f2) =V (f1) : In that case, the moments (A3) with

the asymmetric normalization become

E (r)� �1E (f1)� �2 ({ + E (f2)) ;

[Cov (r;f1) + E (r)E (f1)]

��1
�
V (f1) + E

2 (f1)
�
� �2 ({E (f1) + [Cov (f2; f1) + E (f2)E (f1)]) ;

[Cov (r;f1)Cov (f1; f2) =V (f1) + E (r)E (f2)]

��1 [Cov (f2; f1) + E (f2)E (f1)]� �2
�
{E (f2) +

�
V (f2) + E

2 (f2)
��
;

which can be made arbitrarily close to zero by choosing

�2 ! 0; �2{ ! E (r)� �1E (f1) ; �1 ! Cov (r;f1) =V (f1) :

This limit would make the standard GMM criterion close to zero in the population for any

positive de�nite weighting matrix. But since the moment conditions cannot be zero when �2 =

0, the criterion function will be strictly positive at that value, which results once more in a

discontinuity.

Assuming i:i:d: data for simplicity, the CU criterion converges to

E

240@ 1

f

1A
 "
350 24V

240@ 1

f

1A
 "
3535�1E

240@ 1

f

1A
 "
35 :

where " = (r� E(r))� (f1 � E (f1))Cov (r;f1) =V (f1). This criterion is a quadratic form in a

zero vector with a de�nite positive weighting matrix. Hence the CU criterion also goes to zero

along the previously de�ned limits.

Nevertheless, the Jacobian of the moments with respect to (�1;�2;{)0BBB@
�E (f1) I � (E (f2) + {) I ��2
�E

�
f21
�
I � (E (f1f2) + {E (f1)) I ��2E (f1)

�E (f1f2) I �
�
E
�
f22
�
+ {E (f2)

�
I ��2E (f2)

1CCCA
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does not necessarily have rank 2n+ 1 under the assumptions of the lemma. The necessary and

su¢ cient condition for rank 2n+ 1 is �2 6= 0 because the determinant���������

0BBB@
�E (f1) � (E (f2) + {) �1

�E
�
f21
�

� (E (f1f2) + {E (f1)) �E (f1)

�E (f1f2) �
�
E
�
f22
�
+ {E (f2)

�
�E (f2)

1CCCA
���������

=
�
E2 (f1f2)� E

�
f21
�
E
�
f22
��
+
�
E
�
f22
�
E2 (f1) + E

�
f21
�
E2 (f2)� 2E (f1f2)E (f1)E (f2)

�
= �

��E �yy0��� ; y = (1; f1; f2) :

is di¤erent from zero under the assumptions of the lemma. Therefore, this Jacobian is ill-behaved

in the special case Cov (r;f2) = Cov (r;f1)Cov (f1; f2) =V (f1). �

Lemma G6 Assume that the asset pricing models holds for r with a traded or nontraded factor
f such that V (f) > 0 and E (r) 6= 0. Then, when we add a gross return, the Jacobians of all
the following moment conditions have full column rank at the true parameter values:
1) The uncentred SDF moment conditions that rely on a symmetric normalization.
2) The centred SDF moment conditions that rely on a symmetric normalization.
3) The regression moment conditions when f is traded, and the centred regression moment
conditions that rely on a symmetric normalization when f is nontraded.

Proof.

1) If the factor is nontraded then we need to study

E

24 r (sin + f cos )

R (sin + f cos )� q;

35
when we work with (1), (B7) and a symmetric normalization. Here the true value of the para-

meters are de�ned by �
E (r) E (rf)

�0@ sin 

cos 

1A = 0;

and q = E [R (sin + f cos )].

The Jacobian of the moment conditions with respect to ( ; q) is0BBBBBB@
�
E (r) E (rf)

�0@ cos 

� sin 

1A 0

�
E (R) E (Rf)

�0@ cos 

� sin 

1A �1

1CCCCCCA :

This matrix has full column rank if and only if the �rst column is not proportional to the

second one. This is the case at the true values because the upper block of the �rst column

cannot be zero following the argument of the proof of point 1) in Lemma G2.
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If the factor is a traded excess return then similar arguments apply with x = (f; r0)0 instead

of r.

