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Abstract

We develop methods for testing that an econometric model is underidentified and
for estimating the nature of the failed identification. We adopt a generalized-method-of
moments perspective in a possibly non-linear econometric specification. If, after at-
tempting to replicate the structural relation, we find substantial evidence against the
overidentifying restrictions of an augmented model, this is evidence against underiden-
tification of the original model. To diagnose how identification might fail, we study
the estimation of a one-dimensional curve that gives the parameter configurations that
provide the greatest challenge to identification, and we illustrate this calculation in an
empirical example.

1 Introduction

“It is ... natural to abandon without further computation the set of restrictions

strongly rejected by the (likelihood ratio) test. Similarly, it is natural to apply

a test of identifiability before proceeding with the computation of the sampling

variance of estimates ... and to forego any use of the estimates, if the indication

of nonidentifiability is strong.” Koopmans and Hood (1953) (see page 184).

It is common in econometric practice to encounter one of two different phenomena. Either

the data are sufficiently powerful to reject the model, or the sample evidence is sufficiently
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weak so as to suspect that identification is tenuous. The early simultaneous equations liter-

ature recognized that underidentification is testable, but to date such tests are uncommon

in econometric practice despite the fact that there are many situations of economic interest

in which seemingly point identified models may be only set identified.

We find it productive to pose this as an estimation problem where we seek to iden-

tify the location of the identification problem. We adopt a generalized-method-of-moments

(GMM) perspective and suppose that (under the null hypothesis) we may identify a curve

or a function of a scalar variable that represents such a curve. Thus the target of esti-

mation is this curve or the corresponding function. For models that are sufficiently linear,

this curve represents a one-dimensional subspace, but translated. The resulting set can be

easily parameterized and estimated using a standard GMM approach. In effect we build

an augmented structural model in which the moment conditions are satisfied by a curve

instead of a point. This estimation is of direct interest because it isolates the dimension

along which identification of the original model is problematic. The familiar J test from the

work of Sargan (1958) or Hansen (1982a) for overidentification of the augmented model now

becomes a test for “underidentification” of the original model. If we can identify a curve or

function representing that curve without statistical rejection, then the original model is not

well identified and we refer to this phenomenon as underidentification. We refer to such a

test as an I test. In contrast, a statistical rejection provides evidence that the parameter

vector in the original model is indeed point identified, unless of course the familiar J test

continues to reject its over-identifying restrictions.

The idea of identifying a curve extends to estimation environments in which we may

not be able to represent the curve with a finite-dimensional parameterization. Thus we also

suggest a more general estimation approach, study the resulting statistical efficiency and

discuss implementation. Inferential methods are necessarily altered, and we are led to build

on the work of Carrasco and Florens (2000) in designing a GMM approach to this problem.

We consider in progression three different estimation environments: models that are linear

in parameters (section 3), models with nonlinear restrictions on the parameters (section 4),

and finally, models with more fundamental nonlinearities (section 5). Throughout we develop

specific examples to illustrate the nature and the applicability of our methods. In section
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6 we show how to apply these methods to a consumption-based asset pricing model fit to

micreconomic data. What follows is a more detailed overview of the paper.

2 Overview

As in Hansen (1982a), suppose that {xt} is an observable stationary and ergodic stochastic

process1 and let P be a parameter space that we take to be a subset of Rk. Introduce a

function f(x, ·) : P → Rp for each x. The function f is jointly Borel measurable and it is

continuously differentiable in its second argument for each value of x. Finally suppose that

E|f(xt, β)| <∞ for each β ∈ P.

In light of this assumption we define E[f(xt, β)] = f̄(β) for each β ∈ P. GMM estimation

uses the equation:

f̄(β) = 0 (1)

to identify a parameter vector β0. When β0 is identified, it is the unique solution to (1),

otherwise there will be multiple solutions. To relate to standard analyses of identification

and develop tests for underidentification, we suppose that p ≥ k. In discussing the lack of

identification in non-linear models in those circumstances, it is important to distinguish the

different situations that may arise. We say that β∗ 6= β0 is observationally equivalent to β0

if and only if E[f(xt; β
∗)] = 0. The true value β0 is locally identifiable if there is a neigh-

borhood of β0 such that in this neighborhood E[f(xt; β)] = 0 only if β = β0 (Fisher (1966)).

The order condition p = dim (f) ≥ dim (β) = k provides a first-check of identification, but

this is only necessary. A complement is provided by the rank condition: If E [∂f(x, β)/∂β′]

is continuous at β0, and rank{E [∂f(x, β0)/∂β′]} = k, then β0 is locally identified (Fisher

(1966); Rothenberg (1971)). In contrast to the order condition, this condition is only suf-

ficient. But if rank{E [∂f(x, β)/∂β′]} is also constant in a neighborhood of β0, then the

above rank condition becomes necessary too. However, as argued in Sargan (1983a,b), there

are non-linear models in which the rank condition fails, and yet β0 is locally identified (see

Wright (2003) for tests of the Jacobian rank condition in non-linear models).

1As elsewhere in the econometrics literature, analogous results can be obtained using other data generating
processes. For cross-sectional and panel extensions of Hansen (1982a) formulation see the textbooks by
Hayashi (2000) and Arellano (2003), respectively.
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In this paper we will take a decidedly global approach. Global identification requires that

β0 be the unique solution on P to the system of equations (1). To study underidentification,

we follow Sargan (1959) by imposing an explicit structure on the lack of identification. This

leads us to study an alternative estimation problem. Specifically, we consider a parameteri-

zation of the form β = π(θ), where π is a continuous function with range P and θ ∈ Θ ⊂ R,

which is some conveniently chosen domain. For example, suppose that

π(θ) =

[
θ

τ(θ)

]
, (2)

so that θ is the first component of the parameter vector. We then explore a set of such

functions that is restricted appropriately.2 As an alternative identification condition, we

require f̄ [π(θ)] = 0 for all θ ∈ Θ if, and only if π = π0. If we can successfully identify

a nonconstant function π0 that realizes alternative values in the parameter space, then we

cannot uniquely identify a single parameter vector β0 from the moment conditions (1). Thus

the parameter vector β0 is underidentified.

Our investigation of underidentification leads naturally to the question of how to estimate

π0 efficiently. One approach would be to use one of the standard GMM objective functions

and try to construct an estimator of π0 as the set of approximate minimizers of that objective.

In this paper we explore a rather different approach, one that depicts the identification

failure in the construction of π0. It leads us naturally to ask what the efficiency gains are

to estimating jointly alternative points along a curve, say π0(θ) for alternative values of

θ. Initially we illustrate these efficiency gains using a standard formulation of the GMM

efficiency bounds.

In what follows we use parameterization (2). For each value of θ in a finite set Θn =

{θ1, θ2, ..., θn} we estimate the (k − 1)-dimensional parameter vector τ(θ). We can map this

into a standard GMM problem where we simply replicate the original moment conditions.

Later we will extend this discussion to the case in which the set of θ’s that are of interest is

an interval, but this finite set construction will set the stage for a more general treatment. As

posed, this is a standard GMM estimation problem, albeit one with a special structure. To

analyze the gains to joint efficiency, we presume the following central limit approximation:

2See section 5 for further details.
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Assumption 2.1. 1√
T

∑T
t=1 f [xt, π0(θ)] converges to a Gaussian random vector {g(θ) : θ ∈ Θn}

with mean zero for all θ ∈ Θn and covariance function:

K(θ, ϑ) = E [g(θ)g(ϑ)′] = lim
T→∞

1

T
E

(
T∑
t=1

f [xt, π0(θ)]
T∑
s=1

f [xs, π0(ϑ)]′

)
.

In stating this assumption and in what follows we will abuse the E notation by using it

both for the original probability space and for the probability space used in constructing the

Gaussian process used in the central limit approximation.

Construct

D(θ) = E

[
∂f [xt, π0(θ)]

∂β

] [
0k−1

Ik−1

]
,

where 0k−1 is a row vector of zeros and Ik−1 is an identity matrix of dimension k − 1.

Assumption 2.2. D(θ)′D(θ) is nonsingular for each θ ∈ Θn.

With these ingredients, we apply directly the analysis in Hansen (1982a) and the earlier

analysis in Sargan (1958, 1959), which involves reducing the moment conditions by intro-

ducing a (k − 1) × n by p × n selection matrix A that picks among the possible moment

conditions:

Ef [xt, π(θj)] = 0

for j = 1, 2, ..., n. The moment restrictions are thus broken into n blocks and the parameter

vector π(θj) only appears in block j. Our characterization of the GMM efficiency bound

exploits this block structure. A partitioned selection matrix reduces the moments to be the

same as the number of free parameters and has the estimation problem focus on:
A11 A12 ... A1n

A21 A22 ... A2n

− − − −
An1 An2 ... Ann



Ef [xt, π(θ1)]
Ef [xt, π(θ2)]

−
Ef [xt, π(θn)]

 =


0
0
−
0

 ,
where Aij has dimension (k − 1) × p. The choice of selection matrix A = [Aij] alters the

resulting statistical efficiency of a GMM estimation. Some collections of selection matrices

imply the same asymptotic efficiency, however. For instance, forming a new selection matrix

by premultplying a given selection matrix by a nonsingular matrix in effect uses the same

moment conditions for estimation and hence does not alter the asymptotic efficiency of the

corresponding GMM estimator. As a consequence, if we define D as a block diagonal matrix
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of dimension p× n by (k− 1)× n with D(θj) in the jth diagonal position, selection matrices

for our estimation problem can always be restricted to satisfy (at least asymptotically):

AD = I (3)

without altering the efficiency bound. By imposing this restriction we simplify the formula

for the asymptotic covariance matrix as we will see. Consider now the first row block of (3):

A11D(θ1) = I,

A1jD(θj) = 0 j = 2, 3, ..., n. (4)

It follows from Hansen (1982a) that the asymptotic covariance matrix for the resulting GMM

estimator of τ(θ1) is the covariance matrix of

n∑
j=1

A1jg(θj).

The corresponding efficiency bound is solved by “minimizing” this covariance matrix by

choice of A11, A12, ...., A1n. While covariance matrices are only partially ordered, this mini-

mization problem turns out to have a well defined minimum. The zero restrictions imposed

in (4) control for the fact that τ(θj) for j = 2, ..., n are estimated at the same time as τ(θ1)

and hence limit the construction of the selection matrix. While we have focused on the

efficiency of τ(θ1), an analogous argument applies for τ(θj) for j = 2, ..., n.

It will be convenient for us to represent this minimization problem differently. We con-

sider random variables of the form
n∑
j=1

B′jg(θj),

where

D(θj)
′Bj = 0

for j = 1, 2, ..., n. The zero restriction limits the basis random variables B′jg(θj) that we will

use in our construction of the bound. Form

Fn =

{
y =

n∑
j=1

B′jg(θj) : D(θj)
′Bj = 0, j = 1, 2, ..., n

}
.

Next transform the random vectors {g(θ) : θ ∈ Θn} into:

h(θ) = [D(θ)′D(θ)]−1D(θ)′g(θ).
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Then the efficiency bound for a given n is obtained by solving:

min
f∈Fn

E
(

[γ′h(θ1)− f ]
2
)

for any vector γ. The solution is

Proj [γ′h(θ1)|Fn] ,

where Proj is the least squares projection operator and the minimized objective is the second

moment of the least squares projection error.3

While the finite parameter GMM bound is well known, what follows gives a formal

representation of that bound that will have direct extension as we expand the number of

moment conditions used in estimation.

Proposition 2.1. The GMM efficiency bound for estimating τ(θj) is:

E
[
(h(θj)− Proj[h(θj)|Fn]) (h(θj)− Proj[h(θj)|Fn])′

]
for j = 1, 2, ..., n.

Proof. Write

h(θ1)− Proj [h(θ1)|Fn] =
[
Ã11 Ã12 ... Ã1n

] 
g(θ1)
g(θ2)
−

g(θn)

 ,
where

Ã1jD(θj) = 0

for j = 1, 2, ..., n. Form

A∗1 =
[
−Ã11 + [D(θ1)′D(θ1)]−1D(θ)′ −Ã12 ... −Ã1n

]
.

Notice that

A∗1D =
[
I 0 ... 0

]
.

Let A∗1 be the first row block of a selection matrix A∗ that satisfies (3). Consider some other

matrix A1 such that

A1D =
[
I 0 ... 0

]
,

3In what follows when we use the notation Proj applied to a random vector we mean the vector of
projections obtained by projecting each coordinate on the relevant closed linear space of random variables
that is being projected on.
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which is the first row block of a selection matrix A that satisfies (3). Then the entries of the

random vector

[A1 − A∗1]


g(θ1)
g(θ2)
−

g(θn)


are in Fn. Hence

(A1 − A∗1)E



g(θ1)
g(θ2)
−

g(θn)

 [g(θ1)′ g(θ2)′ ... g(θn)′
] (A∗1)′ = 0

since a vector of projection errors is orthogonal to the space that is being projected onto.

Thus

A1E



g(θ1)
g(θ2)
−

g(θn)

 [g(θ1)′ g(θ2)′ ... g(θn)′
] (A1)′

≥ A∗1E



g(θ1)
g(θ2)
−

g(θn)

 [g(θ1)′ g(θ2)′ ... g(θn)′
] (A∗1)′

where ≥ is the usual inequality for comparing positive semidefinite matrices.

Remark 2.2. In this representation the covariance of h(θj) is the asymptotic covariance

matrix for a GMM estimator that uses only moment conditions based on

[D(θj)
′D(θj)]

−1D(θj)
′Ef [xt, π(θj)] = 0,

but ignores the possible efficiency gains from joint estimation. It even fails to solve the

second-best problem of efficiently estimating τ(θj) using linear combinations of the moment

restrictions:

Ef [xt, π(θj)] = 0

except in very special circumstances.

Remark 2.3. Our choice of using the selection matrix [D(θj)
′D(θj)]

−1D(θj)
′ in the con-

struction of h(θ) is only one possibility. Notice that if we had chosen an alternative selection

matrix D̃j such that D̃jD(θj) = I, then

Proj[D̃jg(θj)|Fn] = Proj
(
[D(θj)

′D(θj)]
−1D(θj)

′g(θj)|Fn
) [
D̃j − [D(θj)

′D(θj)]
−1D(θj)

′
]
g(θj).
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Thus

D̃jg(θj)− Proj[D̃jg(θj)|Fn] = h(θj)− Proj[h(θj)|Fn]

resulting in the same least squares projection error. As expected our choice of starting point

is inconsequential to our final calculation.

Focusing on a finite set Θn, while pedagogically revealing, is too restrictive for some

of our analysis. Given our regression-error characterization of the efficiency bound, there

is a direct extension to estimating curves (section 5). Nevertheless, for some important

examples that we consider in the next two sections, in which we consider models that are

linear in the parameters (section 3) and models in which the nonlinearity is concentrated in

the parameters (section 4), it suffices to focus on a finite number of θ’s.

Some related literature: Our work is related to two different strands of the literature

that have gained prominence in recent years. One is the weak instruments literature (see e.g.

Stock et al. (2002)), which maintains the assumption that the rank condition is satisfied, but

only just. To relate to this line of research, suppose that Θ is an interval and consider an

interior point θ∗. Suppose that π is differentiable at θ∗. Then under appropriate regularity

conditions:

[
∂f̄(β)

∂β

∣∣∣∣
β∗

][
dπ(θ)

dθ

∣∣∣∣
θ∗

]
= 0,

where β∗ = π(θ∗). In other words, the matrix[
∂f̄(β)

∂β

∣∣∣∣
β∗

]

has reduced rank for any θ∗ in the interior of Θ. In contrast the weak instruments literature

considers the reduced rank as the limit of a sequence of data generating models indexed by

the sample size.4 In our analysis such a sequence could be interesting as a local specification

under the alternative hypothesis of identification. We seek to infer the specific manner in

which identification may fail whereas the weak instrument literature focuses on developing

reliable standard errors and tests of hypotheses about a unique true value of β.

4Typically in this literature the rank is not just reduced but is zero in the limit.
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The other strand is the set estimation literature (see e.g. Chernozhukov et al. (2007)

or more recently Yildiz (2011)), which often allows for E[f(x; β)] = 0 for set values of β

and whose objective is to make inferences about this set.5 In contrast, in this paper we

explore the precise nature of the underidentification. Given this focus, we are led to add

structure to the potential underidentification that is considered. By adding this structure to

the possible identification failure, we are led to alter the usual GMM objective in order to

estimate efficiently the one-dimensional function π that parameterizes the potential lack of

identification.

3 Linearity in the Parameters

We first study the identification of an econometric model that is linear in parameters, in

which case we write (1) as:

E(Ψt)

[
1
−β

]
= 0, (5)

where β is a k-dimensional unknown parameter vector and Ψt is an p by k + 1 matrix of

random variables constructed from data.6 Suppose that there are two solutions to equation

(5), say β[1] and β[2] where the first entry of β[1] is restricted to be one and the first entry of

β[2] to zero.7 Then

E(Ψt)

[
1

−π0(θ)

]
= 0,

for all θ ∈ R, where

π0(θ) = θπ0(0) + (1− θ)π0(1). (6)

A feature of the linearity in parameters is that we can identify two distinct values of β

that satisfy (5), in this case π0(0) = β
[1]
0 , π0(1) = β

[2]
0 . Thus to study underidentification, we

5Some of this literature also considers moment inequalities as a source of underidentification. Our analysis
does not cover this situation.

6Therefore, we consider not only models which are linear in both variables and parameters, but also
the non-linear in variables but linear in parameters models discussed in chapter 5 of Fisher (1966), which
combine different non-linear transformations of the same variables.

7We adopt these restrictions for convenience. Normalizing a coefficient to unity is common practice, and
normalizing the second one to have zero coefficient rules out the possibility that the resulting coefficient
vectors are proportional. Other normalizations are possible.
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focus on identifying β
[1]
0 and β

[2]
0 that solve the duplicated moment conditions

E(Ψt)

[
1
−β[1]

]
= 0

E(Ψt)

[
1
−β[2]

]
= 0

 . (7)

In this problem we envision β
[1]
0 and β

[2]
0 as the target of a GMM estimation problem subject to

the restrictions on the first entries that we mentioned previously. This leads us to estimating

2× (k− 1) free parameters. Given estimates of β
[1]
0 and β

[2]
0 , we then infer a one-dimensional

curve (actually a line) using formula (6).

In posing the above estimation problem, we imposed a “normalization” in the original

equation (5). In what follows we will adopt a different and slightly more general starting

point by considering:

E(Ψt)α = 0, (8)

where α is a k+1-dimensional unknown parameter vector in the null space of the population

matrix E(Ψt). If there is a solution α0 to this equation, then any scale multiple of α0 will

also be a solution. Thus from a statistical perspective, we consider the problem of identifying

a direction. To go from a direction to the parameters of interest requires an additional scale

normalization of the form q′α = 1, where q is a k + 1 vector that is specified a priori. For

instance, we could choose q to be a member of the canonical basis, which would restrict one

of the components of α to be one as in:

α =

[
1
−β

]
,

which we effectively imposed in (5). Alternatively, we could choose q = α so that |α| = 1,

together with a sign restriction on one of the nonzero coefficients as in:

α =

[
+
√

1− |β|2
β

]
,

where |β| ≤ 1. Neither of these approaches can be employed without loss of generality,

however. The particular application dictates how to select the parameters of interest from

this direction.8

8Sensitivity to the choice of normalization can be avoided in GMM by using the approach of Hillier (1990)
and Alonso-Borrego and Arellano (1999) or by using the continuously-updated estimator of Hansen et al.
(1996). As a consequence, our more general rank formulation can be explored using such methods.
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Suppose now that instead of a one-dimensional subspace, we can actually infer a two-

dimensional subspace of α’s that satisfies (8). This leads us to efficiently estimate those α
[1]
0

and α
[2]
0 for which

E(Ψt)α
[1] = 0

E(Ψt)α
[2] = 0

}
. (9)

Our parameterization π0 given in (6) gives us one way to parameterize this two-dimensional

subspace. It is the space spanned by the two vectors:
[
1 −π0(0)

]′
and by

[
1 −π0(1)

]′
as

required by (7).

The duplicated moment conditions in (7) or (9) give us a direct link to the rank condition

familiar in the econometrics literature. Suppose the order condition (p ≥ k) is satisfied, but

not necessarily the rank condition. Thus the maximal possible rank of the matrix E(Ψt) is

min{p, k + 1}. Model (8) is said to be identified when E(Ψt) has rank k, in which case its

null space is precisely one dimensional. When p > k and the model is identified, it is said

to be overidentified because the rank of the matrix E(Ψt) now must not be full. Instead

of having maximal rank k + 1, E(Ψt) has reduced rank k. This implication is known to be

testable and statistical tests of overidentification are often conducted in practice.

In contrast, model (8) is said to be underidentified when the rank of E(Ψt) is less than k.

In this case the null space of E(Ψt) will have more than one dimension. A single normalization

will no longer select a unique element from the parameter space. By focusing on (6), our

approach puts an explicit structure on the lack of identification, as illustrated by (9). Thus,

we initially make the following assumption (see section 3.1.2 for other possibilities):

Hypothesis 3.1. E(Ψt) has rank k − 1.

Under this hypothesis the set of solutions to equation (8) is two-dimensional. To test for

this lack of identification, we think of (9) as a new augmented model. We attempt to deter-

mine (α[1], α[2]) simultaneously and ask whether they satisfy the combined overidentifying

moment restrictions (9). If they do, then we may conclude that the original econometric

relation is not identified or equivalently is underidentified. Thus by building an augmented

equation system, we may pose the null hypothesis of underidentification as a hypothesis that

the augmented equation system is overidentified. Rejections of the overidentifying restric-

tions for the augmented model provide evidence that the original model is indeed identified.
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Posed in this way, underidentification can be tested simply by applying appropriately an ex-

isting test for overidentification. For instance, a standard J test for overidentification, such

as those of Sargan (1958) and Hansen (1982a), is potentially applicable to the augmented

model. This test will be our I test.

The following example illustrates our formulation.

Example 3.1. Suppose that p = 1 and k = 1. Write

E(Ψt) =
[
a1 a2

]
.

For there to be identification in the sense that we consider, at least one of the entries of

this vector must be different from zero. If we normalize the first entry of α′ =
[
1 −β

]
to be one, then we obtain the more restrictive rank condition condition that a2 6= 0. The

“normalization” rules out the case that E(Ψt) is of the form
[
0 a2

]
and α′ =

[
α1 0

]
. Our

notion of identification includes this possibility.

To understand better implementation, in the remainder of this section we consider as

examples three specific situations: single equation IV, multiple equations with cross-equation

restrictions, and sequential moment conditions.

3.1 Single equation IV

Example 3.2. Suppose the target of analysis is a single equation from a simultaneous system:

y′tα = ut,

where the scalar disturbance term ut is orthogonal to a p-dimensional vector zt of instrumental

variables:

E (ztut) = 0. (10)

Form:

Ψt = zty
′
t.

Then orthogonality condition (10) is equivalent to α satisfying the moment relation (8).

For this example we duplicate the moment conditions as in (9), and study the simultaneous

overidentification of those 2p moment conditions. To proceed with the construction of a test,
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we have to rule out the possibility that α[1] and α[2] are proportional. One strategy is to

restrict α[2] to be orthogonal to α[1]. Two orthogonal directions can be parameterized with

2k − 1 parameters, k parameters for one direction and k − 1 for the orthogonal direction.

However, there is not a unique choice of orthogonal directions to represent a two-dimensional

space. There is an additional degree of flexibility. A new direction can be formed by taking

linear combinations of the original two directions and a corresponding orthogonal second

direction. Thus the number of required parameters is reduced to 2k − 2, and the number of

overidentifying restrictions for the I test of underidentification is 2p− 2k + 2.

In practice, we can impose the normalizing restrictions |α[1]| = |α[2]| = 1 by using spher-

ical coordinates, forcing α[1]′α[2] = 0, and setting the first entry of α[2] to zero. This works

provided that all vectors in the null space of E(zty
′
t) do not have zeros in the first entry.

Alternatively, we could restrict the top two rows (α[1], α[2]) to equal an identity matrix of

order two. This rules out the possibility of a vector in the null space that is identically zero

in its first two entries, but this may be of little concern for some applications.9 When k = 1,

both approaches boil down to setting (α[1], α[2]) = I2 so that the 2p moment conditions:

E (zty
′
t) = 0

can be represented without resort to parameter estimation. As a result, the “identified” set

will be the whole of R2.

Example 3.1 could emerge as a special case of example 3.2 with p = 1 and k = 1. Notice

that our underidentification test in this case tests simultaneously the restriction that a1 = 0

and a2 = 0. More generally, when p ≥ 2 our test considers simultaneously E(zty1,t) = 0 and

E(zty2,t) = 0. The resulting I test is different from the test for the relevance of instruments

in a model with a normalization restriction on one variable to be estimated by say two-stage

least squares. Such a test would examine only E (zty2,t) = 0.

In contrast, when k > 1, some parameters must be inferred as part of implementing the

I test. The estimated parameters can then be used for efficiently estimating the identified

linear set by exploiting (6). To illustrate this point, consider a normalized relationship

9Once again, it is desirable to construct a test statistic of underidentification using a version of the test
of overidentifying restrictions that is invariant to normalization
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between three endogenous variables with instrument vector zt:

E [zt (y0,t − β1y1,t − β2y2,t)] = 0.

Now zt need not be uncorrelated with all three endogenous variables for there to be under-

identification. Lack of correlation with two linear combinations of them is enough.10 For

example, we may write the null of underidentification as

H0 : E

[
zt (y0,t − γ1y2,t)
zt (y1,t − γ2y2,t)

]
= 0.

If H0 holds, for any β∗1

E {zt [y0,t − β∗1y1,t − (γ1 − γ2β
∗
1) y2,t]} = 0,

so that the observationally equivalent values (β∗1 , β
∗
2) are contained in the line β∗2 = γ1−γ2β

∗
1 .

A time series example is a forward-looking Phillips curve as in Gaĺı et al. (2001), where

the components of y denote current inflation, future inflation, and a measure of aggregate

demand, whereas the components of z consist of lags of the previous variables, and of other

variables such as the output gap and wage inflation. There are theoretical and empirical

considerations to suggest that a null like H0 is plausible in this context. For example, lack

of higher-order dynamics in a new Keynesian macro model has been shown to be a source of

underidentification of a hybrid Phillips curve with lagged inflation (see Mavroeidis (2005) and

Nason and Smith (2008)). Relatedly, Cochrane (2007) also raises similar concerns regarding

the identification of Taylor rules by Clarida et al. (2000) and others.

3.1.1 Related Literature

Tests of underidentification in a single structural equation were first considered by Koopmans

and Hood (1953) and Sargan (1958). When the model is correctly specified and identified,

the rank of E(zty
′
t) is k. Under the additional assumptions that the error term ut is a

conditionally homoskedastic martingale difference, an asymptotic chi-square test statistic of

overidentifying restrictions with p− k degrees of freedom is given by Tλ1, where

λ1 = min
α

α′Y ′Z (Z ′Z)−1 Z ′Y α

α′Y ′Y α
, (11)

10Phillips (1989) and Choi and Phillips (1992) study the IV estimator of β1 and β2 in the presence of
identification failure.
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and Z ′Y =
∑T

t=1 ztyt
′, etc. Thus λ1 is the smallest characteristic root of Y ′Z (Z ′Z)−1 Z ′Y

in the metric of Y ′Y . (See Anderson and Rubin (1949) and Sargan (1958)). This a version

of the J test for overidentification, and it does not require that we normalize α.

Koopmans and Hood (1953) and Sargan (1958) indicated that when the rank of E(zty
′
t)

is k−1 instead, if λ2 is the second smallest characteristic root, T (λ1 +λ2) has an asymptotic

chi-square distribution with 2(p− k) + 2 degrees of freedom. These authors suggested that

this result could be used as a test of the hypothesis that the equation is underidentified and

that any possible equation has an iid error term.

The statistic T (λ1 + λ2) has a straightforward interpretation in terms of our approach.

Indeed, it can be regarded as a continuously-updated GMM test of overidentifying restric-

tions of the augmented model (9), subject to the additional restrictions on the error terms

mentioned previously. To see this, let A =
[
α[1] α[2]

]
and consider the minimizer of

[
α[1]′Y ′Z α[2]′Y ′Z

]
(A′Y ′Y A⊗ Z ′Z)−1

[
Z ′Y α[1]

Z ′Y α[2]

]
subject to A′Y ′Y A = I2. The constraint restricts the sample covariance matrix of the

disturbance vector to be an identity matrix. It uses the positive definite matrix Y ′Y to define

orthogonal directions when duplicating equations, which is convenient for this application.

In light of this normalization, the minimization problem may be written equivalently as

min
A′Y ′Y A=I2

α[1]′Y ′Z (Z ′Z)
−1
Z ′Y α[1] + α[2]′Y ′Z (Z ′Z)

−1
Z ′Y α[2], (12)

and the minimized value coincides with λ1 +λ2 (Rao (1973), page 63). A comparison of (12)

with (11) makes clear that the I test will be numerically at least as large as the J test, a

result that is a special case of Proposition B.2 in Appendix B. This comparison also shows

that the estimate of α obtained from (11) coincides with the estimate of α[1] obtained from

(12), so that in this special case the optimal point estimate belongs to the optimal linear set

estimate.

More recently, Cragg and Donald (1993) considered single equation tests of underidenti-

fication based on the reduced form. For the single equation model, the rank of the matrix

E (Ψt) is the same as that of

L = E (Ψt)
′ [E(ztzt

′)]
−1

= E (ytz
′
t) [E(ztzt

′)]
−1
.
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This is the matrix of coefficients of the reduced form system of population regressions of

the entries of yt onto zt. Suppose the second component of yt is the first component of zt.

Partition L as:

L =

[
Π1 Π2

I 0

]
.

The nullity of L and hence E (Ψt) is the same as the nullity of Π2. Cragg and Donald (1993)

construct a minimum chi-square test statistic that enforces the rank restriction in Π2.11

Their statistic can also be related to our approach. As we show in Appendix A, under the

assumption that ut is a conditionally homoskedastic martingale difference, the Cragg-Donald

statistic minimizes

[
α[1]′Y ′Z α[2]′Y ′Z

]
(A′Y ′MYA⊗ Z ′Z)−1

[
Z ′Y α[1]

Z ′Y α[2]

]
subject to A′Y ′MYA = I2, where M = I − Z (Z ′Z)−1 Z ′. Moreover, a Cragg-Donald

statistic that is robust to heteroskedasticity and/or serial correlation can be reinterpreted as

a continuously updated GMM criterion of the augmented structural model using MYA as

errors in the weight matrix. Since the difference between Y A and MYA at the truth is of

small order, using one form of errors or the other is asymptotically irrelevant.

While the Cragg and Donald (1993) approach is straightforward to implement in the

single-equation case, it is more difficult to implement in some models with cross-equation

restrictions. This difficulty can emerge because we must simultaneously impose the restric-

tions on the reduced form together with the rank deficiency. In example 3.2, this is easy to

do, and it is also feasible in the applications to linear observable factor pricing models of

asset returns carried out by Cragg and Donald (1997) and Burnside (2007), but not in more

general models as we will illustrate in sections 3.2 and 3.3.

3.1.2 Underidentification of a higher dimension

Although the null hypothesis 3.1 is the natural leading case in testing for underidentification,

it is straightforward to extend the previous discussion to situations in which the underiden-

tified set is of a higher dimension. Suppose that the rank of E(Ψt) is k− j for some j. Then

11Cragg and Donald (1993) also considered an alternative null of no identifiability in an equation with the
coefficient of one of the endogenous variables normalized to unity. This is a rank restriction in the submatrix
of Π2 that excludes the row corresponding to the normalized entry.
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we can write all the admissible equations as linear combinations of the (j+1)p orthogonality

conditions

E(Ψt)
(
α[1], α[2], ..., α[j+1]

)
= 0. (13)

If we impose (j + 1)2 normalizing restrictions on (α[1], α[2], ..., α[j+1]) to avoid indeter-

minacy,12 the effective number of parameters is (j + 1)(k + 1) − (j + 1)2 = (j + 1)(k − j)

and the number of moment conditions is (j + 1)p under the assumption that there are no

redundancies. Therefore, by testing the (j+ 1)(p− k+ j) overidentifying restrictions in (13)

we test the null that α is underidentified of dimension j against the alternative of underi-

dentification of dimension less than j or identification. Henceforth, we shall refer to those

tests as Ij tests.