2) If the factor is nontraded then we need to study

E

26664
r (sin � + (f � �) cos �)

f � �

R (sin � + (f � �) cos �)� q

37775
when we work with (2), (B8) and a symmetric normalization. In this case, the true value of the

parameters of the symmetrically normalized version of the centred SDF are de�ned by the same

� as in the proof of point 2) in Lemma G2, � = E (f) and q = E [R (sin � + (f � �) cos �)].

The Jacobian of the moment conditions with respect to (�; �; q) is26664
E (r) (cos � + � sin �)� E (rf) sin � �E (r) cos � 0

0 �1 0

E (R) (cos � + � sin �)� E (Rf) sin � �E (R) cos � �1

37775 :
Thus, the Jacobian has full column rank at the true values because the upper block of the �rst

column cannot be zero following the argument of the proof of point 2) in Lemma G2.

If the factor is a traded excess return then similar arguments apply with x = (f; r0)0 instead

of r.

3) If the factor is nontraded then we need to study

E

26666664

0@ 1

f

1A
 (r+' (cos#� sin#f))0@ 1

f

1A
 (R� �R � �Rf)

37777775
when we work with the normal equations of the two projections (3) and (A6), and (3) is sym-

metrically normalized.

In this case, the Jacobian is block diagonal because we have a separation of parameters

between the excess returns conditions and the gross return conditions. We prove in point 3)

of Lemma G2 that the block corresponding to the excess returns has full column rank. This

is also the case for the block corresponding to the gross return because it is derived from an

unrestricted least squares projection with V (f) > 0.

If the factor is traded then the residual of the �rst projection simpli�es to r��f and we do

not need a normalization. Therefore, the previous arguments are even easier to apply. �
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Lemma G7 Assume that the asset pricing models holds for r with a nontraded factor f such
that V (f) > 0 and E (r) 6= 0. Then, when we add a gross return
1) The Jacobian of the uncentred SDF moment conditions that rely on the asymmetric normal-
ization (1; b=a) and (B7) has full column rank at the true parameter values if and only if the
factor is not orthogonal to the vector of excess returns. When E(rf) = 0, the iterated GMM
criterion function fails to identify (�; q) in the population, while the CU criterion function goes
to 0 as ��1 ! 0 and q=� ! �E (Rf).
2) The Jacobian of the centred SDF moment conditions that rely on the asymmetric normaliza-
tion (1; b=c) and (B8) has full column rank at the true parameter values if and only if the factor
is not uncorrelated with the vector of excess returns. When Cov(r;f) = 0, both the CU and iter-
ated GMM criterion functions converge to 0 in the population as �! E(f), � (E (f)� �)! 1
and q=� ! �Cov (R; f).
3) The Jacobian of the centred regression moment conditions that rely on the estimation of
(�;{; �R;{R) has full column rank at the true parameter values if and only if the factor is not
uncorrelated with the vector of excess returns. When Cov(r;f) = 0, both the CU and iterated
GMM criterion functions converge to 0 in the population as � ! 0 and �{ ! E (r), jointly
with �R ! Cov (R; f) =V (f) and {R + �R{ ! E (R)� �RE (f).
4) The Jacobian of the uncentred SDF moment conditions that rely on (A4) and estimates (a; b)
directly has full column rank at the true parameter values if and only if the SDFs that price r
assign a nonzero cost to R. When aE (R)+ bE (Rf) = 0 along the same direction in (a; b) space
as aE (r) + bE (rf) = 0, the iterated GMM criterion function cannot be equal to zero in the

population, while the CU criterion function goes to 0 as
�
a2 + b2

��1=2 ! 0 along the common
direction.
5) The Jacobian of the centred SDF moment conditions that rely on (A5) and estimates (c; b; �)
directly has full column rank at the true parameter values if and only if the SDFs that price r
assign a nonzero cost to R. When cE (R) + bCov (R; f) = 0 along the same direction in (c; b)
space as cE (r)+ bCov (r;f) = 0, the iterated GMM criterion function cannot be equal to zero in

the population, while the CU criterion function goes to 0 as
�
c2 + b2

��1=2 ! 0 along the common
direction.

Proof.

1) When we work with (1), (B7) and the asymmetric normalization (1; b=a), we need to

study

E

0@ r (1� �f)

R (1� �f)� q

1A ;

with parameters (�; q). In this context, we �nd that the true parameter values in (1) and (B7)

are � = �b=a and q = E (R (1 + (a=b) f)) for both standard and CU-GMM whenever a 6= 0.