3.2 Multiple equations with cross-equation linear restrictions

We next consider examples with multiple equations with common parameters.13

Example 3.3. Consider the following two equation model with cross-equation restrictions:

α′
[
y1,t

y3,t

]
= u1,t,

α′
[
y2,t

y3,t

]
= u2,t,

where y1,t, y2,t are scalars. Let zt denote a p∗-dimensional vector of common instrumental

variables appropriate for both equations, so that

E (ztu1,t) = 0,

E (ztu2,t) = 0.

Form:

Ψt =

[
zty1,t zty3,t

zty2,t zty3,t

]
,

so that p = 2p∗. We transform this equation system to obtain an equivalent one by forming:

Ψ∗t =

[
zt(y1,t − y2,t) 0

zty1,t zty3,t

]
(14)

12For instance, we may make the top j+1 rows of A[j+1] = (α[1], α[2], ..., α[j+1]) equal to the identity matrix
of order j+ 1. More generally, we can impose the (j+ 1)2 normalizing restrictions A[j+1]′A[j+1] = I(j+1) and

ai` = 0 for ` > i, where ai` denotes the (i, `)-th element of A[j+1].
13Interestingly, Kim and Ogaki (2009) suggest to use models with cross equation restrictions to try to

break away from the potential identifiability problems that affect single equation IV estimates.
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implying that

E [zt(y1,t − y2,t)] = 0. (15)

In this example, duplicating (15) would induce a degeneracy because equation (15) does not

depend on parameters. Instead these p∗ moment conditions should be included just once.

The I test is implemented by again parameterizing a two-dimensional subspace with 2k − 2

free parameters. There are 3p∗ < 2p composite moment conditions to be used in estimating

these free parameters. Thus the degrees of freedom of the I test is 3p∗ − 2k + 2.

This I test includes (15) among the moment conditions to be tested even though these

conditions do not depend on the unknown parameters. If these moment conditions were ex-

cluded, then it would matter if the second row block of Ψ∗t in (14) is replaced by
[
zty2,t zty3,t

′].
By including (15) among the moment conditions to be tested this change is inconsequential.

An extended version of this example arises in log-linear models of asset returns such as

those studied by Hansen and Singleton (1983) and others. Such models have a scalar y3,t given

by consumption growth expressed in logarithms. The variables y1,t and y2,t are the logarithms

of gross returns. In addition there are separate constant terms in each equation that capture

subjective discounting and lognormal adjustments. By differencing the equations we obtain a

counterpart to (15) except that a constant term needs to be included. Duplication continues

to induce a degeneracy because this constant term is trivially identified.

Example 3.4. Consider a normalized four-input translog cost share equation system. After

imposing homogeneity of degree 1 in prices and dropping one equation to take care of the

adding-up condition in cost shares we have

yj,t = βj,1p1,t + βj,2p2,t + βj,3p3,t + vj,t (j = 1, 2, 3) ,

where yj,t denotes the cost share of input j, and pj,t is the log price of input j relative to

the omitted input.14 The underlying cost function implies the following three cross-equation

symmetry constraints

βj,k = βk,j j 6= k.

14See Berndt (1991, page 472). For simplicity we abstract from intercepts and log output terms since they
have no effect on our discussion.
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Moreover, prices are endogenous (possibly due to data aggregation) and a p-dimensional

vector of instruments zt is available, so that:

E(ztvj,t) = 0 (j = 1, 2, 3) . (16)

In the absence of the symmetry restrictions, the order condition is satisfied if p ≥ 3. It

would appear that the parameters may be just identified with p = 2 when the symmetry

restrictions are taken into account, for in that case the order condition is satisfied. However,

it turns out that such system has reduced rank 5 by construction.

To test for underidentification, we duplicate the original moment conditions, introduce

suitable normalizations, and drop redundant moments, obtaining

E[zt(yj,t − γj,2p2,t − γj,3p3,t)] = 0, (j = 1, 2, 3) (17)

E[zt(p1,t − γ0,2p2,t − γ0,3p3,t)] = 0. (18)

Since there are 4p orthogonality conditions and 8 parameters, with p = 2 the augmented set

of moments does not introduce any overidentifying restrictions. For arbitrary p, (17)-(18)

imply that (16) is satisfied for any β∗j,1, and for β∗j,2, β
∗
j,3 (j = 1, 2, 3) such that

β∗j,2 = γj,2 − β∗j,1γ0,2 β∗j,3 = γj,3 − β∗j,1γ0,3. (19)

Thus, if we do not impose symmetry, the identified set will be of dimension three (β∗1,1, β
∗
2,1, β

∗
3,1)

and will be characterized by the eight γ parameters in (17)-(18). However, one restriction

must be imposed on those parameters for the augmented model to characterize observation-

ally equivalent values of the original β parameters satisfying the symmetry constraints. To

see this, note that, subject to the cross-restrictions, (17)-(18) imply that (16) are satisfied

as before for any β∗1,1 (and for β∗1,2 and β∗1,3 as in (19)), but only for β∗2,1 = β∗1,2 so that

β∗2,1 = γ1,2 − β∗1,1γ0,2,

and for β∗2,2 and β∗2,3 such that

β∗2,2 = γ2,2 − (γ1,2 − β∗1,1γ0,2)γ0,2, β∗2,3 = γ2,3 − (γ1,2 − β∗1,1γ0,2)γ0,3.

Equally, they are satisfied only for β∗3,1 = β∗1,3 so that

β∗3,1 = γ1,3 − β∗1,1γ0,3,
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and for β∗3,2 and β∗3,3 such that

β∗3,2 = γ3,2 − (γ1,3 − β∗1,1γ0,3)γ0,2 β∗3,3 = γ3,3 − (γ1,3 − β∗1,1γ0,3)γ0,3.

Moreover, the restriction β∗3,2 = β∗2,3 implies that the admissible values of the coefficients

in the augmented model must satisfy for any β∗1,1:

γ3,2 − (γ1,3 − β∗1,1γ0,3)γ0,2 = γ2,3 − (γ1,2 − β∗1,1γ0,2)γ0,3,

or

γ3,2 − γ2,3 = γ1,3γ0,2 − γ1,2γ0,3. (20)

Thus, after enforcing symmetry the identified set is of dimension one (β∗1,1) and depends on

seven parameters only. The I test for this problem is a test of overidentifying restrictions

based on the moments (17)-(18) subject to (20). Enforcing (20) reduces the set of observa-

tionally equivalent parameters under the null, but this is the right way to proceed since the

existence of other β’s that satisfy the instrumental-variable conditions but not the symmetry

conditions should not be taken as evidence of underidentification of the model.15

3.3 Sequential moment conditions

Consider next an example with an explicit time series structure. The expectations are taken

by averaging across individuals (over i).

Example 3.5. Suppose that

yi,t+2 =
[
vi,t+2 vi,t+1 ... vi,t−`

]′
for a scalar process {vi,t : t = 1, 2, ...}. Thus k = `+ 2. Form:

α′yi,t+2 = ui,t+2,

where

E [zi,tui,t+2] = 0

for t = 1, ... and α 6= 0. Thus

E [zi,tyi,t+2
′]α = 0. (21)

15Note that when p = 2, the model’s parameters are not identified, but it is still possible to test the
restriction (20) as a specification test of the model.
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The dimension of the vector zi,t varies with t. This dependence is relevant in a panel data

setting in which the number of time periods is small relative to the number of individuals.16

Assume that there is no redundancy among the entries of zi,t. That is, E
(
zi,tz

′
i,t

)
is nonsin-

gular. Moreover, assume that the entries of zi,t−1 are among the entries of zi,t.

For this model to be underidentified, we must be able to find an α∗ 6= α, both distinct

from zero, such that α∗ also satisfies equation system (21). Since α and α∗ are distinct and

linear combinations of α and α∗ must satisfy (21), it follows that

E
[
zi,ty

∗′
i,t+1

]
γ = 0 (22)

for t = 1, 2, ..., where

y∗i,t+1 =
[
vi,t+1 vi,t ... vi,t−`

]′
and γ is not degenerate and has k entries.

Conversely, suppose that moment conditions (22) are in fact satisfied. Notice that

E
[
zi,ty

∗′
i,t+2

]
γ = 0

because

E
[
zi,t+1y

∗′
i,t+2

]
γ = 0,

where this latter equation is just (22) shifted one time period forward. As a consequence,

both

α =
[
γ′ 0

]′
,

α∗ =
[
0 γ′

]′
.

necessarily satisfy (21). Thus the I test for underidentification naturally leads us to test an

alternative set of moment conditions with one less free parameter given by (22). Identification

of the parameter vector α from (21) up to scale requires that we reject moment equations

(22) up to scale.

In a panel data setting, the I test is built from moment conditions (22) for t = 1, 2, ..., T

and large N . This construction of the I does not simply duplicate moments conditions,

16In a pure time series setting, there is only one i, say i = 1 but T is large.
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as this would lead to a degeneracy or repetition of moment conditions. Instead, the time

series structure naturally leads to an alternative equation system to be studied. Also we

could construct a collection of reduced form equations by projecting yi,t+2 onto zi,t for each

i and explore the restrictions imposed on coefficients. The reduced-form coefficients would

necessarily be time dependent, and they would include some implicit redundancies. For this

example, it is particularly convenient to work directly with the original structural equation

system.

A concrete example of this estimation comes from Arellano and Bond (1991). They

consider the estimation of a scalar autoregression with a fixed effect. In this example there

is an underlying process {vi,t : t = 0, 1, ..}. Form the scalar ∆vi,t = vi,t− vi,t−1 and construct

zi,t to include vi,0, vi,1, ..., vi,t. By taking first differences the fixed effect is eliminated from

the estimation equation. When there is a unit root, this differencing reduces the order of the

autoregression, but in general the order is not reduced. The I test checks whether in fact

the order can be reduced.

We illustrate this using an AR(2) model for panel data with an individual specific inter-

cept ηi:

α1(vi,t+2 − ηi) = −α2(vi,t+1 − ηi)− α3(vi,t − ηi) + ui,t+2 (t = 3, ..., T ), (23)

and

E (ui,t|vi,1, ..., vi,t−1; ηi) = 0.

Taking the first differences of equation (23) eliminates the fixed effect. Following Arellano and

Bond (1991), consider GMM estimation of α1 and α2 based on a random sample {vi,1, ..., vi,T :

i = 1, ..., N} and the unconditional moment restriction:

E[zi,t(α1∆vi,t+2 + α2∆vi,t+1 + α3∆vi,t)] = 0 (t = 1, ..., T − 2).

Thus, we have a system of T − 3 equations with a set of admissible “instruments” that

increases with T , but a common parameter vector α. With T = 3 there is a single equation

in first differences with two instruments so that α is at best just identified up to scale. We

may pin down the scale by letting the residual variance be zero or we could normalize the

first coefficient to be unity, in which case the remaining coefficients are the negatives of the

familiar autoregressive coefficients.
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Returning to our original specification (23), suppose that α1 + α2 + α3 = 0. Then

α1(vi,t+2 − ηi) = −α2(vi,t+1 − ηi)− α3(vi,t − ηi) + ui,t+2 (t = 3, ..., T ),

Under this parameter restriction the fixed effect is inconsequential and can be dropped.

Imposing this zero restriction allows us to rewrite the equation as:

α1∆vi,t+2 = −(α2 + α1)∆vi,t+1 + vi,t+2.

This first-order AR specification in first-differences is implicitly the specification that is

used in building the I test. If this specification satisfies the orthogonality restrictions, then

the parameters of the original model cannot be identified using the approach of Arellano

and Bond (1991). The hypothesis that underlies the I test is thus equivalent to an AR(2)

specification with a unit root.

Up until now we have considered only models that are linear in the variables. We extend

this discussion to include models with nonlinearities. In this discussion, it is important to

distinguish two cases. In the first case there is a separation between variables and param-

eters, and hence the nonlinearity is confined to the parameters. In the second case, the

nonlinearities between variables and parameters interact in a more essential way.

4 Nonlinearity in the Parameters

We first extend our previous analysis by replacing the parameter vector α by a nonlinear,

continuously differentiable function φ : P → Rk+1 where P is the closure of an open set in

R`. We study the nonlinear equation:

Assumption 4.1.

E (Ψt)φ(β) = 0 (24)

for some β ∈ P.

The identification question is only of interest when φ is a one-to-one (i.e. injective)

function. If there are two distinct parameter values β and β∗ for which φ(β) = φ(β∗) then

we know a priori that we cannot tell β apart from β∗ on the basis of Assumption 4.1. We

make the stronger restriction
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Assumption 4.2. For any two values of the parameter vector β 6= β∗ in P, φ(β) 6= cφ(β∗)

for some real number c.

We know that we can only identify φ(β) up to a proportionality factor. In Assumption 4.2

we ask the nonlinear parameterization to eliminate scale multiples from consideration.

We find it fruitful to think of the function φ as imposing restrictions on a parameter

vector α through the mapping φ(β) = α. By thinking of α as the parameter to be estimated,

we can use aspects of the approach described previously. Since φ is one-to-one, we can

uncover a unique β for each α. This leads us to construct the parameter space:

Q .
= {α : α = φ(β) for some β ∈ P}.

Suppose now that two values β[1] and β[2] satisfy Assumption 4.1 and are distinct. Thus

both φ(β[1]) and φ(β[2]) are in the null space of the matrix E(Ψt). By Assumption 4.2,

the vectors φ(β[1]) and φ(β[2]) are not proportional. Any two linear combinations of φ(β[1])

and φ(β[2]) must also be in the null space of E(Ψi). To study underidentification using our

previous approach, we expand the parameter space as follows:

Q∗ .= {α : α = c1α1 + c2α2, α1 ∈ Q, α2 ∈ Q, c1, c2 ∈ R}. (25)

Notice that if

E(Ψt)α = 0

for two values of α in Q, then there is a set of solutions to this equation in Q∗. This problem

is not a special case of our earlier analysis because Q∗ may not be a linear space.

To illustrate how nonlinearity in parameters can alter the analysis, we use an example

that is closely related to the non-linear IV model with serially correlated errors considered

by Sargan (1959). Nevertheless, it differs in an important way because in our case the valid

instrumental variables are predetermined but not necessarily strictly exogenous.17

Example 4.1. Consider a time series example:

xt · β1 = ut + γ′1wt,

ut = β2ut−1 + γ′2wt, (26)

17In his Presidential address to the Econometric Society Sargan (1983a) studied a static model with the
same mathematical structure, while Sargan (1983b) analyzed a dynamic multivariate version.
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where {wt} is a multivariate martingale difference sequence. Suppose also that zt−1 is a

linear function of wt−1, wt−2, .... The process {ut} is unobservable to the econometrician, but

xt · β1 − β2(xt−1 · β1) = (γ1 + γ2)′wt − β2γ
′
1wt−1.

Let

Ψt =
[
zt−2xt

′ −zt−2xt−1
′] ,

and consider identification of β based on:

E(Ψt)φ(β) = 0,

where

φ(β) =

[
β1

β2β1

]
. (27)

To achieve identification requires that we impose an additional normalization, say |β1| =

1. We may wish to restrict |β2| < 1. Since have not restricted γ′2wt to be uncorrelated with

ut−1, the unobserved (to the econometrician) process {ut} can be stationary and still satisfy

equation (26). Thus when |β2| > 1,

ut = −
∞∑
j=1

(β2)−j wt+j

is a stationary process that satisfies (26). Notice, however, in this case ut+γ
′
1wt is orthogonal

to zt−1 so there is an additional moment restriction at our disposal. As is well known the

case of |β2| = 1 requires special treatment.

Consider two parameter choices (β1, β2) and (β∗1 , β
∗
2). Without loss of generality write

β∗1 = cβ1 + dη1 (28)

where c = β1 · β∗1 , |η1| = 1 and η1 ⊥ β1, and impose that c2 + d2 = 1 to guarantee that

|β∗1 | = 1 too.