On the other hand, a = 0 if and only if E (rf) = 0. In that special case, the moments

collapse to 0@ E (r)

E (R)� E (Rf) � � q

1A
and we have a problem of identi�cation with standard GMM. However, CU is invariant to

dividing the moments by � 0@ 1
�E (r)

1
�E (R)� E (Rf)�

q
�

1A
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and we can see that we can make the CU criterion arbitrarily close to 0 by choosing ��1 ! 0

and q=� ! �E (Rf).

The Jacobian of the moment conditions with respect to (�; q)0@ �E (rf) 0

�E (Rf) �1

1A
has full column rank if and only if E (rf) 6= 0, like in the full rank case without a gross return.

2) When we work with (2), (B8) and the asymmetric normalization (1; b=c), we need to study

E

0BBB@
r (1� � (f � �))

f � �

R (1� � (f � �))� q

1CCCA ;

with parameters (� ; q). We can make the second moment condition equal to zero with � =

E (f), and simultaneously satisfy the pricing conditions with ���1 = a=b + E (f) and q =

E [R (1 + (f � E (f)) = (a=b+ E (f)))] whenever a=b+ E (f) 6= 0 in (2) and (B8).

Now let us study the case of a=b+ E (f) = 0, which is equivalent to Cov (r;f) = 0. In this

case, the moments become 26664
E (r) (1� � (E (f)� �))

E (f)� �

E (R)� �E (R (f � �))� q

37775 ;
and they can be made arbitrarily close to zero by choosing

�! E (f) ; � (E (f)� �)! 1; q=� ! �Cov (R; f)

This would make the standard GMM criterion arbitrarily close to zero in the population for

any positive de�nite weighting matrix. Once again note the discontinuity of the criterion at

� = E (f).

Assuming i:i:d: data for simplicity, the CU criterion can expressed as0@ E (y)

E (u)

1A0 24 V (y) Cov (y;u)

Cov (u;y) V (u)

35�10@ E (y)

E (u)

1A ;

where y =
�
(r (1� � (f � �)))0 ; R (1� � (f � �))� q

�0
and u = E (f)� �, or equivalently as

E (y)0 [V (y)]�1E (y) +

h
E (u)� Cov (u;y) [V (y)]�1E (y)

i2h
V (u)� Cov (u;y) [V (y)]�1Cov (y;u)

i :
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We can write y = �z with

z =

0@ r
�
1
� � (f � �)

�
R
�
1
� � (f � �)

�
� q

�

1A
and express the CU criterion as

E (z)0 [V (z)]�1E (z) +

h
E (u)� Cov (u; z) [V (z)]�1E (z)

i2h
V (u)� Cov (u; z) [V (z)]�1Cov (z;u)

i :
If we take again the limits

�! E (f) ; � (E (f)� �)! 1; q=� ! �Cov (R; f)

then the above expressions are well de�ned and the criterion converges to zero as E (z)! 0 and

E (u)! 0. Therefore, the CU criterion also goes to zero.

The Jacobian of the moment conditions with respect to (� ; �; q) is0BBB@
E (r)�� E (rf) E (r) � 0

0 �1 0

E (R)�� E (Rf) E (R) � �1

1CCCA ;

which has full column rank if and only if

E (r)�� E (rf) 6= 0:

The Jacobian of the moment conditions is ill-behaved in the special case Cov (r;f) = 0

because the �rst column of the Jacobian would converge to zero, and the second would have

unbounded entries.

3) When we work with the normal equations of the two relevant projections (3), (A6) and

the symmetric normalization, we need to study

E

26666664

0@ 1

f

1A
 (r� � (f + {))0@ 1

f

1A
 (R� {R � �R (f + {))

37777775 :

In this context, the true parameters must satisfy

E (r) = � ({ + E (f)) ;

E (rf) = �
�
{E (f) + E

�
f2
��
;

E (R) = {R + �R ({ + E (f)) ;

E (Rf) = {RE (f) + �R
�
{E (f) + E

�
f2
��
:
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The last two equations are exactly identi�ed for ({R; �R) at a given { and trivially satis�ed

with V (f) > 0. Therefore, we can focus on the �rst two blocks, which were studied in point 4)

of Lemma G3. There we showed that there are �nite values of (�;{) that make the moments

equal to zero whenever Cov (r;f) 6= 0. In contrast�when Cov (r;f) = 0 then the moments

converge to zero if we choose

� ! 0; �{ ! E (r) :

Accordingly, in that case we need to choose

�R ! Cov (R; f) =V (f) ; {R + �R{ ! E (R)� �RE (f)

to make the last two moments close to zero simultaneously. This would make the standard

GMM criterion close to zero in the population for any positive de�nite weighting matrix. Once

again note the discontinuity of the criterion at � = 0.