In line with the linear case assume that rank[E(Ψt)] = k − 1 so that it has a two-

dimesional null space. This means that if there are other observationally equivalent struc-

tures, they must satisfy

E(Ψt)

[
cβ1 + dη1

cβ∗2β1 + dβ∗2η1

]
= 0 (29)

Given the partly linear and partly non-linear structure of the model, underidentification

emerges in three ways that we now consider.

26



4.1 Only β1 identified:

There is one special way in which identification can break down. Suppose that

E (zt−2xt−1
′) β1 = 0,

and hence

E (zt−1xt
′) β1 = 0 (30)

for some β1. This phenomenon can occur for one of two reasons. First perhaps the choice

zt−2 is unfortunate. Alternatively, xt · β1 may depend only on current and possibly future

values of the martingale difference sequence {wt}. As we have seen, this may happen when

|β2| > 1 or in the degenerate case when ut is identically zero (γ1 = 0).18 For this same β1, it

is also required that

E (zt−2x
′
t) β1 = 0.

Typically, there will be common entries in zt−1 and zt−2. Let z∗t−1 be a random vector formed

after eliminating these redundancies in order that E
(
z∗t−1z

∗
t−1
′) is nonsingular. Then the I

test for β2 is based on:

E
(
z∗t−1xt

′) β1 = 0.

In other words, if the composite disturbance term ut + γ′1wt is orthogonal to z∗t−1, then β2

is not identified via the moment conditions. This I test is implemented by estimating the

econometric relationship without quasi-differencing, and then testing the resulting overiden-

tifying restrictions. Of course, if the null hypothesis underlying the I test is accepted, there

are other moment conditions that could be used to identify β2 given β1.

Notice in this case there is a continuum of values of the composite parameter vector β

that satisfy the moment conditions under the null hypothesis of the I test, but only a single

value of β1, which our procedure will estimate efficiently. Thus the function π associated

with this case is:

π(θ) =

[
β1

θ

]
.

This test is closely related but not identical to the underidentification test proposed by

Sargan (1959) for the non-linear in parameters model that he studied. The augmented set

18In the case in which |β2| > 1 we may identify β2 from other moment conditions.
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of moment conditions that he considered were (30) and

E(Ψt)

[
β∗1
β∗2β

∗
1

]
= 0,

where he implicitly chose β∗2 so that the sample covariance matrix of xt
′β1 and (xt

′−β∗2xt−1
′)β∗1

were 0. Apart from our emphasis on symmetric normalization and robustness to serial

correlation and heteroskedasticity, the main difference with his approach is that we impose

the restriction β1 = β∗1 , which, in parallel with a gain in estimation efficiency, leads to a

reduction in the number of degrees of freedom and the resulting gain in power, and also

eliminates the need to choose two arbitrary values for β2.

As we mentioned previously, we could allow for the value of β2 to have an absolute value

greater than one. In this case identification of β2 will fail unless we replace zt−2 by zt−1.

4.2 Only β2 is identified:

As another alternative suppose there is a vector β∗1 6= β1 such that

α∗ =

[
β∗1
β2β

∗
1

]
satisfies the moment conditions:

E (Ψt)α
∗ = 0.

Since any linear combination of α and α∗ must satisfy moment conditions, we can choose

c = 0 in (28) so that [
η1

β2η1

]
should also satisfy the moment conditions (29). This gives rise to a second I test. We

parameterize two orthonormal directions η1 and β1 along with a single parameter β2. When

β1 has only two components, we are free to set β1 and η1 equal to the two coordinate vectors

and freely estimate only the parameter β2. In that case the moment conditions of the I test

can be expressed as

E[zt−2(yt − β2yt−1)] = 0, i = 1, 2.

More generally, under the null hypothesis associated with this I test there is a two-

dimensional plane of (non-normalized) values of the original parameter vector β1 that satisfy

the moment conditions, but only one value of β2. After normalization, the manifold of
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observationally equivalent structures will be given by (28), and hence we may represent the

observationally equivalent β’s via:

π(θ) =

[
θβ1 +

√
1− θ2η1

β2

]
for −1 ≤ θ ≤ 1 where we introduce additional restrictions that permit us to identify β1 and

η1 used to represent π. Note that if E[zt−2(yt − β2yt−1)] = 0, then all the β1 coefficients will

be identified except the one corresponding to yt.

Importantly, this test is different from a linear test of rank[E(Ψt)] = k− 1 derived along

the lines of section 3.1, since such a test would not impose that the observationally equivalent

structures must satisfy (27).

Once again, as a by-product of our procedure we will obtain efficient GMM estimators

of β2, and the parameters β1 and η1 that characterize the identified set through (28).

4.3 Another possibility

In the two previous cases, we constructed functions π with realized values that satisfied the

moment conditions. Another possibility is that the rank[E(Ψt)] = k − 1 but that there are

only two distinct parameter values in P, say β[1] and β[2] that satisfy:

E(Ψt)φ(β) = 0.

In this case there is still a two-dimensional subspace of Q∗ constructed in (25). With an

additional normalization, obtained say by restricting the magnitude of the vector β1 to have

a norm equal to one, the curve is reduced to one dimension.19

5 Fundamental Nonlinearity

In this section we explore the underidentification problem when there is a more fundamental

nonlinearity of the parameters in the moment conditions. Recall that in the linear model

discussed in section 3, underidentification implies that we can estimate a line, which we chose

to implicitly parameterize by means of two parameter vectors. Similarly, in the non-linear

19In the first-order underidentified case studied by Sargan (1983a), there is only one β0 that satisfies the
moment conditions (24) even though the rank of the matrix {E[Ψt]∂φ(β0)/∂β′} is less than `. This case can
be regarded as the limit of the isolated two points case in which β[1] and β[2] get closer and closer to each
other in such a way that the dimension of the nullspace of E(Ψt) remains two.
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in parameters model discussed in section 4, we also implicitly parameterize a curve as a

function of a finite number of parameters. The natural extension for a fully nonlinear model

is to estimate a one-dimensional curve.

What follows are two distinct and largely self contained subsections. The first one extends

the efficiency problem posed in section 2. The second subsection explores the consistent

estimation of one-dimensional curves and suggests a resulting test for under-identification.

5.1 Efficiency Reconsidered

In this subsection we establish a pointwise (in θ) efficiency bound for GMM using an approach

similar to Hansen (1985) that extends the analysis of section 2, where we constructed the

GMM efficiency bound for a finite set Θn.

Let Θ be a compact interval. We impose the following extensions to Assumptions 2.1

and 2.2:

Assumption 5.1. 1√
T

∑T
t=1 f [xt, π0(θ)] converges in distribution to a Gaussian process {g(θ) :

θ ∈ Θ} with mean zero for all θ ∈ Θ and covariance function:

K(θ, ϑ) = lim
N→∞

1

T
E

(
T∑
t=1

T∑
s=1

f [xt, π0(θ)]f [xs, π0(ϑ)]′

)
.

where the covariance function K is continuous in its two arguments.

A sufficient condition for this assumption is that
{

1√
T

∑T
t=1

[
f(xt, β)− f̄(β)

]
: β ∈ P

}
con-

verges in distribution to a Gaussian random element.

Assumption 5.2. D(θ) is continuous on Θ and D(θ)′D(θ) is nonsingular for all θ ∈ Θ.

As before, we construct:

h(θ) = [D(θ)′D(θ)]−1D(θ)′g(θ),

for all θ ∈ Θ. Let {θj : j = 1, 2, ....} be a dense sequence in Θ. Construct F as the mean

square closure of
⋃∞
n=1Fn, where as before

Fn =

{
y =

n∑
j=1

B′jg(θj) : D(θj)
′Bj = 0, j = 1, 2, ..., n

}
.

The sequence approach gives us one means of approximating the efficiency bound.

30



Proposition 5.1. The GMM efficiency bound for estimating h(θj) is

E
[
(h(θj)− Proj[h(θj)|F ]) (h(θj)− Proj[h(θj)|F ])′

]
.

Proof. From least squares theory

lim
n→∞

Proj [h(θj)|Fn]→ Proj [h(θj)|F ] ,

where the convergence is in mean-square. It follows that

lim
n→∞

E
[
(h(θj)− Proj[h(θj)|Fn]) (h(θj)− Proj[h(θj)|Fn])′

]
= E

[
(h(θj)− Proj[h(θj)|F ]) (h(θj)− Proj[h(θj)|F ])′

]
.

The precise choice of the sequencing is important in practice, but it does not alter F .

Lemma 5.2. For any θ ∈ Θ and vector B such that D(θ)′B = 0, B′g(θ) is in F .

Proof. This result follows immediately for θ a member of the sequence {θj : j = 1, 2, ....}.

More generally, consider a subsequence
{
θj(k) : k = 1, 2, ...

}
that converges to θ, and compute

E
(∣∣g[θj(k)]− g(θ)

∣∣2) = trace
[
K
(
θj(k), θj(k)

)
−K

(
θj(k), θ

)
−K

(
θ, θj(k)

)
+K (θ, θ)

]
.

The right-hand side converges to zero since the covariance function K is continuous in both

arguments, and hence so does the left-hand side. Let

Bk = B −D
(
θj(k)

) [
D
(
θj(k)

)′
D
(
θj(k)

)]−1

D
(
θj(k)

)′
B.

Notice that D
(
θj(k)

)′
Bk = 0 and that {Bk : k = 1, 2, ...} converges to B since{

D
(
θj(k)

)
: k = 1, 2, ...

}
converges to D(θ) and D(θ)′B = 0. It follows that

lim
k→∞

E
(
|B′kg

(
θj(k)

)
−B′g(θ)|2

)
= 0

since [
E
(∣∣B′kg [θj(k)

]
−B′g(θ)

∣∣2)]1/2

≤ |Bk −B|
[
E
(∣∣g (θj(k)

)∣∣2)]1/2

+ |B|
[
E
(∣∣g (θj(k)

)
− g(θ)

∣∣2)]1/2

,

{g (θj) : j = 1, 2, ....} converges in mean-square to g(θ) and {Bk : k = 1, 2, ...} converges to

B.

31



As a direct extension of Proposition 5.1 and Lemma 5.2, our calculations apply jointly

to any finite number of θ’s. The construction of F remains the same.

Theorem 5.3. The GMM efficiency bound for any finite collection of θ’s, θ1, θ2, ..., θm is

given by E(Y Y ′) where

Y =


h(θ1)− Proj [h(θ1)|F ]
h(θ2)− Proj [h(θ2)|F ]

−−−
h(θm)− Proj [h(θm)|F ]

 .
While our GMM efficiency bound applies to any finite collection of points along a curve,

it is suggestive of a more general result. As an immediate corollary to the previous theorem,

consider the efficiency bound for estimating

m∑
j=1

γ′jτ(θj) (31)

This bound is given by the variance in the forecast error:

m∑
j=1

γ′jh(θj)− Proj

[
m∑
j=1

γ′jh(θj)|F

]
.

Consider now the efficiency bound for estimating∫
Θ

γ(θ) · τ(θ)dθ

Reimann sum approximations to this integral can be represented in the form given in (31).

Provided that we can construct an approximating sequence

E

∣∣∣∣∣
m∑
j=1

γ′jτ(θj)−
∫

Θ

γ(θ) · τ(θ)dθ

∣∣∣∣∣
2


that converges to zero, we conjecture that the efficiency bound is the variance of∫
Θ

γ(θ)′g(θ)dθ − Proj

[∫
Θ

γ(θ) · g(θ)dθ

∣∣∣∣F] .
This results is a nontrivial extension of our “pointwise” calculations, but a formal proof of

it is beyond the scope of this paper.
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5.2 Estimation of Curves

We now adopt a more global perspective by studying the statistical consistency of GMM

estimators of the function π : Θ → P. Conveniently, this estimation problem looks like a

standard problem except that we seek to estimate a function instead of a finite dimensional

parameter vector.

Assumption 5.3. Let P be a compact subset of Rk.

As in section 2, introduce a function f(x, ·) : P→ Rp for each x. The function f is jointly

Borel measurable and at the very least continuous in its second argument for each value of

x. Thus f(xt, ·) is a p-dimensional random function on P or a random element.

Assumption 5.4. E|f(xt, β)| <∞ for each β ∈ P.

This assumption justifies the definition of f̄(β) = E[f(xt, β)] for each β ∈ P.

As in Hansen (1982a), we also assume:

Assumption 5.5. f(xt, ·) is first-moment continuous for each β ∈ P.

Under this assumption f̄ is continuous on the parameter space P. This continuity condition

along with a point-wise (in β) Law of Large Numbers implied by ergodicity gives a Uniform

Law of Large Numbers (see Hansen (1982a)).

We extend the usual GMM estimation framework by considering parameterizations of

the form π(θ), where π is a continuous function with range P and θ ∈ Θ.

Assumption 5.6. Π is a compact set of admissible functions defined using the supnorm.

From the Arzelà–Ascoli Theorem it suffices that there be a uniform bound on the functions in

Π and that the functions be equicontinuous. The uniform bound comes from the compactness

of P (Assumption 5.3).

Consider next first-moment continuity. Notice that

f [x, π(θ)]− f [x, π̃(θ)]| ≤ sup
β∈P,β̃∈P,|β−β̃|≤ε

|f(x, β)− f(x, β̃)|

provided that ‖π − π̃‖ ≤ ε. This simple inequality implies that the first-moment continuity

restriction given in Assumption 5.5 extends to the parameter space Π.
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Let C denote the space of all continuous functions from Θ into Rp equipped with the

sup-norm. Let g be a continuous function mapping P into Rp. Then for any π ∈ Π, the

composition g ◦ π is in C. Thus we may view g ◦ π as a continuous function mapping Π into

C. In particular, the functions f [x, π(·)] for each x and f̄ [π(·)] are continuous in π on the

parameter space Π. Since Π is compact, these functions are in fact uniformly continuous.

Proposition 5.4. Suppose that Assumptions 5.3- 5.6 are satisfied. Then

sup
π∈Π

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

f [xt, π(θ)]− f̄ [π(θ)]

∣∣∣∣∣
converges to zero almost surely.

Proof. See Hansen (1982b).

Given that we now seek to identify a function π0 instead of a vector β0, under the null

hypothesis of underidentification of β our new “identification condition” requires that:

Assumption 5.7. f̄ [π(θ)] = 0 for all θ ∈ Θ if, and only if π = π0.

This assumption rules out the possibility that there exists π̃ such that

{π̃(θ)|θ ∈ Θ} ⊂ {π0(θ)|θ ∈ Θ} (32)

for some π̃ 6= π0, in which case there would exist two functions in this closure for which the

image of one function is a proper subset of the other. Note that (32) is ruled out a priori if

we use parameterization (2) given by:

π(θ) =

[
θ

τ(θ)

]
because the first coordinate of π is allowed to vary.

To obtain a consistent estimator of π0, we introduce a positive definite quadratic formW

which plays the role of the “weighting matrix” in GMM estimation. We let L2 denote the

space of Borel measurable functions φ that map Θ into Rp, where the coordinate functions

of φ are restricted to be square integrable using a conveniently chosen measure on Θ. We

use Lebesgue measure on Θ and (
∫

Θ
|φ(θ)|2 dθ)1/2 as norm, but in some applications other

measures may turn out to be more convenient. The quadratic form, W maps L2 × L2 into

R. Quadratic forms satisfy:
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i) W(φ, ψ) =W(ψ, φ) for φ, ψ ∈ L2;

ii) W(rφ, ψ) = rW(φ, ψ) for φ, ψ ∈ L2, r ∈ R;

iii) W(φ1 + φ2, ψ) =W(φ1, ψ) +W(φ2, ψ) for φ1, φ2, ψ ∈ L2.

A positive semidefinite form satisfies W(φ, φ) ≥ 0. We strengthen this restriction by

imposing positive definiteness and boundedness:

Assumption 5.8. For any φ 6= 0 in L2

W(φ, φ) > 0,

and for some positive number b̄

W(φ, φ) ≤ b̄

∫
Θ

|φ(θ)|2dθ

for all φ ∈ L2.