Assuming i:i:d: data for simplicity, the CU criterion converges to

E

240@ 1

f

1A
 "
350 24V

240@ 1

f

1A
 "
3535�1E

240@ 1

f

1A
 "
35 :

where

" =

0@ r� E (r)

(R� E (R))� (f � E (f))Cov (R; f) =V (f)

1A :

This criterion is a quadratic form in a zero vector with a de�nite positive weighting matrix.

Hence the CU criterion also goes to zero.

Finally, the Jacobian with respect to (�;{; �R;{R) is0BBBBBB@
� ({ + E (f)) I �� 0 0

�
�
{E (f) + E

�
f2
��
I ��E (f) 0 0

0 ��R � ({ + E (f)) �1

0 ��RE (f) �
�
{E (f) + E

�
f2
��

�E (f)

1CCCCCCA ;

which has full column rank if and only if � 6= 0, the same condition as in point 4) of Lemma

G3.

4) When we work with (1) and (A4), we need to study

E

24 r (a+ bf)

R (a+ bf)� 1

35 :
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We know that (1) holds along a particular direction in (a; b) space, which means that there is

a vector (a; b) that makes the moments above equal to zero if and only if aE (R) + bE (Rf) 6= 0

along the same direction. Moreover, it is straightforward to prove that if this last condition is

satis�ed, the Jacobian with respect to (a; b)0@ E (r) E (rf)

E (R) E (Rf)

1A
will have full column rank.

On the other hand, when aE (R) + bE (Rf) = 0 along the direction in (a; b) space which

satis�es (1), then the standard GMM criterion cannot be equal to zero in the population. How-

ever, the CU criterion is invariant to reparameterizing and rescaling the in�uence functions.

Speci�cally, we can divide the in�uence functions by the norm of (a; b), which is always positive,

and thus obtain the symmetrically normalized in�uence functions in point 1) of Lemma G624 r (sin + f cos )

R (sin + f cos )� q;

35 ;
with q =

�
a2 + b2

��1=2. The corresponding criterion is zero at q = 0 but its Jacobian is not

singular at that value. Of course, this is also true for multi-step GMM based on those in�uence

functions parameterized in terms of ( ; q), but standard GMM is not invariant to rescaling the

in�uence functions, and hence the connection to the original in�uence functions in terms of (a; b)

is lost.

5) When we work with (2) and (A5), we need to study

E

26664
r (c+ b (f � �))

f � �

R (a+ b (f � �))� 1

37775 :
The second moment is trivially zero at � = E (f). In addition, we know that (2) holds along a

particular direction in (c; b) space because the linear factor pricing model holds for r. Therefore,

there is a vector (c; b) that satis�es the pricing conditions if and only if cE (R)+bCov (R;f) 6= 0,

which is equivalent to the condition aE (R) + bE (Rf) 6= 0 in point 4) above.

In fact, the Jacobian with respect to (c; b; �) is0BBB@
E (r) E (r (f � �)) �bE (r)

0 0 �1

E (R) E (R (f � �)) �bE (R)

1CCCA ;
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and hence the only possible rank failure is that the �rst two columns have rank one. That rank

depends on the last row since the remaining rows have rank one when (2) holds. Therefore, the

Jacobian has full column rank if and only if the condition cE (R) + bCov (R;f) 6= 0 holds.

On the other hand, when cE (R)+ bCov (R;f) = 0 along the same direction in (c; b) space as

(2) holds, then a standard GMM criterion cannot be equal to zero in the population. However,

the CU criterion is invariant to reparameterizations and rescaling of the in�uence functions.

Hence, we can divide the in�uence functions by the norm of (c; b), which must be di¤erent from

zero, and thus obtain the symmetrically normalized in�uence functions in point 2) of Lemma

G6 26664
r (sin � + (f � �) cos �)

f � �

R (sin � + (f � �) cos �)� q

37775
with q =

�
c2 + b2

��1=2. The corresponding criterion is zero at q = 0, and its Jacobian is not

singular. Of course, this is also true for the standard GMM based on those in�uence functions

if we work in terms of (�; �; q), but standard GMM is not invariant to rescaling the in�uence

functions, and hence the connection to the original in�uence functions in terms of (c; b; �) is lost.

�
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10 5 1

J tests

CU 11.64 5.12 0.64

Uncentred SDF - Symmetric normalization

Iterated 27.90 18.94 7.53

2S 21.89 13.57 4.88

Centred SDF - Symmetric normalization

Iterated 15.62 8.42 1.96

2S 22.51 14.04 4.68

Uncentred SDF - Asymmetric normalization

Iterated 70.61 60.56 39.59

2S 68.35 58.84 39.16

Centred SDF - Asymmetric normalization

Iterated 50.08 40.88 25.93

2S 57.07 47.09 28.73

Centred regression - Asymmetric normalization

Iterated 13.26 6.58 1.33

2S 15.93 8.23 1.84

CU DM tests of problematic cases

Uncorrelated f 66.97 57.81 37.54

Orthogonal f 29.30 20.63 8.87

Nominal size

Table C1: Rejection rates in the orthogonal factor design (T=50)

Note: This table displays the rejection rates of the J tests of each method by continuously

updated (CU), iterated and two-step (2S) GMM. The rates are shown in percentage for the

asymptotic critical values at 10, 5 and 1%. The table also displays the CU DM tests of an

uncorrelated factor and an orthogonal factor. 10000 samples of 8 excess returns are

simulated under the uncorrelated factor design. The only change with respect to the

baseline design is in the mean of f to obtain an orthogonal factor.



CU Iterated 2S

U. SDF C. SDF Reg U. SDF C. SDF Reg

Uncentred SDF - Asymmetric normalization (δ)

δ 4.826 4.534 2.606 4.330 4.455 2.290 3.616

Pricing error E(r)-E(rf)δ

1 -0.568 -0.675 -1.381 -0.750 -0.704 -1.497 -1.011

2 -0.172 -0.214 -0.495 -0.244 -0.226 -0.540 -0.348

3 -0.325 -0.350 -0.519 -0.368 -0.357 -0.547 -0.431

4 1.991 1.890 1.226 1.820 1.863 1.117 1.574

5 -0.099 -0.102 -0.123 -0.104 -0.103 -0.126 -0.112

6 0.039 0.024 -0.077 0.013 0.020 -0.093 -0.024

7 2.827 2.836 2.901 2.843 2.839 2.911 2.867

8 0.931 0.997 1.437 1.044 1.015 1.509 1.207

f -10.292 -9.245 -2.356 -8.519 -8.964 -1.226 -5.965

Centred SDF - Asymmetric normalization (τ)

τ 16.945 14.258 3.290 11.240 11.633 2.724 6.292

Pricing error E(r)-E(r(f-μ))τ

1 -1.994 -2.124 -1.744 -1.946 -1.839 -1.781 -1.760

2 -0.604 -0.675 -0.624 -0.633 -0.590 -0.643 -0.605

3 -1.14 -1.102 -0.655 -0.956 -0.933 -0.651 -0.750

4 6.989 5.944 1.548 4.724 4.864 1.329 2.739

5 -0.347 -0.321 -0.155 -0.271 -0.269 -0.150 -0.195

6 0.137 0.075 -0.097 0.034 0.051 -0.111 -0.042

7 9.924 8.921 3.662 7.380 7.414 3.464 4.989

8 3.267 3.137 1.814 2.709 2.651 1.796 2.100

f -36.133 -29.077 -2.974 -22.113 -23.409 -1.459 -10.38

Regression (μ)

μ 0.148 0.150 0.080 0.142 0.139 0.070 0.118

Pricing error E(r)-βE(f)