A positive definite form defines an alternative norm on L2 constructed as [W(φ, φ)]1/2

and the form itself defines an alternative inner-product. The upper bound in this assumption

guarantees that W is L2 continuous. To see this observe that

|W(ψ, ψ)−W(φ, φ)| ≤ W(ψ − φ, ψ − φ) + 2|W(φ, ψ − φ)|.

Positive semidefinite forms satisfy the Cauchy-Schwarz Inequality and hence

|W(φ, ψ − φ)| ≤ [W(φ, φ)]1/2 [W(ψ − φ, ψ − φ)]1/2

The L2 continuity of W now follows from

W(ψ − φ, ψ − φ) ≤ b̄

∫
Θ

|ψ(θ)− φ(θ)|2dθ.

Consider an estimator πT that solves:

Problem 5.5. Let πT be a solution to:

min
π∈Π
W

(
1

T

T∑
t=1

f [xt, π(·)], 1

T

T∑
t=1

f [xt, π(·)]

)
The following result establishes the consistency of πT :
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Theorem 5.6. Suppose that Assumptions 5.3 - 5.8 are satisfied. Then

sup
θ∈Θ
|πT (θ)− π0(θ)|

converges to zero almost surely as T gets large.

Proof. Let F be a continuous function mapping P into Rp. Recall that we may view F [π(·)]

as a continuous function mapping Π into C. In addition we may view W(F [π(·), F [π(·)]) as

a continuous function mapping Π into the nonnegative real numbers. From Proposition 5.4{
1
T

∑T
t=1 f(xt, π) : T = 1, 2, ...

}
converges uniformly in π to the continuous function f̄(π).

ThusW
(

1
T

∑T
t=1 f [xt, π(·)], 1

T

∑T
t=1 f [xt, π(·)]

)
converges toW

(
f̄ [π(·)], f̄ [π(·)]

)
uniformly in

π almost surely. It follows that the set of minimizers ofW
(

1
T

∑T
t=1 f [xt, π(·)], 1

T

∑T
t=1 f [xt, π(·)]

)
converges in the Hausdorff metric over compact subsets of Π to the unique minimizer of

W
(
f̄ [π(·)], f̄ [π(·)]

)
, which is π0.

This consistency argument presumes that we have full flexibility in constructing the

function π. In practice we have to approximate this function, for instance by selecting grid

points and building a smooth function that passes through these points via splines. Formally

our consistency argument allows for this construction to be arbitrarily refined. Once we

explore ways to approximate the efficiency bound, important implementation issues come

into play that require more care be paid to this approximation. As this is an important

practical issue, we will suggest an approach without fully analyzing the implications for

inference.

What follows are examples of forms that interest us.

Example 5.1. Consider

W(φ, ψ) =

∫
Θ

φ(θ)′W (θ)ψ(θ)dθ

where W (θ) is continuous and positive definite for each θ ∈ Θ and W (θ) ≤ b̄I. In this case

the GMM minimization problem 5.5 is separable in θ and the minimization can be done θ by

θ. One possibility is to let

W (θ) = K(θ, θ)−1

which is known to achieve the familiar GMM efficiency bound, but this bound ignores the

cross θ restrictions.
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Example 5.2. Let {ϕj : j = 1, 2, ...} denote an orthonormal sequence of functions in L2

with a span given by the entire space. Form

W(φ, ψ) =
∞∑
j=1

ζj

∫
Θ

ϕj(θ) · φ(θ)dθ

∫
Θ

ϕj(θ) · ψ(θ)dθ,

and b ≤ ζj ≤ b̄ for j = 1, 2, .... Then

φ =
∞∑
j=1

ϕj

∫
Θ

φ(θ) · ϕj(θ)dθ

where the convergence of the infinite sum is in the L2 norm given by (
∫

Θ
|φ(θ)|2 dθ)1/2, and

hence the Parceval formula implies that∫
Θ

φ(θ) · φ(θ)dθ =
∞∑
j=1

[∫
Θ

φ(θ) · ϕj(θ)dθ
]2

.

As a consequence, W satisfies Assumption 5.8.

This second construction allows for efficiency gains via joint estimation. One possibility

is to follow Carrasco and Florens (2000) by using the form:

K(φ, ψ) =

∫
Θ

∫
Θ

φ(θ)′K(θ, ϑ)ψ(ϑ)dθdϑ

Construct the functions ωj and numbers λj as eigenfunctions and eigenvalues of the form K

K(ωj, φ) = λj

∫
Θ

ωj · φ

for all φ ∈ L2. For a different estimation problem, Carrasco and Florens (2000) suggest

constructing a form that “inverts” the eigenvalues as a counterpart to inverting a weighting

matrix. This leads to the GMM objective:

∞∑
j=1

ζj

(∫
Θ

ωj(θ) ·
1

T

T∑
t=1

f [xt, π(θ)]dθ

)2

(33)

where ζj = 1
λj

. As they note this particular choice is problematic because the ζj’s are

unbounded since the λj’s converge to zero. This phenomenon leads them to alternative

choices based on regularization such as:

ζj =
λj

λ2
j + ς
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or

ζj =
1

λj + ς
,

where ς > 0 is a regularization parameter. Notice that the ζj’s are now bounded. If we

hold fixed ς as a function of sample size we will distort the efficiency, but we conjecture

that by making ς small we will approximate the efficiency bound we discussed previously.20

Alternatively, we could follow Carrasco and Florens (2000) and consider a framework in which

the regularization parameter diminishes as the sample size gets large in such a manner as to

achieve the GMM efficiency bound.21

It is interesting to relate the inferential problems in the previous sections with the one

in this section. The main difference is that the structure of (8) and (24) implies that the

resulting form K will only have a finite number of positive eigenvalues. Once we take this

fact into account, though, the curves that we will estimate with the procedure that we have

developed in this section will coincide with the curves that we implicitly estimated using the

procedures developed in sections 3 and 4.

To see why, consider for instance the linear in parameters model (8), and suppose that

instead of (6) we seek to estimate a non-linear parametric curve with the following structure

π(θ) = θ · α[1] + (1− θ) · α[2] +

[
θ

υ(θ)

]
(34)

Further, assume that π(θ) can be uniquely identified from the continuum of moment con-

ditions (3). We know that for each possible υ the linear span of the image will be finite-

dimensional. As we show in Appendix B, the method proposed in this section will select

υ(θ) = 0 ∀θ in order to keep the dimension of the linear span as small as possible, in this

case two.

5.3 Testing

Suppose that π0(θ) is a known function of θ, say π0(θ) = θ. Under full identification there

is a unique but unknown parameter vector, given by say β0 = π0(θ0), but we wish to

20This conjecture is not entirely obvious because we are now imposing compactness in the parameter space
whereas previously we ignored this restriction.

21We cannot simply appeal to the results in Carrasco and Florens (2000) because they consider estima-
tion of a finite-dimensional parameter vector with a continuum of moment conditions, which is a different
estimation problem.
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test for underidentification by pre-specifying π0 but not θ0. By assumption, estimation of

π0 is unnecessary. This is a special case of our analysis, but it is also a special case of

the analysis of Carrasco and Florens (2000). While estimation has been pushed aside, the

“overidentification” test of Carrasco and Florens (2000) is directly applicable to this problem

as a test of underidentification.

More generally, an overidentification test could be constructed analogously to that of

Carrasco and Florens (2000) by scaling appropriately the minimized regularized sample

counterpart to (33). The resulting test could produce a normal distribution as the limit of

a sequence of appropriately centred and scaled (approximate) chi-square distributions with

an arbitrarily large number of degrees of freedom. An attractive alternative approximation

that incorporates the role of regularization leads instead to an approximate quadratic form

in normal variables. Our experience suggests that this alternative Imhof (1961)-style approx-

imation described in Appendix C is an improvement over the limiting normal distribution.

6 An Empirical Illustration with Asset Returns

In this section we will illustrate our methods using two versions of consumption-based capital

asset pricing models. The representative agent (RA) version of these models with isoeslastic

preferences was originally estimated by GMM by Hansen and Singleton (1982) using ag-

gregate consumption data.22 From aggregate data we know that J-tests are typically large

except in cases studied by Hansen and Singleton (1996) that focus on aggregate equity re-

turns (see also Hansen et al. (1996), Stock and Wright (2000) and Kleibergen (2005)).23

When stocks and bonds alone are used to construct two moment conditions, the model is

at best exactly identified, but the coefficient of risk aversion is typically very large, which is

evidence of the so called equity premium puzzle coined by Mehra and Prescott (1985). To

illustrate our procedures, we consider such a specification except that we use microeconomic

data to construct an aggregate stochastic discount factor (SDF). Specifically, we follow a

recent paper by Kocherlakota and Pistaferri (2009), which contrasts the implications of the

22This application is closely related to Example 3.3.
23Hansen and Singleton (1996) use a recursive model of preferences with a unitary coefficient of risk

aversion to motivate the identification of the elasticity of intertemporal substitution with the return on the
wealth portfolio.
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RA model with one in which consumption and portfolio choices conform to a Pareto opti-

mal allocation under private information (PIPO). When Kocherlakota and Pistaferri (2009)

use the PIPO model, they find a substantially lower value for the coefficient of relative risk

aversion.

For estimation purposes, they considered the following moment conditions:

E [f(xt, γ, ρ)] = E [Rtk(xt, γ)− ρι2] = 0, (35)

where ι2 is a two-dimensional vector of ones, Rt is a two-dimensional vector of gross returns

on stocks and bonds denoted as:

Rt =

[
Rm,t

Rf,t

]
and k(xt, γ) is a model dependent kernel given by

k(xt, γ) =


(
N−1

∑N
i=1 ci,t

)−γ
/
(
N−1

∑N
i=1 ci,t−3

)−γ
RA

[
N−1

∑N
i=1(ci,t−3)γ

]
/
[
N−1

∑N
i=1(ci,t)

γ
]

PIPO.

In the formula for k(xt, γ), ci,t is consumption of household i (1, . . . , Nt) over “month” t

(1, . . . , T ). The parameters of interest are (γ, ρ), with ρ−1 corresponding to the subjective

discount factor and γ to the coefficient of relative risk aversion. The implied SDFs used

to represent asset prices are ρ−1k(xt, γ) for the alternative specifications of k(xt, γ). These

SDFs both discount the future and adjust for risk.

To study underidentification, we consider the functions ρm(γ) = E[Rm,tk(xt, γ)] and

ρf (γ) = E[Rf,tk(xt, γ)]. If ρm(γ) 6= ρf (γ) for all admissible values of γ except γ0, then γ0

and ρ0 are identified. Alternatively, if ρm(γ) = ρf (γ) = ρ(γ) for γ’s in an interval, then the

model is underidentified, and we seek to identify the values of ρ that correspond to each

value of γ. To justify this latter identification, we consider an overidentification test applied

to the problem of estimating ρ as a function of γ for an interval of γ’s.

It is instructive to contrast this approach with a method of constructing a confidence

interval for γ using a GMM criterion function. Suppose the model is point identified and

consider a GMM estimator of ρ for alternative values of γ in an interval. For each such

value of γ, there are two moment conditions that can be used to estimate the corresponding

ρ. Suppose now we consider the γ’s for a continuously-weighted GMM objective function
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that are below a pre-specified threshold, where the GMM objectives are evaluated at the

minimizing choices of γ.24 The threshold is set using the appropriate quantile of a chi-square

one distribution. Such a procedure leads not only to a confidence interval for γ but also

to a curve that depicts the minimizing values of ρ corresponding to each value of γ in the

confidence interval. This curve depicts a potentially interesting tradeoff in the empirically

relevant parameter values.

In contrast, suppose the model is in fact underidentified. For the reasons given in this

paper, it is more efficient to estimate this curve by stacking all of the relevant moment

conditions, or more precisely by studying the resulting continuum of moment conditions

simultaneously. Under the perspective that the model is underidentified, we have a more

efficient way to estimate the curve depicting the tradeoff in parameters resulting from the

empirical evidence. Under this perspective we could use the I test threshold instead of the

J test threshold to help in the determination of the length of the interval.

6.1 Implementation

One simple way of implementing our approach is by means of the following discrete grid

procedure.

1. Choose n values of γ, denoted γ1, . . . , γn spaced within the interval of interest;

2. Replicate n times the moment conditions (35) evaluating them at γj and ρ(γj);

3. Estimate the parameters ρ(γ1), . . . , ρ(γn) using efficient GMM.

Since we restrict ourselves to a grid of points, the method only approximates the efficiency

bound derived in Section 5 and only provides estimates of the curve evaluated at a finite

number of points. For n fixed, however, the corresponding overidentification test will be

valid, testing now the null hypothesis of underidentification. When the values of γ are close

to each other, the optimal weighting matrix may be close to singular in finite samples. We

find it best to apply some regularization procedure, such as “ridge” or Tikhonov pseudo

24The resulting γ’s need not be a single interval, but suppose for sake of illustration we consider only the
interval surrounding the GMM point estimate.
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inverses.25 The overidentification test associated with a regularized procedure will also be

asymptotically χ2
n if the regularization parameter goes to zero at a suitable rate, but its finite

sample distribution may be better approximated by a quadratic form in normal variables,

as described in Appendix C.

An alternative way of approximating the efficiency bound discussed in section 5 is as

follows.

1. Choose H + 1 values of γ, denoted γ1, . . . , γH+1 spaced within the interval of interest;

2. Parameterize ρ(.) a continuous, twice differentiable function of γ using what is referred

to as a natural cubic spline with knots at γ1, . . . , γH+1. The spline introduces H + 1

parameters to be estimated. (See Appendix E for details.)

3. Use the Carrasco and Florens (2000) procedure to estimate the free parameters of the

spline using (35) to construct a continuum of moment conditions indexed by γ.

Since the spline only approximates the curve, the number of knot points needs to increase

with the sample size to avoid asymptotic bias in the curve estimation. As before, a quadratic

form in normal variables might offer an attractive alternative to using a standard normal for

the limiting distribution of the resulting test statistic.

In practice, there are several choices that one needs to make in order to implement the

Carrasco and Florens (2000) procedure. In particular, one must choose the regularization

scheme and an associated regularization parameter, an estimator of the covariance operator

(e.g. centered or uncentered), and the estimator at which the covariance operator will be

evaluated. See Appendix D for more details.

25Let MT denote a consistent estimator of the long run covariance matrix of the 2n replicated moment
conditions, and denote by W∆W ′ its spectral decomposition. Tikhonov regularization involves replacing
M−1T = W∆−1W ′ by W∆1/2[ςT I2n + ∆2]−1∆1/2W ′, while “ridge” regularization uses W [υT I2n + ∆]−1W ′

instead, where ςT and υT are some small positive regularization parameters that should tend to 0 with the
sample size. While Tikhonov replaces δ−1i by δi/(ςT + δ2i ), ridge uses 1/(υT + δi), both of which remain
bounded as δi → 0. As a result, the damping factors are δ2i /(ςT +δ2i ) and δi/(υT +δi), respectively, which are
monotonic functions of δi that are 0 for δi = 0 and go to 1 when δi →∞ or the regularization parameter goes
to 0. One advantage of the ridge procedure, though, is that it preserves the ordering of the non-regularized
weights. In contrast, the maximum Tikhonov weight occurs at δ =

√
ςT . For δ′s larger than

√
ςT the

Tikhonov weights are decreasing in δ, while they are increasing in δ when δ <
√
ςT , which may lead to

noticeable differences in parameter estimates in finite samples, especially if MT is not too ill conditioned.
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The discrete grid approach gives consistent estimators of a finite number of points along

the curve while the spline approach gives an estimator of the curve. We defer formal analysis

of both methods as n and H get large as a function of the sample size for future research.

In the next subsection we compare these two methods to one in which we estimate ρ as

a function of γ for each γ using a pointwise optimal GMM estimator constructed from the

two moment conditions in (35). By changing the value of γ we trace a curve. This estimator

ignores efficiency gains that are available through joint estimation for alternative values of

γ, but nevertheless it provides a convenient benchmark.

6.2 Empirical results

We follow Kocherlakota and Pistaferri (2009) in using T = 288 months of the rotating US

Consumer Expenditure (CEX) panel over the period 1980-2004. We consider in turn results

for the two models.