1 -1.283 -1.347 -2.157 -1.686 -1.666 -2.196 -1.394

2 -0.434 -0.442 -0.658 -0.545 -0.522 -0.687 -0.498

3 -0.728 -0.759 -0.939 -0.941 -0.833 -0.928 -0.618

4 0.437 0.428 1.138 0.380 0.507 1.225 0.548

5 -0.309 -0.308 -0.400 -0.447 -0.411 -0.414 -0.230

6 -0.347 -0.375 -0.182 -0.490 -0.404 -0.111 -0.309

7 2.096 2.159 3.170 2.364 2.382 3.272 2.283

8 0.956 0.865 1.753 0.467 0.766 1.956 0.911

f -0.079 -0.081 -0.010 -0.072 -0.069 0.000 -0.048

Table G1: Implied estimates of the CAPM

Note: This table displays the implied parameter estimates (δ, τ or μ) and pricing errors in percentage for the 8

Lustig-Verdelhan currency portfolios and the market factor. For the regression method, we define the last pricing

error as E(f)-μ. We implement each method by continuously updated (CU), iterated and two-step (2S) GMM. The

implied computations are as follows:

1) The uncentred SDF moments (1) and (5) in terms of δ are extended with the estimation of γ, which is exactly

identified by the moment condition E(f²-γ)=0. The implied parameters are computed as μ=γδ and τ=μ/(γ-μ²). We

also need an estimate of β to compute pricing errors like in the regression approach, which requires the addition of

the exactly identified moment conditions E[(r-βf)f]=0 .

2) The centred SDF moments (2) and (7) in terms of τ and μ can be used to compute the implied δ=τ/(1+τμ). We

also need an estimate of β to compute pricing errors like in the regression approach, and we can proceed as in 1).

3) The centred regression moments (9), after adding the estimation of μ to the estimation of β, are extended with

the estimation of γ, which is estimated as before. The implied parameters are computed as δ=μ/γ and τ=μ/(γ-μ²).



CU Iterated 2S

U. SDF C. SDF Reg U. SDF C. SDF Reg

Uncentred SDF - Asymmetric normalization (δ)

δ 49.507 48.835 41.129 49.610 48.850 52.999 43.938

Pricing error E(r)-E(rf)δ

1 -0.645 -0.668 -0.931 -0.641 -0.667 -0.526 -0.835

2 -0.994 -0.992 -0.974 -0.994 -0.992 -1.003 -0.980

3 -0.446 -0.450 -0.497 -0.445 -0.450 -0.425 -0.480

4 -0.114 -0.108 -0.039 -0.115 -0.108 -0.145 -0.064

5 -0.696 -0.688 -0.604 -0.697 -0.689 -0.734 -0.635

6 -0.320 -0.319 -0.302 -0.320 -0.319 -0.328 -0.308

7 -0.462 -0.415 0.122 -0.469 -0.416 -0.705 -0.074

8 0.377 0.399 0.657 0.373 0.399 0.260 0.563

Centred SDF - Asymmetric normalization (τ)

τ 438.769 409.159 115.428 447.377 409.908 120.114 183.445

Pricing error E(r)-E(r(f-μ))τ

1 -5.716 -5.596 -2.613 -5.784 -5.600 -1.191 -3.487

2 -8.810 -8.315 -2.732 -8.966 -8.328 -2.272 -4.093

3 -3.953 -3.771 -1.395 -4.016 -3.776 -0.963 -2.004

4 -1.012 -0.907 -0.110 -1.038 -0.909 -0.330 -0.269

5 -6.167 -5.768 -1.694 -6.285 -5.778 -1.664 -2.649

6 -2.839 -2.671 -0.848 -2.890 -2.675 -0.743 -1.287

7 -4.091 -3.476 0.343 -4.228 -3.490 -1.598 -0.307

8 3.340 3.346 1.843 3.367 3.347 0.590 2.350

Centred regression - Asymmetric normalization (λ)

λ 0.056 0.053 0.028 0.056 0.053 0.025 0.024

Pricing error E(r)-βλ

1 -0.368 -0.389 -1.575 -0.324 -0.260 -1.212 -0.799

2 -0.900 -0.921 -1.650 -0.828 -0.927 -1.804 -0.972

3 -0.935 -0.935 -1.270 -0.894 -0.970 -2.085 -1.153

4 -0.568 -0.577 -0.909 -0.526 -0.657 -1.414 -0.773

5 -0.440 -0.443 -0.887 -0.402 -0.463 -1.075 -0.709

6 -0.732 -0.731 -0.676 -0.707 -0.779 -1.450 -0.750

7 -0.743 -0.738 0.043 -0.675 -1.002 0.135 -0.828

8 -1.170 -1.114 0.100 -1.208 -1.362 -1.883 -0.755

Table G2: Implied estimates of the CCAPM

Note: This table displays the implied parameter estimates (δ, τ or λ) and pricing errors in percentage for the 8 Lustig-