6.2.1 Representative agent model

Figure 1 depicts the estimation results for the RA model. Panel 1(a) gives the minimized

GMM objective function when we estimate ρ(γ) separately for each value of γ; and Panel

1(b) gives the estimates of ρ(γ) using the three methods described in Subsection 6.1. All

three provide similar estimates.

The minimized value of the GMM objective function in Panel 1(a) occurs at γ (=53.26)

and ρ−1 (=.395), as obtained by Kocherlakota and Pistaferri (2009) from the original moment

conditions (35). Not surprisingly, the estimate of γ is very large because otherwise the RA

SDF would not sufficiently co-vary with excess returns on stocks. In order to adjust for the

large values of γ, the implied subjective discount factors are very low.

The relevant issue for our purposes, though, is underidentification. Can the population

moment conditions be satisfied for a range of γ’s? We consider an arguably narrow range

using a discrete grid of 5 values around the minimizing value of γ from the plot in Panel

1(a). Specifically, we use grid points 50, 51.25, 52.5, 53.75, 55. Given that the covariance

matrix of the moment conditions is close to being singular over that range mostly because

of the large values of γ, we use ridge regularization. Panel 1(b) plots the corresponding

estimated values of the subjective discount factor ρ−1. The underidentification test is equal

43



0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

γ

(a) Pointwise optimal GMM criterion function after minimizing with respect to ρ.
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(b) Alternative estimators of the implied subjective discount factor for different values of γ.

Figure 1: Results for the RA model.
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to .054, whose p-value using the Imhof approximation will be equal to 85.9%, so there is very

little evidence against the null of underidentification. This statistic should be viewed with

considerable caution when the concentrated GMM criterion depicted in Panel 1(a) is used

to select the range of γ’s. Conditioning on such a selection will alter the distribution of the

I test. Alternatively, the I test could be used explicitly to infer a range, as we mentioned in

Subsection 6.1. Formal analysis of these important issues is beyond the scope of this paper.

Table 1 presents point estimates of the subjective discount factor ρ−1 for the values of γ

used in our discrete grid implementation, together with standard errors obtained from joint

estimation and from separate estimation for each value of γ. The efficiency gains discussed

in Proposition 2.1 are evident from a comparison of the standard errors.

Pointwise efficient Discrete grid
γ ρ−1 s.e. ρ−1 s.e.
50 .435 .044 .442 .032
51.25 .419 .044 .424 .033
52.5 .404 .044 .406 .032
53.75 .389 .043 .388 .028
55 .375 .043 .370 .020

Table 1: Parameter estimates and standard errors. Discrete grid estimators and standard
errors (s.e.) are based on an optimal weighting matrix that uses ridge regularization with
parameter ς = .15

We also implement the cubic spline approach described in Subsection 6.1. Given the

smoothness of the curve obtained by estimating ρ−1 for each value of γ separately, we only

consider three knots, namely 50, 52.5 and 55, and therefore two subintervals. Panel 1(b)

presents the spline obtained with a two-step estimator with Tikhonov regularization of the

second moment (uncentered) operator that uses the GMM estimator of ρ at the γ values at

each knot point separately as first-stage estimator.26 We obtain rather similar results with

GMM estimators for a continuum of moment conditions that use ridge regularization applied

to the uncentered covariance operator, as well and ridge and Tikhonov regularization applied

to the centered covariance operator. See Appendix D for further details.

26For this approach the implied I test statistic is so close to zero that the resulting p-value is effectively
one. Further work is required to dispel doubts about the finite sample reliability of these statistics.
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6.2.2 Private information Pareto optimal model

Figure 2 depicts the estimation results for the PIPO model. Panel 2(a) gives the minimized

GMM objective function when we estimate ρ(γ) separately for each value of γ; and Panel

2(b) gives the estimates of ρ(γ) using the three methods described in Subsection 6.1. Again

we find that the estimates are very similar for all three methods.

As argued by Kocherlakota and Pistaferri (2009), the PIPO SDF has the potential to fit

the data with more reasonable values for γ by assigning an important role to consumption

inequality and private information. Consistent with their evidence, the GMM objective

function depicted in Panel 2(a) achieves a minimum at the more reasonable value of 5.33.

The subjective discount factor, however, remains very low with an implied value of .232. To

assess underidentification, once again we consider an equidistant discrete grid of 5 values of

γ, but this time over the range 5 to 6. In this case, the underidentification test is equal

to .536, whose Imhof-based p-value is equal to 61.9%, so once again there is little evidence

against the null of underidentification.

Panel 2(b) also presents a three-knot spline estimated estimated with the same approach

that we used for the RA model. The criterion function-based underidentification test is

.184, whose Imhof p-value is .96. Once again, further investigation is required to assess the

reliability of these inferences.

7 Conclusions

In instrumental variables or GMM estimation of an econometric model it is useful to have

a statistical test designed to ascertain whether the model is underidentified. While it was

recognized in the early econometric literature on simultaneous equations systems that under-

identification is testable, to date such tests are uncommon in econometric practice. Neverthe-

less, many econometric models of interest often imply a large number of moment restrictions

relative to the number of unknown parameters and are therefore seemingly overidentified.

However, this situation is often coupled with informal evidence that identification may be

at fault. In such cases an identification test in conjunction with some specificity about the

nature of the identification failure will help to assess to what extent the sample is informative

about the parameters of interest.
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(a) Pointwise optimal GMM criterion function for the PIPO model after minimizing with respect
to ρ.
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Figure 2: Results for the PIPO model.
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In this paper we propose a method for constructing tests of underidentification based on

the structural form of the equation system. We regard underidentification as a set of overi-

dentifying restrictions imposed on an augmented structural model. Therefore, our proposal

is to test for underidentification by testing for overidentification in the augmented model

using either standard overidentifying testing methods available in the literature, or some

generalizations developed in this paper. To reveal the nature of the underidentification, we

suggest estimating the direction or the curve that shows the parameter-tradeoffs that have

comparable empirical implications.

Our idea for how to build a test of underidentification is straightforward: estimate a curve

instead of a point and test the resulting overidentification. If it is possible to construct such

a curve without statistical rejection, then the original model is likely to be underidentified.

But if the attempt fails statistically, then the null hypothesis is rejected and we may conclude

the model is identified.

We show that our approach can be used not only for single equation linear models, but

also for systems with cross-equation restrictions, possibly with different valid instruments

for different equations. We also extend our methods to models which are non-linear in the

parameters, as well as to fundamentally non-linear models in which there is a one-dimensional

manifold of observationally equivalent structures.

In summary, the approach we develop in the paper for linear and nonlinear models has

the following characteristics in common:

1. we use the structural specification and exploit the fact that if β0 is not identified, there

will be a curve of β′s that will satisfy the original moment conditions;

2. we parameterize this curve, and write all the implied moment conditions as an extended

system with either a finite or a continuum of moment conditions;

3. we obtain an estimator of the curve that is the counterpart to an efficient GMM

estimator;

4. we compute the overidentification test of the extended system;

We do not provide an omnibus underidentification test. Instead our aim is to provide a test

for underidentification and a measure of the nature of this underidentification in situations in
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which the characteristics of the identified set of interest are either theoretically or empirically

motivated. We illustrated how to implement these methods with a consumption-based asset

pricing model fit to micreconomic data.

Although we posed the target of the estimation to be a function π0, we think of the

object of interest to be the resulting curve. This approach to curve estimation requires

that we know how to construct a valid parameterization of the curve a priori. It would be

interesting to develop implementation methods that are insensitive to how we parameterize

this curve. More generally, we could pose the estimation problem directly as one in which

we infer a curve of maximal length. In addition, the most important aspects of our analysis

should apply to manifolds of dimension higher than one.

In their study of observable factor models, Nagel and Singleton (2009) show that taking

account of the conditioning information in an efficient way substantially alters the assessment

of competing linear asset pricing models. Thus another important topic for future research

is to incorporate conditional moment restrictions and to explore more generally the extent

to which underidentification remains an important concern in practice.
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Appendices

A The Cragg and Donald test of underidentification

Cragg and Donald (1993) considered single equation tests of underidentification based on the

reduced form. Let us partition yt into a (p+ 1)- and a r1-dimensional vectors of endogenous

and predetermined variables, respectively, yt = (y′1t, z
′
1t)
′, so that k = p + r1 and zt =

(z′1t, z
′
2t)
′, where z2t is the vector of r2 instruments excluded from the equation. Moreover, let

Π and Π̂ = Y ′1Z(Z ′Z)−1 be the (p+ 1)× r matrices of population and sample reduced form

linear-projection coefficients, respectively. With this notation and the partition Π = (Π1,Π2)

conforming to that of zt, α is identified up to scale if and only if the rank of Π2 is p, but it

is underidentified if the rank is p− 1 or less.

To test for underidentification Cragg and Donald (1993) considered the minimizer of the

minimum distance criterion

T [vec(Π̂− Π)]′V −1vec(Π̂− Π) (A1)

subject to the restriction that the rank of Π2 is p−1. Under the null of lack of identification

and standard regularity conditions, this provides a minimum chi-square statistic with 2(r−

k) + 2 degrees of freedom, as long as V is a consistent estimate of the asymptotic variance

of vec(Π̂).

If the rank of Π2 is p− 1, there are two linearly independent vectors, denoted by Γ, such

that Π′2Γ = 0. For some ordering of the rows of Π2, we can normalize Γ as Γ′ = (I2,Γ
′
2).

Partitioning Π2 accordingly as Π′2 = (Π′21,Π
′
22), we then have that Π′21 = −Π′22Γ2. To enforce

the rank restriction, Cragg and Donald considered Π as a function of Π1,Π22 and Γ2.

To relate (A1) to our framework, write the augmented model

y′tα = ut,

y′tα
∗ = vt

as a complete system by adding to it p− 1 reduced form equations, and denote it by

By1t + Czt = u†t ,
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where B = (B′1, B
′
2)′, C = (C ′1, C

′
2)′, B2 = (0p−1,2

...Ip−1), and (B1, C1) = A′. To visualize

the mapping between the structural parameters and the Cragg-Donald parameterization of

the rank restriction, let us introduce the partitions C1 = (C11, 0), C2 = (C21, C22) and B1 =

(B11, B12). We then have that Π22 = −C22 and Π21 = B−1
11 B12C22, so that Γ2 = −B−1

11 B12.

Π1 is unrestricted with −B−1
11 (C11 −B12C21) as the first component and −C21 as the second.

Then noting that

Π̂−Π (A,C2) = [Y ′1 − Π (A,C2)Z ′]Z(Z ′Z)−1 =
(
Y ′1 +B−1CZ ′

)
Z(Z ′Z)−1 = B−1U †′Z(Z ′Z)−1,

so that

vec(Π̂− Π) = (B ⊗ Z ′Z)−1

T∑
i=1

(u†t ⊗ zt),

(A1) can be expressed as

T∑
i=1

(u†t ⊗ zt)′[(B ⊗ Z ′Z)V (B′ ⊗ Z ′Z)]−1

T∑
i=1

(u†t ⊗ zt), (A2)

which is in the form of a continuously updated GMM criterion that depends on (α, α∗) and

the coefficients C2 in the additional p− 1 reduced form equations. Since B does not depend

on the latter, those parameters can be easily concentrated out of the criterion. A convenient

feature of this criterion is that it is invariant to normalization through the updating of B

while V is kept fixed.

Specifically, using a standard result on the irrelevance of unrestricted moments Arellano

(2003) (see pages 196–197), criterion (A2) concentrated with respect to C2 can be shown to

equal:

(α′Y ′Z, α∗′Y ′Z) [(B1 ⊗ Z ′Z)V (B′1 ⊗ Z ′Z)]
−1

(
Z ′Y α
Z ′Y α∗

)
.

An optimal weight matrix under classical errors is V = Y ′1MY1 ⊗ (Z ′Z)−1, where M =

I − Z (Z ′Z)−1 Z ′, in which case the concentrated criterion boils down to

(α′Y ′Z, α∗′Y ′Z) (A
′
Y ′MYA⊗ Z ′Z)−1

(
Z ′Y α
Z ′Y α∗

)
.

Its minimizer subject to A
′
Y ′MYA = I coincides with the sum of the two smallest charac-

teristic roots of Y ′Z (Z ′Z)−1 Z ′Y in the metric of Y ′MY , which is one of the (non-robust)

test statistics discussed by Cragg and Donald (1993).

51



Next, an optimal weight matrix under heteroskedastic errors is

V = (I ⊗ Z ′Z)
−1
∑
t

(ε̂tε̂
′
t ⊗ ztz′t) (I ⊗ Z ′Z)

−1
,

where ε̂t is a reduced-form residual (the i-th column of Y ′1M). In this case the concentrated

criterion becomes

(α′Y ′Z, α∗′Y ′Z)

(∑
t

A′ỹtỹ
′
tA⊗ ztz′t

)−1(
Z ′Y α
Z ′Y α∗

)
,

where ỹt denotes the i-th column of Y ′M , so that the values of components of ỹt that

correspond to predetermined explanatory variables are identically zero.

To conclude, both robust and non-robust Cragg-Donald criteria can be regarded as

continuously-updated GMM criteria of the augmented structural model using ỹ′tA as er-

rors. Since the difference between A′yt and A′ỹt at the truth is of small order, using one

or the other is asymptotically irrelevant. Similar remarks can be made for optimal weight

matrices under autocorrelated errors.

B Estimating Finite-Dimensional Specifications of π

We begin by considering a general GMM estimation result, which will prove useful for our

purposes. Suppose the moment conditions used in GMM estimation can be partitioned as

f(xt, β) =

[
f [1]
(
xt, β

[1]
)

f [2]
(
xt, β

[1], β[2]
)] .

Let

f̄T (β) =
1

T

T∑
t=1

f(xt, β) =

[
1
T

∑T
t=1 f

[1]
(
xt, β

[1]
)

1
T

∑T
t=1 f

[2]
(
xt, β

[1], β[2]
)] .

Let VT (β) be the asymptotic covariance estimator used in a continuously-weighted GMM

estimation, whose partition we denote by:

VT (β) =

[
V

[11]
T

(
β[1]
)

V
[12]
T (β)

V
[21]
T (β) V

[22]
T (β)

]
.

We compare GMM objectives for estimating β
[1]
0 alone using the first set of moment conditions

versus estimating the entire vector β0 using the full set of moment conditions.
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Lemma B.1.

min
β∈P

f̄T (β)′[VT (β)]−1f̄T (β) ≥ min
β∈P

f̄
[1]
T

(
β[1]
)′ [

V
[11]
T

(
β[1]
)]−1

f̄
[1]
T

(
β[1]
)
.

Proof. Form

f ∗(xt, β, γ) =

[
f [1](xt, β

[1])
f [2]
(
xt, β

[1], β[2]
)
− γ

]
and construct similarly f̄ ∗T (β, γ). The proof follows in three steps.

1.

min
β∈P

f̄T (β)′[VT (β)]−1f̄T (β) ≥ min
β∈P,γ

f̄ ∗T (β, γ)′[VT (β)]−1f̄ ∗T (β, γ).

The right-hand side minimization problem will not have a unique solution but this

does not matter.

2.

min
γ
f̄ ∗T (β, γ)′[VT (β)]−1f̄ ∗T (β, γ) = f̄

[1]
T (β[1])′

[
V

[11]
T

(
β[1]
)]−1

f̄
[1]
T (β[1]). (B3)

This follows by using the first-order conditions for γ to show that

f̄
[2]
T (β)− γ =

([
0 I

]
[VT (β)]−1

[
0
I

])−1 [
0 I

]
[VT (β)]−1

[
I
0

]
f̄

[1]
T

(
β[1]
)
.

Substitute this outcome into the objective function on the left-hand side of (B3) and

apply the partitioned inverse formula to establish equality with the right-hand side of

(B3).

3. Finally,

min
β∈P,γ

f̄ ∗T (β, γ)′[VT (β)]−1f̄ ∗T (β, γ) = min
β∈P

min
γ
f̄ ∗T (β, γ)′[VT (β)]−1f̄ ∗T (β, γ)

= min
β∈P

f̄
[1]
T (β[1])′

[
V

[11]
T

(
β[1]
)]−1

f̄
[1]
T (β[1]).

The conclusion follows from these three steps.

We apply this result to an estimation problem where f2 corresponds to the moment

conditions added when we replicate the original moment conditions, and β[2] is introduced

to parameterize the additional econometric relation when then model is underidentified. The

previous lemma is not directly applicable to this problem because when we replicate moment
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conditions we add restrictions on the initial parameter vector β[1]. However, restricting β[1]

shrinks the parameter space P in the minimization problem given in the left-side of Lemma

B.1 and hence can only increase the minimized objective function. Thus a corollary of this

lemma is

Corollary B.2. Consider the p moment conditions

E[f̃(xt, β̃)] = 0

used to estimate the k×1 parameter vector β̃0, and denote by Ij the value of the continuously-

updated GMM version of the test of the null hypothesis that β is underidentified of dimension

j introduced in section 3.1.2. Then, Ij ≥ Ij−1 for any j ≥ 1.

As a result, if we use continuously-updated GMM and allow for explorations across alter-

native degrees of underidentification, then the objective will lead us to the smallest allowable

degree of underidentification. In particular, if we allow for the estimation of nonlinear curves

such as (34) in a model that is fundamentally linear, then the continuously-updated GMM

objective will lead us to represent the underidentification by means of a line or at least the

segment of a line.

C Imhof-based approximation to the distribution of

GMM tests

Let

f̄T (β) =
1

T

T∑
t=1

f(xt, β),

and define

M = lim
T→∞

V ar
[√

T f̄T (βo)
]
.

Since the purpose of this appendix is to explain the application of Imhof (1961) results in

our context, initially we will abstract from estimation issues by assuming that β0 is known.

As shown by Hansen (1982a), under certain regularity conditions the quadratic form

Nf̄T (β0)M−1f̄T (β0)

will converge in distribution to a χ2 random variable with p degrees of freedom as N →∞.
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If the matrix M is ill-conditioned, the quality of the previous approximation can be rather

poor. To address this problem, we could use the Tikhonov version of the generalized inverse,

and replace the above criterion function by

Nf̄ ′T (β0)M1/2(ςT Ip +M2)−1M1/2f̄T (β0)

=
√
T f̄T (β0)

′
W∆1/2W ′(ςT Ip +W∆2W ′)−1W∆1/2W ′

√
T f̄T (β0)

=
[√

T f̄T (β0)
′
W∆−1/2

] [
(ςT Ip + ∆2)−1∆2

] [
∆−1/2W ′

√
T f̄T (β0)

]
=

p∑
j=1

δ2
j

δ2
j + ςT

[√
Tεj,T

]2

,

where W∆W ′ provides the spectral decomposition of M , εj,T is the jth entry of the random

vector εT = ∆−1/2W ′f̄T (β0) and ςT is a regularization parameter. Since
√
TεT → N(0, Ip),

we will recover the chi-square limiting distribution under the null if we let ςT go to 0 at a

suitable rate. But given that for a fixed ςT the above statistic will converge to a diagonal

quadratic form in standard normal random variables as N → ∞, we can use Koerts and

Abrahamse (1969) implementation of Imhof (1961) procedure for evaluating the probability

that a quadratic form of normals is less than a given value (see also Farebrother (1990)).

Although the smallest eigenvalue of M , δmin say, will generally be strictly positive, from a

numerical point of view it makes sense to truncate the previous expression so that we only

use those terms for which (
δ2j

δ2j +ςT

)
(

δ2max

δ2max+ςT

)
exceeds some small threshold. Finally, since under standard regularity conditions the asymp-

totic distribution of the above tests is unaffected if we replace M with a consistent estimator,

in practice we can treat the sample counterparts of δj as if they coincided with their popu-

lation values. A rather similar analysis applies in the case of ridge regularization.

In practice, β0 will be replaced by its “optimal” GMM estimator, which in the case of

Tikhonov regularization will approximately satisfy the first order conditions

D′W∆1/2(ςT Ip + ∆2)−1∆1/2W ′f̄T (β̂) = G′E ′f̄T (β̂) = 0

in large samples, where D is the expected Jacobian matrix of the moment conditions, E =

55



W∆1/2(ςT Ip + ∆2)−1/2 and G = E ′D. Standard arguments then imply that

√
T (β̂ − β0) = −(G′G)−1G′

√
T f̄T (β0) + op(1).

Linearizing f̄T (β̂) around β0 allows us to write

√
TE ′f̄T (β̂) = [Ip −G(G′G)−1G′]

√
TE ′f̄T (β0) + op(1),

where [Ip−G(G′G)−1G′] is an idempotent matrix of rank p− k. As a result, the overidenti-

fication restriction test will be equal to

Nf̄ ′T (β̂)M1/2(ςT Ip +M2)−1M1/2f̄T (β̂) =
√
T f̄ ′T (β̂)EE ′

√
T f̄T (β̂)

=
√
T f̄ ′T (β0)E[Ip −G(G′G)−1G′]

√
TE ′f̄T (β0) + op(1)

=
√
T f̄ ′T (β0)∆−1/2W ′ {∆(ςT Ip + ∆2)−1/2[Ip −G(G′G)−1G′](ςT Ip + ∆2)−1/2∆

}
×
√
T∆−1/2W ′f̄T (β0) + op(1),

whose finite sample distribution can also be approximated by a more complex quadratic

form in standard normal random variables. As expected, this distribution will converge to

the usual χ2 with p− k degrees of freedom when ςT goes to 0 at a suitable rate.

The same analysis can be applied to GMM contexts with a continuum of moment con-

ditions. For simplicity, we again discuss the case in which π0(θ) is known, in which case our

approach and the Carrasco and Florens (2000) approach coincide.

Define v and C as a vector and square matrix, respectively, of dimension N , with elements

cst =
1

T
〈f [xs, π0(θ)] , f [xt, π0(θ)]〉 =

1

T

∫
Θ

f ′ [xs, π0(θ)] f [xt, π0(θ)] dθ.

vs = 〈gT (π0(θ)) , f (xs, π0(θ))〉 =
1

T

T∑
t=1

∫
Θ

f ′ [xt, π0(θ)] f [xs, π0(θ)] dθ = C ′·sιT ,

where C·s is the sth column of C and ιT is a vector of N 1’s. Consider the spectral decompo-

sition C = UΛU ′. Then, it is possible to show that the continuum of moment conditions test

studied by Carrasco and Florens (2000) is numerically identical to the following expression

v′
[
ςT IT + C2

]−1
v = ι′TC

[
ςT IT + C2

]−1
CιT = ι′TU


λ21

ςT +λ21
· · · 0

...
. . .

...

0 · · · λ2T
ςT +λ2T

UιT .
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Carrasco and Florens (2000) show that under certain conditions on the regularization con-

stant ςT :
v′ [ςT IT + C2]

−1
v − pT (ςT )√

qT (ςT )
→ N (0, 1) ,

where

pT (ςT ) =
T∑
j=1

λ2
j

λ2
j + ςT

qT (ςT ) = 2
T∑
j=1

λ4
j(

λ2
j + ςT

)2

As Carrasco and Florens (2000) argue in remark 11 of their paper, their test can also be

asymptotically regarded as a centered and standardized version of a diagonal quadratic form

in N standard normal variables. Thus we can again attempt to improve the finite sample

approximation by using Imhof (1961) results treating the eigenvalues of the empirical matrix

C as if they were the true eigenvalues of its population counterpart.

Another advantage of this Imhof approximation is that it will not breakdown when the

number of strictly positive eigenfunctions is finite regardless of the sample size. Such a

situation arises in the linear and non-linear in parameters models discussed in sections 3 and

4, respectively.

D GMM Estimators with a Continuum of Moments

D.1 Covariance operators

D.1.1 Uncentered covariance operator

First of all, it is worth noting that Carrasco and Florens (2000) only consider models with

a single moment condition indexed by a parameter vector. Therefore, in order to use their

expressions with two or more moment conditions one would need to use two indices: a

discrete index that tracks the moments, and another continuous one that refers to the true

index parameter γ (see Carrasco et al. (2007)). In contrast, here we use a vector of moments

indexed with respect to a scalar parameter, which should lead to identical results under the

assumption that all moments are weighted equally in computing inner products. On this

basis, we can define the sample second moment (matrix) integral operator K̄u
T (%) associated
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with the kernel

κ̄uT (γ′, γ”; %) =
1

T

∑T

t=1
f(xt, γ

′; %)f ′(xt, γ”; %)

to be such that

K̄u
T (%)ϕ(γ′) =

∫ γH+1

γ1

κ̄uT (γ′, γ”; %)ϕ(γ”)dΨ(γ”)

=
1

T

∑T

t=1
f(xt, γ

′; %)

∫ γH+1

γ1

f ′(xt, γ”; %)ϕ(γ”)dΨ(γ”),

where ϕ(γ) is a 2×1 function of γ, Ψ(γ) is typically the cdf of some random variable defined

over (γ1,γH+1), which for simplicity we take to be uniform hereinafter, and % is a vector of

knots in the cubic splines as explained in Appendix E.

In order to make this definition operational with the moment conditions (35), define

Cu(%̇, %̈) as the T × T matrix that appears in the objective function of the GMM estimators

described in Subsection D.2, whose (t, s) element is given by

cuts(%̇, %̈) =
1

T

∫ γH+1

γ1

f ′(xt, γ; %̇)f(xs, γ; %̈)dγ = chts − [zt(%̇) + zs(%̈)] + d(%̇, %̈),

where

chts =
1

T

∫ γH+1

γ1

(Rm,tRs,t +Rf,tRf,s)k(xt, γ)k(xs, γ)dγ,

zt(%̈) =
1

T

∫ γH+1

γ1

ρ(γ; %̈)(Rm,t +Rf,t)k(xt, γ)dγ

and

d(%̇, %̈) =
2

T

∫ γH+1

γ1

ρ(γ; %̇)ρ(γ; %̈)dγ.

Therefore, in matrix notation we can write

Cu(%̇, %̈) = Ch − [z(%̇)ι′T + ιT z
′(%̈)] + d(%̇, %̈)ιT ι

′
T ,

with z(%̇) = [z1(%̇), . . . , zT (%̇)]′.

The moment conditions (35) are highly non-linear in γ. However, one result that we will

use repeatedly is that although the cubic spline ρ(γ; %) is a non-linear function of γ for a

given %, it is possible to write it as a linear function of % for a given γ (see Appendix E).

Consequently, f(xt, γ; %) will be affine in % for a specific value of γ, and the same is true of

f̄T (γ; %) a fortiori. More importantly, we can also prove that integrals of f(xt, γ; %) are also
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linear in %. As a result, we can write z(%) = Υ% and d(%̇, %̈) = %̇′Ω%̈, where the computation

of the required coefficient matrices can also be found in Appendix E.

Let ωuj (γ; %) denote the T orthogonal eigenfunctions of the operator K̄u
T (%) associated to

its T non-zero eigenvalues λj(%), which can be obtained from the conditions

K̄u
T (%)ωuj (γ′; %) = λuj (%)ωuj (γ′; %).

For our purposes it is more convenient to work with the normalized eigenfunctions

ωu+
j (γ; %) =

1

T

∑T

t=1
φu+
jt (%)f(xt, γ; %),

which are such that
〈
ωu+
j (γ; %), ωu+

j (γ; %)
〉

= 1. Following Carrasco et al. (2007), we can

show that if we denote the spectral decomposition of the matrix Cu(%, %) by

Cu(%, %) = Uu(%)Λu(%)Uu′(%),

then we will have that

φu+
j (%) =

√
T√

λuj (%)
uuj (%),

where

Uu(%) = [uu1(%), . . . , uuj (%), . . . , uuT (%)].

D.1.2 Centered covariance operator

We can alternatively define the kernel of the integral operator K̄c
T (%) as

κ̄cT (γ′, γ”; %) =
1

T

∑T

t=1
[f(xt, γ

′; %)− f̄T (γ′; %)][f(xt, γ”; %)− f̄T (γ”; %)]′.

(see Carrasco and Kotchoni (2010) for an application of this operator in characteristic

function-based estimation). Let Cc(%̇, %̈) be a T × T matrix whose (t, s) element is

ccts(%̇, %̈) =
1

T

∫ γH+1

γ1

[f(xt, γ; %)− f̄T (γ; %̇)]′[f(xt, γ; %̈)− f̄T (γ; %̈)]dγ.

It immediately follows from this definition that

Cc(%̇, %̈) = (IT − T−1ιT ι
′
T )Cu(%̇, %̈)(IT − T−1ιT ι

′
T ) = (IT − T−1ιT ι

′
T )Ch(IT − T−1ιT ι

′
T ) = Cc,

which does not depend on %̇ or %̈. Another worthwhile feature of Cc is that it has rank T −1

at most, with ιT being the eigenvector associated to the zero eigenvalue.
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Let the spectral decomposition of Cc be

Cc = U cΛcU ′c.

Then, the weights of the orthonormalised eigenfunctions will be given by

φc+j =

√
T√
λcj
ucj.

D.2 Alternative estimators

D.2.1 Uncentered two-step estimators

Let %̄T denote some preliminary consistent estimator of %. In this context, the analogue

to the two-step efficient GMM criterion function that uses Tikhonov regularization will be

Q2S(%; %̄T , u, T ) =
T∑
j=1

λuj (%̄T )

[λuj (%̄T )]2 + ςT

〈
ωu+
j (γ; %̄T ), f̄T (γ; %)

〉2
.

Following Carrasco et al. (2007), we can write this expression in matrix notation as

ι′TC
u′(%̄T , %)[ςT IT + (Cu(%̄T , %̄T ))2]−1Cu(%̄T , %)ιT .

But since in our case Cu(%̄T , %) is affine in %, we can write

Cu(%̄T , %)ιT = (ChιT − TΥ%̄T ) + ιT (ι′TΥ%+ T %̄TΩ%) = π(%̄T ) + Π(%̄T )%,

so that the criterion function is a quadratic form in %. As a result, we can obtain its optimum

in closed form as

%̂2S
T = {Π′(%̄T )Uu(%̄T )[ςT IT + Λu2(%̄T )]−1Uu′(%̄T )Π(%̄T )−1

×Π′(%̄T )Uu(%̄T )[ςT IT + Λu2(%̄T )]−1Uu′(%̄T )π(%̄T ).

Iterated estimators can be easily obtained by computing this expression recursively.

An alternative regularization scheme would use the criterion function

Q2S(%; %̄T , u, r) =
T∑
j=1

1

λuj (%̄T ) + ςT

〈
ωu+
j (γ; %̄T ), f̄T (γ; %)

〉2
.

Given that

〈
ωu+
j (γ; %̄T ), f̄T (γ; %)

〉
=

1

T 2
e′jΦ

+u′(%̄T )Cu(%̄T , %)ιT =
1

T 2
e′jB

+u′(%̄T )[π(%̄T ) + Π(%̄T )%],
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where e′j is the jth vector of the canonical basis,
〈
ωu+
j (γ; %̄T ), ḡT (γ; %)

〉2
will be quadratic in %,

which means that arg min%Q
2S(%; %̄T , u, r) should also have a closed form. Nevertheless, since

Φ+u(%̄T ) =
√
TUu(%̄T )[Λu(%̄T )]−1/2, the computation of Q2S(%; %̄T , u, r) will be problematic

unless we also truncate the eigenfunctions.

D.2.2 Uncentered continuously updated estimators

A continuously updated version of the Tikhonov regularized criterion function will be

QCU(%;u, T ) =
T∑
j=1

λj(%)

λ2
j(%) + ςT

〈
ωj(γ; %), f̄T (γ; %)

〉2
,

which in matrix notation becomes:

ι′TC
u′(%, %)[ςT IT + (Cu(%, %))2]−1Cu(%, %)ιT .

Unfortunately, in this case there does not seem to be a simple closed expression for the

optimal estimator.

For analogous reasons, the continuously updated version of the ridge regularization will

not lead to closed-form expressions either, even though its computation should not be prob-

lematic since we could always do it as

QCU(%;u, r) =
T∑
j=1

λj(%)

λj(%) + ςT

{∑T

t=1
ujt(%)

}2

.