Verdelhan currency portfolios. We implement each method by continuously updated (CU), iterated and two-step (2S)

GMM. The implied computations are as follows:

1) The uncentred SDF moments (1) in terms of δ are extended with the estimation of μ and γ, which are exactly

identified by the moment conditions E(f-μ)=0 and E(f²-γ)=0 respectively. The implied parameters are computed as

τ=δ/(1-δμ) and λ=τ(γ-μ²). ) We also need an estimate of β to compute pricing errors like in the regression approach,

which requires the addition of the exactly identified moment conditions E[(r-β(f-μ+λ))f]=0.

2) The centred SDF moments (2) in terms of τ and μ are extended with the estimation γ, which is exactly identified by

the moment condition E(f²-γ)=0. The implied parameters are computed as λ=τ(γ-μ²) and δ=λ/(γ-μ²+λμ). We also need

an estimate of β to compute pricing errors like in the regression approach, and we can proceed as in 1).

3) The centred regression moments (3) in terms of λ, μ and β are extended with the estimation of γ, which is exactly

identified by the moment condition E(f²-γ)=0. The implied parameters are computed as δ=λ/(γ-μ²+λμ) and τ=λ/(γ-μ²).



10 5 1

J tests

CU 10.88 5.76 1.08

Uncentred SDF - Symmetric normalization

Iterated 10.94 5.76 1.08

2S 10.91 5.76 1.08

Centred SDF - Symmetric normalization

Iterated 11.08 5.84 1.11

2S 11.71 6.38 1.33

Uncentred SDF - Asymmetric normalization

Iterated 10.99 5.85 1.11

2S 11.04 5.84 1.15

Centred SDF - Asymmetric normalization

Iterated 18.01 11.55 4.47

2S 26.07 18.17 8.17

Centred regression - Asymmetric normalization

Iterated 10.88 5.76 1.08

2S 10.87 5.75 1.08

CU DM tests of problematic cases

Uncorrelated f 100 100 100

Nominal size

Table G3: Rejection rates in the baseline design (T=500)

Note: This table displays the rejection rates of the J tests of each method by continuously

updated (CU), iterated and two-step (2S) GMM. The rates are shown in percentage for the

asymptotic critical values at 10, 5 and 1%. The table also displays the CU DM test of an

uncorrelated factor. 10000 samples of 8 excess returns are simulated under the baseline

design. The mean and the standard deviation of f are 1; the maximum Sharpe ratio

achievable with r is 0.5; the R² of the regression of f on r is 0.1; all the underlying random

variables are independent and identically distributed over time as multivariate Gaussian

vectors.



10 5 1

J tests

CU 11.05 5.39 0.95

Uncentred SDF - Symmetric normalization

Iterated 12.05 6.33 1.41

2S 11.64 5.98 1.25

Centred SDF - Symmetric normalization

Iterated 11.07 5.43 0.96

2S 11.14 5.50 1.00

Uncentred SDF - Asymmetric normalization

Iterated 15.11 8.82 2.42

2S 13.37 7.48 1.88

Centred SDF - Asymmetric normalization

Iterated 84.71 79.98 69.18

2S 84.84 77.23 57.49

Centred regression - Asymmetric normalization

Iterated 11.05 5.40 0.95

2S 10.78 5.42 0.96

CU DM tests of problematic cases

Uncorrelated f 11.61 6.00 1.28

Nominal size

Table G4: Rejection rates in the uncorrelated factor design (T=500)

Note: This table displays the rejection rates of the J tests of each method by continuously

updated (CU), iterated and two-step (2S) GMM. The rates are shown in percentage for the

asymptotic critical values at 10, 5 and 1%. The table also displays the CU DM tests of an

uncorrelated factor. 10000 samples of 8 excess returns are simulated under the

uncorrelated factor design. The only change with respect to the baseline design is a

reduction of the R² of the regression of f on r to 0.



10 5 1 10 5 1

CU 90.25 83.81 62.95 89.62 82.13 61.99

Uncentred SDF - Symmetric normalization

Iterated 90.26 83.84 63.03 89.62 82.16 62.05

2S 90.27 83.90 63.17 89.63 82.17 62.10

Centred SDF - Symmetric normalization

Iterated 90.35 84.06 63.74 89.59 82.11 61.93

2S 90.98 84.93 65.99 89.68 82.15 61.82

Uncentred SDF - Asymmetric normalization

Iterated 90.45 84.18 63.78 89.73 82.33 62.43

2S 90.50 84.31 63.98 89.71 82.39 62.09

Centred SDF - Asymmetric normalization

Iterated 94.97 91.79 82.83 90.80 83.85 64.58

2S 97.03 95.08 88.93 90.83 83.80 64.92

Centred regression - Asymmetric normalization

Iterated 90.25 83.82 62.96 89.62 82.14 61.99

2S 90.23 83.80 62.99 89.63 82.15 62.09

Asymptotic critical values Monte Carlo critical values

Table G5: Rejection rates in the missing factor design (T=500)

Note: This table displays the rejection rates of the J tests of each method by continuously

updated (CU), iterated and two-step (2S) GMM. The rates are shown in percentage for the

asymptotic and Monte Carlo critical values at 10, 5 and 1%. 10000 samples of 8 excess

returns are simulated under the missing factor design. The only change with respect to

the baseline design is an increase in the Hansen-Jagannathan distance to 0.2.



10 5 1

J tests

CU 10.88 5.76 1.08

Uncentred SDF - Symmetric normalization

Iterated 12.23 6.85 1.56

2S 11.32 6.17 1.25

Centred SDF - Symmetric normalization

Iterated 11.08 5.84 1.11

2S 11.71 6.38 1.33

Uncentred SDF - Asymmetric normalization

Iterated 89.35 87.01 82.10

2S 85.43 82.52 76.65

Centred SDF - Asymmetric normalization

Iterated 18.01 11.55 4.47

2S 26.07 18.17 8.17

Centred regression - Asymmetric normalization

Iterated 10.88 5.76 1.08

2S 10.31 5.36 1.03

CU DM tests of problematic cases

Uncorrelated f 100 100 100

Orthogonal f 11.21 5.90 1.20

Nominal size

Table G6: Rejection rates in the orthogonal factor design (T=500)

Note: This table displays the rejection rates of the J tests of each method by continuously

updated (CU), iterated and two-step (2S) GMM. The rates are shown in percentage for the

asymptotic critical values at 10, 5 and 1%. The table also displays the CU DM test s of an

uncorrelated factor and an orthogonal factor. 10000 samples of 8 excess returns are

simulated under the uncorrelated factor design. The only change with respect to the

baseline design is in the mean of f to obtain an orthogonal factor.
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Figure C1: Parameter estimates in orthogonal factor design (T=50)

Note: These bicorne plots combine a kernel density estimate on top of a box plot. The vertical lines 
describe the median and the first and third quartiles, while the length of the tails is one interquartile range. 
The common vertical line, if any, indicates the true parameter value. Two step, iterated and continuously
updated GMM are presented in the top, middle and bottom, respectively, of each plot.
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Figure G1: CU-GMM criterion functions (scaled by T)
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Figure G2: Parameter estimates in baseline design (T=500)

Note: These bicorne plots combine a kernel density estimate on top of a box plot. The vertical lines 
describe the median and the first and third quartiles, while the length of the tails is one interquartile range. 
The common vertical line, if any, indicates the true parameter value. Two step, iterated and continuously
updated GMM are presented in the top, middle and bottom, respectively, of each plot.
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Note: These bicorne plots combine a kernel density estimate on top of a box plot. The vertical lines 
describe the median and the first and third quartiles, while the length of the tails is one interquartile range. 
The common vertical line, if any, indicates the true parameter value. Two step, iterated and continuously
updated GMM are presented in the top, middle and bottom, respectively, of each plot.

Figure G3: Parameter estimates in uncorrelated factor design (T=500)
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Figure G4: Parameter estimates in orthogonal factor design (T=500)

Note: These bicorne plots combine a kernel density estimate on top of a box plot. The vertical lines 
describe the median and the first and third quartiles, while the length of the tails is one interquartile range. 
The common vertical line, if any, indicates the true parameter value. Two step, iterated and continuously
updated GMM are presented in the top, middle and bottom, respectively, of each plot.