D.2.3 Centered estimators

Given that neither eigenvalues nor eigenfunctions require a preliminary estimator, in this

case the efficient GMM criterion function that uses Tikhonov regularization will be given by

Q(%; c, T ) =
T−1∑
j=1

λcj
λc2j + ςT

〈
ωc+j (γ), f̄T (γ; %)

〉2

=
T−1∑
j=1

1

λc2j + ςT

{∫ γH+1

γ1

[√
T

T

∑T

t=1
ucjt[Rtk(xt, γ)−Rtk(xt, γ)]′

]
f̄T (γ; %)dγ

}2

,

where Rtk(xt, γ) denotes the sample average of Rtk(xt, γ). Note that we have only included

T − 1 terms because the centred covariance operator has a zero eigenvalue. Straigthforward

algebra then implies that∫ γH+1

γ1

[Rtk(xt, γ)−Rtk(xt, γ)]′f̄T (γ; %)dγ =
1

T
e′tC

hιT −
1

T 2
ι′TC

hιT − e′tz(%) +
1

T
z′(%)ιT ,
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where et is the tth vector of the canonical basis. Hence,

√
T

T

∑T

t=1
ucjt

[
1

T

∑T

s=1

∫ γH+1

γ1

[Rtk(xt, γ)−Rtk(xt, γ)]′f(xs, γ; %)dγ

]
=

√
T

T
uc′j

[
1

T

(
IT −

1

T
ιT ι
′
T

)
ChιT −

(
IT −

1

T
ιT ι
′
T

)
z(%)

]
But we have seen before that ιT is the eigenvector of Cc associated to its 0 eigenvalue,

which means that uc′j ιT = 0 for j = 1, . . . , T − 1. As a result, the criterion function will be[√
T

T 2
Ū c′ChιT −

√
T

T
Ū c′Υ%

]′
[ςIT−1 + (Λ̄c)2]−1

[√
T

T 2
Ū c′ChιT −

√
T

T
Ū c′Υ%

]
,

where the upper bar on Ū c and Λ̄c indicates that we have eliminated the elements associated

to the 0 eigenvalue. As expected, this expression is quadratic in %, so once again it is possible

to find a closed-form analytical expression for the estimator.

For analogous reasons, we are also able to find closed-form expressions if we use ridge

regularization instead, as long as we complement it with truncation of the eigenfunctions.

E Computational aspects of natural cubic splines

If ρ(γ; %) is a (natural) cubic spline function defined over the interval [γ1, γH+1] that

depends on H + 1 parameters % = (%1, . . . , %H+1)′, which are the knot values associated to

the H + 1 distinct knots γ1, . . . , γH+1, then

ρ(γ; %) =


ρ1(γ; %) γ ∈ [γ1, γ2]
ρ2(γ; %) γ ∈ [γ2, γ3]

...
...

ρH(γ; %) γ ∈ [γH , γH+1]

with ρi(γ; %) (i = 1, . . . , H) being the unique cubic polynomials in γ that satisfy the following

conditions:

1. ρi(γi+1; %) = %i+1 (interpolating property)

2. ρi−1(γi; %) = ρi(γi; %) (i = 2, . . . , H) (continuity)

3. ∂ρi−1(γi; %)/∂γ = ∂ρi(γi; %)/∂γ (i = 2, . . . , H) (continuity of the first derivative)
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4. ∂2ρi−1(γi; %)/(∂γ)2 = ∂2ρi(γi; %)/(∂γ)2 (i = 2, . . . , H) (continuity of the second deriva-

tive)

5. ∂2ρ1(γ1; %)/(∂γ)2 = 0 and ∂2ρH+1(γH+1; %)/(∂γ)2 = 0 (“natural” cubic spline)

The specific form of these cubic polynomials is

ρi(γ; %) =
vi+1(%)(γ − γi)3 + vi(%)(γi+1 − γ)3

6(γi+1 − γi)

+

[
%i+1

γi+1 − γi
− γi+1 − γi

6
vi+1(%)

]
(γ − γi) +

[
%i

γi+1 − γi
− γi+1 − γi

6
vi(%)

]
(γi+1 − γ),

where the coefficients vi(%) can be found by solving the linear system of H − 1 equations:

(γi − γi−1)vi−1(%) + 2(γi+1 − γi−1)vi(%) + (γi+1 − γi)vi+1(%)

= 6

(
%i+1 − %i
γi+1 − γi

− %i − %i−1

γi − γi−1

)
for i = 2, . . . , H in the H − 1 unknowns v2(%), . . . , vH(%), with v1(%) = 0 and vH+1(%) = 0.

In matrix notation, we can write this system as

2(γ3 − γ1) γ3 − γ2 0
γ3 − γ2 2(γ4 − γ2) γ4 − γ3 0

0 γ4 − γ3 2(γ5 − γ3) γ5 − γ4
...

. . . . . . . . .
. . .
. . .

0 . . .

0

0
. . .

...
. . . . . . . . .

γH−1 − γH−2 2(γH − γH−2) γH − γH−1

0 γH − γH−1 2(γH+1 − γH−1)





v2(%)
v3(%)
v4(%)

...
vH−2(%)
vH−1(%)
vH(%)


= 6

 (%3 − %3)/(γ3 − γ2)− (%2 − %1)/(γ2 − γ1)
...

(%H+1 − %H)/(γH+1 − γH)− (%H − %H−1)/(γH − γH−1)

 ,

which can be solved very efficiently because of its symmetric tridiagonal nature.
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Importantly, (%3 − %2)/(γ3 − γ2)− (%2 − %1)/(γ2 − γ1)
...

(%H+1 − %H)/(γH+1 − γH)− (%H − %H−1)/(γH − γH−1)



=


(γ2 − γ1)−1 −(γ3 − γ2)−1 − (γ2 − γ1)−1 (γ3 − γ2)−1 0

0 (γ3 − γ2)−1 −(γ4 − γ3)−1 − (γ3 − γ2)−1 (γ4 − γ3)−1

...
. . . . . . . . .

. . .

0 . . .

0
0

. . . . . .

. . . . . . . . .

(γH − γH−1)−1 −(γH+1 − γH)−1 − (γH − γH−1)−1 (γH+1 − γH)−1





%1

%2

%3
...

%H−1

%H
%H+1


so the independent term is linear in %. This, coupled with the fact that coefficient matrix is

a function of the knots but not of the knot values, means that

v(%) = A(γ)%,

where v(%) = [v1(%), v2(%), . . . , vH+1(%)] and γ = (γ1, γ2, . . . , γH+1). As a result, ρi(γ; %) will

be linear in % too, and the same applies to ρ(γ; %), as long as we interpret this to mean

that the coefficients of the linear combination will depend on γ and the interval to which it

belongs.

Let us now consider the integrals required in the different inner product calculations for

the case of the RA consumption CAPM model. Specifically, we need to compute

T · chts = (Rm,tRs,t +Rf,tRf,s)

∫ γH+1

γ1

k(xt, γ)k(xs, γ)dγ

= (Rm,tRs,t +Rf,tRf,s)

∫ γH+1

γ1

[( ∑N
i=1 cit∑N
i=1 cit−3

)( ∑N
i=1 cis∑N
i=1 cis−3

)]−γ
dγ

= (Rm,tRs,t +Rf,tRf,s)

[
ln

( ∑N
i=1 cit∑N
i=1 cit−3

)
+ ln

( ∑N
i=1 cis∑N
i=1 cis−3

)]−1

×

{[( ∑T
i=1 cit∑N
i=1 cit−3

)( ∑N
i=1 cis∑N
i=1 cis−3

)]−γ1
−

[( ∑N
i=1 cit∑N
i=1 cit−3

)( ∑N
i=1 cis∑N
i=1 cis−3

)]−γH+1
}
,
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where we have used expression (F4) in Appendix F.

In addition, we need to compute

T · zt(%) = (Rm,t +Rf,t)
H∑
i=1

[∫ γi+1

γi

ρi(γ; %)

( ∑N
i=1 cit∑N
i=1 cit−3

)−γ
dγ

]
.

But ∫ γi+1

γi

ρi(γ; %)

( ∑N
i=1 cit∑N
i=1 cit−3

)−γ
dγ =

∫ γi+1

γi

{( ∑N
i=1 cit∑N
i=1 cit−3

)−γ [
vi+1(%)(γ − γi)3 + vi(%)(γi+1 − γ)3

6(γi+1 − γi)

+

(
%i+1

γi+1 − γi
− γi+1 − γi

6
vi+1(%)

)
(γ − γi) +

(
%i

γi+1 − γi
− γi+1 − γi

6
vi(%)

)
(γi+1 − γ)

]}
dγ,

which can also be easily obtained by using the expressions in Appendix F. Importantly,

given that the resulting expression is linear in % for each i, zt(%) will be linear in % too. In

this sense, it is convenient to replace the vi(%)′s by A(γ)%, so that we can obtain the matrix

Υ. Although we have to resort to numerical quadrature to compute the integrals of the

PIPO model, the linearity of zt(%) in % is preserved.

Finally, we need to compute

T · d(%̇, %̈) = 2

∫ γH+1

γ1

ρ(γ; %̇)ρ(γ; %̈)dγ = 2
H∑
i=1

[∫ γi+1

γi

ρi(γ; %̇)ρi(γ; %̈)dγ

]
.

Once again, we can use the expressions in Appendix F to compute[∫ γi+1

γi

ρi(γ; %̇)ρi(γ; %̈)dγ

]
,

which will be a bilinear function of %̇ and %̈. Like in case of zt(%), if we write ρi(γ; %) as an

explicit function of % by replacing the vi(%)′s by A(γ)%, we can also obtain the matrix Ω.

F Some useful definite integrals

Let

p(x) = a(x− `)3 + b(u− x)3 + c(x− `) + d(u− x),

q(x) = e(x− `)3 + f(u− x)3 + g(x− `) + h(u− x).
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Then

p(x)q(x) = ae(x− `)6 + (af + be)(u− x)3(x− `)3 + bf(u− x)6

+(ag + ce)(x− `)4 + (ah+ de)(u− x)(x− `)3 + (bg + cf)(x− `)(u− x)3 + (bh+ df)(u− x)4

+cg(x− `)2 + (ch+ dg)(u− x)(x− `) + dh(u− x)2.

Given that ∫ u

`

(ae(x− `)6 + (af + be)(u− x)3(x− `)3 + bf(u− x)6)dx

= − 1

140
(`− u)7 (20ae+ be+ af + 20bf) ,

∫ u

`

((ag + ce)(x− `)4 + (ah+ de)(u− x)(x− `)3

+(bg + cf)(x− `)(u− x)3 + (bh+ df)(u− x)4)dx

= − 1

20
(`− u)5 (4ce+ de+ 4ag + ah+ bg + cf + 4bh+ 4df) ,

and ∫ u

`

(cg(x− `)2 + (ch+ dg)(u− x)(x− `) + dh(u− x)2)dx

= −1

6
(`− u)3 (2cg + ch+ dg + 2dh) ,

we can finally write∫ u

`

p(x)q(x)dx = − 1

140
(`− u)7 (20ae+ be+ af + 20bf)

− 1

20
(`− u)5 (4ce+ de+ 4ag + ah+ bg + cf + 4bh+ 4df)

−1

6
(`− u)3 (2cg + ch+ dg + 2dh) .

Similarly,∫
k−x(x− `)3dx = − 1

kx ln4 k
((x− `)3 ln3 k + 3(x− `)2 ln2 k + 6(x− `) ln k + 6),

so∫ u

`

k−x(x− `)3dx = − 1

ku ln4 k
((u− `)3 ln3 k + 3(u− `)2 ln2 k + 6(u− `) ln k + 6) +

6

k` ln4 k
.
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Likewise,∫
k−x(u− x)3dx =

1

kx ln4 k
(−(u− x)3 ln3 k + 3(u− x)2 ln2 k − 6(u− x) ln k + 6)

so∫ u

`

k−x(u− x)3dx =
6

ku ln4 k
+

1

k` ln4 k
(−(u− `)3 ln3 k + 3(u− `)2 ln2 k − 6(u− `) ln k + 6).

Analogously, ∫
k−x(x− `)dx = − 1

kx ln2 k
((x− `) ln k + 1) ,∫

k−x(u− x)dx =
1

kx ln2 k
((x− u) ln k + 1) ,

so ∫ u

`

k−x(x− `)dx = − 1

ku ln2 k
((u− `) ln k + 1) +

1

k` ln2 k
,∫ u

`

k−x(u− x)dx =
1

ku ln2 k
− 1

k` ln2 k
((`− u) ln k + 1) .

Finally, it is straightforward to show that∫ u

`

k−xdx =
1

ln k
(k−` − k−u) (F4)

because ∫
k−xdx = −k

−x

ln k
.

Unfortunately, ∫ u

`

k−xdx =
1

ln k

(
1

k`
− 1

ku

)
becomes numerically unstable when k is close to 1, even though in the limit this definite

integral is simply (u− `). In our empirical application to the RA model, this will happen in

those quarters in which consumption growth is positive or negative but very close to 0. To

avoid this problem, define d such that

1− d = k,

and consider the Taylor expansion of (1− d)−x, which is given by:

1 + xd+
1

2
x (x+ 1) d2 +

1

3!
x(x+ 1)(x+ 2)d3 +O

(
d4
)
.
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On this basis, we can numerically approximate the required integral by integrating the

Taylor expansion, which yields∫ u

`

k−xdx = (u− `) +
1

2
(u2 − `2)d+

[
1

3
(u3 − `3) +

1

2
(u2 − `2)

]
1

2
d2

+

[
1

4
(u4 − `4) + (u3 − `3) + (u2 − `2)

]
1

3!
d3 +O

(
d4
)
.

We can use the same trick to compute∫ u

`

k−x(x− `)3dx.

Specifically, the relevant terms in the expansion of this integral will be:∫ u

`

(x− `)3dx =
1

4
(`− u)4 ,∫ u

`

x(x− `)3dx =
1

20
(`− u)4 (`+ 4u) ,∫ u

`

x (x+ 1) (x− `)3dx =
1

60
(`− u)4 (`2 + 4`u+ 3`+ 10u2 + 12u

)
,∫ u

`

x (x+ 1) (x+ 2)(x− `)3dx

=
1

140
(`− u)4 (`3 + 4`2u+ 7`2 + 10`u2 + 28`u+ 14`+ 20u3 + 70u2 + 56u

)
.

Similarly, ∫ u

`

(u− x)3dx =
1

4
(`− u)4 ,∫ u

`

x(u− x)3dx =
1

20
(`− u)4 (4`+ u) ,∫ u

`

x (x+ 1) (u− x)3dx =
1

60
(`− u)4 (10`2 + 4`u+ 12`+ u2 + 3u

)
,∫ u

`

x (x+ 1) (x+ 2)(u− x)3dx

=
1

140
(`− u)4 (20`3 + 10`2u+ 70`2 + 4`u2 + 28`u+ 56`+ u3 + 7u2 + 14u

)
.

We also need to compute integrals such as∫ u

`

k−x(x− `)dx.
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To do so, we can use ∫ u

`

(x− `)dx =
1

2
(`− u)2 ,∫ u

`

x(x− `)dx =
1

6
(`− u)2 (`+ 2u),∫ u

`

x (x+ 1) (x− `)dx =
1

12
(`− u)2 (`2 + 2`u+ 2`+ 3u2 + 4u

)
,∫ u

`

x (x+ 1) (x+ 2)(x− `)dx

=
1

60
(`− u)2 (3`3 + 6`2u+ 15`2 + 9`u2 + 30`u+ 20`+ 12u3 + 45u2 + 40u

)
.

Finally, to compute ∫ u

`

k−x(u− x)dx

we can use ∫ u

`

(u− x)dx =
1

2
(`− u)2 ,∫ u

`

x(u− x)dx =
1

6
(`− u)2 (2`+ u),∫ u

`

x (x+ 1) (u− x)dx =
1

12
(`− u)2 (3`2 + 2`u+ 4`+ u2 + 2u

)
,∫ u

`

x (x+ 1) (x+ 2)(u− x)dx

=
1

60
(`− u)2 (12`3 + 9`2u+ 45`2 + 6`u2 + 30`u+ 40`+ 3u3 + 15u2 + 20u

)
.
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